Programs for A000001-A049999
List of integer sequences with links to LODA programs.
- A000002 (program): Kolakoski sequence: a(n) is length of n-th run; a(1) = 1; sequence consists just of 1’s and 2’s.
- A000004 (program): The zero sequence.
- A000005 (program): d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.
- A000006 (program): Integer part of square root of n-th prime.
- A000007 (program): The characteristic function of {0}: a(n) = 0^n.
- A000008 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
- A000009 (program): Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts.
- A000010 (program): Euler totient function phi(n): count numbers <= n and prime to n.
- A000011 (program): Number of n-bead necklaces (turning over is allowed) where complements are equivalent.
- A000012 (program): The simplest sequence of positive numbers: the all 1’s sequence.
- A000013 (program): Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.
- A000015 (program): Smallest prime power >= n.
- A000016 (program): a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
- A000023 (program): Expansion of e.g.f. exp(-2*x)/(1-x).
- A000026 (program): Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).
- A000027 (program): The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.
- A000028 (program): Let n = p_1^e_1 p_2^e_2 p_3^e_3 … be the prime factorization of n. Sequence gives n such that the sum of the numbers of 1’s in the binary expansions of e_1, e_2, e_3, … is odd.
- A000029 (program): Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).
- A000030 (program): Initial digit of n.
- A000031 (program): Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
- A000032 (program): Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1.
- A000033 (program): Coefficients of ménage hit polynomials.
- A000034 (program): Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2).
- A000035 (program): Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.
- A000037 (program): Numbers that are not squares (or, the nonsquares).
- A000038 (program): Twice A000007.
- A000040 (program): The prime numbers.
- A000041 (program): a(n) is the number of partitions of n (the partition numbers).
- A000042 (program): Unary representation of natural numbers.
- A000044 (program): Dying rabbits: a(0) = 1; for 1 <= n <= 12, a(n) = Fibonacci(n); for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13).
- A000045 (program): Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
- A000048 (program): Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.
- A000051 (program): a(n) = 2^n + 1.
- A000056 (program): Order of the group SL(2,Z_n).
- A000062 (program): A Beatty sequence: a(n) = floor(n/(e-2)).
- A000064 (program): Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents.
- A000065 (program): -1 + number of partitions of n.
- A000068 (program): Numbers k such that k^4 + 1 is prime.
- A000069 (program): Odious numbers: numbers with an odd number of 1’s in their binary expansion.
- A000070 (program): a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
- A000071 (program): a(n) = Fibonacci(n) - 1.
- A000073 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.
- A000078 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1.
- A000079 (program): Powers of 2: a(n) = 2^n.
- A000082 (program): a(n) = n^2*Product_{p|n} (1 + 1/p).
- A000085 (program): Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.
- A000086 (program): Number of solutions to x^2 - x + 1 == 0 (mod n).
- A000089 (program): Number of solutions to x^2 + 1 == 0 (mod n).
- A000090 (program): Expansion of e.g.f. exp((-x^3)/3)/(1-x).
- A000093 (program): a(n) = floor(n^(3/2)).
- A000094 (program): Number of trees of diameter 4.
- A000095 (program): Number of fixed points of GAMMA_0 (n) of type i.
- A000096 (program): a(n) = n*(n+3)/2.
- A000097 (program): Number of partitions of n if there are two kinds of 1’s and two kinds of 2’s.
- A000100 (program): a(n) is the number of compositions of n in which the maximal part is 3.
- A000102 (program): a(n) = number of compositions of n in which the maximum part size is 4.
- A000108 (program): Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
- A000110 (program): Bell or exponential numbers: number of ways to partition a set of n labeled elements.
- A000111 (program): Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).
- A000114 (program): Number of cusps of principal congruence subgroup GAMMA^{hat}(n).
- A000115 (program): Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
- A000116 (program): Number of even sequences with period 2n (bisection of A000013).
- A000117 (program): Number of even sequences with period 2n (bisection of A000011).
- A000118 (program): Number of ways of writing n as a sum of 4 squares; also theta series of four-dimensional cubic lattice Z^4.
- A000120 (program): 1’s-counting sequence: number of 1’s in binary expansion of n (or the binary weight of n).
- A000122 (program): Expansion of Jacobi theta function theta_3(x) = Sum_{m =-oo..oo} x^(m^2) (number of integer solutions to k^2 = n).
- A000123 (program): Number of binary partitions: number of partitions of 2n into powers of 2.
- A000124 (program): Central polygonal numbers (the Lazy Caterer’s sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
- A000125 (program): Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.
- A000126 (program): A nonlinear binomial sum.
- A000127 (program): Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.
- A000128 (program): A nonlinear binomial sum.
- A000129 (program): Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).
- A000132 (program): Number of ways of writing n as a sum of 5 squares.
- A000134 (program): Positive zeros of Bessel function of order 0 rounded to nearest integer.
- A000138 (program): Expansion of e.g.f. exp(-x^4/4)/(1-x).
- A000139 (program): a(n) = 2*(3*n)!/((2*n+1)!*((n+1)!)).
- A000141 (program): Number of ways of writing n as a sum of 6 squares.
- A000142 (program): Factorial numbers: n! = 1*2*3*4*…*n (order of symmetric group S_n, number of permutations of n letters).
- A000143 (program): Number of ways of writing n as a sum of 8 squares.
- A000144 (program): Number of ways of writing n as a sum of 10 squares.
- A000145 (program): Number of ways of writing n as a sum of 12 squares.
- A000149 (program): a(n) = floor(e^n).
- A000150 (program): Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.
- A000152 (program): Number of ways of writing n as a sum of 16 squares.
- A000153 (program): a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.
- A000155 (program): Nearest integer to modified Bessel function K_n(1).
- A000156 (program): Number of ways of writing n as a sum of 24 squares.
- A000159 (program): Coefficients of ménage hit polynomials.
- A000161 (program): Number of partitions of n into 2 squares.
- A000165 (program): Double factorial of even numbers: (2n)!! = 2^n*n!.
- A000166 (program): Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.
- A000167 (program): Nearest integer to modified Bessel function K_n(2).
- A000168 (program): a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).
- A000169 (program): Number of labeled rooted trees with n nodes: n^(n-1).
- A000172 (program): Franel number a(n) = Sum_{k = 0..n} binomial(n,k)^3.
- A000178 (program): Superfactorials: product of first n factorials.
- A000179 (program): Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, …, n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.
- A000180 (program): Expansion of E.g.f. exp(-x)/(1-3x).
- A000181 (program): Coefficients of ménage hit polynomials.
- A000182 (program): Tangent (or “Zag”) numbers: e.g.f. tan(x), also (up to signs) e.g.f. tanh(x).
- A000184 (program): Number of genus 0 rooted maps with 3 faces with n vertices.
- A000185 (program): Coefficients of ménage hit polynomials.
- A000188 (program): (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d).
- A000189 (program): Number of solutions to x^3 == 0 (mod n).
- A000190 (program): Number of solutions to x^4 == 0 (mod n).
- A000193 (program): Nearest integer to log n.
- A000194 (program): n appears 2n times, for n >= 1; also nearest integer to square root of n.
- A000195 (program): a(n) = floor(log(n)).
- A000196 (program): Integer part of square root of n. Or, number of positive squares <= n. Or, n appears 2n+1 times.
- A000201 (program): Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
- A000202 (program): a(8i+j) = 13i + a(j), where 1<=j<=8.
- A000203 (program): a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
- A000204 (program): Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.
- A000210 (program): A Beatty sequence: floor(n*(e-1)).
- A000211 (program): a(n) = a(n-1) + a(n-2) - 2, a(0) = 4, a(1) = 3.
- A000212 (program): a(n) = floor(n^2/3).
- A000213 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
- A000216 (program): Take sum of squares of digits of previous term, starting with 2.
- A000217 (program): Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + … + n.
- A000218 (program): Take sum of squares of digits of previous term; start with 3.
- A000219 (program): Number of planar partitions (or plane partitions) of n.
- A000221 (program): Take sum of squares of digits of previous term; start with 5.
- A000222 (program): Coefficients of ménage hit polynomials.
- A000225 (program): a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
- A000227 (program): Nearest integer to e^n.
- A000240 (program): Rencontres numbers: number of permutations of [n] with exactly one fixed point.
- A000241 (program): Crossing number of complete graph with n nodes.
- A000244 (program): Powers of 3: a(n) = 3^n.
- A000245 (program): a(n) = 3*(2*n)!/((n+2)!*(n-1)!).
- A000246 (program): Number of permutations in the symmetric group S_n that have odd order.
- A000247 (program): a(n) = 2^n - n - 2.
- A000248 (program): Expansion of e.g.f. exp(x*exp(x)).
- A000252 (program): Number of invertible 2 X 2 matrices mod n.
- A000253 (program): a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1).
- A000254 (program): Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.
- A000255 (program): a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.
- A000257 (program): Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.
- A000259 (program): Number of certain rooted planar maps.
- A000260 (program): Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.
- A000261 (program): a(n) = n*a(n-1) + (n-3)*a(n-2), with a(1) = 0, a(2) = 1.
- A000262 (program): Number of “sets of lists”: number of partitions of {1,…,n} into any number of lists, where a list means an ordered subset.
- A000265 (program): Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.
- A000266 (program): Expansion of e.g.f. exp(-x^2/2) / (1-x).
- A000267 (program): Integer part of square root of 4n+1.
- A000270 (program): For n >= 2, a(n) = b(n+1)+b(n)+b(n-1), where the b(i) are the ménage numbers A000179; a(0)=a(1)=1.
- A000271 (program): Sums of ménage numbers.
- A000272 (program): Number of trees on n labeled nodes: n^(n-2) with a(0)=1.
- A000274 (program): Number of permutations of length n with 2 consecutive ascending pairs.
- A000275 (program): Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.
- A000276 (program): Associated Stirling numbers.
- A000277 (program): 3*n - 2*floor(sqrt(4*n+5)) + 5.
- A000278 (program): a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
- A000279 (program): Card matching: coefficients B[n,1] of t in the reduced hit polynomial An,n,n.
- A000280 (program): a(n) = a(n-1) + a(n-2)^3.
- A000281 (program): Expansion of cos(x)/cos(2x).
- A000283 (program): a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
- A000285 (program): a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
- A000288 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.
- A000289 (program): A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).
- A000290 (program): The squares: a(n) = n^2.
- A000292 (program): Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.
- A000294 (program): Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).
- A000295 (program): Eulerian numbers (Euler’s triangle: column k=2 of A008292, column k=1 of A173018).
- A000296 (program): Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
- A000297 (program): a(n) = (n+1)*(n+3)*(n+8)/6.
- A000301 (program): a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).
- A000302 (program): Powers of 4: a(n) = 4^n.
- A000304 (program): a(n) = a(n-1)*a(n-2).
- A000305 (program): Number of certain rooted planar maps.
- A000308 (program): a(n) = a(n-1)*a(n-2)*a(n-3) with a(1)=1, a(2)=2 and a(3)=3.
- A000309 (program): Number of rooted planar bridgeless cubic maps with 2n nodes.
- A000312 (program): a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).
- A000313 (program): Number of permutations of length n with 3 consecutive ascending pairs.
- A000316 (program): Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.
- A000317 (program): a(n+1) = a(n)^2 - a(n) a(n-1) + a(n-1)^2.
- A000318 (program): Generalized tangent numbers d(4,n).
- A000321 (program): H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.
- A000322 (program): Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
- A000325 (program): a(n) = 2^n - n.
- A000326 (program): Pentagonal numbers: a(n) = n*(3*n-1)/2.
- A000328 (program): Number of points of norm <= n^2 in square lattice.
- A000330 (program): Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + … + n^2 = n*(n+1)*(2*n+1)/6.
- A000332 (program): Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
- A000335 (program): Euler transform of A000292.
- A000336 (program): a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n.
- A000337 (program): a(n) = (n-1)*2^n + 1.
- A000338 (program): Expansion of x^3*(5-2*x)*(1-x^3)/(1-x)^4.
- A000340 (program): a(0)=1, a(n) = 3*a(n-1) + n + 1.
- A000344 (program): a(n) = 5*binomial(2n, n-2)/(n+3).
- A000346 (program): a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
- A000351 (program): Powers of 5: a(n) = 5^n.
- A000352 (program): One half of the number of permutations of [n] such that the differences have three runs with the same signs.
- A000354 (program): Expansion of e.g.f. exp(-x)/(1-2*x).
- A000356 (program): Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!).
- A000358 (program): Number of binary necklaces of length n with no subsequence 00, excluding the necklace “0”.
- A000360 (program): Distribution of nonempty triangles inside a fractal rep-4-tile.
- A000363 (program): Number of permutations of [n] with exactly 2 increasing runs of length at least 2.
- A000364 (program): Euler (or secant or “Zig”) numbers: e.g.f. (even powers only) sec(x) = 1/cos(x).
- A000367 (program): Numerators of Bernoulli numbers B_2n.
- A000377 (program): Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions.
- A000378 (program): Sums of three squares: numbers of the form x^2 + y^2 + z^2.
- A000379 (program): Numbers n where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.
- A000382 (program): Restricted permutations.
- A000383 (program): Hexanacci numbers with a(0) = … = a(5) = 1.
- A000384 (program): Hexagonal numbers: a(n) = n*(2*n-1).
- A000385 (program): Convolution of A000203 with itself.
- A000386 (program): Coefficients of ménage hit polynomials.
- A000387 (program): Rencontres numbers: number of permutations of [n] with exactly two fixed points.
- A000389 (program): Binomial coefficients C(n,5).
- A000392 (program): Stirling numbers of second kind S(n,3).
- A000394 (program): Numbers of form x^2 + y^2 + 7z^2.
- A000399 (program): Unsigned Stirling numbers of first kind s(n,3).
- A000400 (program): Powers of 6: a(n) = 6^n.
- A000401 (program): Numbers of form x^2 + y^2 + 2z^2.
- A000404 (program): Numbers that are the sum of 2 nonzero squares.
- A000407 (program): a(n) = (2*n+1)! / n!.
- A000408 (program): Numbers that are the sum of three nonzero squares.
- A000414 (program): Numbers that are the sum of 4 nonzero squares.
- A000415 (program): Numbers that are the sum of 2 but no fewer nonzero squares.
- A000420 (program): Powers of 7: a(n) = 7^n.
- A000422 (program): Concatenation of numbers from n down to 1.
- A000423 (program): a(n) is smallest number > a(n-1) of form a(i)*a(j), i < j < n.
- A000424 (program): Differences of reciprocals of unity.
- A000425 (program): Coefficients of ménage hit polynomials.
- A000426 (program): Coefficients of ménage hit polynomials.
- A000430 (program): Primes and squares of primes.
- A000431 (program): Expansion of 2*x^3/((1-2*x)^2*(1-4*x)).
- A000433 (program): n written in base where place values are positive cubes.
- A000435 (program): Normalized total height of all nodes in all rooted trees with n labeled nodes.
- A000436 (program): Generalized Euler numbers c(3,n).
- A000439 (program): Powers of rooted tree enumerator.
- A000441 (program): a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).
- A000442 (program): a(n) = (n!)^3.
- A000447 (program): a(n) = 1^2 + 3^2 + 5^2 + 7^2 + … + (2*n-1)^2 = n*(4*n^2 - 1)/3.
- A000449 (program): Rencontres numbers: number of permutations of [n] with exactly 3 fixed points.
- A000450 (program): Coefficients of ménage hit polynomials.
- A000452 (program): The greedy sequence of integers which avoids 3-term geometric progressions.
- A000453 (program): Stirling numbers of the second kind, S(n,4).
- A000454 (program): Unsigned Stirling numbers of first kind s(n,4).
- A000457 (program): Exponential generating function: (1+3*x)/(1-2*x)^(7/2).
- A000459 (program): Number of multiset permutations of {1, 1, 2, 2, …, n, n} with no fixed points.
- A000460 (program): Eulerian numbers (Euler’s triangle: column k=3 of A008292, column k=2 of A173018).
- A000461 (program): Concatenate n n times.
- A000462 (program): Numbers written in base of triangular numbers.
- A000463 (program): n followed by n^2.
- A000464 (program): Expansion of sin x /cos 2x.
- A000466 (program): a(n) = 4*n^2 - 1.
- A000468 (program): Powers of ten written in base 8.
- A000469 (program): 1 together with products of 2 or more distinct primes.
- A000471 (program): a(n) = floor(sinh(n)).
- A000475 (program): Rencontres numbers: number of permutations of [n] with exactly 4 fixed points.
- A000477 (program): a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k).
- A000478 (program): Number of ways of placing n labeled balls into 3 indistinguishable boxes with at least 2 balls in each box.
- A000480 (program): a(n) = floor(cos(n)).
- A000481 (program): Stirling numbers of the second kind, S(n,5).
- A000482 (program): Unsigned Stirling numbers of first kind s(n,5).
- A000483 (program): Associated Stirling numbers: second order reciprocal Stirling numbers (Fekete) [[n, 3]]. The number of 3-orbit permutations of an n-set with at least 2 elements in each orbit.
- A000486 (program): One half of the number of permutations of [n] such that the differences have 4 runs with the same signs.
- A000487 (program): Number of permutations of length n with exactly two valleys.
- A000490 (program): Generalized Euler numbers c(4,n).
- A000493 (program): a(n) = floor(sin(n)).
- A000495 (program): Nearest integer to sinh(n).
- A000497 (program): S2(j,2j+2) where S2(n,k) is a 2-associated Stirling number of the second kind.
- A000498 (program): Eulerian numbers (Euler’s triangle: column k=4 of A008292, column k=3 of A173018)
- A000499 (program): a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k).
- A000501 (program): a(n) = floor(cosh(n)).
- A000505 (program): Eulerian numbers (Euler’s triangle: column k=5 of A008292, column k=4 of A173018).
- A000514 (program): Eulerian numbers (Euler’s triangle: column k=6 of A008292, column k=5 of A173018)
- A000515 (program): a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
- A000520 (program): Nearest integer to log_10(n).
- A000522 (program): Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.
- A000523 (program): a(n) = floor(log_2(n)).
- A000529 (program): Powers of rooted tree enumerator.
- A000531 (program): From area of cyclic polygon of 2n + 1 sides.
- A000533 (program): a(0)=1; a(n) = 10^n + 1, n >= 1.
- A000536 (program): Number of 3-line Latin rectangles.
- A000537 (program): Sum of first n cubes; or n-th triangular number squared.
- A000538 (program): Sum of fourth powers: 0^4 + 1^4 + … + n^4.
- A000539 (program): Sum of 5th powers: 0^5 + 1^5 + 2^5 + … + n^5.
- A000540 (program): Sum of 6th powers: 0^6 + 1^6 + 2^6 + … + n^6.
- A000541 (program): Sum of 7th powers: 1^7 + 2^7 + … + n^7.
- A000542 (program): Sum of 8th powers: 1^8 + 2^8 + … + n^8.
- A000543 (program): Number of inequivalent ways to color vertices of a cube using at most n colors.
- A000548 (program): Squares that are not the sum of 2 nonzero squares.
- A000551 (program): Number of labeled rooted trees of height 2 with n nodes.
- A000554 (program): Number of labeled trees of diameter 3 with n nodes.
- A000556 (program): Expansion of exp(-x) / (1 - exp(x) + exp(-x)).
- A000557 (program): Expansion of e.g.f.: 1/(1-2*sinh(x)).
- A000558 (program): Generalized Stirling numbers of second kind.
- A000561 (program): Number of discordant permutations.
- A000566 (program): Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2.
- A000567 (program): Octagonal numbers: n*(3*n-2). Also called star numbers.
- A000570 (program): Number of tournaments on n nodes determined by their score vectors.
- A000572 (program): A Beatty sequence: [ n(e+1) ].
- A000574 (program): Coefficient of x^5 in expansion of (1 + x + x^2)^n.
- A000575 (program): Tenth column of quintinomial coefficients.
- A000578 (program): The cubes: a(n) = n^3.
- A000579 (program): Figurate numbers or binomial coefficients C(n,6).
- A000580 (program): a(n) = binomial coefficient C(n,7).
- A000581 (program): a(n) = binomial coefficient C(n,8).
- A000582 (program): a(n) = binomial coefficient C(n,9).
- A000583 (program): Fourth powers: a(n) = n^4.
- A000584 (program): Fifth powers: a(n) = n^5.
- A000586 (program): Number of partitions of n into distinct primes.
- A000587 (program): Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
- A000588 (program): a(n) = 7*binomial(2n,n-3)/(n+4).
- A000589 (program): a(n) = 11*binomial(2n,n-5)/(n+6).
- A000590 (program): a(n) = 13*binomial(2n,n-6)/(n+7).
- A000592 (program): Number of nonnegative solutions of x^2 + y^2 = z in first n shells.
- A000593 (program): Sum of odd divisors of n.
- A000594 (program): Ramanujan’s tau function (or Ramanujan numbers, or tau numbers).
- A000596 (program): Central factorial numbers.
- A000601 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^3)).
- A000603 (program): Number of nonnegative solutions to x^2 + y^2 <= n^2.
- A000604 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 <= n^2.
- A000606 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 <= n.
- A000607 (program): Number of partitions of n into prime parts.
- A000629 (program): Number of necklaces of partitions of n+1 labeled beads.
- A000643 (program): a(n) = a(n-1) + 2^a(n-2).
- A000655 (program): a(n) = number of letters in a(n-1), a(1) = 1 (in English).
- A000657 (program): Median Euler numbers (the middle numbers of Arnold’s shuttle triangle).
- A000660 (program): Boustrophedon transform of 1,1,2,3,4,5,…
- A000667 (program): Boustrophedon transform of all-1’s sequence.
- A000670 (program): Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].
- A000674 (program): Boustrophedon transform of 1, 2, 2, 2, 2, …
- A000680 (program): a(n) = (2n)!/2^n.
- A000681 (program): Number of n X n matrices with nonnegative entries and every row and column sum 2.
- A000683 (program): Number of colorings of labeled graphs on n nodes using exactly 2 colors, divided by 4.
- A000684 (program): Number of colored labeled n-node graphs with 2 interchangeable colors.
- A000687 (program): Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,5,…
- A000688 (program): Number of Abelian groups of order n; number of factorizations of n into prime powers.
- A000689 (program): Final decimal digit of 2^n.
- A000695 (program): Moser-de Bruijn sequence: sums of distinct powers of 4.
- A000698 (program): A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.
- A000700 (program): Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.
- A000701 (program): One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.
- A000703 (program): Chromatic number (or Heawood number) of nonorientable surface with n crosscaps.
- A000704 (program): Number of degree-n even permutations of order dividing 2.
- A000707 (program): Number of permutations of [1,2,…,n] with n-1 inversions.
- A000708 (program): a(n) = E(n+1) - 2*E(n), where E(i) is the Euler number A000111(i).
- A000712 (program): Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
- A000713 (program): EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, …
- A000714 (program): Number of partitions of n, with three kinds of 1 and 2 and two kinds of 3,4,5,….
- A000716 (program): Number of partitions of n into parts of 3 kinds.
- A000720 (program): pi(n), the number of primes <= n. Sometimes called PrimePi(n) to distinguish it from the number 3.14159…
- A000726 (program): Number of partitions of n in which no parts are multiples of 3.
- A000727 (program): Expansion of Product_{k >= 1} (1 - x^k)^4.
- A000728 (program): Expansion of Product_{n>=1} (1-x^n)^5.
- A000729 (program): Expansion of Product_{k >= 1} (1 - x^k)^6.
- A000730 (program): Expansion of Product_{n>=1} (1 - x^n)^7.
- A000731 (program): Expansion of Product (1 - x^k)^8 in powers of x.
- A000734 (program): Boustrophedon transform of 1,1,2,4,8,16,32,…
- A000735 (program): Expansion of Product_{k>=1} (1 - x^k)^12.
- A000737 (program): Boustrophedon transform of natural numbers, cf. A000027.
- A000738 (program): Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,…
- A000739 (program): Expansion of Product_{k>=1} (1 - x^k)^16.
- A000740 (program): Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.
- A000741 (program): Number of compositions of n into 3 ordered relatively prime parts.
- A000744 (program): Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,…
- A000745 (program): Boustrophedon transform of squares.
- A000746 (program): Boustrophedon transform of triangular numbers.
- A000748 (program): Expansion of bracket function.
- A000749 (program): a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.
- A000750 (program): Expansion of bracket function.
- A000752 (program): Boustrophedon transform of powers of 2.
- A000754 (program): Boustrophedon transform of odd numbers.
- A000756 (program): Boustrophedon transform of sequence 1,1,0,0,0,0,…
- A000757 (program): Number of cyclic permutations of [n] with no i->i+1 (mod n)
- A000770 (program): Stirling numbers of the second kind, S(n,6).
- A000771 (program): Stirling numbers of second kind, S(n,7).
- A000773 (program): Number of numbers == 0 (mod 3) in range 2^n to 2^(n+1) with odd number of 1’s in binary expansion.
- A000774 (program): a(n) = n!*(1 + Sum_{i=1..n} 1/i).
- A000775 (program): a(n) = n! * (n + 1 + 2*Sum_{k=1…n} 1/k).
- A000776 (program): a(n) = n! * (1 + 2*Sum_{k=1..n} 1/k).
- A000777 (program): a(n) = (n+2)*Catalan(n) - 1.
- A000778 (program): a(n) = Catalan(n) + Catalan(n+1) - 1.
- A000779 (program): a(n) = 2*(2n-1)!!-(n-1)!*2^(n-1), where (2n-1)!! is A001147(n).
- A000780 (program): a(n) = (n+1)!/2 + (n-1)(n-1)!.
- A000781 (program): a(n) = 3*Catalan(n) - Catalan(n-1) - 1.
- A000782 (program): a(n) = 2*Catalan(n) - Catalan(n-1).
- A000788 (program): Total number of 1’s in binary expansions of 0, …, n.
- A000789 (program): Maximal order of a triangle-free cyclic graph with no independent set of size n.
- A000792 (program): a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.
- A000795 (program): Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.
- A000796 (program): Decimal expansion of Pi (or digits of Pi).
- A000799 (program): a(n) = floor(2^n / n).
- A000801 (program): a(n) = Sum_{k = 1..n} floor(2^k / k).
- A000803 (program): a(n+3) = a(n+2) + a(n+1) + a(n) - 4.
- A000806 (program): Bessel polynomial y_n(-1).
- A000807 (program): Quadratic invariants.
- A000810 (program): Expansion of e.g.f. (sin x + cos x)/cos 3x.
- A000816 (program): E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).
- A000819 (program): E.g.f.: cos(x)^2 / cos(2x) = Sum_{n >= 0} a(n) * x^(2n) / (2n)!.
- A000828 (program): E.g.f. cos(x)/(cos(x) - sin(x)).
- A000831 (program): Expansion of e.g.f. (1 + tan(x))/(1 - tan(x)).
- A000834 (program): Expansion of exp(x)*(1 + tan(x))/(1 - tan(x)).
- A000846 (program): a(n) = C(3n,n) - C(2n,n).
- A000855 (program): Final two digits of 2^n.
- A000865 (program): Numbers beginning with letter ‘o’ in English.
- A000866 (program): 2^n written in base 5.
- A000879 (program): Number of primes < prime(n)^2.
- A000888 (program): a(n) = (2*n)!^2 / ((n+1)!*n!^3).
- A000891 (program): a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.
- A000894 (program): a(n) = (2*n)!*(2*n+1)! /((n+1)! *n!^3).
- A000897 (program): a(n) = (4*n)! / ((2*n)!*n!^2).
- A000898 (program): a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.
- A000900 (program): Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
- A000902 (program): Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).
- A000904 (program): a(n) = (n+1)*a(n-1) + (n+2)*a(n-2) + a(n-3); a(1)=0, a(2)=3, a(3)=13.
- A000906 (program): Exponential generating function: 2*(1+3*x)/(1-2*x)^(7/2).
- A000907 (program): Second order reciprocal Stirling number (Fekete) [[2n+2, n]]. The number of n-orbit permutations of a (2n+2)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).
- A000909 (program): a(n) = (2n)!(2n+1)! / n!^2.
- A000910 (program): a(n) = 5*binomial(n, 6).
- A000911 (program): a(n) = (2n+3)! /( n! * (n+1)! ).
- A000912 (program): Expansion of (sqrt(1-4x^2) - sqrt(1-4x))/(2x).
- A000914 (program): Stirling numbers of the first kind: s(n+2, n).
- A000915 (program): Stirling numbers of first kind s(n+4, n).
- A000917 (program): a(n) = (2n+3)!/(n!*(n+2)!).
- A000918 (program): a(n) = 2^n - 2.
- A000919 (program): a(n) = 4^n - C(4,3)*3^n + C(4,2)*2^n - C(4,1).
- A000920 (program): Differences of 0: 6!*Stirling2(n,6).
- A000925 (program): Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
- A000930 (program): Narayana’s cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).
- A000931 (program): Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
- A000932 (program): a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.
- A000933 (program): Genus of complete graph on n nodes.
- A000934 (program): Chromatic number (or Heawood number) Chi(n) of surface of genus n.
- A000943 (program): Number of combinatorial types of simplicial n-dimensional polytopes with n+3 nodes.
- A000952 (program): Numbers n == 2 (mod 4) that are the orders of conference matrices.
- A000957 (program): Fine’s sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.
- A000958 (program): Number of ordered rooted trees with n edges having root of odd degree.
- A000960 (program): Flavius Josephus’s sieve: Start with the natural numbers; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate.
- A000961 (program): Powers of primes. Alternatively, 1 and the prime powers (p^k, p prime, k >= 1).
- A000964 (program): The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
- A000966 (program): n! never ends in this many 0’s.
- A000968 (program): Sum of odd Fermat coefficients rounded to nearest integer.
- A000969 (program): Expansion of (1+x+2*x^2)/((1-x)^2*(1-x^3)).
- A000970 (program): Fermat coefficients.
- A000971 (program): Fermat coefficients.
- A000972 (program): Fermat coefficients.
- A000973 (program): Fermat coefficients.
- A000975 (program): a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).
- A000977 (program): Numbers that are divisible by at least three different primes.
- A000982 (program): a(n) = ceiling(n^2/2).
- A000984 (program): Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.
- A000985 (program): Number of n X n symmetric matrices with nonnegative entries and all row sums 2.
- A000986 (program): Number of n X n symmetric matrices with (0,1) entries and all row sums 2.
- A000989 (program): 3-adic valuation of binomial(2*n, n): largest k such that 3^k divides binomial(2*n, n).
- A000990 (program): Number of plane partitions of n with at most two rows.
- A000991 (program): Number of 3-line partitions of n.
- A000994 (program): Shifts 2 places left under binomial transform.
- A000995 (program): Shifts left two terms under the binomial transform.
- A000996 (program): Shifts 3 places left under binomial transform.
- A000997 (program): From a differential equation.
- A000998 (program): From a differential equation.
- A000999 (program): 5-adic valuation of binomial(2*n,n): largest k such that 5^k divides binomial(2*n, n).
- A001000 (program): a(n) = least m such that if a/b < c/d where a,b,c,d are integers in [0,n], then a/b < k/m < c/d for some integer k.
- A001001 (program): Number of sublattices of index n in generic 3-dimensional lattice.
- A001002 (program): Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.
- A001003 (program): Schroeder’s second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.
- A001005 (program): Number of ways of partitioning n points on a circle into subsets only of sizes 2 and 3.
- A001006 (program): Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle.
- A001008 (program): Numerators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
- A001014 (program): Sixth powers: a(n) = n^6.
- A001015 (program): Seventh powers: a(n) = n^7.
- A001016 (program): Eighth powers: a(n) = n^8.
- A001017 (program): Ninth powers: a(n) = n^9.
- A001018 (program): Powers of 8: a(n) = 8^n.
- A001019 (program): Powers of 9: a(n) = 9^n.
- A001020 (program): Powers of 11: a(n) = 11^n.
- A001021 (program): Powers of 12.
- A001022 (program): Powers of 13.
- A001023 (program): Powers of 14.
- A001024 (program): Powers of 15.
- A001025 (program): Powers of 16: a(n) = 16^n.
- A001026 (program): Powers of 17.
- A001027 (program): Powers of 18.
- A001029 (program): Powers of 19.
- A001030 (program): Fixed under 1 -> 21, 2 -> 211.
- A001031 (program): Goldbach conjecture: a(n) = number of decompositions of 2n into sum of two primes (counting 1 as a prime).
- A001036 (program): Partial sums of A001037, omitting A001037(1).
- A001037 (program): Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.
- A001039 (program): a(n) = (p^p-1)/(p-1) where p = prime(n).
- A001040 (program): a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.
- A001041 (program): a(0)=12; thereafter a(n) = 12 times the product of the first n primes.
- A001042 (program): a(n) = a(n-1)^2 - a(n-2)^2.
- A001043 (program): Numbers that are the sum of 2 successive primes.
- A001044 (program): a(n) = (n!)^2.
- A001045 (program): Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with a(0) = 0, a(1) = 1; also a(n) = nearest integer to 2^n/3.
- A001046 (program): a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = a(1) = 1.
- A001047 (program): a(n) = 3^n - 2^n.
- A001048 (program): a(n) = n! + (n-1)!.
- A001052 (program): a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = 1, a(1) = 2.
- A001053 (program): a(n+1) = n*a(n) + a(n-1) with a(0)=1, a(1)=0.
- A001054 (program): a(n) = a(n-1)*a(n-2) - 1.
- A001056 (program): a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3.
- A001057 (program): Canonical enumeration of integers: interleaved positive and negative integers with zero prepended.
- A001060 (program): a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.
- A001063 (program): E.g.f. satisfies A’(x) = A(x/(1-x)).
- A001064 (program): a(n) = a(n-1)*a(n-2) + a(n-3).
- A001065 (program): Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.
- A001067 (program): Numerator of Bernoulli(2*n)/(2*n).
- A001068 (program): a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.
- A001069 (program): Log2*(n) (version 2): take log_2 of n this many times to get a number < 2.
- A001075 (program): a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
- A001076 (program): Denominators of continued fraction convergents to sqrt(5).
- A001077 (program): Numerators of continued fraction convergents to sqrt(5).
- A001078 (program): a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
- A001079 (program): a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5.
- A001080 (program): a(n) = 16*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
- A001081 (program): a(n) = 16*a(n-1) - a(n-2).
- A001082 (program): Generalized octagonal numbers: k*(3*k-2), k=0, +- 1, +- 2, +-3, …
- A001084 (program): a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
- A001085 (program): a(n) = 20*a(n-1) - a(n-2).
- A001088 (program): Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).
- A001090 (program): a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.
- A001091 (program): a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.
- A001093 (program): a(n) = n^3 + 1.
- A001094 (program): a(n) = n + n*(n-1)*(n-2)*(n-3).
- A001095 (program): a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4).
- A001096 (program): a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).
- A001097 (program): Twin primes.
- A001099 (program): a(n) = n^n - a(n-1), with a(1) = 1.
- A001105 (program): a(n) = 2*n^2.
- A001106 (program): 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
- A001107 (program): 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
- A001108 (program): a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
- A001109 (program): a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.
- A001110 (program): Square triangular numbers: numbers that are both triangular and square.
- A001112 (program): A continued fraction.
- A001113 (program): Decimal expansion of e.
- A001116 (program): Maximal kissing number of an n-dimensional lattice.
- A001117 (program): a(n) = 3^n - 3*2^n + 3.
- A001118 (program): Differences of 0; labeled ordered partitions into 5 parts.
- A001120 (program): a(0) = a(1) = 1; for n > 1, a(n) = n*a(n-1) + (-1)^n.
- A001122 (program): Primes with primitive root 2.
- A001127 (program): Trajectory of 1 under map x->x + (x-with-digits-reversed).
- A001129 (program): Iccanobif numbers: reverse digits of two previous terms and add.
- A001132 (program): Primes == +-1 (mod 8).
- A001142 (program): a(n) = Product_{k=1..n} k^(2k - 1 - n).
- A001147 (program): Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*…*(2*n-1).
- A001148 (program): Final digit of 3^n.
- A001156 (program): Number of partitions of n into squares.
- A001157 (program): a(n) = sigma_2(n): sum of squares of divisors of n.
- A001158 (program): sigma_3(n): sum of cubes of divisors of n.
- A001159 (program): sigma_4(n): sum of 4th powers of divisors of n.
- A001160 (program): sigma_5(n), the sum of the 5th powers of the divisors of n.
- A001169 (program): Number of board-pile polyominoes with n cells.
- A001175 (program): Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n.
- A001177 (program): Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).
- A001182 (program): Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
- A001189 (program): Number of degree-n permutations of order exactly 2.
- A001193 (program): a(n) = (n+1)*(2*n)!/(2^n*n!) = (n+1)*(2n-1)!!.
- A001194 (program): a(n) = A059366(n,n-2) = A059366(n,2) for n >= 2, where the triangle A059366 arises in the expansion of a trigonometric integral.
- A001196 (program): Double-bitters: only even length runs in binary expansion.
- A001202 (program): a(1)=0, a(2n) = a(n)+1, a(2n+1) = 10*a(n+1).
- A001205 (program): Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.
- A001218 (program): a(n) = 3^n mod 100.
- A001221 (program): Number of distinct primes dividing n (also called omega(n)).
- A001222 (program): Number of prime divisors of n counted with multiplicity (also called big omega of n, bigomega(n) or Omega(n)).
- A001223 (program): Prime gaps: differences between consecutive primes.
- A001224 (program): If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
- A001225 (program): Number of consistent arcs in a tournament with n nodes.
- A001226 (program): Lerch’s function q_2(n) = (2^{phi(t)} - 1)/t where t = 2*n - 1.
- A001227 (program): Number of odd divisors of n.
- A001233 (program): Unsigned Stirling numbers of first kind s(n,6).
- A001234 (program): Unsigned Stirling numbers of the first kind s(n,7).
- A001236 (program): Differences of reciprocals of unity.
- A001237 (program): Differences of reciprocals of unity.
- A001238 (program): Differences of reciprocals of unity.
- A001240 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)).
- A001241 (program): Differences of reciprocals of unity.
- A001243 (program): Eulerian numbers (Euler’s triangle: column k=7 of A008292, column k=6 of A173018).
- A001244 (program): Eulerian numbers (Euler’s triangle: column k=8 of A008292, column k=7 of A173018).
- A001246 (program): Squares of Catalan numbers.
- A001247 (program): Squares of Bell numbers.
- A001248 (program): Squares of primes.
- A001249 (program): Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2.
- A001250 (program): Number of alternating permutations of order n.
- A001254 (program): Squares of Lucas numbers.
- A001255 (program): Squares of partition numbers.
- A001260 (program): Number of permutations of length n with 4 consecutive ascending pairs.
- A001261 (program): Number of permutations of length n with 5 consecutive ascending pairs.
- A001263 (program): Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.
- A001264 (program): Final 2 digits of 4^n.
- A001277 (program): Number of permutations of length n by rises.
- A001278 (program): Number of permutations of length n by rises.
- A001281 (program): Image of n under the map n->n/2 if n even, n->3n-1 if n odd.
- A001283 (program): Triangle read by rows, in which row n consists of n(n+m) for m = 1 .. n-1.
- A001284 (program): Numbers of form m*k with m+1 <= k <= 2m-1.
- A001285 (program): Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1’s and 2’s.
- A001286 (program): Lah numbers: a(n) = (n-1)*n!/2.
- A001287 (program): a(n) = binomial coefficient C(n,10).
- A001288 (program): a(n) = binomial(n,11).
- A001296 (program): 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).
- A001297 (program): Stirling numbers of the second kind S(n+3, n).
- A001298 (program): Stirling numbers of the second kind S(n+4, n).
- A001299 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 25 cents.
- A001300 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.
- A001301 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25 cents.
- A001302 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents.
- A001303 (program): Stirling numbers of first kind, s(n+3, n), negated.
- A001304 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)).
- A001305 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)).
- A001306 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 20, 50, 100 cents.
- A001307 (program): Expansion of 1/(1-x)^2/(1-x^2)/(1-x^4)/(1-x^10)/(1-x^20).
- A001311 (program): Final 2 digits of 6^n.
- A001315 (program): a(n) = Sum_{k=0..n} 2^binomial(n,k).
- A001316 (program): Gould’s sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal’s triangle (A007318); a(n) = 2^A000120(n).
- A001317 (program): Sierpiński’s triangle (Pascal’s triangle mod 2) converted to decimal.
- A001318 (program): Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ….
- A001332 (program): a(n) = Bernoulli(2*n) * (2*n + 1)!.
- A001333 (program): Numerators of continued fraction convergents to sqrt(2).
- A001338 (program): -1 + Sum (k-1)! C(n,k), k = 1..n for n > 0, a(0) = 1.
- A001339 (program): a(n) = Sum_{k=0..n} (k+1)! binomial(n,k).
- A001340 (program): E.g.f.: 2*exp(x)/(1-x)^3.
- A001341 (program): E.g.f.: 6*exp(x)/(1-x)^4;
- A001342 (program): E.g.f.: 24*exp(x)/(1-x)^5.
- A001343 (program): Number of (unordered) ways of making change for n cents using coins of 5, 10, 20, 50, 100 cents.
- A001344 (program): a(n) = sum_{k=0..2} (n+k)! * C(2,k).
- A001345 (program): a(n) = Sum_{k = 0..3} (n+k)! C(3,k).
- A001346 (program): a(n) = Sum_{k = 0..4} (n+k)! C(4,k).
- A001347 (program): a(n) = Sum_{k=0..5} (n+k)! * C(5,k).
- A001348 (program): Mersenne numbers: 2^p - 1, where p is prime.
- A001350 (program): Associated Mersenne numbers.
- A001352 (program): a(0) = 1, a(1) = 6, a(2) = 24; for n>=3, a(n) = 4a(n-1) - a(n-2).
- A001353 (program): a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
- A001354 (program): Coordination sequence for hyperbolic tessellation 3^7 (from triangle group (2,3,7)).
- A001357 (program): Powers of 2 written in base 9.
- A001358 (program): Semiprimes (or biprimes): products of two primes.
- A001359 (program): Lesser of twin primes.
- A001360 (program): Crystal ball sequence for hyperbolic tessellation 3^7 (from triangle group (2,3,7)).
- A001362 (program): Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.
- A001363 (program): Primes in ternary.
- A001370 (program): Sum of digits of 2^n.
- A001386 (program): Coordination sequence for 4-dimensional I-centered tetragonal orthogonal lattice.
- A001392 (program): a(n) = 9*binomial(2n,n-4)/(n+5).
- A001399 (program): a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.
- A001400 (program): Number of partitions of n into at most 4 parts.
- A001401 (program): Number of partitions of n into at most 5 parts.
- A001402 (program): Number of partitions of n into at most 6 parts.
- A001405 (program): a(n) = binomial(n, floor(n/2)).
- A001414 (program): Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n).
- A001421 (program): a(n) = (6n)!/((n!)^3*(3n)!).
- A001444 (program): Bending a piece of wire of length n+1 (configurations that can only be brought into coincidence by turning the figure over are counted as different).
- A001445 (program): a(n) = (2^n + 2^[ n/2 ] )/2.
- A001446 (program): a(n) = (4^n + 4^[ n/2 ] )/2.
- A001447 (program): a(n) = (5^n + 5^floor(n/2))/2.
- A001448 (program): a(n) = binomial(4n,2n) or (4*n)!/((2*n)!*(2*n)!).
- A001449 (program): Binomial coefficients binomial(5n,n).
- A001450 (program): a(n) = binomial(5*n,2*n).
- A001451 (program): a(n) = (5*n)!/((3*n)!*n!*n!).
- A001452 (program): Number of 5-line partitions of n.
- A001453 (program): Catalan numbers - 1.
- A001459 (program): a(n) = (5*n)!/((2*n)!*(2*n)!*n!).
- A001460 (program): a(n) = (5*n)!/((2*n)!*(n!)^3).
- A001463 (program): Partial sums of A001462; also a(n) is the last occurrence of n in A001462.
- A001464 (program): E.g.f. exp( -x -(1/2)*x^2 ).
- A001465 (program): Number of degree-n odd permutations of order 2.
- A001468 (program): There are a(n) 2’s between successive 1’s.
- A001469 (program): Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2).
- A001470 (program): Number of degree-n permutations of order dividing 3.
- A001471 (program): Number of degree-n permutations of order exactly 3.
- A001472 (program): Number of degree-n permutations of order dividing 4.
- A001475 (program): a(n) = a(n-1) + n * a(n-2), where a(1) = 1, a(2) = 2.
- A001477 (program): The nonnegative integers.
- A001478 (program): The negative integers.
- A001481 (program): Numbers that are the sum of 2 squares.
- A001489 (program): a(n) = -n.
- A001495 (program): Number of symmetric 0-1 (n+1) X (n+1) matrices with row sums 2 and first row starting 1,1 for n > 0, a(0)=1.
- A001497 (program): Triangle of coefficients of Bessel polynomials (exponents in decreasing order).
- A001498 (program): Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).
- A001499 (program): Number of n X n matrices with exactly 2 1’s in each row and column, other entries 0.
- A001504 (program): a(n) = (3*n+1)*(3*n+2).
- A001505 (program): a(n) = (4n+1)(4n+2)(4n+3).
- A001509 (program): (5*n+1)*(5*n+2)*(5*n+3).
- A001511 (program): The ruler function: 2^a(n) divides 2n. Or, a(n) = 2-adic valuation of 2n.
- A001512 (program): a(n) = (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4).
- A001513 (program): a(n) = (6n+1)*(6n+5).
- A001514 (program): Bessel polynomial {y_n}‘(1).
- A001515 (program): Bessel polynomial y_n(x) evaluated at x=1.
- A001516 (program): Bessel polynomial {y_n}’‘(1).
- A001517 (program): Bessel polynomials y_n(x) (see A001498) evaluated at 2.
- A001518 (program): Bessel polynomial y_n(3).
- A001519 (program): a(n) = 3*a(n-1) - a(n-2) for n >= 2, with a(0) = a(1) = 1.
- A001520 (program): a(n) = (6*n+1)*(6*n+3)*(6*n+5).
- A001521 (program): a(1) = 1; thereafter a(n+1) = floor(sqrt(2*a(n)*(a(n)+1))).
- A001525 (program): a(n) = (3n)!/(3!n!).
- A001526 (program): a(n) = (7n+1)*(7n+6).
- A001527 (program): a(n) = 2 * Sum_{i=0..n} C(2^n-1, i).
- A001533 (program): a(n) = (8n+1)*(8n+7).
- A001534 (program): a(n) = (9n+1)*(9n+8).
- A001535 (program): a(n) = (10n+1)*(10n+9).
- A001536 (program): a(n) = (11n+1)*(11n+10).
- A001538 (program): a(n) = (12n+1)*(12n+11).
- A001539 (program): a(n) = (4*n+1)*(4*n+3).
- A001540 (program): Number of transpositions needed to generate permutations of length n.
- A001541 (program): a(0) = 1, a(1) = 3; for n > 1, a(n) = 6*a(n-1) - a(n-2).
- A001542 (program): a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.
- A001545 (program): a(n) = (5n+1)*(5n+4).
- A001546 (program): a(n) = (8*n+1)*(8*n+3)*(8*n+5)*(8*n+7).
- A001547 (program): a(n) = (7*n+1)*(7*n+2)*(7*n+4).
- A001550 (program): a(n) = 1^n + 2^n + 3^n.
- A001551 (program): a(n) = 1^n + 2^n + 3^n + 4^n.
- A001552 (program): a(n) = 1^n + 2^n + … + 5^n.
- A001553 (program): a(n) = 1^n + 2^n + … + 6^n.
- A001554 (program): a(n) = 1^n + 2^n + … + 7^n.
- A001555 (program): a(n) = 1^n + 2^n + … + 8^n.
- A001556 (program): a(n) = 1^n + 2^n + … + 9^n.
- A001557 (program): a(n) = 1^n + 2^n + … + 10^n.
- A001558 (program): Number of hill-free Dyck paths of semilength n+3 and having length of first descent equal to 1 (a hill in a Dyck path is a peak at level 1).
- A001559 (program): a(0) = 1, a(1) = 4; thereafter a(n)*(2n + 10) - a(n-1)*(11n + 35) + a(n-2)*(8n + 2) + a(n-3)*(15n + 7) + a(n-4)*(4n - 2) = 0.
- A001561 (program): a(n) = (7*n+3)*(7*n+5)*(7*n+6).
- A001563 (program): a(n) = n*n! = (n+1)! - n!.
- A001564 (program): 2nd differences of factorial numbers.
- A001565 (program): 3rd differences of factorial numbers.
- A001570 (program): Numbers k such that k^2 is centered hexagonal.
- A001571 (program): a(n) = 4*a(n-1) - a(n-2) + 1, with a(0) = 0, a(1) = 2.
- A001576 (program): a(n) = 1^n + 2^n + 4^n.
- A001577 (program): An operational recurrence.
- A001579 (program): a(n) = 3^n + 5^n + 6^n.
- A001580 (program): a(n) = 2^n + n^2.
- A001582 (program): Product of Fibonacci and Pell numbers.
- A001584 (program): A generalized Fibonacci sequence.
- A001585 (program): a(n) = 3^n + n^3.
- A001586 (program): Generalized Euler numbers, or Springer numbers.
- A001588 (program): a(n) = a(n-1) + a(n-2) - 1.
- A001589 (program): a(n) = 4^n + n^4.
- A001590 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=0.
- A001591 (program): Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5), a(0)=a(1)=a(2)=a(3)=0, a(4)=1.
- A001592 (program): Hexanacci numbers: a(n+1) = a(n)+…+a(n-5) with a(0)=…=a(4)=0, a(5)=1.
- A001593 (program): a(n) = 5^n + n^5.
- A001594 (program): a(n) = 6^n + n^6.
- A001595 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = a(1) = 1.
- A001596 (program): a(n) = 7^n + n^7.
- A001602 (program): Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m).
- A001603 (program): Odd-indexed terms of A124296.
- A001604 (program): Odd-indexed terms of A124297.
- A001607 (program): a(n) = -a(n-1) - 2*a(n-2).
- A001608 (program): Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.
- A001609 (program): a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).
- A001610 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.
- A001611 (program): a(n) = Fibonacci(n) + 1.
- A001612 (program): a(n) = a(n-1) + a(n-2) - 1 for n > 1, a(0)=3, a(1)=2.
- A001614 (program): Connell sequence: 1 odd, 2 even, 3 odd, …
- A001615 (program): Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).
- A001621 (program): a(n) = n*(n + 1)*(n^2 + n + 2)/4.
- A001622 (program): Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
- A001628 (program): Convolved Fibonacci numbers.
- A001629 (program): Self-convolution of Fibonacci numbers.
- A001630 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=a(1)=0, a(2)=1, a(3)=2.
- A001631 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).
- A001633 (program): Numbers with an odd number of digits.
- A001634 (program): a(n) = a(n-2) + a(n-3) + a(n-4), with initial values a(0) = 0, a(1) = 2, a(2) = 3, a(3) = 6.
- A001635 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-6), n >= 7.
- A001636 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-7), n >= 8.
- A001637 (program): Numbers with an even number of digits.
- A001638 (program): A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.
- A001639 (program): A Fielder sequence. a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5), n >= 6.
- A001640 (program): A Fielder sequence.
- A001641 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).
- A001642 (program): A Fielder sequence.
- A001643 (program): A Fielder sequence.
- A001644 (program): a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.
- A001645 (program): A Fielder sequence.
- A001648 (program): Tetranacci numbers A073817 without the leading term 4.
- A001649 (program): A Fielder sequence.
- A001650 (program): k appears k times (k odd).
- A001651 (program): Numbers not divisible by 3.
- A001652 (program): a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.
- A001653 (program): Numbers k such that 2*k^2 - 1 is a square.
- A001654 (program): Golden rectangle numbers: F(n)*F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
- A001655 (program): Fibonomial coefficients: a(n) = F(n+1)*F(n+2)*F(n+3)/2, where F() = Fibonacci numbers A000045.
- A001656 (program): Fibonomial coefficients.
- A001657 (program): Fibonomial coefficients: column 5 of A010048.
- A001658 (program): Fibonomial coefficients.
- A001659 (program): Expansion of bracket function.
- A001670 (program): n appears n times (n even).
- A001671 (program): Powers of e rounded up.
- A001680 (program): The partition function G(n,3).
- A001681 (program): The partition function G(n,4).
- A001684 (program): From a continued fraction.
- A001685 (program): a(0) = 1, a(1) = 2, a(2) = 3; for n >= 3, a(n) = a(n-2) + a(n-1)*Product_{i=1..n-3} a(i).
- A001686 (program): From a continued fraction.
- A001687 (program): a(n) = a(n-2) + a(n-5).
- A001688 (program): 4th forward differences of factorial numbers A000142.
- A001689 (program): 5th forward differences of factorial numbers A000142.
- A001690 (program): Non-Fibonacci numbers.
- A001692 (program): Number of irreducible polynomials of degree n over GF(5); dimensions of free Lie algebras.
- A001693 (program): Number of degree-n irreducible polynomials over GF(7); dimensions of free Lie algebras.
- A001694 (program): Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).
- A001696 (program): a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.
- A001697 (program): a(n+1) = a(n)(a(0) + … + a(n)).
- A001699 (program): Number of binary trees of height n; or products (ways to insert parentheses) of height n when multiplication is non-commutative and non-associative.
- A001700 (program): a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.
- A001701 (program): Generalized Stirling numbers.
- A001703 (program): Decimal concatenation of n, n+1, and n+2.
- A001704 (program): a(n) = n concatenated with n + 1.
- A001705 (program): Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).
- A001706 (program): Generalized Stirling numbers.
- A001707 (program): Generalized Stirling numbers.
- A001708 (program): Generalized Stirling numbers.
- A001709 (program): Generalized Stirling numbers.
- A001710 (program): Order of alternating group A_n, or number of even permutations of n letters.
- A001711 (program): Generalized Stirling numbers.
- A001712 (program): Generalized Stirling numbers.
- A001713 (program): Generalized Stirling numbers.
- A001714 (program): Generalized Stirling numbers.
- A001715 (program): a(n) = n!/6.
- A001716 (program): Generalized Stirling numbers.
- A001717 (program): Generalized Stirling numbers.
- A001718 (program): Generalized Stirling numbers.
- A001719 (program): Generalized Stirling numbers.
- A001720 (program): a(n) = n!/24.
- A001721 (program): Generalized Stirling numbers.
- A001722 (program): Generalized Stirling numbers.
- A001723 (program): Generalized Stirling numbers.
- A001724 (program): Generalized Stirling numbers.
- A001725 (program): a(n) = n!/5!.
- A001729 (program): List of numbers whose digits contain no loops (version 1).
- A001730 (program): a(n) = n!/6!.
- A001735 (program): 5 in base 10-n.
- A001736 (program): 4 in base 10-n.
- A001737 (program): Squares written in base 2.
- A001738 (program): a(n) = n^2 written in base 3.
- A001739 (program): Squares written in base 4.
- A001740 (program): Squares written in base 5.
- A001741 (program): Squares written in base 6.
- A001742 (program): Numbers whose digits contain no loops (version 2).
- A001744 (program): Numbers n such that every digit contains a loop (version 2).
- A001745 (program): Numbers such that at least one digit contains a loop (version 2). Also called “holey” or “holy” numbers.
- A001746 (program): At least one digit contains a loop (version 1).
- A001747 (program): 2 together with primes multiplied by 2.
- A001748 (program): a(n) = 3 * prime(n).
- A001749 (program): Primes multiplied by 4.
- A001750 (program): Primes multiplied by 5.
- A001751 (program): Primes together with primes multiplied by 2.
- A001752 (program): Expansion of 1/((1+x)*(1-x)^5).
- A001753 (program): Expansion of 1/((1+x)*(1-x)^6).
- A001754 (program): Lah numbers: a(n) = n!*binomial(n-1,2)/6.
- A001755 (program): Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
- A001756 (program): a(n) = A059366(n,n-3) = A059366(n,3) for n >= 3, where the triangle A059366 arises from the expansion of a trigonometric integral.
- A001757 (program): Expansion of an integral: central elements of rows of triangle in A059366.
- A001758 (program): Number of quasi-alternating permutations of length n.
- A001761 (program): a(n) = (2*n)!/(n+1)!.
- A001762 (program): Number of dissections of a ball.
- A001763 (program): Number of dissections of a ball: (3n+3)!/(2n+3)!.
- A001764 (program): a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).
- A001766 (program): Index of (the image of) the modular group Gamma(n) in PSL_2(Z).
- A001768 (program): Sorting numbers: number of comparisons for merge insertion sort of n elements.
- A001769 (program): Expansion of 1/((1+x)*(1-x)^7).
- A001777 (program): Lah numbers: a(n) = n! * binomial(n-1, 4)/5!.
- A001778 (program): Lah numbers: a(n) = n!*binomial(n-1,5)/6!.
- A001779 (program): Expansion of 1/((1+x)(1-x)^8).
- A001780 (program): Expansion of 1/((1+x)(1-x)^9).
- A001781 (program): Expansion of 1/((1+x)*(1-x)^10).
- A001783 (program): n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.
- A001786 (program): Expansion of 1/((1+x)(1-x)^11).
- A001787 (program): a(n) = n*2^(n-1).
- A001788 (program): a(n) = n*(n+1)*2^(n-2).
- A001789 (program): a(n) = binomial(n,3)*2^(n-3).
- A001790 (program): Numerators in expansion of 1/sqrt(1-x).
- A001791 (program): a(n) = binomial coefficient C(2n, n-1).
- A001792 (program): a(n) = (n+2)*2^(n-1).
- A001793 (program): a(n) = n*(n+3)*2^(n-3).
- A001794 (program): Negated coefficients of Chebyshev T polynomials: x^n, n >= 0.
- A001795 (program): Coefficients of Legendre polynomials.
- A001796 (program): Coefficients of Legendre polynomials.
- A001800 (program): Coefficients of Legendre polynomials.
- A001801 (program): Coefficients of Legendre polynomials.
- A001803 (program): Numerators in expansion of (1 - x)^(-3/2).
- A001804 (program): a(n) = n! * C(n,2).
- A001805 (program): a(n) = n! * binomial(n,3).
- A001806 (program): a(n) = n! * binomial(n,4).
- A001807 (program): a(n) = n! * binomial(n,5).
- A001808 (program): Expansion of 1/((1+x)*(1-x)^12).
- A001809 (program): a(n) = n! * n(n-1)/4.
- A001810 (program): a(n) = n!*n*(n-1)*(n-2)/36.
- A001811 (program): Coefficients of Laguerre polynomials.
- A001812 (program): Coefficients of Laguerre polynomials.
- A001813 (program): Quadruple factorial numbers: a(n) = (2n)!/n!.
- A001814 (program): Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
- A001815 (program): a(n) = binomial(n,2) * 2^(n-1).
- A001816 (program): Coefficients of x^n in Hermite polynomial H_{n+4}
- A001817 (program): G.f.: Sum_{n>0} x^n/(1-x^(3n)) = Sum_{n>=0} x^(3n+1)/(1-x^(3n+1)).
- A001818 (program): Squares of double factorials: (1*3*5*…*(2n-1))^2 = ((2*n-1)!!)^2.
- A001819 (program): Central factorial numbers: second right-hand column of triangle A008955.
- A001822 (program): Expansion of Sum x^(3n+2)/(1-x^(3n+2)), n=0..inf.
- A001823 (program): Central factorial numbers: column 2 in triangle A008956.
- A001824 (program): Central factorial numbers.
- A001826 (program): Number of divisors of n of the form 4k+1.
- A001831 (program): Number of labeled graded partially ordered sets with n elements of height at most 1.
- A001834 (program): a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).
- A001835 (program): a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.
- A001839 (program): The coding-theoretic function A(n,4,3).
- A001840 (program): Expansion of x /((1 - x)^2 * (1 - x^3)).
- A001841 (program): Related to Zarankiewicz’s problem.
- A001842 (program): Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)).
- A001844 (program): Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.
- A001845 (program): Centered octahedral numbers (crystal ball sequence for cubic lattice).
- A001846 (program): Centered 4-dimensional orthoplex numbers (crystal ball sequence for 4-dimensional cubic lattice).
- A001847 (program): Crystal ball sequence for 5-dimensional cubic lattice.
- A001848 (program): Crystal ball sequence for 6-dimensional cubic lattice.
- A001849 (program): Crystal ball sequence for 7-dimensional cubic lattice.
- A001850 (program): Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
- A001855 (program): Sorting numbers: maximal number of comparisons for sorting n elements by binary insertion.
- A001858 (program): Number of forests of trees on n labeled nodes.
- A001859 (program): Triangular numbers plus quarter-squares: n*(n+1)/2 + floor((n+1)^2/4) (i.e., A000217(n) + A002620(n+1)).
- A001860 (program): Number of series-reduced planted trees with n+9 nodes and 4 internal nodes.
- A001861 (program): Expansion of e.g.f. exp(2*(exp(x) - 1)).
- A001863 (program): Normalized total height of rooted trees with n nodes.
- A001864 (program): Total height of rooted trees with n labeled nodes.
- A001865 (program): Number of connected functions on n labeled nodes.
- A001866 (program): Number of connected graphs with n nodes and n edges.
- A001867 (program): Number of n-bead necklaces with 3 colors.
- A001868 (program): Number of n-bead necklaces with 4 colors.
- A001869 (program): Number of n-bead necklaces with 5 colors.
- A001870 (program): Expansion of (1-x)/(1 - 3*x + x^2)^2.
- A001871 (program): Expansion of 1/(1 - 3*x + x^2)^2.
- A001872 (program): Convolved Fibonacci numbers.
- A001873 (program): Convolved Fibonacci numbers.
- A001874 (program): Convolved Fibonacci numbers.
- A001875 (program): Convolved Fibonacci numbers.
- A001876 (program): Number of divisors of n of form 5k+1; a(0)=0.
- A001877 (program): Number of divisors of n of the form 5k+2; a(0) = 0.
- A001878 (program): Number of divisors of n of form 5k+3; a(0) = 0.
- A001879 (program): a(n) = (2n+2)!/(n!*2^(n+1)).
- A001880 (program): Coefficients of Bessel polynomials y_n (x).
- A001881 (program): Coefficients of Bessel polynomials y_n (x).
- A001882 (program): a(2n) = a(2n-1) + 2a(2n-2), a(2n+1) = a(2n) + a(2n-1), with a(1) = 2 and a(2) = 3.
- A001891 (program): Hit polynomials; convolution of natural numbers with Fibonacci numbers F(2), F(3), F(4), ….
- A001892 (program): Number of permutations of (1,…,n) having n-2 inversions (n>=2).
- A001893 (program): Number of permutations of (1,…,n) having n-3 inversions (n>=3).
- A001894 (program): Number of permutations of {1,…,n} having n-4 inversions (n>=4).
- A001896 (program): Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).
- A001897 (program): Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).
- A001898 (program): Denominators of Bernoulli polynomials B(n)(x).
- A001899 (program): Number of divisors of n of form 5k+4; a(0) = 0.
- A001900 (program): Successive numerators of Wallis’s approximation to Pi/2 (unreduced).
- A001901 (program): Successive numerators of Wallis’s approximation to Pi/2 (reduced).
- A001902 (program): Successive denominators of Wallis’s approximation to Pi/2 (reduced).
- A001903 (program): Final digit of 7^n.
- A001906 (program): F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).
- A001907 (program): Expansion of e.g.f. exp(-x)/(1-4*x).
- A001908 (program): E.g.f. exp(-x)/(1-5*x).
- A001909 (program): a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.
- A001910 (program): a(n) = n*a(n-1) + (n-5)*a(n-2).
- A001911 (program): a(n) = Fibonacci(n+3) - 2.
- A001912 (program): Numbers k such that 4*k^2 + 1 is prime.
- A001917 (program): (p-1)/x, where p = prime(n) and x = ord(2,p), the smallest positive integer such that 2^x == 1 mod p.
- A001919 (program): Eighth column of quadrinomial coefficients.
- A001921 (program): a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.
- A001922 (program): Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).
- A001923 (program): a(n) = Sum_{k=1..n} k^k.
- A001924 (program): Apply partial sum operator twice to Fibonacci numbers.
- A001925 (program): From rook polynomials.
- A001926 (program): G.f.: (1+x)^2/[(1-x)^4(1-x-x^2)^3].
- A001932 (program): Sum of Fibonacci (A000045) and Pell (A000129) numbers.
- A001934 (program): Expansion of 1/theta_4(q)^2 in powers of q.
- A001935 (program): Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.
- A001936 (program): Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.
- A001937 (program): Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.
- A001938 (program): Expansion of k/(4*q^(1/2)) in powers of q, where k defined by sqrt(k) = theta_2(0, q))/theta_3(0, q).
- A001939 (program): Expansion of (psi(-x) / phi(-x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.
- A001940 (program): Absolute value of coefficients of an elliptic function.
- A001941 (program): Absolute values of coefficients of an elliptic function.
- A001943 (program): Expansion of reciprocal of theta series of E_8 lattice.
- A001945 (program): a(n+6) = -a(n+5) + a(n+4) + 3a(n+3) + a(n+2) - a(n+1) - a(n). a(n) = sign(n) if abs(n)<=3.
- A001946 (program): a(n) = 11*a(n-1) + a(n-2).
- A001947 (program): a(n) = Lucas(5*n+2).
- A001949 (program): Solutions of a fifth-order probability difference equation.
- A001950 (program): Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
- A001951 (program): A Beatty sequence: a(n) = floor(n*sqrt(2)).
- A001952 (program): A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).
- A001953 (program): a(n) = floor((n + 1/2) * sqrt(2)).
- A001954 (program): a(n) = floor((n+1/2)*(2+sqrt(2))); winning positions in the 2-Wythoff game.
- A001955 (program): Beatty sequence of 1 + 1/sqrt(11).
- A001956 (program): Beatty sequence of (5+sqrt(13))/2.
- A001957 (program): u-pile positions in the 3-Wythoff game with i=1.
- A001958 (program): v-pile numbers of the 3-Wythoff game with i=1.
- A001959 (program): u-pile numbers for the 3-Wythoff game with i=2.
- A001960 (program): a(n) = floor((n+2/3)*(5+sqrt(13))/2); v-pile positions in the 3-Wythoff game.
- A001961 (program): A Beatty sequence: floor(n * (sqrt(5) - 1)).
- A001962 (program): A Beatty sequence: floor(n * (sqrt(5) + 3)).
- A001963 (program): Winning positions in the u-pile of the 4-Wythoff game with i=1.
- A001964 (program): v-pile positions of the 4-Wythoff game with i=1.
- A001965 (program): u-pile count for the 4-Wythoff game with i=2.
- A001966 (program): v-pile counts for the 4-Wythoff game with i=2.
- A001967 (program): u-pile positions for the 4-Wythoff game with i=3.
- A001968 (program): v-pile positions of the 4-Wythoff game with i=3.
- A001969 (program): Evil numbers: nonnegative integers with an even number of 1’s in their binary expansion.
- A001971 (program): Nearest integer to n^2/8.
- A001972 (program): Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ).
- A001973 (program): Expansion of (1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)).
- A001983 (program): Numbers that are the sum of 2 distinct squares: of form x^2 + y^2 with 0 <= x < y.
- A001993 (program): Number of two-rowed partitions of length 3.
- A001994 (program): Expansion of 1/((1-x^2)*(1-x^4)^2*(1-x^6)*(1-x^8)*(1-x^10)) (even powers only).
- A001996 (program): Number of partitions of n into parts 2, 3, 4, 5, 6, 7.
- A001998 (program): Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.
- A002001 (program): a(n) = 3*4^(n-1), n>0; a(0)=1.
- A002002 (program): a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).
- A002003 (program): a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k).
- A002004 (program): Davenport-Schinzel numbers of degree 4 on n symbols.
- A002005 (program): Number of rooted planar cubic maps with 2n vertices.
- A002011 (program): a(n) = 4*(2n+1)!/n!^2.
- A002015 (program): a(n) = n^2 reduced mod 100.
- A002016 (program): Number of first n tetrahedral numbers (A000292) that are relatively prime to n.
- A002018 (program): From a distribution problem.
- A002019 (program): a(n) = a(n-1) - (n-1)(n-2)a(n-2).
- A002020 (program): a(n+1) = a(n) - n*(n-1)*a(n-1), with a(n) = 1 for n <= 3.
- A002021 (program): Pile of coconuts problem: (n-1)(n^n - 1), n even; n^n - n + 1, n odd.
- A002022 (program): Pile of coconuts problem.
- A002023 (program): a(n) = 6*4^n.
- A002024 (program): k appears k times; a(n) = floor(sqrt(2n) + 1/2).
- A002026 (program): Generalized ballot numbers (first differences of Motzkin numbers).
- A002033 (program): Number of perfect partitions of n.
- A002034 (program): Kempner numbers: smallest positive integer m such that n divides m!.
- A002035 (program): Numbers that contain primes to odd powers only.
- A002039 (program): Convolution inverse of A143348.
- A002041 (program): Expansion of x/((1-x)(1-4x^2)(1-5x)).
- A002042 (program): a(n) = 7*4^n.
- A002050 (program): Number of simplices in barycentric subdivision of n-simplex.
- A002051 (program): Steffensen’s bracket function [n,2].
- A002053 (program): a(n) = least value of m for which Liouville’s function A002819(m) = -n.
- A002054 (program): Binomial coefficient C(2n+1, n-1).
- A002055 (program): Number of diagonal dissections of a convex n-gon into n-4 regions.
- A002056 (program): Number of diagonal dissections of a convex n-gon into n-5 regions.
- A002057 (program): Fourth convolution of Catalan numbers: 4*binomial(2n+3,n)/(n+4).
- A002058 (program): Number of internal triangles in all triangulations of an (n+1)-gon.
- A002059 (program): Number of partitions of an n-gon into (n-4) parts.
- A002060 (program): Number of partitions of an n-gon into (n-5) parts.
- A002061 (program): Central polygonal numbers: a(n) = n^2 - n + 1.
- A002062 (program): a(n) = Fibonacci(n) + n.
- A002063 (program): a(n) = 9*4^n.
- A002064 (program): Cullen numbers: a(n) = n*2^n + 1.
- A002065 (program): a(n+1) = a(n)^2 + a(n) + 1.
- A002066 (program): a(n) = 10*4^n.
- A002081 (program): Numbers congruent to {2, 4, 8, 16} (mod 20).
- A002082 (program): 2nd differences are periodic.
- A002083 (program): Narayana-Zidek-Capell numbers: a(n) = 1 for n <= 2. Otherwise a(2n) = 2a(2n-1), a(2n+1) = 2a(2n) - a(n).
- A002084 (program): Sinh x / cos x = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
- A002085 (program): From the expansion of sinh x / cos x: a(n) = odd part of A002084(n).
- A002088 (program): Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.
- A002089 (program): a(n) = 11*4^n.
- A002095 (program): Number of partitions of n into nonprime parts.
- A002102 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 = n.
- A002104 (program): Logarithmic numbers.
- A002105 (program): Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.
- A002107 (program): Expansion of Product_{k>=1} (1 - x^k)^2.
- A002108 (program): 4th powers written backwards.
- A002109 (program): Hyperfactorials: Product_{k = 1..n} k^k.
- A002110 (program): Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
- A002112 (program): Glaisher’s H numbers.
- A002113 (program): Palindromes in base 10.
- A002114 (program): Glaisher’s H’ numbers.
- A002117 (program): Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
- A002118 (program): 5th powers written backwards.
- A002119 (program): Bessel polynomial y_n(-2).
- A002120 (program): a(1) = 0, a(2) = -2; for n > 2, a(n) + a(n-2) - a(n-3) - a(n-5) - … - a(n-p) = (-1)^(n+1)*n if n is prime, otherwise = 0, where p = largest prime < n.
- A002121 (program): a(0) = 1, a(1) = 0, a(2) = -1; for n >= 3, a(n) = - a(n-2) + Sum_{ primes p with 3 <= p <= n} a(n-p).
- A002123 (program): a(1) = 0, a(2) = 0; for n > 2, a(n) - a(n-3) - a(n-5) - … - a(n-p) = n if n is prime, otherwise = 0, where p = largest prime < n.
- A002124 (program): Number of compositions of n into a sum of odd primes.
- A002129 (program): Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
- A002131 (program): Sum of divisors d of n such that n/d is odd.
- A002133 (program): Number of partitions of n with exactly two part sizes.
- A002135 (program): Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.
- A002136 (program): Matrices with 2 rows.
- A002137 (program): Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.
- A002138 (program): 6th powers written backwards.
- A002140 (program): 7th powers written backwards.
- A002143 (program): Class numbers h(-p) where p runs through the primes p == 3 (mod 4).
- A002144 (program): Pythagorean primes: primes of form 4*k + 1.
- A002145 (program): Primes of the form 4*k + 3.
- A002161 (program): Decimal expansion of square root of Pi.
- A002162 (program): Decimal expansion of the natural logarithm of 2.
- A002163 (program): Decimal expansion of square root of 5.
- A002171 (program): Glaisher’s chi numbers. a(n) = chi(4*n + 1).
- A002173 (program): a(n) = Sum_{d|n, d == 1 mod 4} d^2 - Sum_{d|n, d == 3 mod 4} d^2.
- A002175 (program): Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.
- A002191 (program): Possible values for sum of divisors of n.
- A002193 (program): Decimal expansion of square root of 2.
- A002194 (program): Decimal expansion of sqrt(3).
- A002203 (program): Companion Pell numbers: a(n) = 2*a(n-1) + a(n-2), a(0) = a(1) = 2.
- A002204 (program): An ill-conditioned determinant.
- A002212 (program): Number of restricted hexagonal polyominoes with n cells.
- A002217 (program): Starting with n, repeatedly calculate the sum of prime factors (with repetition) of the previous term, until reaching 0 or a fixed point: a(n) is the number of terms in the resulting sequence.
- A002232 (program): 8th powers written backwards.
- A002239 (program): 9th powers written backwards.
- A002241 (program): 10th powers written backwards.
- A002246 (program): a(1) = 3; for n > 1, a(n) = 4*phi(n); given a rational number r = p/q, where q>0, (p,q)=1, define its height to be max{|p|,q}; then a(n) = number of rational numbers of height n.
- A002247 (program): A (6,2)-sequence.
- A002248 (program): Number of points on y^2 + xy = x^3 + x^2 + x over GF(2^n).
- A002249 (program): a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1.
- A002250 (program): a(n) = 4^n - 2*3^n.
- A002251 (program): Start with the nonnegative integers; then swap L(k) and U(k) for all k >= 1, where L = A000201, U = A001950 (lower and upper Wythoff sequences).
- A002260 (program): Triangle read by rows: T(n,k) = k for n >= 1, k = 1..n.
- A002262 (program): Triangle read by rows: T(n,k), 0 <= k <= n, in which row n lists the first n+1 nonnegative integers.
- A002264 (program): Nonnegative integers repeated 3 times.
- A002265 (program): Nonnegative integers repeated 4 times.
- A002266 (program): Integers repeated 5 times.
- A002267 (program): The 15 supersingular primes: primes dividing order of Monster simple group.
- A002271 (program): All odd numbers k, 1 < k < n, relatively prime to n are primes.
- A002275 (program): Repunits: (10^n - 1)/9. Often denoted by R_n.
- A002276 (program): a(n) = 2*(10^n - 1)/9.
- A002277 (program): a(n) = 3*(10^n - 1)/9.
- A002278 (program): a(n) = 4*(10^n - 1)/9.
- A002279 (program): a(n) = 5*(10^n - 1)/9.
- A002280 (program): a(n) = 6*(10^n - 1)/9.
- A002281 (program): a(n) = 7(10^n - 1)/9.
- A002282 (program): a(n) = 8*(10^n - 1)/9.
- A002283 (program): a(n) = 10^n - 1.
- A002288 (program): G.f.: q * Product_{m>=1} (1-q^m)^8*(1-q^2m)^8.
- A002293 (program): Number of dissections of a polygon: binomial(4*n, n)/(3*n + 1).
- A002294 (program): a(n) = binomial(5*n, n)/(4*n + 1).
- A002295 (program): Number of dissections of a polygon: binomial(6n,n)/(5n+1).
- A002296 (program): Number of dissections of a polygon: binomial(7n,n)/(6n+1).
- A002297 (program): Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
- A002298 (program): Denominator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
- A002299 (program): Binomial coefficients C(2*n+5,5).
- A002301 (program): a(n) = n! / 3.
- A002302 (program): Generalized tangent numbers.
- A002309 (program): Sum of first n fourth powers of odd numbers.
- A002310 (program): a(n) = 5*a(n-1) - a(n-2).
- A002312 (program): Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of k^2 + 1 is less than 2*k.
- A002313 (program): Primes congruent to 1 or 2 modulo 4; or, primes of form x^2 + y^2; or, -1 is a square mod p.
- A002314 (program): Minimal integer square root of -1 modulo p, where p is the n-th prime of the form 4k+1.
- A002315 (program): NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n) = A001653(n+1).
- A002316 (program): Related to Bernoulli numbers.
- A002317 (program): Related to Genocchi numbers.
- A002318 (program): Expansion of (1/theta_4(q)^2 -1)/4 in powers of q.
- A002320 (program): a(n) = 5*a(n-1) - a(n-2).
- A002321 (program): Mertens’s function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.
- A002323 (program): ((2^m - 1) / p) mod p, where p = prime(n) and m = ord(2,p).
- A002324 (program): Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).
- A002325 (program): Glaisher’s J numbers.
- A002326 (program): Multiplicative order of 2 mod 2n+1.
- A002327 (program): Primes of the form k^2 - k - 1.
- A002328 (program): Numbers n such that n^2 - n - 1 is prime.
- A002329 (program): Periods of reciprocals of integers prime to 10.
- A002348 (program): Degree of rational Poncelet porism of n-gon.
- A002370 (program): a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.
- A002371 (program): Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).
- A002372 (program): Goldbach conjecture: number of decompositions of 2n into ordered sums of two odd primes.
- A002373 (program): Smallest prime in decomposition of 2n into sum of two odd primes.
- A002374 (program): Largest prime <= n in any decomposition of 2n into a sum of two odd primes.
- A002375 (program): From Goldbach conjecture: number of decompositions of 2n into an unordered sum of two odd primes.
- A002378 (program): Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
- A002379 (program): a(n) = floor(3^n / 2^n).
- A002380 (program): a(n) = 3^n reduced modulo 2^n.
- A002381 (program): Numbers of the form (p^2 - 1)/120 where p is 1 or prime.
- A002382 (program): Numbers of the form (p^2 - 49)/120 where p is prime.
- A002383 (program): Primes of form k^2 + k + 1.
- A002384 (program): Numbers n such that n^2 + n + 1 is prime.
- A002388 (program): Decimal expansion of Pi^2.
- A002390 (program): Decimal expansion of natural logarithm of golden ratio.
- A002391 (program): Decimal expansion of natural logarithm of 3.
- A002397 (program): a(n) = n! * lcm({1, 2, .. n + 1}).
- A002407 (program): Cuban primes: primes which are the difference of two consecutive cubes.
- A002408 (program): Expansion of 8-dimensional cusp form.
- A002409 (program): a(n) = 2^n*C(n+6,6). Number of 6D hypercubes in an (n+6)-dimensional hypercube.
- A002411 (program): Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.
- A002412 (program): Hexagonal pyramidal numbers, or greengrocer’s numbers.
- A002413 (program): Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.
- A002414 (program): Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.
- A002415 (program): 4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.
- A002416 (program): a(n) = 2^(n^2).
- A002417 (program): 4-dimensional figurate numbers: a(n) = n*binomial(n+2, 3).
- A002418 (program): 4-dimensional figurate numbers: a(n) = (5*n-1)*binomial(n+2,3)/4.
- A002419 (program): 4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.
- A002420 (program): Expansion of sqrt(1 - 4*x) in powers of x.
- A002421 (program): Expansion of (1-4*x)^(3/2) in powers of x.
- A002422 (program): Expansion of (1-4*x)^(5/2).
- A002423 (program): Expansion of (1-4*x)^(7/2).
- A002424 (program): Expansion of (1-4*x)^(9/2).
- A002425 (program): Denominator of Pi^(2n)/(Gamma(2n)*(1-2^(-2n))*zeta(2n)).
- A002426 (program): Central trinomial coefficients: largest coefficient of (1 + x + x^2)^n.
- A002427 (program): Numerator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
- A002428 (program): Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + …
- A002430 (program): Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).
- A002431 (program): Numerators in Taylor series for cot x.
- A002436 (program): E.g.f.: Sum_{n >= 0} a(n)*x^(2*n)/(2*n)! = sec(2*x).
- A002437 (program): a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
- A002438 (program): Multiples of Euler numbers.
- A002440 (program): Squares written in base 7.
- A002441 (program): Squares written in base 8.
- A002442 (program): Squares written in base 9.
- A002444 (program): Denominator in Feinler’s formula for unsigned Bernoulli number |B_{2n}|.
- A002445 (program): Denominators of Bernoulli numbers B_{2n}.
- A002446 (program): a(n) = 2^(2*n+1) - 2.
- A002447 (program): Expansion of 1/(1-2*x^2-3*x^3).
- A002448 (program): Expansion of Jacobi theta function theta_4(x).
- A002450 (program): a(n) = (4^n - 1)/3.
- A002451 (program): Expansion of 1/((1-x)*(1-4*x)*(1-9*x)).
- A002452 (program): a(n) = (9^n - 1)/8.
- A002453 (program): Central factorial numbers.
- A002454 (program): Central factorial numbers: a(n) = 4^n (n!)^2.
- A002455 (program): Central factorial numbers.
- A002456 (program): Joffe’s central differences of 0, A241171(n,n-1).
- A002457 (program): a(n) = (2n+1)!/n!^2.
- A002458 (program): a(n) = binomial(4*n+1, 2*n).
- A002459 (program): Nearest integer to cosh(n).
- A002461 (program): Coefficients of Legendre polynomials.
- A002462 (program): Coefficients of Legendre polynomials.
- A002463 (program): Coefficients of Legendre polynomials.
- A002467 (program): The game of Mousetrap with n cards (given n letters and n envelopes, how many ways are there to fill the envelopes so that at least one letter goes into its right envelope?).
- A002469 (program): The game of Mousetrap with n cards: the number of permutations of n cards in which 2 is the only hit.
- A002471 (program): Number of partitions of n into a prime and a square.
- A002472 (program): Number of pairs x,y such that y-x=2, (x,n)=1, (y,n)=1 and 1 <= x <= n.
- A002473 (program): 7-smooth numbers: positive numbers whose prime divisors are all <= 7.
- A002474 (program): Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x).
- A002476 (program): Primes of the form 6m + 1.
- A002477 (program): Wonderful Demlo numbers: a(n) = ((10^n - 1)/9)^2.
- A002478 (program): Bisection of A000930.
- A002479 (program): Numbers of form x^2 + 2y^2.
- A002480 (program): Numbers of form 2x^2 + 3y^2.
- A002481 (program): Numbers of form x^2 + 6y^2.
- A002483 (program): Expansion of Jacobi theta function {theta_1}‘(q) in powers of q^(1/4).
- A002487 (program): Stern’s diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).
- A002489 (program): a(n) = n^(n^2), or (n^n)^n.
- A002491 (program): Smallest number of stones in Tchoukaillon (or Mancala, or Kalahari) solitaire that make use of n-th hole.
- A002492 (program): Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.
- A002496 (program): Primes of the form k^2 + 1.
- A002501 (program): a(n) = 7^n - 3*4^n + 2*3^n.
- A002503 (program): Numbers k such that binomial(2*k,k) is divisible by (k+1)^2.
- A002504 (program): Numbers x such that 1 + 3x*(x-1) is a (“cuban”) prime (cf. A002407).
- A002506 (program): Denominators of coefficients of expansion of Bessel function J_2(x).
- A002513 (program): Number of “cubic partitions” of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x.
- A002515 (program): Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.
- A002522 (program): a(n) = n^2 + 1.
- A002523 (program): a(n) = n^4 + 1.
- A002524 (program): Number of permutations of length n within distance 2 of a fixed permutation.
- A002525 (program): Number of permutations according to distance.
- A002530 (program): a(n) = 4*a(n-2) - a(n-4) for n > 1, a(n) = n for n = 0, 1.
- A002531 (program): a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1); a(0) = a(1) = 1.
- A002532 (program): a(n) = 2*a(n-1) + 5*a(n-2), a(0) = 0, a(1) = 1.
- A002533 (program): a(n) = 2*a(n-1) + 5*a(n-2).
- A002534 (program): a(n) = 2*a(n-1) + 9*a(n-2).
- A002535 (program): a(n) = 2*a(n-1) + 9*a(n-2), with a(0)=a(1)=1.
- A002536 (program): a(n) = 8 a(n-2) - 9 a(n-4).
- A002537 (program): a(2n) = a(2n-1) + 3a(2n-2), a(2n+1) = 2a(2n) + 3a(2n-1).
- A002538 (program): Second-order Eulerian numbers «n+1,n-1».
- A002541 (program): a(n) = Sum_{k=1..n-1} floor((n-k)/k).
- A002544 (program): a(n) = binomial(2*n+1,n)*(n+1)^2.
- A002547 (program): Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
- A002548 (program): Denominators of coefficients for numerical differentiation.
- A002549 (program): Numerators of coefficients of log(1+x)/sqrt(1+x).
- A002550 (program): Denominators of coefficients of log(1+x)/sqrt(1+x).
- A002553 (program): Coefficients for numerical differentiation.
- A002554 (program): Numerators of coefficients for numerical differentiation.
- A002555 (program): Denominators of coefficients for numerical differentiation.
- A002561 (program): a(n) = n^5 + 1.
- A002570 (program): From a definite integral.
- A002571 (program): From a definite integral.
- A002578 (program): Number of integral points in a certain sequence of open quadrilaterals.
- A002579 (program): Number of integral points in a certain sequence of closed quadrilaterals.
- A002580 (program): Decimal expansion of cube root of 2.
- A002581 (program): Decimal expansion of cube root of 3.
- A002586 (program): Smallest prime factor of 2^n + 1.
- A002593 (program): a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
- A002594 (program): a(n) = n^2*(16*n^4-20*n^2+7)/3.
- A002595 (program): Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
- A002596 (program): Numerators in expansion of sqrt(1+x). Absolute values give numerators in expansion of sqrt(1-x).
- A002597 (program): Number of partitions into one kind of 1’s, two kinds of 2’s, and three kinds of 3’s.
- A002604 (program): a(n) = n^6 + 1.
- A002605 (program): a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
- A002618 (program): a(n) = n*phi(n).
- A002620 (program): Quarter-squares: a(n) = floor(n/2)*ceiling(n/2). Equivalently, a(n) = floor(n^2/4).
- A002621 (program): Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).
- A002622 (program): Number of partitions of at most n into at most 5 parts.
- A002623 (program): Expansion of 1/((1-x)^4*(1+x)).
- A002624 (program): Expansion of (1-x)^(-3) * (1-x^2)^(-2).
- A002625 (program): Expansion of 1/((1-x)^3*(1-x^2)^2*(1-x^3)).
- A002626 (program): Expansion of 1/((1-x)^3 (1-x^2)^2 (1-x^3) (1-x^4)).
- A002627 (program): a(n) = n*a(n-1) + 1, a(0) = 0.
- A002628 (program): Number of permutations of length n without 3-sequences.
- A002629 (program): Number of permutations of length n with one 3-sequence.
- A002630 (program): Number of permutations of length n with two 3-sequences.
- A002633 (program): Related to discordant permutations.
- A002640 (program): Numbers n such that (n^2 + n + 1)/3 is prime.
- A002648 (program): A variant of the cuban primes: primes p = (x^3 - y^3 )/(x - y) where x = y + 2.
- A002652 (program): Theta series of Kleinian lattice Z[(1 + sqrt(-7))/ 2] in 1 complex (or 2 real) dimensions.
- A002654 (program): Number of ways of writing n as a sum of at most two nonzero squares, where order matters; also (number of divisors of n of form 4m+1) - (number of divisors of form 4m+3).
- A002658 (program): a(0) = a(1) = 1; for n > 0, a(n+1) = a(n)*(a(0) + … + a(n-1)) + a(n)*(a(n) + 1)/2.
- A002659 (program): a(n) = 2*sigma(n) - 1.
- A002660 (program): a(n) = Sum_{d|n, d <= 3} d^2 + 3*Sum_{d|n, d>3} d.
- A002661 (program): Least integer having Radon random number n.
- A002662 (program): a(n) = 2^n - 1 - n*(n+1)/2.
- A002663 (program): a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).
- A002664 (program): a(n) = 2^n - C(n,0)- … - C(n,4).
- A002665 (program): Continued fraction expansion of Lehmer’s constant.
- A002671 (program): a(n) = 4^n*(2*n+1)!.
- A002672 (program): Denominators of central difference coefficients M_{3}^(2n+1).
- A002673 (program): Numerators of central difference coefficients M_{3}^(2n+1).
- A002674 (program): a(n) = (2n)!/2.
- A002675 (program): Numerators of coefficients for central differences M_{4}^(2*n).
- A002676 (program): Denominators of coefficients for central differences M_{4}^(2*n).
- A002677 (program): Denominators of coefficients for central differences M_{3}’^(2*n+1).
- A002678 (program): Numerators of the Taylor coefficients of (e^x-1)^2.
- A002679 (program): Denominator of 2*Stirling_2(n,2)/n!.
- A002690 (program): a(n) = (n+1) * (2*n)! / n!.
- A002691 (program): a(n) = (n+2) * (2n+1) * (2n-1)! / (n-1)!.
- A002694 (program): Binomial coefficients C(2n, n-2).
- A002695 (program): P_n’(3), where P_n is n-th Legendre polynomial.
- A002696 (program): Binomial coefficients C(2n,n-3).
- A002697 (program): a(n) = n*4^(n-1).
- A002698 (program): Coefficients of Chebyshev polynomials: n(2n-3)2^(2n-5).
- A002699 (program): a(n) = n*2^(2*n-1).
- A002700 (program): Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).
- A002701 (program): Coefficients for numerical differentiation.
- A002704 (program): Number of sets with a congruence property.
- A002705 (program): Sets with a congruence property.
- A002708 (program): a(n) = Fibonacci(n) mod n.
- A002714 (program): Number of different keys with n cuts, depths between 1 and 7 and depth difference at most 1 between adjacent cut depths.
- A002715 (program): An infinite coprime sequence defined by recursion.
- A002716 (program): An infinite coprime sequence defined by recursion.
- A002717 (program): a(n) = floor(n(n+2)(2n+1)/8).
- A002720 (program): Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.
- A002726 (program): a(n) = Fibonacci(n+1) mod n.
- A002727 (program): Number of 3 X n binary matrices up to row and column permutations.
- A002731 (program): Numbers n such that (n^2 + 1)/2 is prime.
- A002732 (program): Numbers n such that (4n^2 + 1)/5 is prime.
- A002733 (program): Numbers k such that (k^2 + 1)/10 is prime.
- A002734 (program): Remove squares!
- A002736 (program): Apéry numbers: a(n) = n^2*C(2n,n).
- A002737 (program): a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).
- A002738 (program): Coefficients for extrapolation.
- A002739 (program): a(n) = ((2*n-1)!/(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1)).
- A002740 (program): Number of tree-rooted bridgeless planar maps with two vertices and n faces.
- A002741 (program): Logarithmic numbers: expansion of the e.g.f. -log(1-x) * e^(-x).
- A002742 (program): Logarithmic numbers.
- A002743 (program): Sum of logarithmic numbers.
- A002744 (program): Sum of logarithmic numbers.
- A002745 (program): Sum of logarithmic numbers.
- A002746 (program): Sum of logarithmic numbers.
- A002747 (program): Logarithmic numbers.
- A002748 (program): Sum of logarithmic numbers.
- A002749 (program): Sum of logarithmic numbers.
- A002750 (program): Sum of logarithmic numbers.
- A002751 (program): Sum of logarithmic numbers.
- A002752 (program): a(n) = Fibonacci(n-1) mod n.
- A002754 (program): Related to coefficient of m in Jacobi elliptic function cn(z, m).
- A002760 (program): Squares and cubes.
- A002775 (program): a(n) = n^2 * n!.
- A002776 (program): Terms in certain determinants.
- A002783 (program): 2*(3^n - 2^n) + 1.
- A002789 (program): Number of integer points in a certain quadrilateral scaled by a factor of n.
- A002791 (program): a(n) = Sum_{d|n, d <= 4} d^2 + 4*Sum_{d|n, d>4} d.
- A002793 (program): a(n) = 2n*a(n-1) - (n-1)^2*a(n-2).
- A002797 (program): Number of solutions to a linear inequality.
- A002798 (program): a(n) = a(n-2)+a(n-3)-a(n-5).
- A002799 (program): Number of 4-line partitions of n (i.e., planar partitions of n with at most 4 lines).
- A002801 (program): a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) with a(0) = a(1) = 1.
- A002802 (program): a(n) = (2*n+3)!/(6*n!*(n+1)!).
- A002803 (program): a(n) = (2n+4)!/(4!*n!*(n+1)!).
- A002804 (program): (Presumed) solution to Waring’s problem: g(n) = 2^n + floor((3/2)^n) - 2.
- A002805 (program): Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
- A002807 (program): a(n) = Sum_{k=3..n} (k-1)!*C(n,k)/2.
- A002808 (program): The composite numbers: numbers n of the form x*y for x > 1 and y > 1.
- A002815 (program): a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
- A002817 (program): Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.
- A002818 (program): Nearest integer to exp n^2.
- A002819 (program): Liouville’s function L(n) = partial sums of A008836.
- A002820 (program): Number of n X n invertible binary matrices A such that A+I is invertible.
- A002821 (program): a(n) = nearest integer to n^(3/2).
- A002822 (program): Numbers m such that 6m-1, 6m+1 are twin primes.
- A002825 (program): Number of precomplete Post functions.
- A002865 (program): Number of partitions of n that do not contain 1 as a part.
- A002866 (program): a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.
- A002867 (program): a(n) = binomial(n,floor(n/2))*(n+1)!.
- A002868 (program): Largest number in n-th row of triangle of Lah numbers (A008297 and A271703).
- A002869 (program): Largest number in n-th row of triangle A019538.
- A002870 (program): Largest Stirling numbers of second kind: a(n) = max_{k=1..n} S2(n,k).
- A002871 (program): a(n) = max_{k=0..n} 2^k*A048993(n,k)
- A002878 (program): Bisection of Lucas sequence: a(n) = L(2*n+1).
- A002884 (program): Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
- A002893 (program): a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).
- A002894 (program): a(n) = binomial(2n, n)^2.
- A002896 (program): Number of 2n-step polygons on cubic lattice.
- A002897 (program): a(n) = binomial(2n,n)^3.
- A002898 (program): Number of n-step closed paths on hexagonal lattice.
- A002901 (program): n^3 - floor( n/3 ).
- A002908 (program): High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on square lattice with nearest-neighbor interaction J at temperature T.
- A002928 (program): Magnetization for square lattice.
- A002938 (program): The minimal sequence (from solving n^3 - m^2 = a(n)).
- A002939 (program): a(n) = 2*n*(2*n-1).
- A002940 (program): Arrays of dumbbells.
- A002941 (program): Arrays of dumbbells.
- A002942 (program): a(n) = n^2 written backwards.
- A002943 (program): a(n) = 2*n*(2*n+1).
- A002944 (program): a(n) = LCM(1,2,…,n) / n.
- A002960 (program): The square sieve.
- A002965 (program): Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).
- A002970 (program): Numbers n such that 4*n^2 + 9 is prime.
- A002971 (program): Numbers k such that 4*k^2 + 25 is prime.
- A002984 (program): a(0) = 1; for n > 0, a(n) = a(n-1) + floor(sqrt(a(n-1))).
- A002993 (program): Initial digits of squares.
- A002994 (program): Initial digit of cubes.
- A002999 (program): Expansion of (1+x*exp(x))^2.
- A003000 (program): Number of bifix-free (or primary, or unbordered) words of length n over a two-letter alphabet.
- A003011 (program): Number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.
- A003013 (program): E.g.f. 1+x*exp(x)+x^2*exp(2*x).
- A003014 (program): Expansion of e.g.f.: 1 + x*exp(x) + x^2*exp(2*x) + x^3*exp(3*x).
- A003031 (program): Denominators of expansion of Fresnel integral S(z).
- A003034 (program): Sylvester’s problem: minimal number of ordinary lines through n points in the plane.
- A003035 (program): Maximal number of 3-tree rows in n-tree orchard problem.
- A003036 (program): Number of simplicial arrangements of n lines in the plane (the lines do not pass through a common point, all cells are triangles).
- A003046 (program): Product of first n Catalan numbers.
- A003047 (program): a(n) = Catalan(n) * Product a(k), k = 0 . . n-1.
- A003048 (program): a(n+1) = n*a(n) - (-1)^n.
- A003052 (program): Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).
- A003053 (program): Order of orthogonal group O(n, GF(2)).
- A003056 (program): n appears n+1 times. Also the array A(n,k) = n+k (n >= 0, k >= 0) read by antidiagonals. Also inverse of triangular numbers.
- A003057 (program): n appears n - 1 times.
- A003059 (program): k appears 2k-1 times. Also, square root of n, rounded up.
- A003063 (program): a(n) = 3^(n-1) - 2^n.
- A003070 (program): a(n) = ceiling(log_2 n!).
- A003071 (program): Sorting numbers: maximal number of comparisons for sorting n elements by list merging.
- A003074 (program): Number of different numbers <= n that are sums of 3 positive cubes.
- A003075 (program): Minimal number of comparisons needed for n-element sorting network.
- A003076 (program): n-th digit after decimal point of square root of n.
- A003079 (program): One of the basic cycles in the x->3x-1 (x odd) or x/2 (x even) problem.
- A003082 (program): Number of multigraphs with 4 nodes and n edges.
- A003091 (program): a(n) = floor( 2^(n*(n-1)/2) / n! ).
- A003095 (program): a(n) = a(n-1)^2 + 1 for n >= 1, with a(0) = 0.
- A003099 (program): a(n) = Sum_{k=0..n} binomial(n,k^2).
- A003101 (program): a(n) = Sum_{k = 1..n} (n - k + 1)^k.
- A003105 (program): Schur’s 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.
- A003106 (program): Number of partitions of n into parts 5k+2 or 5k+3.
- A003107 (program): Number of partitions of n into Fibonacci parts (with a single type of 1).
- A003108 (program): Number of partitions of n into cubes.
- A003114 (program): Number of partitions of n into parts 5k+1 or 5k+4.
- A003115 (program): a(n) = 4^floor(n/2)*a(n-1) - a(n-2), for n >= 2, with a(0) = a(1) = 1.
- A003124 (program): One of the basic cycles in the x->3x-1 (x odd) or x/2 (x even) problem.
- A003128 (program): Number of driving-point impedances of an n-terminal network.
- A003132 (program): Sum of squares of digits of n.
- A003136 (program): Loeschian numbers: numbers of the form x^2 + xy + y^2; norms of vectors in A2 lattice.
- A003138 (program): Nearest integer to 24*(2^n - 1)/n.
- A003141 (program): Minimal number of arcs whose reversal yields a transitive tournament.
- A003143 (program): a(2*n) = floor( 17*2^n/14 ), a(2*n+1) = floor( 12*2^n/7 ).
- A003144 (program): Positions of letter a in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
- A003145 (program): Positions of letter b in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
- A003146 (program): Positions of letter c in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
- A003148 (program): a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.
- A003149 (program): a(n) = Sum_{k=0..n} k!(n-k)!.
- A003151 (program): Beatty sequence for 1+sqrt(2); a(n) = floor(n*(1+sqrt(2))).
- A003152 (program): A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).
- A003153 (program): a(n) = integer nearest n*(1+sqrt(2)).
- A003154 (program): Centered 12-gonal numbers. Also star numbers: 6*n*(n-1) + 1.
- A003156 (program): A self-generating sequence (see Comments for definition).
- A003157 (program): A self-generating sequence (see Comments in A003156 for the definition).
- A003158 (program): A self-generating sequence (see Comments in A003156 for the definition).
- A003159 (program): Numbers n whose binary representation ends in an even number of zeros.
- A003160 (program): a(1) = a(2) = 1, a(n) = n - a(a(n-1)) - a(a(n-2)).
- A003161 (program): A binomial coefficient sum.
- A003165 (program): a(n) = floor(n/2) + 1 - d(n), where d(n) is the number of divisors of n.
- A003168 (program): Number of blobs with 2n+1 edges.
- A003169 (program): Number of 2-line arrays; or number of P-graphs with 2n edges.
- A003176 (program): Integer part of 24(2^n-1)/n.
- A003177 (program): a(n) = ceiling(24(2^n-1)/n).
- A003185 (program): a(n) = (4*n+1)(4*n+5).
- A003188 (program): Decimal equivalent of Gray code for n.
- A003215 (program): Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).
- A003221 (program): Number of even permutations of length n with no fixed points.
- A003222 (program): a(n) = 2^(3*n+1) - 2*n*(2*n+1).
- A003229 (program): a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.
- A003230 (program): Expansion of 1/((1-x)*(1-2*x)*(1-x-2*x^3)).
- A003231 (program): a(n) = floor(n*(sqrt(5)+5)/2).
- A003232 (program): Expansion of (x-1)*(x^2-4*x-1)/(1-2*x)^2.
- A003233 (program): Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).
- A003234 (program): Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.
- A003235 (program): a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C(k^2,n).
- A003236 (program): a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C((k+1)^2, n).
- A003238 (program): Number of rooted trees with n vertices in which vertices at the same level have the same degree.
- A003239 (program): Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
- A003242 (program): Number of compositions of n such that no two adjacent parts are equal (Carlitz compositions).
- A003249 (program): a(n) = A001950(A003234(n)) + 1.
- A003250 (program): The number m such that A001950(m) = A003231(A003234(n)).
- A003251 (program): Complement of A003250.
- A003252 (program): The number m such that A003251(m) = A003231(n).
- A003253 (program): Complement of A003252.
- A003256 (program): a(n) is the number m such that A242094(m) = A001950(n).
- A003257 (program): Complement of A003256.
- A003258 (program): The number m such that c’(m) = A005206(A003231(n)), where c’(m) = A249115(m) is the m-th positive integer not in A003231.
- A003259 (program): Complement of A003258.
- A003261 (program): Woodall (or Riesel) numbers: n*2^n - 1.
- A003265 (program): Not representable by truncated tribonacci sequence 2, 4, 7, 13, 24, 44, 81, ….
- A003266 (program): Product of first n nonzero Fibonacci numbers F(1), …, F(n).
- A003269 (program): a(n) = a(n-1) + a(n-4) with a(0) = 0, a(1) = a(2) = a(3) = 1.
- A003270 (program): A nonrepetitive sequence.
- A003274 (program): Number of key permutations of length n: permutations {a_i} with |a_i-a_{i-1}| = 1 or 2.
- A003277 (program): Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(n) = 1.
- A003278 (program): Szekeres’s sequence: a(n)-1 in ternary = n-1 in binary; also: a(1) = 1, a(2) = 2, and thereafter a(n) is smallest number k which avoids any 3-term arithmetic progression in a(1), a(2), …, a(n-1), k.
- A003292 (program): Number of 4-line partitions of n decreasing across rows.
- A003308 (program): a(n) = 2*n^(n-2).
- A003312 (program): a(1) = 3; for n>0, a(n+1) = a(n) + floor((a(n)-1)/2).
- A003314 (program): Binary entropy function: a(1)=0; for n > 1, a(n) = n + min { a(k)+a(n-k) : 1 <= k <= n-1 }.
- A003318 (program): a(n + 1) = 1 + a( floor(n/1) ) + a( floor(n/2) ) + … + a( floor(n/n) ).
- A003319 (program): Number of connected permutations of [1..n] (those not fixing [1..j] for 0 < j < n). Also called indecomposable permutations, or irreducible permutations.
- A003320 (program): a(n) = max_{k=0..n} k^(n-k).
- A003324 (program): A nonrepetitive sequence.
- A003325 (program): Numbers that are the sum of 2 positive cubes.
- A003402 (program): G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)).
- A003408 (program): a(n) = binomial(3n+6, n).
- A003409 (program): a(n) = 3*binomial(2n-1,n).
- A003410 (program): Expansion of (1+x)(1+x^2)/(1-x-x^3).
- A003411 (program): Losing initial positions in game: two players alternate in removing >= 1 stones; last player wins; first player may not remove all stones; each move <= 3 times previous move.
- A003413 (program): From a nim-like game.
- A003415 (program): a(n) = n’ = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(mn) = m*a(n) + n*a(m).
- A003417 (program): Continued fraction for e.
- A003418 (program): Least common multiple (or LCM) of {1, 2, …, n} for n >= 1, a(0) = 1.
- A003422 (program): Left factorials: !n = Sum_{k=0..n-1} k!.
- A003434 (program): Number of iterations of phi(x) at n needed to reach 1.
- A003435 (program): Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.
- A003436 (program): Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
- A003440 (program): Number of binary vectors with restricted repetitions.
- A003441 (program): Number of nonequivalent dissections of a polygon into n triangles by nonintersecting diagonals rooted at a cell up to rotation.
- A003451 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.
- A003452 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals rooted at a cell up to rotation and reflection.
- A003453 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.
- A003461 (program): Bode numbers multiplied by 10: 4 + 3*floor(2^(n-1)).
- A003462 (program): a(n) = (3^n - 1)/2.
- A003463 (program): a(n) = (5^n - 1)/4.
- A003464 (program): a(n) = (6^n - 1)/5.
- A003467 (program): Number of minimal covers of an n-set that cover exactly 3 points uniquely.
- A003468 (program): Number of minimal 3-covers of a labeled n-set.
- A003469 (program): Number of minimal covers of an (n + 1)-set by a collection of n nonempty subsets, a(n) = A035348(n,n-1).
- A003470 (program): a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.
- A003472 (program): a(n) = 2^(n-4)*C(n,4).
- A003476 (program): a(n) = a(n-1) + 2a(n-3).
- A003477 (program): Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).
- A003478 (program): Expansion of 1/(1-2x)(1-x-2x^3).
- A003479 (program): Expansion of 1/((1-x)*(1-x-2*x^3)).
- A003480 (program): a(n) = 4*a(n-1) - 2*a(n-2) (n >= 3).
- A003481 (program): a(n) = 7*a(n-1) - a(n-2) + 5.
- A003482 (program): a(n) = 7*a(n-1) - a(n-2) + 4, with a(0) = 0, a(1) = 5.
- A003484 (program): Radon function, also called Hurwitz-Radon numbers.
- A003485 (program): Hurwitz-Radon function at powers of 2.
- A003486 (program): a(n) = (n^2 + 1)*3^n.
- A003499 (program): a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.
- A003500 (program): a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
- A003501 (program): a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.
- A003504 (program): a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).
- A003506 (program): Triangle of denominators in Leibniz’s Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.
- A003508 (program): a(1) = 1; for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
- A003511 (program): A Beatty sequence: floor( n * (1 + sqrt(3))/2 ).
- A003512 (program): A Beatty sequence: floor(n*(sqrt(3) + 2)).
- A003516 (program): Binomial coefficients C(2n+1, n-2).
- A003517 (program): Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.
- A003518 (program): a(n) = 8*binomial(2*n+1,n-3)/(n+5).
- A003519 (program): a(n) = 10*C(2n+1, n-4)/(n+6).
- A003520 (program): a(n) = a(n-1) + a(n-5); a(0) = … = a(4) = 1.
- A003522 (program): a(n) = Sum_{k=0..n} C(n-k,3k).
- A003524 (program): Divisors of 2^12 - 1.
- A003527 (program): Divisors of 2^16 - 1.
- A003539 (program): a(n)=3*a(n-1)+16 (the first 11 terms are primes).
- A003555 (program): Sum{1,2,…,(10^n - 1)/9}, or (10^n -1)/9)((10^n -1)/9 +1)/2 (n-th term is the middle 2(n-1) digits of the (n+9)-th term for n > 1).
- A003557 (program): n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.
- A003558 (program): Least number m > 0 such that 2^m == +-1 (mod 2n + 1).
- A003559 (program): Least number m such that 3^m = +- 1 mod 3n + 1.
- A003560 (program): Least number m such that 4^m = +- 1 mod 4n + 1.
- A003561 (program): Least number m such that 5^m = +- 1 mod 5n + 1.
- A003562 (program): Least number m such that 6^m = +- 1 mod 6n + 1.
- A003564 (program): Least number m such that 8^m = +- 1 mod 8n + 1.
- A003565 (program): Least number m such that 9^m = +- 1 mod 9n + 1.
- A003566 (program): Least number m such that 10^m = +- 1 mod 10n + 1.
- A003568 (program): Least number m such that 12^m = +- 1 mod 12n + 1.
- A003569 (program): a(n) = least positive number m such that 4^m == +1 or -1 mod 2n + 1, with a(0) = 0 by convention.
- A003570 (program): a(n) = least positive number m such that 8^m == +1 or -1 mod 2n + 1, with a(0) = 0 by convention.
- A003571 (program): Order of 3 mod 3n+1.
- A003572 (program): Order of 3 mod 3n+2.
- A003573 (program): Order of 4 mod 4n+1.
- A003574 (program): Order of 4 mod 4n-1.
- A003575 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3.
- A003576 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
- A003577 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=5.
- A003578 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=6.
- A003579 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=7.
- A003580 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=8.
- A003581 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9.
- A003582 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=10.
- A003583 (program): a(n) = (n+2)*2^(2*n-1) - (n/2)*binomial(2*n,n).
- A003584 (program): Unicursal (i.e., possessing an Eulerian path) planar rooted maps with n edges.
- A003586 (program): 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.
- A003589 (program): a(n) has the property that the sequence b(n) = number of 2’s between successive 3’s is the same as the original sequence.
- A003592 (program): Numbers of the form 2^i*5^j with i, j >= 0.
- A003600 (program): Maximal number of pieces obtained by slicing a torus (or a bagel) with n cuts: (n^3 + 3*n^2 + 8*n)/6 (n > 0).
- A003601 (program): Numbers n such that the average of the divisors of n is an integer: sigma_0(n) divides sigma_1(n). Alternatively, tau(n) (A000005(n)) divides sigma(n) (A000203(n)).
- A003602 (program): Kimberling’s paraphrases: if n = (2k-1)*2^m then a(n) = k.
- A003603 (program): Fractal sequence obtained from Fibonacci numbers (or Wythoff array).
- A003605 (program): Unique monotonic sequence of nonnegative integers satisfying a(a(n)) = 3n.
- A003608 (program): Add 4, then reverse digits; start with 0.
- A003619 (program): Not of form [ e^m ], m >= 1.
- A003622 (program): The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.
- A003623 (program): Wythoff AB-numbers: floor(floor(n*phi^2)*phi), where phi = (1+sqrt(5))/2.
- A003625 (program): Primes congruent to {3, 5, 6} mod 7.
- A003626 (program): Inert rational primes in Q(sqrt(-5)).
- A003627 (program): Primes of the form 3n-1.
- A003628 (program): Primes congruent to {5, 7} mod 8.
- A003629 (program): Primes p == +- 3 (mod 8), or, primes p such that 2 is not a square mod p.
- A003630 (program): Inert rational primes in Q[sqrt(3)].
- A003631 (program): Primes congruent to 2 or 3 modulo 5.
- A003640 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A003657(n).
- A003641 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A039957(n).
- A003642 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A191483(n).
- A003645 (program): a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers.
- A003657 (program): Discriminants of imaginary quadratic fields, negated.
- A003658 (program): Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.
- A003662 (program): a(n) is smallest number != a(j)+a(k), j<k.
- A003663 (program): a(n) is smallest number != a(j)+a(k), j<k.
- A003664 (program): a(n) is smallest number larger than a(n-1) and not = a(j)+a(k), j<k.
- A003665 (program): a(n) = 2^(n-1)*( 2^n + (-1)^n ).
- A003673 (program): Decimal expansion of fine-structure constant alpha.
- A003674 (program): 2^(n-1)*( 2^n - (-1)^n ).
- A003677 (program): Decimal expansion of proton mass (mass units).
- A003682 (program): Number of (undirected) Hamiltonian paths in the n-ladder graph K_2 X P_n.
- A003683 (program): a(n) = 2^(n-1)*(2^n - (-1)^n)/3.
- A003686 (program): Number of genealogical 1-2 rooted trees of height n.
- A003687 (program): a(n+1) = a(n)-a(1)a(2)…a(n-1), if n>0. a(0)=1, a(1)=2.
- A003688 (program): a(n) = 3*a(n-1) + a(n-2), with a(1)=1 and a(2)=4.
- A003689 (program): Number of Hamiltonian paths in K_3 X P_n.
- A003690 (program): Number of spanning trees in K_3 X P_n.
- A003691 (program): Number of spanning trees with degrees 1 and 3 in K_3 X P_2n.
- A003692 (program): Number of trees on n labeled vertices with degree at most 3.
- A003693 (program): Number of 2-factors in P_4 X P_n.
- A003698 (program): Number of 2-factors in C_4 X P_n.
- A003699 (program): Number of Hamiltonian cycles in C_4 X P_n.
- A003701 (program): Expansion of e.g.f. exp(x)/cos(x).
- A003703 (program): Expansion of e.g.f. cos(log(1+x)).
- A003709 (program): E.g.f. cos(sin(x)) (even powers only).
- A003712 (program): E.g.f. sin(sin(x)) (odd powers only).
- A003713 (program): Expansion of e.g.f. log(1/(1+log(1-x))).
- A003714 (program): Fibbinary numbers: if n = F(i1) + F(i2) + … + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + … + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1’s.
- A003719 (program): Expansion of tan(x)*cosh(x).
- A003724 (program): Number of partitions of n-set into odd blocks.
- A003725 (program): E.g.f.: exp( x * exp(-x) ).
- A003726 (program): Numbers with no 3 adjacent 1’s in binary expansion.
- A003727 (program): Expansion of e.g.f. exp(x * cosh(x)).
- A003731 (program): Number of Hamiltonian cycles in C_5 X P_n.
- A003739 (program): Number of spanning trees in W_5 X P_n.
- A003747 (program): Number of perfect matchings (or domino tilings) in K_5 X P_2n.
- A003751 (program): Number of spanning trees in K_5 x P_n.
- A003753 (program): Number of spanning trees in C_4 X P_n.
- A003754 (program): Numbers with no adjacent 0’s in binary expansion.
- A003755 (program): Number of spanning trees in S_4 X P_n.
- A003757 (program): Number of perfect matchings (or domino tilings) in D_4 X P_(n-1).
- A003758 (program): Number of 2-factors in D_4 X P_n.
- A003759 (program): Number of Hamiltonian cycles in D_4 X P_n.
- A003767 (program): Number of spanning trees in (K_4 - e) X P_n.
- A003769 (program): Number of perfect matchings (or domino tilings) in K_4 X P_n.
- A003770 (program): Number of 2-factors in K_4 X P_n.
- A003771 (program): Number of Hamiltonian cycles in K_4 X P_n.
- A003773 (program): Number of spanning trees in K_4 X P_n.
- A003775 (program): Number of perfect matchings (or domino tilings) in P_5 X P_2n.
- A003777 (program): a(n) = n^3 + n^2 - 1.
- A003787 (program): Order of universal Chevalley group A_n (3).
- A003796 (program): Numbers with no 3 adjacent 0’s in binary expansion.
- A003800 (program): Order of universal Chevalley group A_2 (q), q = prime power.
- A003815 (program): a(0) = 0, a(n) = a(n-1) XOR n.
- A003816 (program): a(0) = 0, a(n) = a(n-1) XOR -n.
- A003817 (program): a(0) = 0, a(n) = a(n-1) OR n.
- A003823 (program): Power series expansion of the Rogers-Ramanujan continued fraction 1+x/(1+x^2/(1+x^3/(1+x^4/(1+…)))).
- A003841 (program): Order of universal Chevalley group D_2(q), q = prime power.
- A003842 (program): The infinite Fibonacci word: start with 1, repeatedly apply the morphism 1->12, 2->1, take limit; or, start with S(0)=2, S(1)=1, and for n>1 define S(n)=S(n-1)S(n-2), then the sequence is S(oo).
- A003848 (program): Order of (usually) simple Chevalley group D_2(q), q = prime power.
- A003849 (program): The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit).
- A003870 (program): Degrees of irreducible representations of symmetric group S_6.
- A003878 (program): n^4+(9/2)*n^3+n^2-(9/2)*n+1.
- A003881 (program): Decimal expansion of Pi/4.
- A003884 (program): Degrees of irreducible representations of group L2(16).
- A003885 (program): Degrees of irreducible representations of group L2(17).
- A003886 (program): Degrees of irreducible representations of group L2(19).
- A003887 (program): Degrees of irreducible representations of group L2(23).
- A003888 (program): Degrees of irreducible representations of group L2(25).
- A003889 (program): Degrees of irreducible representations of group L2(27).
- A003890 (program): Degrees of irreducible representations of group L2(29).
- A003891 (program): Degrees of irreducible representations of group L2(31).
- A003892 (program): Degrees of irreducible representations of group L2(32).
- A003893 (program): a(n) = Fibonacci(n) mod 10.
- A003931 (program): Order of universal Chevalley group B_2(q), q = prime power.
- A003938 (program): Order of (usually) simple Chevalley group B_2(q), q = prime power.
- A003945 (program): Expansion of g.f. (1+x)/(1-2*x).
- A003946 (program): Expansion of (1+x)/(1-3*x).
- A003947 (program): Expansion of (1+x)/(1-4*x).
- A003948 (program): Expansion of (1+x)/(1-5*x).
- A003949 (program): Expansion of g.f.: (1+x)/(1-6*x).
- A003950 (program): Expansion of g.f.: (1+x)/(1-7*x).
- A003951 (program): Expansion of g.f.: (1+x)/(1-8*x).
- A003952 (program): Expansion of g.f.: (1+x)/(1-9*x).
- A003953 (program): Expansion of g.f.: (1+x)/(1-10*x).
- A003954 (program): Expansion of g.f.: (1+x)/(1-11*x).
- A003955 (program): a(n) = (2*n + 4) * (1*3*5*…*(2*n+1))^2.
- A003958 (program): If n = Product p(k)^e(k) then a(n) = Product (p(k)-1)^e(k).
- A003959 (program): If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.
- A003960 (program): Fully multiplicative with a(p) = [ (p+1)/2 ] for prime p.
- A003961 (program): Completely multiplicative with a(prime(k)) = prime(k+1).
- A003962 (program): Completely multiplicative with a(p(k)) = floor( (p(k+1)+1)/2 ) for k-th prime p(k).
- A003963 (program): Fully multiplicative with a(p) = k if p is the k-th prime.
- A003965 (program): Fully multiplicative with a(prime(k)) = Fibonacci(k+2).
- A003966 (program): Möbius transform of A003958.
- A003967 (program): Inverse Möbius transform of A003958.
- A003968 (program): Möbius transform of A003959.
- A003969 (program): Inverse Möbius transform of A003959.
- A003971 (program): Inverse Möbius transform of A003960.
- A003972 (program): Moebius transform of A003961; a(n) = phi(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
- A003973 (program): Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
- A003975 (program): Inverse Möbius transform of A003962.
- A003977 (program): Inverse Möbius transform of A003963.
- A003981 (program): Inverse Möbius transform of A003965.
- A003982 (program): Table read by rows: 1 if x = y, 0 otherwise, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
- A003983 (program): Array read by antidiagonals with T(n,k) = min(n,k).
- A003984 (program): Table of max(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
- A003985 (program): Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is i AND j.
- A003986 (program): Table of x OR y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
- A003987 (program): Table of n XOR m (or Nim-sum of n and m) read by antidiagonals, i.e., with entries in the order (n,m) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
- A003988 (program): Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is [ i/j ].
- A003989 (program): Triangle T from the array A(x, y) = gcd(x,y), for x >= 1, y >= 1, read by antidiagonals.
- A003990 (program): Table of lcm(x,y), read along antidiagonals.
- A003991 (program): Multiplication table read by antidiagonals: T(i,j) = i*j, i>=1, j>=1.
- A003992 (program): Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.
- A003993 (program): Sequence b_3 (n) arising from homology of partitions with even number of blocks.
- A004000 (program): RATS: Reverse Add Then Sort the digits applied to previous term, starting with 1.
- A004001 (program): Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1.
- A004004 (program): a(n) = (3^{2n+1} - 8*n - 3)/16.
- A004006 (program): a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
- A004009 (program): Expansion of Eisenstein series E_4(q) (alternate convention E_2(q)); theta series of E_8 lattice.
- A004011 (program): Theta series of D_4 lattice; Fourier coefficients of Eisenstein series E_{gamma,2}.
- A004013 (program): Theta series of body-centered cubic (b.c.c.) lattice.
- A004015 (program): Theta series of face-centered cubic (f.c.c.) lattice.
- A004016 (program): Theta series of planar hexagonal lattice A_2.
- A004017 (program): Theta series of E_8 lattice with respect to deep hole.
- A004018 (program): Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).
- A004019 (program): a(0) = 0; for n > 0, a(n) = (a(n-1) + 1)^2.
- A004020 (program): Theta series of square lattice with respect to edge.
- A004024 (program): Theta series of b.c.c. lattice with respect to deep hole.
- A004025 (program): Theta series of b.c.c. lattice with respect to long edge.
- A004040 (program): Inversion of A000257.
- A004041 (program): Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
- A004043 (program): The coding-theoretic function A(n,8,8).
- A004047 (program): The coding-theoretic function A(n,10,9).
- A004050 (program): Numbers of the form 2^j + 3^k, for j and k >= 0.
- A004052 (program): The coding-theoretic function A(n,14,8).
- A004054 (program): Expansion of (1-x)/((1+x)*(1-2*x)*(1-3*x)).
- A004055 (program): ((p-1)/2)! mod p for odd primes p.
- A004056 (program): The coding-theoretic function A(n,14,12).
- A004057 (program): Expansion of (1-x)/( (1+x)*(1-2*x)*(1-3*x)*(1-4*x)).
- A004058 (program): Expansion of (1-x)/( (1+x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
- A004068 (program): Number of atoms in a decahedron with n shells.
- A004070 (program): Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.
- A004074 (program): a(n) = 2*A004001(n) - n, where A004001 is the Hofstadter-Conway $10000 sequence.
- A004079 (program): a(n) = maximal m such that an m X n Florentine rectangle exists.
- A004082 (program): Numbers k such that sin(k-1) <= 0 and sin(k) > 0.
- A004083 (program): Numbers k such that cos(k-1) <= 0 and cos(k) > 0.
- A004084 (program): a(n) = n-th positive integer k such that tan(k-1) <= 0 and tan(k) > 0.
- A004085 (program): Sum of digits of Euler totient function of n.
- A004086 (program): Read n backwards (referred to as R(n) in many sequences).
- A004087 (program): Primes written backwards.
- A004088 (program): Sum of digits of number of partitions of n.
- A004089 (program): Reverse digits of number of partitions of n.
- A004090 (program): Sum of digits of Fibonacci numbers.
- A004091 (program): Fibonacci numbers written backwards.
- A004092 (program): Sum of digits of even numbers.
- A004093 (program): Even numbers written backwards.
- A004094 (program): Powers of 2 written backwards.
- A004095 (program): Sum of digits of Catalan numbers.
- A004096 (program): Catalan numbers written backwards.
- A004097 (program): Sum of digits of Bell numbers.
- A004098 (program): Bell numbers written backwards.
- A004099 (program): Sum of digits of Euler numbers.
- A004116 (program): a(n) = floor((n^2 + 6n - 3)/4).
- A004117 (program): Numerators of expansion of (1-x)^(-1/3).
- A004119 (program): a(0)=1; thereafter a(n) = 3*2^(n-1)+1.
- A004120 (program): Expansion of (1 + x - x^5) / (1 - x)^3.
- A004123 (program): Number of generalized weak orders on n points.
- A004125 (program): Sum of remainders of n mod k, for k = 1, 2, 3, …, n.
- A004126 (program): a(n) = n*(7*n^2 - 1)/6.
- A004128 (program): a(n) = Sum_{k=1..n} floor(3*n/3^k).
- A004130 (program): Numerators in expansion of (1-x)^{-1/4}.
- A004131 (program): Modular postage stamp problem: largest m such that there exists an n-subset S of nonnegative integers such that 0,…,m-1 can be expressed as a mod-m sum of two distinct elements of S.
- A004134 (program): Denominators in expansion of (1-x)^{-1/4} are 2^a(n).
- A004138 (program): From a counter moving problem.
- A004139 (program): Odd primes excluding 5.
- A004140 (program): Number of nonempty labeled simple graphs on nodes chosen from an n-set.
- A004141 (program): Norm of a matrix.
- A004142 (program): n*(3^n-2^n).
- A004144 (program): Nonhypotenuse numbers (indices of positive squares that are not the sums of 2 distinct nonzero squares).
- A004146 (program): Alternate Lucas numbers - 2.
- A004148 (program): Generalized Catalan numbers: a(n+1) = a(n) + Sum_{k=1..n-1} a(k)*a(n-1-k).
- A004150 (program): Euler numbers written backwards.
- A004151 (program): Omit trailing zeros from n.
- A004152 (program): Sum of digits of n!.
- A004153 (program): Factorial numbers written backwards.
- A004154 (program): Omit trailing zeros from factorial numbers.
- A004155 (program): Sum of digits of n-th odd number.
- A004156 (program): Odd numbers written backwards.
- A004157 (program): Sum of digits of n-th triangular number.
- A004158 (program): Triangular numbers written backwards.
- A004159 (program): Sum of digits of n^2.
- A004160 (program): Sum of digits of tetrahedral numbers.
- A004161 (program): Tetrahedral numbers written backwards.
- A004162 (program): Sum of digits of pentagonal numbers.
- A004163 (program): Pentagonal numbers written backwards.
- A004164 (program): Sum of digits of n^3.
- A004165 (program): Cubes written backwards.
- A004166 (program): Sum of digits of 3^n.
- A004167 (program): Powers of 3 written backwards.
- A004169 (program): Values of m for which a regular polygon with m sides cannot be constructed with ruler and compass.
- A004171 (program): a(n) = 2^(2n+1).
- A004174 (program): Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in increasing order).
- A004175 (program): Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in decreasing order).
- A004183 (program): Omit 8’s from n.
- A004184 (program): Omit 9’s from n.
- A004185 (program): Arrange digits of n in increasing order, then (for n > 0) omit the zeros.
- A004186 (program): Arrange digits of n in decreasing order.
- A004187 (program): a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
- A004188 (program): a(n) = n*(3*n^2 - 1)/2.
- A004189 (program): a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.
- A004190 (program): Expansion of 1/(1 - 11*x + x^2).
- A004191 (program): Expansion of 1/(1 - 12*x + x^2).
- A004197 (program): Table of min(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
- A004198 (program): Table of x AND y, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
- A004199 (program): Table of [ x/y ], where (x,y) = (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),…
- A004200 (program): Continued fraction for Sum_{k>=0} 1/3^(2^k).
- A004201 (program): Accept one, reject one, accept two, reject two, …
- A004202 (program): Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.
- A004207 (program): a(0) = 1, a(n) = sum of digits of all previous terms.
- A004208 (program): a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!.
- A004211 (program): Shifts one place left under 2nd-order binomial transform.
- A004212 (program): Shifts one place left under 3rd-order binomial transform.
- A004213 (program): Shifts one place left under 4th-order binomial transform.
- A004214 (program): Positive numbers that are not the sum of three nonzero squares.
- A004215 (program): Numbers that are the sum of 4 but no fewer nonzero squares.
- A004216 (program): a(n) = floor(log_10(n)).
- A004218 (program): log_10(n) rounded up.
- A004219 (program): a(n) = floor(10*log_10(n)).
- A004220 (program): 10*log_10 (n) rounded to nearest integer.
- A004221 (program): 10*log_10 (n) rounded up.
- A004222 (program): 100*log_10 (n) rounded down.
- A004223 (program): 100*log_10 (n) rounded to nearest integer.
- A004224 (program): 100*log_10 (n) rounded up.
- A004232 (program): a(n) = n^2 + prime(n).
- A004233 (program): a(n) = ceiling(log(n)).
- A004235 (program): 10*log(n) rounded to nearest integer.
- A004236 (program): a(n) = ceiling(10*log(n)).
- A004239 (program): a(n) = ceiling(100*log(n)).
- A004247 (program): Multiplication table read by antidiagonals: T(i,j) = i*j (i>=0, j>=0). Alternatively, multiplication triangle read by rows: P(i,j) = j*(i-j) (i>=0, 0<=j<=i).
- A004248 (program): Table of x^y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
- A004250 (program): Number of partitions of n into 3 or more parts.
- A004253 (program): a(n) = 5*a(n-1) - a(n-2), with a(1)=1, a(2)=4.
- A004254 (program): a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.
- A004255 (program): n(n+1)(n^2 -3n + 6)/8.
- A004256 (program): a(n) = n^2*(n+1)*(n+2)^2/6.
- A004257 (program): a(n) = round(log_2(n)).
- A004259 (program): a(n) = floor(10*log_2(n)).
- A004260 (program): a(n) = round(10*log_2(n)).
- A004261 (program): a(n) = ceiling(10*log_2(n)).
- A004262 (program): a(n) = floor(100*log_2(n)).
- A004263 (program): a(n) = round(100*log_2(n)).
- A004264 (program): a(n) = ceiling(100*log_2(n)).
- A004271 (program): 1, 3 and the nonnegative even numbers.
- A004272 (program): 1, 3, 5 and the even numbers.
- A004273 (program): 0 together with odd numbers.
- A004274 (program): 0, 2 and the odd numbers.
- A004275 (program): 1 together with nonnegative even numbers.
- A004276 (program): 0, 2, 4 and the odd numbers.
- A004277 (program): 1 together with positive even numbers.
- A004278 (program): 1, 3 and the positive even numbers.
- A004279 (program): 1, 3, 5 and the even numbers.
- A004280 (program): 2 together with the odd numbers (essentially the result of the first stage of the sieve of Eratosthenes).
- A004281 (program): 2, 4 and the odd numbers.
- A004282 (program): a(n) = n*(n+1)^2*(n+2)^2/12.
- A004283 (program): Least positive multiple of n written in base 3 using only 0 and 1.
- A004291 (program): Expansion of (1 + 2*x + x^2)/(1 - 10*x + x^2).
- A004292 (program): Expansion of (1+x)^2/(1-18*x+x^2).
- A004293 (program): Expansion of (1+2*x+x^2)/(1-26*x+x^2).
- A004294 (program): Expansion of (1+2*x+x^2)/(1-34*x+x^2).
- A004295 (program): Expansion of (1+2*x+x^2)/(1-42*x+x^2).
- A004296 (program): Expansion of (1+2*x+x^2)/(1-50*x+x^2).
- A004297 (program): Expansion of (1+2*x+x^2)/(1-58*x+x^2).
- A004298 (program): Expansion of (1+2*x+x^2)/(1-66*x+x^2).
- A004299 (program): Expansion of (1+2*x+x^2)/(1-74*x+x^2).
- A004301 (program): Second-order Eulerian numbers «n,2».
- A004302 (program): a(n) = n^2*(n+1)^2*(n+2)/12.
- A004303 (program): a(n) = C(2n-2,n-1)/n - 2^(n-1) + n.
- A004305 (program): Simple triangulations of a disk: column 4 of square array in A210664.
- A004310 (program): Binomial coefficient C(2n,n-4).
- A004311 (program): Binomial coefficient C(2n,n-5).
- A004312 (program): Binomial coefficient C(2n,n-6).
- A004313 (program): a(n) = binomial coefficient C(2n, n-7).
- A004314 (program): a(n) = binomial coefficient C(2n, n - 8).
- A004315 (program): a(n) = binomial coefficient C(2n, n-9).
- A004316 (program): a(n) = binomial coefficient C(2n, n-10).
- A004317 (program): Binomial coefficient C(2n,n-11).
- A004318 (program): Binomial coefficient C(2n,n-12).
- A004319 (program): Binomial coefficient C(3n,n-1).
- A004320 (program): a(n) = n*(n+1)*(n+2)^2/6.
- A004321 (program): Binomial coefficient C(3n, n-3).
- A004322 (program): Binomial coefficient C(3n,n-4).
- A004323 (program): Binomial coefficient C(3n,n-5).
- A004324 (program): Binomial coefficient C(3n,n-6).
- A004325 (program): Binomial coefficient C(3n,n-7).
- A004326 (program): Binomial coefficient C(3n,n-8).
- A004327 (program): Binomial coefficient C(3n,n-9).
- A004328 (program): Binomial coefficient C(3n,n-10).
- A004329 (program): Binomial coefficient C(3n,n-11).
- A004330 (program): Binomial coefficient C(3n,n-12).
- A004331 (program): Binomial coefficient C(4n,n-1).
- A004332 (program): a(n) = C(4n,n-2).
- A004333 (program): Binomial coefficient C(4n,n-3).
- A004334 (program): Binomial coefficient C(4n,n-4).
- A004335 (program): Binomial coefficient C(4n,n-5).
- A004336 (program): Binomial coefficient C(4n,n-6).
- A004337 (program): Binomial coefficient C(4n,n-7).
- A004338 (program): Binomial coefficient C(4n,n-8).
- A004339 (program): Binomial coefficient C(4n,n-9).
- A004340 (program): Binomial coefficient C(4n,n-10).
- A004341 (program): Binomial coefficient C(4n,n-11).
- A004342 (program): Binomial coefficient C(4n, n-12).
- A004343 (program): Binomial coefficient C(5n,n-1).
- A004344 (program): Binomial coefficient C(5n+10,n).
- A004345 (program): Binomial coefficient C(5n,n-3).
- A004346 (program): Binomial coefficient C(5n,n-4).
- A004347 (program): Binomial coefficient C(5n,n-5).
- A004348 (program): Binomial coefficient C(5n, n-6).
- A004349 (program): Binomial coefficient C(5n,n-7).
- A004350 (program): Binomial coefficient C(5n,n-8).
- A004351 (program): Binomial coefficient C(5*n,n-9).
- A004352 (program): Binomial coefficient C(5n,n-10).
- A004353 (program): Binomial coefficient C(5n,n-11).
- A004354 (program): Binomial coefficient C(5n, n-12).
- A004355 (program): Binomial coefficient C(6n,n).
- A004356 (program): Binomial coefficient C(6n,n-1).
- A004357 (program): a(n) = binomial(6*n,n-2).
- A004358 (program): Binomial coefficient C(6n,n-3).
- A004359 (program): Binomial coefficient C(6n,n-4).
- A004360 (program): Binomial coefficient C(6n,n-5).
- A004361 (program): Binomial coefficient C(6n,n-6).
- A004362 (program): Binomial coefficient C(6n,n-7).
- A004363 (program): Binomial coefficient C(6n,n-8).
- A004364 (program): Binomial coefficient C(6n,n-9).
- A004365 (program): Binomial coefficient C(6n,n-10).
- A004366 (program): Binomial coefficient C(6n,n-11).
- A004367 (program): Binomial coefficient C(6n,n-12).
- A004368 (program): Binomial coefficient C(7n,n).
- A004369 (program): Binomial coefficient C(7n,n-1).
- A004370 (program): Binomial coefficient C(7n,n-2).
- A004371 (program): Binomial coefficient C(7n,n-3).
- A004372 (program): Binomial coefficient C(7n,n-4).
- A004373 (program): Binomial coefficient C(7n,n-5).
- A004374 (program): Binomial coefficient C(7n,n-6).
- A004375 (program): Binomial coefficient C(7n,n-7).
- A004376 (program): Binomial coefficient C(7n,n-8).
- A004377 (program): Binomial coefficient C(7n,n-9).
- A004378 (program): Binomial coefficient C(7n,n-10).
- A004379 (program): Binomial coefficient C(7n,n-11).
- A004380 (program): Binomial coefficient C(7n,n-12).
- A004381 (program): Binomial coefficient C(8n,n).
- A004382 (program): Binomial coefficient C(8n, n-1).
- A004383 (program): Binomial coefficient C(8n,n-2).
- A004384 (program): Binomial coefficient C(8n,n-3).
- A004385 (program): Binomial coefficient C(8n,n-4).
- A004386 (program): Binomial coefficient C(8n,n-5).
- A004387 (program): Binomial coefficient C(8n,n-6).
- A004388 (program): Binomial coefficient C(8n,n-7).
- A004389 (program): a(n) = binomial(8*n, n-8).
- A004390 (program): Binomial coefficient C(8n,n-9).
- A004391 (program): Binomial coefficient C(8n,n-10).
- A004392 (program): Binomial coefficient C(8n,n-11).
- A004393 (program): Binomial coefficient C(8n,n-12).
- A004395 (program): Ratios of successive terms are 1,1,2,3,3,4,5,5,6,7,7,…
- A004396 (program): One even number followed by two odd numbers.
- A004397 (program): a(n) = prime(n) + Fibonacci(n).
- A004398 (program): a(n) = Fibonacci(n+1) + prime(n).
- A004399 (program): Fibonacci(n+2) plus n-th prime.
- A004400 (program): a(n) = 1 + Sum_{k=0..n} 2^k*k!.
- A004401 (program): Least number of edges in graph containing all trees on n nodes.
- A004402 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-1).
- A004403 (program): Expansion of 1/theta_3(q)^2 in powers of q.
- A004404 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-3).
- A004405 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-4).
- A004406 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-5).
- A004407 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-6).
- A004408 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-7).
- A004409 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-8).
- A004410 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-9).
- A004411 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-10).
- A004412 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-11).
- A004413 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-12).
- A004414 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-13).
- A004415 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-14).
- A004416 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-15).
- A004417 (program): Expansion of (Sum x^(n^2), n = -inf .. inf )^(-16).
- A004418 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-17).
- A004419 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-18).
- A004420 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-19).
- A004421 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-20).
- A004422 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-21).
- A004423 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-22).
- A004425 (program): Expansion of (Sum x^(n^2), n = -inf .. inf )^(-24).
- A004426 (program): Arithmetic mean of digits of n (rounded down).
- A004427 (program): Arithmetic mean of digits of n (rounded up).
- A004431 (program): Numbers that are the sum of 2 distinct nonzero squares.
- A004435 (program): Positive integers that are not the sum of 2 distinct square integers.
- A004439 (program): Numbers that are not the sum of 2 distinct nonzero squares.
- A004442 (program): Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.
- A004443 (program): Nimsum n + 2.
- A004444 (program): Nimsum n + 3.
- A004445 (program): Nimsum n + 4.
- A004446 (program): a(n) = Nimsum n + 5.
- A004447 (program): Nimsum n + 6.
- A004448 (program): Nimsum n + 7.
- A004449 (program): Nimsum n + 8.
- A004450 (program): Nimsum n + 9.
- A004451 (program): Nimsum n + 10.
- A004452 (program): Nimsum n + 11.
- A004453 (program): Nimsum n + 12.
- A004454 (program): Nimsum n + 13.
- A004455 (program): Nimsum n + 14.
- A004456 (program): Nimsum n + 15.
- A004457 (program): Nimsum n + 16.
- A004458 (program): Nimsum n + 17.
- A004459 (program): Nimsum n + 18.
- A004460 (program): Nimsum n + 19.
- A004461 (program): Nimsum n + 20.
- A004462 (program): Nimsum n + 21.
- A004463 (program): Nimsum n + 22.
- A004464 (program): Nimsum n + 23.
- A004465 (program): Nimsum n + 24.
- A004466 (program): a(n) = n*(5*n^2 - 2)/3.
- A004467 (program): a(n) = n*(11*n^2 - 5)/6.
- A004468 (program): a(n) = Nim product 3 * n.
- A004482 (program): Tersum n + 1 (answer recorded in base 10).
- A004483 (program): Tersum n + 2.
- A004488 (program): Tersum n + n.
- A004492 (program): Tersum n + 3.
- A004493 (program): Tersum n + 4.
- A004494 (program): Tersum n + 5.
- A004495 (program): Tersum n + 6.
- A004496 (program): Tersum n + 7.
- A004497 (program): Tersum n + 8.
- A004498 (program): Tersum n + 9.
- A004499 (program): Tersum n + 10.
- A004500 (program): Tersum n + 11.
- A004501 (program): Tersum n + 12.
- A004502 (program): Tersum n + 13.
- A004503 (program): Tersum n + 14.
- A004504 (program): Tersum n + 15.
- A004505 (program): Tersum n + 16.
- A004506 (program): Tersum n + 17.
- A004507 (program): Tersum n + 18.
- A004508 (program): Tersum n + 19.
- A004509 (program): Tersum n + 20.
- A004510 (program): Tersum n + 21.
- A004511 (program): Tersum n + 22.
- A004512 (program): Tersum n + 23.
- A004513 (program): Tersum n + 24.
- A004514 (program): Generalized nim sum n + n in base 4.
- A004515 (program): Generalized nim sum n + n in base 5.
- A004516 (program): Generalized nim sum n + n in base 6.
- A004517 (program): Generalized nim sum n + n in base 7.
- A004518 (program): Generalized nim sum n + n in base 8.
- A004519 (program): Generalized nim sum n + n in base 9.
- A004520 (program): Generalized nim sum n + n in base 10.
- A004521 (program): Generalized nim sum n + n in base 11.
- A004522 (program): Generalized nim sum n + n in base 12.
- A004523 (program): Two even followed by one odd; or floor(2n/3).
- A004524 (program): Three even followed by one odd.
- A004525 (program): One even followed by three odd.
- A004526 (program): Nonnegative integers repeated, floor(n/2).
- A004527 (program): Ratios of successive terms are 1,2,2,3,4,4,5,6,6,…
- A004528 (program): Ratios of successive terms are 1,2,2,2,3,4,4,4,5,6,6,6,7…
- A004529 (program): Ratios of successive terms are 1,1,1,2,3,3,3,4,5,5,5,6,…
- A004531 (program): Number of integer solutions to x^2 + 4 * y^2 = n.
- A004538 (program): a(n) = 3*n^2 + 3*n - 1.
- A004539 (program): Expansion of sqrt(2) in base 2.
- A004540 (program): Expansion of sqrt(2) in base 3.
- A004541 (program): Expansion of sqrt(2) in base 4.
- A004542 (program): Expansion of sqrt(2) in base 5.
- A004543 (program): Expansion of sqrt(2) in base 6.
- A004544 (program): Expansion of sqrt(2) in base 7.
- A004545 (program): Expansion of sqrt(2) in base 8.
- A004546 (program): Expansion of sqrt(2) in base 9.
- A004547 (program): Expansion of sqrt(3) in base 2.
- A004548 (program): Expansion of sqrt(3) in base 3.
- A004549 (program): Expansion of sqrt(3) in base 4.
- A004550 (program): Expansion of sqrt(3) in base 5.
- A004551 (program): Expansion of sqrt(3) in base 6.
- A004552 (program): Expansion of sqrt(3) in base 7.
- A004553 (program): Expansion of sqrt(3) in base 8.
- A004554 (program): Expansion of sqrt(3) in base 9.
- A004555 (program): Expansion of sqrt(5) in base 2.
- A004556 (program): Expansion of sqrt(5) in base 3.
- A004557 (program): Expansion of sqrt(5) in base 4.
- A004558 (program): Expansion of sqrt(5) in base 5.
- A004559 (program): Expansion of sqrt(5) in base 6.
- A004560 (program): Expansion of sqrt(5) in base 7.
- A004561 (program): Expansion of sqrt(5) in base 8.
- A004562 (program): Expansion of sqrt(5) in base 9.
- A004563 (program): Expansion of sqrt(6) in base 4.
- A004564 (program): Expansion of sqrt(6) in base 5.
- A004565 (program): Expansion of sqrt(6) in base 6.
- A004566 (program): Expansion of sqrt(6) in base 7.
- A004567 (program): Expansion of sqrt(6) in base 8.
- A004568 (program): Expansion of sqrt(6) in base 9.
- A004569 (program): Expansion of sqrt(7) in base 2.
- A004570 (program): Expansion of sqrt(7) in base 3.
- A004571 (program): Expansion of sqrt(7) in base 4.
- A004572 (program): Expansion of sqrt(7) in base 5.
- A004573 (program): Expansion of sqrt(7) in base 6.
- A004574 (program): Expansion of sqrt(7) in base 7.
- A004575 (program): Expansion of sqrt(7) in base 8.
- A004576 (program): Expansion of sqrt(7) in base 9.
- A004578 (program): Expansion of sqrt(8) in base 3.
- A004579 (program): Expansion of sqrt(8) in base 4.
- A004580 (program): Expansion of sqrt(8) in base 5.
- A004581 (program): Expansion of sqrt(8) in base 6.
- A004582 (program): Expansion of sqrt(8) in base 7.
- A004583 (program): Expansion of sqrt(8) in base 8.
- A004584 (program): Expansion of sqrt(8) in base 9.
- A004585 (program): Expansion of sqrt(10) in base 2.
- A004586 (program): Expansion of sqrt(10) in base 3.
- A004587 (program): Expansion of sqrt(10) in base 4.
- A004588 (program): Expansion of sqrt(10) in base 5.
- A004589 (program): Expansion of sqrt(10) in base 6.
- A004590 (program): Expansion of sqrt(10) in base 7.
- A004591 (program): Expansion of sqrt(10) in base 8.
- A004592 (program): Expansion of sqrt(10) in base 9.
- A004593 (program): Expansion of e in base 2.
- A004595 (program): Expansion of e in base 4.
- A004596 (program): Expansion of e in base 5.
- A004599 (program): Expansion of e in base 8.
- A004601 (program): Expansion of Pi in base 2 (or, binary expansion of Pi).
- A004603 (program): Expansion of Pi in base 4.
- A004604 (program): Expansion of Pi in base 5.
- A004609 (program): Expansion of sqrt(6) in base 2.
- A004610 (program): Expansion of sqrt(6) in base 3.
- A004611 (program): Divisible only by primes congruent to 1 mod 3.
- A004612 (program): Numbers that are divisible only by primes congruent to 2 mod 3.
- A004613 (program): Numbers that are divisible only by primes congruent to 1 mod 4.
- A004614 (program): Numbers that are divisible only by primes congruent to 3 mod 4.
- A004625 (program): Numbers divisible only by primes congruent to 1 mod 8.
- A004630 (program): Squares written in base 12. (Next term contains a non-decimal character.)
- A004631 (program): Squares written in base 16. (Next term contains a non-decimal character.)
- A004632 (program): Cubes written in base 2.
- A004633 (program): Cubes written in base 3.
- A004634 (program): Cubes written in base 4.
- A004635 (program): Cubes written in base 5.
- A004636 (program): Cubes written in base 6.
- A004637 (program): Cubes written in base 7.
- A004638 (program): Cubes written in base 8.
- A004639 (program): Cubes written in base 9.
- A004641 (program): Fixed under 0 -> 10, 1 -> 100.
- A004642 (program): Powers of 2 written in base 3.
- A004643 (program): Powers of 2 written in base 4.
- A004645 (program): Powers of 2 written in base 6.
- A004646 (program): Powers of 2 written in base 7.
- A004647 (program): Powers of 2 written in base 8.
- A004648 (program): a(n) = prime(n) mod n.
- A004649 (program): Prime(n) mod (n-1).
- A004650 (program): Prime(n) mod (n+1).
- A004652 (program): Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).
- A004654 (program): Powers of 2 written in base 15. (Next term contains a non-decimal character.)
- A004655 (program): Powers of 2 written in base 16.
- A004656 (program): Powers of 3 written in base 2.
- A004657 (program): Expansion of g.f.: (1+x^3)*(1+x^4)/((1-x)*(1-x^2)^2*(1-x^4)).
- A004658 (program): Powers of 3 written in base 4.
- A004659 (program): Powers of 3 written in base 5.
- A004660 (program): Powers of 3 written in base 6.
- A004661 (program): Powers of 3 written in base 7.
- A004662 (program): Powers of 3 written in base 8.
- A004663 (program): Powers of 3 written in base 9.
- A004664 (program): n! + n^2.
- A004669 (program): Powers of 3 written in base 27.
- A004676 (program): Primes written in base 2.
- A004678 (program): Primes written in base 4.
- A004679 (program): Primes written in base 5.
- A004680 (program): Primes written in base 6.
- A004681 (program): Primes written in base 7.
- A004682 (program): Primes written in base 8.
- A004683 (program): Primes written in base 9.
- A004684 (program): Primes written in base 11. (Next term contains a nondecimal character.)
- A004685 (program): Fibonacci numbers written in base 2.
- A004686 (program): Fibonacci numbers written in base 3.
- A004687 (program): Fibonacci numbers written in base 4.
- A004688 (program): Fibonacci numbers written in base 5.
- A004689 (program): Fibonacci numbers written in base 6.
- A004690 (program): Fibonacci numbers written in base 7.
- A004691 (program): Fibonacci numbers written in base 8.
- A004692 (program): Fibonacci numbers written in base 9.
- A004694 (program): Fibonacci numbers written in base 13. (Next term contains a non-decimal character).
- A004695 (program): a(n) = floor(Fibonacci(n)/2).
- A004696 (program): a(n) = floor(Fibonacci(n)/3).
- A004697 (program): a(n) = floor(Fibonacci(n)/4).
- A004698 (program): a(n) = floor(Fibonacci(n)/5).
- A004699 (program): a(n) = floor(Fibonacci(n)/6).
- A004700 (program): Expansion of e.g.f. 1/(3 - exp(x) - exp(2*x)).
- A004709 (program): Cubefree numbers: numbers that are not divisible by any cube > 1.
- A004711 (program): Positions of 1’s in binary expansion of Pi/4.
- A004712 (program): Positions of ones in binary expansion of e-2.
- A004713 (program): Positions of ones in binary expansion of 1/sqrt(2).
- A004714 (program): Positions of ones in binary expansion of the reciprocal of the golden ratio (0.618…).
- A004718 (program): The Danish composer Per Nørgård’s “infinity sequence”, invented in an attempt to unify in a perfect way repetition and variation: a(2n) = -a(n), a(2n+1) = a(n) + 1, a(0) = 0.
- A004719 (program): Delete all 0’s from n.
- A004727 (program): Delete all 8’s from the sequence of nonnegative integers.
- A004728 (program): Delete all 9’s from the sequence of nonnegative integers.
- A004729 (program): Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).
- A004730 (program): Numerator of n!!/(n+1)!! (cf. A006882).
- A004731 (program): Denominator of n!!/(n+1)!! (cf. A006882).
- A004732 (program): Numerator of n!!/(n+3)!!.
- A004733 (program): Denominator of n!!/(n+3)!!.
- A004734 (program): Numerator of average distance traveled by n-dimensional fly.
- A004735 (program): Denominator of average distance traveled by n-dimensional fly.
- A004736 (program): Triangle read by rows: row n lists the first n positive integers in decreasing order.
- A004737 (program): Concatenation of sequences (1,2,…,n-1,n,n-1,…,1) for n >= 1.
- A004738 (program): Concatenation of sequences (1,2,…,n-1,n,n-1,…,2) for n >= 2.
- A004739 (program): Concatenation of sequences (1,2,2,…,n-1,n-1,n,n,n-1,n-1,…,2,2,1) for n >= 1.
- A004741 (program): Concatenation of sequences (1,3,..,2n-1,2n,2n-2,..,2) for n >= 1.
- A004742 (program): Numbers whose binary expansion does not contain 101.
- A004743 (program): Numbers whose binary expansion does not contain 110.
- A004745 (program): Numbers whose binary expansion does not contain 001.
- A004746 (program): Numbers whose binary expansion does not contain 010.
- A004748 (program): Binary expansion contains 101.
- A004749 (program): Numbers whose binary expansion contains the substring ‘110’.
- A004751 (program): Binary expansion contains 001.
- A004752 (program): Binary expansion contains 010.
- A004753 (program): Numbers whose binary expansion contains 100.
- A004754 (program): Numbers n whose binary expansion starts 10.
- A004755 (program): Binary expansion starts 11.
- A004756 (program): Binary expansion starts 100.
- A004757 (program): Binary expansion starts 101.
- A004758 (program): Binary expansion starts 110.
- A004759 (program): Binary expansion starts 111.
- A004760 (program): List of numbers whose binary expansion does not begin 10.
- A004761 (program): Numbers n whose binary expansion does not begin with 11.
- A004762 (program): Numbers whose binary expansion does not begin 100.
- A004763 (program): Numbers whose binary expansion does not begin 101.
- A004764 (program): Numbers whose binary expansion does not begin 110.
- A004765 (program): Numbers whose binary expansion does not begin 111.
- A004766 (program): Numbers whose binary expansion ends 01.
- A004767 (program): a(n) = 4*n + 3.
- A004768 (program): Binary expansion ends 001.
- A004769 (program): Numbers whose binary expansion ends in 011.
- A004770 (program): Numbers of form 8n+5; or, numbers whose binary expansion ends in 101.
- A004771 (program): a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.
- A004772 (program): Numbers that are not congruent to 1 (mod 4).
- A004773 (program): Numbers congruent to {0, 1, 2} mod 4: a(n) = floor(4*n/3).
- A004774 (program): Numbers n whose binary expansion does not end in 001.
- A004775 (program): Numbers k such that the binary expansion of k does not end in 011.
- A004776 (program): Numbers not congruent to 5 (mod 8).
- A004777 (program): Numbers not congruent to 7 mod 8.
- A004779 (program): Binary expansion contains 3 adjacent 0’s.
- A004780 (program): Binary expansion contains 2 adjacent 1’s.
- A004781 (program): Binary expansion contains 3 adjacent 1’s.
- A004782 (program): 2(2n-3)!/n!(n-1)! is an integer.
- A004783 (program): 3!(2n-4)!/n!(n-1)! is an integer.
- A004788 (program): Number of distinct prime divisors of the numbers in row n of Pascal’s triangle.
- A004793 (program): a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), …, a(n-1), k form an arithmetic progression.
- A004797 (program): Convolution of A002024 with itself.
- A004798 (program): Convolution of Fibonacci numbers 1,2,3,5,… with themselves.
- A004799 (program): Self-convolution of Lucas numbers.
- A004825 (program): Numbers that are the sum of at most 3 positive cubes.
- A004826 (program): Numbers that are the sum of at most 4 positive cubes.
- A004827 (program): Numbers that are the sum of at most 5 positive cubes.
- A004870 (program): Numbers that are the sum of at most 8 positive 7th powers.
- A004872 (program): Numbers that are the sum of at most 10 positive 7th powers.
- A004873 (program): Numbers that are the sum of at most 11 positive 7th powers.
- A004874 (program): Numbers that are the sum of at most 12 positive 7th powers.
- A004886 (program): Numbers that are the sum of at most 2 positive 9th powers.
- A004891 (program): Numbers that are the sum of at most 7 positive 9th powers.
- A004892 (program): Numbers that are the sum of at most 8 positive 9th powers.
- A004894 (program): Numbers that are the sum of at most 10 positive 9th powers.
- A004895 (program): Numbers that are the sum of at most 11 positive 9th powers.
- A004896 (program): Numbers that are the sum of at most 12 positive 9th powers.
- A004897 (program): Numbers that are the sum of at most 2 nonzero 10th powers.
- A004902 (program): Numbers that are the sum of at most 7 nonzero 10th powers.
- A004903 (program): Numbers that are the sum of at most 8 nonzero 10th powers.
- A004906 (program): Numbers that are the sum of at most 11 nonzero 10th powers.
- A004907 (program): Numbers that are the sum of at most 12 nonzero 10th powers.
- A004908 (program): Numbers that are the sum of at most 2 positive 11th powers.
- A004919 (program): a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.
- A004920 (program): Floor of n*phi^5, where phi is the golden ratio, A001622.
- A004921 (program): Floor of n*phi^6, phi = golden ratio, A001622.
- A004922 (program): Floor of n*phi^7, where phi is the golden ratio, A001622.
- A004923 (program): Floor of n*phi^8, where phi is the golden ratio, A001622.
- A004924 (program): Floor of n*phi^9, where phi is the golden ratio, A001622.
- A004925 (program): Floor of n*phi^10, where phi is the golden ratio, A001622.
- A004926 (program): Floor of n*phi^11, where phi is the golden ratio, A001622.
- A004927 (program): Floor of n*phi^12, where phi is the golden ratio, A001622.
- A004928 (program): Floor of n*phi^13, where phi is the golden ratio, A001622.
- A004929 (program): Floor of n*phi^14, where phi is the golden ratio, A001622.
- A004930 (program): Floor of n*phi^15, where phi is the golden ratio, A001622.
- A004931 (program): Floor of n*phi^16, where phi is the golden ratio, A001622.
- A004932 (program): Floor of n*phi^17, where phi is the golden ratio, A001622.
- A004933 (program): Floor of n*phi^18, where phi is the golden ratio, A001622.
- A004934 (program): Floor of n*phi^19, where phi is the golden ratio, A001622.
- A004935 (program): Floor of n*phi^20, where phi is the golden ratio, A001622.
- A004936 (program): Numerator of (binomial(2*n-2,n-1)/n!)^2.
- A004937 (program): Nearest integer to n*phi^2, where phi is the golden ratio, A001622.
- A004938 (program): Nearest integer to n*phi^3, where phi is the golden ratio, A001622.
- A004939 (program): Nearest integer to n*phi^4, where phi is the golden ratio, A001622.
- A004940 (program): Nearest integer to n*phi^5, where phi is the golden ratio, A001622.
- A004941 (program): Nearest integer to n*phi^6, where phi is the golden ratio, A001622.
- A004942 (program): Nearest integer to n*phi^7, where phi is the golden ratio, A001622.
- A004943 (program): Nearest integer to n*phi^8, where phi is the golden ratio, A001622.
- A004944 (program): Nearest integer to n*phi^9, where phi is the golden ratio, A001622.
- A004945 (program): Nearest integer to n*phi^10, where phi is the golden ratio, A001622.
- A004946 (program): Nearest integer to n*phi^11, where phi is the golden ratio, A001622.
- A004947 (program): Nearest integer to n*phi^12, where phi is the golden ratio, A001622.
- A004948 (program): Nearest integer to n*phi^13, where phi is the golden ratio, A001622.
- A004949 (program): Nearest integer to n*phi^14, where phi is the golden ratio, A001622.
- A004950 (program): Nearest integer to n*phi^15, where phi is the golden ratio, A001622.
- A004951 (program): Nearest integer to n*phi^16, where phi is the golden ratio, A001622.
- A004952 (program): Nearest integer to n*phi^17, where phi is the golden ratio, A001622.
- A004953 (program): Nearest integer to n*phi^18, where phi is the golden ratio, A001622.
- A004954 (program): Nearest integer to n*phi^19, where phi is the golden ratio, A001622.
- A004955 (program): Nearest integer to n*phi^20, where phi is the golden ratio, A001622.
- A004956 (program): a(n) = ceiling(n*phi), where phi is the golden ratio, A001622.
- A004957 (program): a(n) = ceiling(n*phi^2), where phi is the golden ratio, A001622.
- A004958 (program): a(n) = ceiling(n*phi^3), where phi is the golden ratio, A001622.
- A004959 (program): a(n) = ceiling(n*phi^4), where phi is the golden ratio, A001622.
- A004960 (program): a(n) = ceiling(n*phi^5), where phi is the golden ratio, A001622.
- A004961 (program): a(n) = ceiling(n*phi^6), where phi is the golden ratio.
- A004962 (program): a(n) = ceiling(n*phi^7), where phi is the golden ratio, A001622.
- A004963 (program): a(n) = ceiling(n*phi^8), where phi is the golden ratio, A001622.
- A004964 (program): a(n) = ceiling(n*phi^9), where phi is the golden ratio, A001622.
- A004965 (program): a(n) = ceiling(n*phi^10), where phi is the golden ratio, A001622.
- A004966 (program): a(n) = ceiling(n*phi^11), where phi is the golden ratio, A001622.
- A004967 (program): a(n) = ceiling(n*phi^12), where phi is the golden ratio, A001622.
- A004968 (program): a(n) = ceiling(n*phi^13), where phi is the golden ratio, A001622.
- A004969 (program): a(n) = ceiling(n*phi^14), where phi is the golden ratio, A001622.
- A004970 (program): a(n) = ceiling(n*phi^15), where phi is the golden ratio, A001622.
- A004971 (program): a(n) = ceiling(n*phi^16), where phi is the golden ratio, A001622.
- A004972 (program): a(n) = ceiling(n*phi^17), where phi is the golden ratio, A001622.
- A004973 (program): a(n) = ceiling(n*phi^18), where phi is the golden ratio, A001622.
- A004974 (program): a(n) = ceiling(n*phi^19), where phi is the golden ratio, A001622.
- A004975 (program): a(n) = ceiling(n*phi^20), where phi is the golden ratio, A001622.
- A004976 (program): a(n) = floor(n*phi^3), where phi=(1+sqrt(5))/2.
- A004981 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 1).
- A004982 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 3).
- A004983 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k - 3).
- A004984 (program): a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).
- A004985 (program): a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k + 5).
- A004986 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 7).
- A004987 (program): a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1).
- A004988 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 2).
- A004989 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).
- A004990 (program): a(n) = (3^n/n!)*Product_{k=0..n-1}(3*k - 1).
- A004991 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 4).
- A004992 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).
- A004993 (program): a(n) = (6^n/n!)*Product_{k=0..n-1} (6*k + 1).
- A004994 (program): a(n) = (6^n/n!)*Product_{k=0..n-1} (6*k + 5).
- A004995 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} (6*k - 5).
- A004996 (program): a(n) = 6^n/n! * Product_{k=0..n-1} (6*k - 1).
- A004997 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} (6*k + 7).
- A004998 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} ( 6*k + 11 ).
- A004999 (program): Sums of two nonnegative cubes.
- A005001 (program): a(0) = 0; for n>0, a(n) = Sum_k={0..n-1} Bell(k), where the Bell numbers Bell(k) are given in A000110.
- A005002 (program): Number of rhyme schemes (see reference for precise definition).
- A005003 (program): Number of rhyme schemes (see reference for precise definition).
- A005004 (program): Davenport-Schinzel numbers of degree n on 3 symbols.
- A005005 (program): Davenport-Schinzel numbers of degree n on 4 symbols.
- A005006 (program): Davenport-Schinzel numbers of degree n on 5 symbols.
- A005008 (program): a(n) = n! - n^2.
- A005009 (program): a(n) = 7*2^n.
- A005010 (program): a(n) = 9*2^n.
- A005011 (program): Shifts one place left under 5th-order binomial transform.
- A005012 (program): Shifts one place left under 6th-order binomial transform.
- A005013 (program): a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=4. Alternates Fibonacci (A000045) and Lucas (A000032) sequences for even and odd n.
- A005014 (program): Certain subgraphs of a directed graph (inverse binomial transform of A005321).
- A005015 (program): a(n) = 11*2^n.
- A005016 (program): Certain subgraphs of a directed graph.
- A005017 (program): Denominator of (binomial(2*n-2,n-1)/n!)^2.
- A005019 (program): The number of n X n (0,1)-matrices with a 1-width of 1.
- A005021 (program): Random walks (binomial transform of A006054).
- A005022 (program): Number of walks of length 2n+6 in the path graph P_7 from one end to the other.
- A005023 (program): Number of walks of length 2n+7 in the path graph P_8 from one end to the other.
- A005024 (program): Number of walks of length 2n+8 in the path graph P_9 from one end to the other.
- A005025 (program): Random walks.
- A005029 (program): 13*2^n.
- A005030 (program): a(n) = 5*3^n.
- A005032 (program): a(n) = 7*3^n.
- A005041 (program): A self-generating sequence.
- A005043 (program): Riordan numbers: a(n) = (n-1)*(2*a(n-1) + 3*a(n-2))/(n+1).
- A005044 (program): Alcuin’s sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).
- A005045 (program): Number of restricted 3 X 3 matrices with row and column sums n.
- A005046 (program): Number of partitions of a 2n-set into even blocks.
- A005051 (program): a(n) = 8*3^n.
- A005052 (program): 10*3^n.
- A005053 (program): Expand (1-2*x)/(1-5*x).
- A005054 (program): a(0) = 1; a(n) = 4*5^(n-1) for n >= 1.
- A005055 (program): 7*5^n.
- A005056 (program): a(n) = 3^n + 2^n - 1.
- A005057 (program): a(n) = 5^n - 2^n.
- A005058 (program): a(n) = 5^n - 3^n.
- A005059 (program): a(n) = (5^n - 3^n)/2.
- A005060 (program): a(n) = 5^n - 4^n.
- A005061 (program): a(n) = 4^n - 3^n.
- A005062 (program): a(n) = 6^n - 5^n.
- A005063 (program): Sum of squares of primes dividing n.
- A005064 (program): Sum of cubes of primes dividing n.
- A005065 (program): Sum of 4th powers of primes dividing n.
- A005066 (program): Sum of squares of odd primes dividing n.
- A005067 (program): Sum of cubes of odd primes dividing n.
- A005068 (program): Sum of 4th powers of odd primes dividing n.
- A005069 (program): Sum of odd primes dividing n.
- A005070 (program): Sum of primes = 1 (mod 3) dividing n.
- A005073 (program): Sum of 4th powers of primes = 1 mod 3 dividing n.
- A005074 (program): Sum of primes = 2 mod 3 dividing n.
- A005075 (program): Sum of squares of primes = 2 mod 3 dividing n.
- A005076 (program): Sum of cubes of primes = 2 mod 3 dividing n.
- A005077 (program): Sum of 4th powers of primes = 2 mod 3 dividing n.
- A005078 (program): Sum of primes = 1 mod 4 dividing n.
- A005079 (program): Sum of squares of primes = 1 mod 4 dividing n.
- A005080 (program): Sum of cubes of primes = 1 mod 4 dividing n.
- A005081 (program): Sum of 4th powers of primes = 1 mod 4 dividing n.
- A005082 (program): Sum of primes = 3 mod 4 dividing n.
- A005083 (program): Sum of squares of primes = 3 mod 4 dividing n.
- A005084 (program): Sum of cubes of primes = 3 mod 4 dividing n.
- A005085 (program): Sum of 4th powers of primes = 3 mod 4 dividing n.
- A005086 (program): Number of Fibonacci numbers 1,2,3,5,… dividing n.
- A005087 (program): Number of distinct odd primes dividing n.
- A005088 (program): Number of primes = 1 mod 3 dividing n.
- A005089 (program): Number of distinct primes == 1 (mod 4) dividing n.
- A005090 (program): Number of primes == 2 mod 3 dividing n.
- A005091 (program): Number of distinct primes = 3 mod 4 dividing n.
- A005092 (program): Sum of Fibonacci numbers 1,2,3,5,… that divide n.
- A005093 (program): Sum of squares of Fibonacci numbers 1,2,3,5,… that divide n.
- A005094 (program): Number of distinct primes of the form 4k+1 dividing n minus number of distinct primes of the form 4k+3 dividing n.
- A005095 (program): a(n) = n! + n.
- A005096 (program): a(n) = n! - n.
- A005097 (program): (Odd primes - 1)/2.
- A005098 (program): Numbers k such that 4k + 1 is prime.
- A005099 (program): (( Primes == -1 mod 4 ) + 1)/4.
- A005100 (program): Deficient numbers: numbers k such that sigma(k) < 2k.
- A005101 (program): Abundant numbers (sum of divisors of m exceeds 2m).
- A005117 (program): Squarefree numbers: numbers that are not divisible by a square greater than 1.
- A005118 (program): Number of simple allowable sequences on 1..n containing the permutation 12…n.
- A005122 (program): Numbers n such that 8n - 1 is prime.
- A005123 (program): Numbers n such that 8n + 1 is prime.
- A005124 (program): Numbers n such that 8n + 3 is prime.
- A005125 (program): Numbers n such that 8n - 3 is prime.
- A005126 (program): a(n) = 2^n + n + 1.
- A005131 (program): A generalized continued fraction for Euler’s number e.
- A005140 (program): Number of n-dimensional determinant 4 lattices.
- A005141 (program): Number of genera of forms with |determinant| = n.
- A005145 (program): n copies of n-th prime.
- A005152 (program): Rotation distance between binary trees on n nodes.
- A005153 (program): Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.
- A005159 (program): a(n) = 3^n*Catalan(n).
- A005165 (program): Alternating factorials: n! - (n-1)! + (n-2)! - … 1!.
- A005168 (program): n-th derivative of x^x at 1, divided by n.
- A005171 (program): Characteristic function of nonprimes: 0 if n is prime, else 1.
- A005173 (program): Number of trees of subsets of an n-set.
- A005174 (program): Number of trees of subsets of an n-set.
- A005178 (program): Number of domino tilings of 4 X (n-1) board.
- A005181 (program): a(n) = ceiling(exp((n-1)/2)).
- A005182 (program): a(n) = floor(e^((n-1)/2)).
- A005183 (program): a(n) = n*2^(n-1) + 1.
- A005187 (program): a(n) = a(floor(n/2)) + n; also denominators in expansion of 1/sqrt(1-x) are 2^a(n); also 2n - number of 1’s in binary expansion of 2n.
- A005189 (program): Number of n-term 2-sided generalized Fibonacci sequences.
- A005190 (program): Central quadrinomial coefficients: largest coefficient of (1 + x + x^2 + x^3)^n.
- A005191 (program): Central pentanomial coefficients: largest coefficient of (1 + x + … + x^4)^n.
- A005193 (program): Balanced labeled graphs.
- A005203 (program): Fibonacci numbers (or rabbit sequence) converted to decimal.
- A005205 (program): Coding Fibonacci numbers.
- A005206 (program): Hofstadter G-sequence: a(0) = 0; a(n) = n - a(a(n-1)) for n > 0.
- A005207 (program): a(n) = (F(2*n-1) + F(n+1))/2 where F(n) is a Fibonacci number.
- A005209 (program): Multilevel sieve: at k-th step, accept k numbers, reject k, accept k, …
- A005210 (program): a(n) = |a(n-1) + 2a(n-2) - n|.
- A005212 (program): n! if n is odd otherwise 0 (from the Taylor series for sin x).
- A005213 (program): Number of symmetric, reduced unit interval schemes with n+1 intervals (n>=1).
- A005214 (program): Triangular numbers together with squares (excluding 0).
- A005225 (program): Number of permutations of length n with equal cycles.
- A005232 (program): Expansion of (1-x+x^2)/((1-x)^2*(1-x^2)*(1-x^4)).
- A005233 (program): A finite sequence associated with the Lie algebra A_5.
- A005237 (program): Numbers n such that n and n+1 have the same number of divisors.
- A005246 (program): a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.
- A005247 (program): a(n) = 3*a(n-2) - a(n-4), a(0)=2, a(1)=1, a(2)=3, a(3)=2. Alternates Lucas (A000032) and Fibonacci (A000045) sequences for even and odd n.
- A005248 (program): Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).
- A005249 (program): Determinant of inverse Hilbert matrix.
- A005251 (program): a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
- A005252 (program): a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k,2k).
- A005253 (program): Number of binary words not containing ..01110…
- A005254 (program): Number of weighted voting procedures.
- A005255 (program): Atkinson-Negro-Santoro sequence: a(n+1) = 2*a(n) - a(n-floor(n/2+1)).
- A005256 (program): Number of weighted voting procedures.
- A005257 (program): Number of weighted voting procedures.
- A005258 (program): Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).
- A005259 (program): Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.
- A005260 (program): a(n) = Sum_{k = 0..n} binomial(n,k)^4.
- A005261 (program): a(n) = Sum_{k = 0..n} C(n,k)^5.
- A005262 (program): a(n) = floor((7*2^(n+1)-9*n-10)/3).
- A005267 (program): a(n) = -1 + a(0)a(1)…a(n-1) if n>0. a(0)=3.
- A005279 (program): Numbers having divisors d,e with d < e < 2*d.
- A005283 (program): Number of permutations of (1,…,n) having n-5 inversions (n>=5).
- A005284 (program): Number of permutations of (1,…,n) having n-6 inversions (n>=6).
- A005285 (program): Number of permutations of (1,…,n) having n-7 inversions (n>=7).
- A005286 (program): a(n) = (n + 3)*(n^2 + 6*n + 2)/6.
- A005287 (program): Number of permutations of [n] with four inversions.
- A005288 (program): a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.
- A005311 (program): Solution to Berlekamp’s switching game (or lightbulb game) on an n X n board.
- A005313 (program): Maximal sum of inverse squares of the singular values of triangular anti-Hadamard matrices of order n.
- A005314 (program): For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).
- A005317 (program): a(n) = (2^n + C(2*n,n))/2.
- A005319 (program): a(n) = 6*a(n-1) - a(n-2).
- A005320 (program): a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 3.
- A005321 (program): Upper triangular n X n (0,1)-matrices with no zero rows or columns.
- A005322 (program): Column of Motzkin triangle.
- A005323 (program): Column of Motzkin triangle.
- A005324 (program): Column of Motzkin triangle A026300.
- A005325 (program): Column of Motzkin triangle.
- A005327 (program): Certain subgraphs of a directed graph (inverse binomial transform of A005321).
- A005328 (program): Certain subgraphs of a directed graph.
- A005329 (program): a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.
- A005331 (program): Certain subgraphs of a directed graph (binomial transform of A005321).
- A005337 (program): Number of ways in which n identical balls can be distributed among 4 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.
- A005349 (program): Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.
- A005351 (program): Base -2 representation for n regarded as base 2, then evaluated.
- A005352 (program): Base -2 representation of -n reinterpreted as binary.
- A005353 (program): Number of 2 X 2 matrices with entries mod n and nonzero determinant.
- A005356 (program): Number of low discrepancy sequences in base 2.
- A005357 (program): Number of low discrepancy sequences in base 3.
- A005358 (program): Number of low discrepancy sequences in base 5.
- A005359 (program): a(n) = n! if n is even, otherwise 0 (from Taylor series for cos x).
- A005361 (program): Product of exponents of prime factorization of n.
- A005367 (program): a(n) = 2*(2^n + 1)*(2^(n+1) - 1).
- A005369 (program): a(n) = 1 if n is of the form m(m+1), else 0.
- A005370 (program): a(n) = Fibonacci(Fibonacci(n+1) + 1).
- A005371 (program): a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
- A005372 (program): a(n) = L(L(n+1)+1), where L(n) are Lucas numbers A000032.
- A005374 (program): Hofstadter H-sequence: a(n) = n - a(a(a(n-1))).
- A005375 (program): a(0) = 0; a(n) = n - a(a(a(a(n-1)))) for n > 0.
- A005377 (program): Number of low discrepancy sequences in base 4.
- A005378 (program): The female of a pair of recurrences.
- A005379 (program): The male of a pair of recurrences.
- A005380 (program): Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).
- A005381 (program): Numbers k such that k and k-1 are composite.
- A005382 (program): Primes p such that 2p-1 is also prime.
- A005383 (program): Primes p such that (p+1)/2 is prime.
- A005384 (program): Sophie Germain primes p: 2p+1 is also prime.
- A005385 (program): Safe primes p: (p-1)/2 is also prime.
- A005386 (program): Area of n-th triple of squares around a triangle.
- A005387 (program): Number of partitional matroids on n elements.
- A005388 (program): Number of degree-n permutations of order a power of 2.
- A005389 (program): Number of Hamiltonian circuits on 2n times 4 rectangle.
- A005403 (program): Number of protruded partitions of n with largest part at most 2.
- A005408 (program): The odd numbers: a(n) = 2*n + 1.
- A005409 (program): Number of polynomials of height n: a(1)=1, a(2)=1, a(3)=4, a(n) = 2*a(n-1) + a(n-2) + 2 for n >= 4.
- A005410 (program): a(n) = largest integer m such that every n-point interval order contains an m-point semiorder.
- A005416 (program): Vertex diagrams of order 2n.
- A005418 (program): Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch’s triangle A034851; also number of caterpillar graphs on n+2 vertices.
- A005425 (program): a(n) = 2*a(n-1) + (n-1)*a(n-2).
- A005427 (program): Josephus problem: numbers m such that, when m people are arranged on a circle and numbered 1 through m, the final survivor when we remove every 4th person is one of the first three people.
- A005428 (program): a(n) = ceiling((1 + sum of preceding terms) / 2) starting with a(0) = 1.
- A005429 (program): Apéry numbers: n^3*C(2n,n).
- A005430 (program): Apéry numbers: n*C(2*n,n).
- A005431 (program): Embeddings of n-bouquet in sphere.
- A005437 (program): Column of Kempner tableau.
- A005438 (program): Column of Kempner tableau.
- A005442 (program): a(n) = n!*Fibonacci(n+1).
- A005443 (program): a(n) = n! * Fibonacci(n).
- A005448 (program): Centered triangular numbers: a(n) = 3n(n-1)/2 + 1.
- A005449 (program): Second pentagonal numbers: a(n) = n*(3*n + 1)/2.
- A005450 (program): Numerator of (1 + Gamma(n))/n.
- A005453 (program): A finite sequence associated with the Lie algebra B_4.
- A005460 (program): a(n) = (3*n+4)*(n+3)!/24.
- A005461 (program): Number of simplices in barycentric subdivision of n-simplex.
- A005462 (program): Number of simplices in barycentric subdivision of n-simplex.
- A005463 (program): Number of simplices in barycentric subdivision of n-simplex.
- A005464 (program): Number of simplices in barycentric subdivision of n-simplex.
- A005465 (program): Number of n-dimensional hypotheses allowing for conditional independence.
- A005471 (program): Primes of the form m^2 + 3m + 9, where m can be positive or negative.
- A005473 (program): Primes of form k^2 + 4.
- A005475 (program): a(n) = n*(5*n+1)/2.
- A005476 (program): a(n) = n*(5*n - 1)/2.
- A005477 (program): a(n) = 2^(n-1)*(2^n - 1)*Product_{j=1..n-1} (2^j + 1).
- A005480 (program): Decimal expansion of cube root of 4.
- A005481 (program): Decimal expansion of cube root of 5.
- A005482 (program): Decimal expansion of cube root of 7.
- A005486 (program): Decimal expansion of cube root of 6.
- A005490 (program): Number of partitions of [n] where the first k elements are marked (0 <= k <= n-1) and at least k blocks contain their own index.
- A005491 (program): a(n) = n^3 + 3*n + 1.
- A005492 (program): From expansion of falling factorials.
- A005493 (program): 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.
- A005494 (program): 3-Bell numbers: E.g.f.: exp(3*z + exp(z) - 1).
- A005498 (program): Triangulations of the disk G_{2,n}.
- A005508 (program): Number of unrooted triangulations with reflection symmetry of a disk with one internal node and n+3 nodes on the boundary.
- A005512 (program): Number of series-reduced labeled trees with n nodes.
- A005513 (program): Number of n-bead bracelets (turnover necklaces) of two colors with 6 red beads and n-6 black beads.
- A005517 (program): Smallest label f(T) given to a rooted tree T with n nodes in Matula-Goebel labeling.
- A005521 (program): 1 + (sum of first n odd primes - n)/2.
- A005522 (program): a(n) = 1 + L(n) + F(2*n-1) with {L(n)}_{n>=0} the Lucas numbers (A000032) and F(2*n-1)_{n>=0} the bisected Fibonacci numbers (A001519).
- A005527 (program): Rational points on curves of genus n over GF(2).
- A005528 (program): Størmer numbers or arc-cotangent irreducible numbers: numbers k such that the largest prime factor of k^2 + 1 is >= 2*k.
- A005529 (program): Primitive prime factors of the sequence k^2 + 1 (A002522) in the order that they are found.
- A005531 (program): Decimal expansion of fifth root of 2.
- A005532 (program): Decimal expansion of fifth root of 3.
- A005533 (program): Decimal expansion of fifth root of 4.
- A005534 (program): Decimal expansion of fifth root of 5.
- A005536 (program): a(0) = 0; thereafter a(2n) = n - a(n) - a(n-1), a(2n+1) = n - 2a(n) + 1.
- A005554 (program): Sums of successive Motzkin numbers.
- A005557 (program): Number of walks on square lattice.
- A005558 (program): a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
- A005559 (program): Number of walks on square lattice.
- A005560 (program): Number of walks on square lattice.
- A005561 (program): Number of walks on square lattice.
- A005562 (program): Number of walks on square lattice.
- A005563 (program): a(n) = n*(n+2) = (n+1)^2 - 1.
- A005564 (program): Number of n-step walks on square lattice in the first quadrant which finish at distance n-3 from the x-axis.
- A005565 (program): Number of walks on square lattice.
- A005566 (program): Number of walks of length n on square lattice, starting at origin, staying in first quadrant.
- A005567 (program): Number of walks on square lattice.
- A005568 (program): Product of two successive Catalan numbers C(n)*C(n+1).
- A005570 (program): Number of walks on cubic lattice.
- A005571 (program): Number of walks on cubic lattice.
- A005572 (program): Number of walks on cubic lattice starting and finishing on the xy plane and never going below it.
- A005573 (program): Number of walks on cubic lattice (starting from origin and not going below xy plane).
- A005574 (program): Numbers k such that k^2 + 1 is prime.
- A005578 (program): a(2*n) = 2*a(2*n-1), a(2*n+1) = 2*a(2*n)-1.
- A005581 (program): a(n) = (n-1)*n*(n+4)/6.
- A005582 (program): a(n) = n*(n+1)*(n+2)*(n+7)/24.
- A005583 (program): Coefficients of Chebyshev polynomials.
- A005584 (program): Coefficients of Chebyshev polynomials.
- A005585 (program): 5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.
- A005586 (program): a(n) = n*(n+4)*(n+5)/6.
- A005587 (program): a(n) = n*(n+5)*(n+6)*(n+7)/24.
- A005590 (program): a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n+1) - a(n).
- A005592 (program): a(n) = F(2n+1) + F(2n-1) - 1.
- A005593 (program): a(n) = (F(2n+1) + F(2n-1) + F(n+3) - 2)/2, where F() = Fibonacci numbers A000045.
- A005594 (program): States of a dynamic storage system.
- A005595 (program): States of a dynamic storage system.
- A005598 (program): a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).
- A005599 (program): Running sum of every third term in the {+1,-1}-version of Thue-Morse sequence A010060.
- A005601 (program): Decimal expansion of proton-to-electron mass ratio.
- A005605 (program): a(n) = a(n-1) + (-1)^(n-1) * a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
- A005609 (program): Number of Boolean functions realized by cascades of n gates.
- A005610 (program): Number of Boolean functions realized by cascades of n gates.
- A005612 (program): Number of Boolean functions of n variables that are variously called “unate cascades” or “1-decision list functions” or “read-once threshold functions”.
- A005614 (program): The binary complement of the infinite Fibonacci word A003849. Start with 1, apply 0->1, 1->10, iterate, take limit.
- A005618 (program): a(n) = 6*a(n-1) - 8.
- A005619 (program): Number of Boolean functions realized by n-input cascades.
- A005631 (program): Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
- A005647 (program): Salié numbers.
- A005649 (program): Expansion of e.g.f. (2 - e^x)^(-2).
- A005650 (program): Number of “magic squares” of order n (see comment line for exact definition).
- A005652 (program): Sum of 2 terms is never a Fibonacci number.
- A005653 (program): Sum of 2 terms is never a Fibonacci number.
- A005654 (program): Number of bracelets (turn over necklaces) with n red, 1 pink and n-1 blue beads; also reversible strings with n red and n-1 blue beads; also next-to-central column in Losanitsch’s triangle A034851.
- A005656 (program): Number of bracelets (turn over necklaces) with n red, 1 pink and n - 3 blue beads; also reversible strings with n red and n-3 blue beads.
- A005665 (program): Tower of Hanoi with 3 pegs and cyclic moves only (clockwise).
- A005666 (program): Tower of Hanoi with 3 pegs and cyclic moves only (counterclockwise).
- A005667 (program): Numerators of continued fraction convergents to sqrt(10).
- A005668 (program): Denominators of continued fraction convergents to sqrt(10).
- A005672 (program): a(n) = Fibonacci(n+1) - 2^floor(n/2).
- A005673 (program): F(n+1)-2^[ (n+1)/2 ] -2^[ n/2 ] +1.
- A005674 (program): a(n) = 2^(n-1) + 2^[ n/2 ] + 2^[ (n-1)/2 ] - F(n+3).
- A005676 (program): Sum C(n-k,4*k), k = 0..n.
- A005678 (program): A squarefree ternary sequence.
- A005679 (program): A squarefree (or Thue-Morse) ternary sequence: closed under a->abc, b->ac, c->b.
- A005680 (program): A squarefree ternary sequence.
- A005681 (program): A squarefree quaternary sequence.
- A005682 (program): Number of Twopins positions.
- A005683 (program): Numbers of Twopins positions.
- A005684 (program): Number of Twopins positions.
- A005685 (program): Number of Twopins positions.
- A005686 (program): Number of Twopins positions.
- A005689 (program): Number of Twopins positions.
- A005698 (program): Positions of remoteness 2 in Beans-Don’t-Talk.
- A005700 (program): a(n) = C(n)*C(n+2)-C(n+1)^2 where C() are the Catalan numbers A000108.
- A005701 (program): Number of exterior points formed by extending diagonals of n-gon in general position.
- A005704 (program): Number of partitions of 3n into powers of 3.
- A005705 (program): Number of partitions of 4*n into powers of 4.
- A005706 (program): Number of partitions of 5n into powers of 5.
- A005708 (program): a(n) = a(n-1) + a(n-6), with a(i) = 1 for i = 0..5.
- A005709 (program): a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.
- A005710 (program): a(n) = a(n-1) + a(n-8), with a(i) = 1 for i = 0..7.
- A005711 (program): a(n) = a(n-1) + a(n-9) for n >= 9; a(n) = 1 for n=0..7; a(8) = 2.
- A005712 (program): Coefficient of x^4 in expansion of (1+x+x^2)^n.
- A005713 (program): Define strings S(0)=0, S(1)=11, S(n) = S(n-1)S(n-2); iterate.
- A005714 (program): Coefficient of x^6 in expansion of (1+x+x^2)^n.
- A005715 (program): Coefficient of x^7 in expansion of (1+x+x^2)^n.
- A005716 (program): Coefficient of x^8 in expansion of (1+x+x^2)^n
- A005717 (program): Construct triangle in which n-th row is obtained by expanding (1 + x + x^2)^n and take the next-to-central column.
- A005718 (program): Quadrinomial coefficients: C(2+n,n) + C(3+n,n) + C(4+n,n).
- A005719 (program): Quadrinomial coefficients.
- A005720 (program): Quadrinomial coefficients.
- A005721 (program): Central quadrinomial coefficients.
- A005722 (program): a(n) = (prime(n) - 1)^2.
- A005723 (program): Quadrinomial coefficients.
- A005724 (program): Quadrinomial coefficients.
- A005725 (program): Quadrinomial coefficients.
- A005726 (program): Quadrinomial coefficients.
- A005727 (program): n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.
- A005728 (program): Number of fractions in Farey series of order n.
- A005732 (program): a(n) = binomial(n+3,6) + binomial(n+1,5) + binomial(n,5).
- A005744 (program): G.f.: x*(1+x-x^2)/((1-x)^4*(1+x)).
- A005752 (program): a(n) = n^2 + n*floor(n*tau) - floor(n*tau)^2.
- A005758 (program): Number of partitions of n into parts of 12 kinds.
- A005766 (program): a(n) = cost of minimal multiplication-cost addition chain for n.
- A005767 (program): Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
- A005773 (program): Number of directed animals of size n (or directed n-ominoes in standard position).
- A005774 (program): Number of directed animals of size n (k=1 column of A038622); number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, where s(0) = 2; also sum of row n+1 of array T in A026323.
- A005775 (program): Number of compact-rooted directed animals of size n having 3 source points.
- A005779 (program): a(n) = largest integer such that every tournament on n nodes contains a consistent set of n arcs.
- A005783 (program): Number of 3-covers of an n-set.
- A005789 (program): 3-dimensional Catalan numbers.
- A005790 (program): 4-dimensional Catalan numbers.
- A005798 (program): Expansion of (theta_2(q)/theta_3(q))^4/16 in powers of q.
- A005802 (program): Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).
- A005803 (program): Second-order Eulerian numbers: a(n) = 2^n - 2*n.
- A005807 (program): Sum of adjacent Catalan numbers.
- A005809 (program): a(n) = binomial(3n,n).
- A005810 (program): a(n) = binomial(4n,n).
- A005811 (program): Number of runs in binary expansion of n (n>0); number of 1’s in Gray code for n.
- A005812 (program): Weight of balanced ternary representation of n.
- A005817 (program): a(n) = C(floor(n/2 + 1/2))*C(floor(n/2 + 1)) where C(i) = Catalan numbers A000108.
- A005818 (program): Numbers n that are primitive solutions to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
- A005819 (program): Number of words of length n in a certain language.
- A005821 (program): a(n) = [ tau*a(n-1) ] + a(n-2).
- A005823 (program): Numbers whose ternary expansion contains no 1’s.
- A005824 (program): a(n) = 5a(n-2) - 2a(n-4).
- A005825 (program): Numerators in a worst case of a Jacobi symbol algorithm.
- A005826 (program): Worst case of a Jacobi symbol algorithm.
- A005827 (program): Worst case of a Jacobi symbol algorithm.
- A005829 (program): a(n) = [ tau*a(n-1) ] + a(n-2).
- A005830 (program): a(n) = floor(tau*a(n-1)) + a(n-2) where tau is the golden ratio.
- A005831 (program): a(n+1) = a(n) * (a(n-1) + 1).
- A005833 (program): a(n) = [ tau*a(n-2) ] + a(n-1).
- A005834 (program): a(n) = floor( tau*a(n-2) ) + a(n-1) where tau is the golden ratio.
- A005836 (program): Numbers whose base 3 representation contains no 2.
- A005840 (program): Expansion of (1-x)*e^x/(2-e^x).
- A005843 (program): The nonnegative even numbers: a(n) = 2n.
- A005846 (program): Primes of the form n^2 + n + 41.
- A005855 (program): The coding-theoretic function A(n,10,7).
- A005856 (program): The coding-theoretic function A(n,10,8).
- A005857 (program): The coding-theoretic function A(n,12,7).
- A005860 (program): The coding-theoretic function A(n,12,10).
- A005861 (program): The coding-theoretic function A(n,14,9).
- A005862 (program): The coding-theoretic function A(n,14,10).
- A005867 (program): a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).
- A005868 (program): Molien series for 3-dimensional representation of Z2 X (double cover of A6), u.g.g.r. # 27 of Shephard and Todd.
- A005869 (program): Theta series of b.c.c. lattice with respect to short edge.
- A005872 (program): Theta series of hexagonal close-packing with respect to octahedral hole.
- A005875 (program): Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).
- A005876 (program): Theta series of cubic lattice with respect to edge.
- A005877 (program): Theta series of cubic lattice with respect to square.
- A005878 (program): Theta series of cubic lattice with respect to deep hole.
- A005879 (program): Theta series of D_4 lattice with respect to deep hole.
- A005880 (program): Theta series of D_4 lattice with respect to edge.
- A005881 (program): Theta series of planar hexagonal lattice (A2) with respect to edge.
- A005882 (program): Theta series of planar hexagonal lattice (A2) with respect to deep hole.
- A005883 (program): Theta series of square lattice with respect to deep hole.
- A005884 (program): Theta series of f.c.c. lattice with respect to edge.
- A005885 (program): Theta series of f.c.c. lattice with respect to triangle.
- A005886 (program): Theta series of f.c.c. lattice with respect to tetrahedral hole.
- A005887 (program): Theta series of f.c.c. lattice with respect to octahedral hole.
- A005891 (program): Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.
- A005892 (program): Truncated square numbers: 7*n^2 + 4*n + 1.
- A005893 (program): Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).
- A005894 (program): Centered tetrahedral numbers.
- A005897 (program): a(n) = 6*n^2 + 2 for n > 0, a(0)=1.
- A005898 (program): Centered cube numbers: n^3 + (n+1)^3.
- A005899 (program): Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2,
- A005900 (program): Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
- A005901 (program): Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.
- A005902 (program): Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
- A005903 (program): Number of points on surface of dodecahedron: 30n^2 + 2 for n > 0.
- A005904 (program): Centered dodecahedral numbers.
- A005905 (program): Number of points on surface of truncated tetrahedron: 14n^2 + 2 for n>0, a(0)=1.
- A005906 (program): Truncated tetrahedral numbers: a(n) = (1/6)*(n+1)*(23*n^2 + 19*n + 6).
- A005907 (program): a(n) = [ tau*a(n-2) ] + a(n-1).
- A005908 (program): a(n) = floor( phi*a(n-1) ) + floor( phi*a(n-2) ), where phi is the golden ratio.
- A005909 (program): a(n) = [ tau*a(n-1) ] + [ tau*a(n-2) ].
- A005910 (program): Truncated octahedral numbers: 16*n^3 - 33*n^2 + 24*n - 6.
- A005911 (program): Number of points on surface of truncated cube: 46n^2 + 2.
- A005912 (program): Truncated cube numbers.
- A005913 (program): a(n) = [ tau*a(n-1) ] + [ tau*a(n-2) ].
- A005914 (program): Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).
- A005915 (program): Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).
- A005917 (program): Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
- A005918 (program): Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).
- A005919 (program): Number of points on surface of tricapped prism: 7n^2 + 2 for n > 0, a(0)=1.
- A005920 (program): Tricapped prism numbers.
- A005921 (program): From solution to a difference equation.
- A005922 (program): a(1)=1; a(n) = n!*Fibonacci(n+2), n > 1.
- A005923 (program): From solution to a difference equation.
- A005928 (program): G.f.: s(1)^3/s(3), where s(k) = eta(q^k) and eta(q) is Dedekind’s function, cf. A010815.
- A005929 (program): Theta series of hexagonal net with respect to midpoint of edge.
- A005930 (program): Theta series of D_5 lattice.
- A005940 (program): The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1’s that are followed by k-1 0’s.
- A005941 (program): Inverse of the Doudna sequence A005940.
- A005942 (program): a(2n) = a(n) + a(n+1), a(2n+1) = 2a(n+1), if n >= 2.
- A005943 (program): Factor complexity (number of subwords of length n) of the Golay-Rudin-Shapiro binary word A020987.
- A005945 (program): Number of n-step mappings with 4 inputs.
- A005947 (program): Tumbling distance for n-input mappings with 2 steps.
- A005968 (program): Sum of cubes of first n Fibonacci numbers.
- A005969 (program): Sum of fourth powers of Fibonacci numbers.
- A005970 (program): Partial sums of squares of Lucas numbers.
- A005971 (program): Partial sums of cubes of Lucas numbers.
- A005972 (program): Partial sums of fourth powers of Lucas numbers.
- A005985 (program): Length of longest trail (i.e., path with all distinct edges) on the edges of an n-cube.
- A005989 (program): Values B(2,n)/4 of Gandhi polynomials defined by B(x,0)=x and B(x,n) = x^2 (B(x+1,n-1) - B(x,n-1)).
- A005990 (program): a(n) = (n-1)*(n+1)!/6.
- A005993 (program): Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).
- A005994 (program): Alkane (or paraffin) numbers l(7,n).
- A005995 (program): Alkane (or paraffin) numbers l(8,n).
- A005996 (program): G.f.: 2*(1-x^3)/((1-x)^5*(1+x)^2).
- A005997 (program): Number of paraffins.
- A005998 (program): Number of paraffins.
- A005999 (program): Number of paraffins.
- A006000 (program): a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.
- A006001 (program): Number of paraffins.
- A006002 (program): a(n) = n*(n+1)^2/2.
- A006003 (program): a(n) = n*(n^2 + 1)/2.
- A006004 (program): a(n) = C(n+2,3) + C(n,3) + C(n-1,3).
- A006005 (program): The odd prime numbers together with 1.
- A006007 (program): 4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.
- A006008 (program): Number of inequivalent ways to color vertices of a regular tetrahedron using <= n colors.
- A006009 (program): Number of paraffins.
- A006010 (program): Number of paraffins (see Losanitsch reference for precise definition).
- A006011 (program): a(n) = n^2*(n^2 - 1)/4.
- A006012 (program): a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.
- A006013 (program): a(n) = binomial(3*n+1,n)/(n+1).
- A006015 (program): Nim product 2*n.
- A006022 (program): Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.
- A006040 (program): a(n) = Sum_{i=0..n} (n!/(n-i)!)^2.
- A006041 (program): a(n+1) = (n^2 - 1)*a(n) + n + 1.
- A006043 (program): A traffic light problem: expansion of 2/(1 - 3*x)^3.
- A006044 (program): a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).
- A006046 (program): Total number of odd entries in first n rows of Pascal’s triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). For n>0, a(n) = Sum_{i=0..n-1} 2^wt(i).
- A006047 (program): Number of entries in n-th row of Pascal’s triangle not divisible by 3.
- A006048 (program): Number of entries in first n rows of Pascal’s triangle not divisible by 3.
- A006049 (program): Numbers k such that k and k+1 have the same number of distinct prime divisors.
- A006051 (program): Square hex numbers.
- A006053 (program): a(n) = a(n-1) + 2*a(n-2) - a(n-3).
- A006054 (program): a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
- A006060 (program): Triangular star numbers.
- A006061 (program): Star numbers (A003154) that are squares.
- A006062 (program): Star-hex numbers.
- A006068 (program): a(n) is Gray-coded into n.
- A006071 (program): Maximal length of rook tour on an n X n board.
- A006072 (program): Numbers with mirror symmetry about middle.
- A006077 (program): (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.
- A006078 (program): Number of triangulated (n+2)-gons rooted at an exterior edge.
- A006079 (program): Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.
- A006080 (program): Number of rooted projective plane trees with n nodes.
- A006081 (program): Number of line-rooted projective plane trees with n nodes.
- A006088 (program): a(n) = (2^n + 2) a(n-1) (kissing number of Barnes-Wall lattice in dimension 2^n).
- A006089 (program): Coefficients of elliptic function cn.
- A006090 (program): Expansion of bracket function.
- A006091 (program): a(n) = n^n - n + 1.
- A006093 (program): a(n) = prime(n) - 1.
- A006094 (program): Products of 2 successive primes.
- A006095 (program): Gaussian binomial coefficient [n,2] for q=2.
- A006096 (program): Gaussian binomial coefficient [ n,3 ] for q=2.
- A006097 (program): Gaussian binomial coefficient [ n,4 ] for q=2.
- A006098 (program): Gaussian binomial coefficient [ 2n,n ] for q=2.
- A006099 (program): Gaussian binomial coefficient [ n, n/2 ] for q=2.
- A006100 (program): Gaussian binomial coefficient [ n,2 ] for q=3.
- A006101 (program): Gaussian binomial coefficient [ n,3 ] for q=3.
- A006102 (program): Gaussian binomial coefficient [ n,4 ] for q=3.
- A006105 (program): Gaussian binomial coefficient [ n,2 ] for q=4.
- A006106 (program): Gaussian binomial coefficient [ n,3 ] for q = 4.
- A006107 (program): Gaussian binomial coefficient [ n,4 ] for q = 4.
- A006110 (program): Gaussian binomial coefficient [ n,5 ] for q = 2.
- A006111 (program): Gaussian binomial coefficient [ n,2 ] for q=5.
- A006112 (program): Gaussian binomial coefficient [ n,3 ] for q = 5.
- A006113 (program): Gaussian binomial coefficient [ n,4 ] for q = 5.
- A006116 (program): Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.
- A006117 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=3.
- A006118 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=4.
- A006119 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=5.
- A006120 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=6.
- A006121 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=7.
- A006122 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=8.
- A006124 (program): a(n) = 3 + n/2 + 7*n^2/2.
- A006125 (program): a(n) = 2^(n*(n-1)/2).
- A006127 (program): a(n) = 2^n + n.
- A006129 (program): a(0), a(1), a(2), … satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.
- A006130 (program): a(n) = a(n-1) + 3*a(n-2) for n > 1, a(0) = a(1) = 1.
- A006131 (program): a(n) = a(n-1) + 4*a(n-2), a(0) = a(1) = 1.
- A006134 (program): a(n) = Sum_{k=0..n} binomial(2*k,k).
- A006137 (program): a(n) = 1 + n/2 + 9*n^2/2.
- A006138 (program): a(n) = a(n-1) + 3*a(n-2).
- A006139 (program): n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.
- A006149 (program): Number of Dyck paths.
- A006152 (program): Exponential generating function x*exp(x/(1-x)).
- A006153 (program): E.g.f.: 1/(1-x*exp(x)).
- A006154 (program): Number of labeled ordered partitions of an n-set into odd parts.
- A006155 (program): Expansion of e.g.f. 1/(2-x-e^x).
- A006157 (program): a(n+1) = (n-1)*a(n) + n*n!.
- A006165 (program): a(1) = a(2) = 1; thereafter a(2n+1) = a(n+1) + a(n), a(2n) = 2a(n).
- A006166 (program): a(0)=0, a(1)=a(2)=1; for n >= 1, a(3n+2) = 2a(n+1) + a(n), a(3n+1) = a(n+1) + 2a(n), a(3n) = 3a(n).
- A006171 (program): Number of factorization patterns of polynomials of degree n over integers.
- A006172 (program): a(n) = 1 + F(2*n+1) + (-1)^n*L(n).
- A006183 (program): a(n) = (n+1)*a(n-1) + (2-n)*a(n-2).
- A006184 (program): Number of cycles in the complement of a path.
- A006186 (program): Number of pair-coverings with largest block size 4.
- A006189 (program): Number of self-avoiding walks of any length from NW to SW corners of a grid or lattice with n rows and 3 columns.
- A006190 (program): a(n) = 3*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
- A006191 (program): Number of paths on square lattice.
- A006192 (program): Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of 3 X n board.
- A006197 (program): Least number not dividing binomial(2n,n).
- A006198 (program): Number of partitions into pairs.
- A006199 (program): Bessel polynomial {y_n}’(-1).
- A006200 (program): Number of partitions into pairs.
- A006212 (program): Number of down-up permutations of n+3 starting with n+1.
- A006213 (program): Number of down-up permutations of n+4 starting with n+1.
- A006216 (program): Number of down-up permutations of n+4 starting with 4.
- A006217 (program): Number of down-up permutations of n+5 starting with 5.
- A006218 (program): a(n) = Sum_{k=1..n} floor(n/k); also Sum_{k=1..n} d(k), where d = number of divisors (A000005); also number of solutions to x*y = z with 1 <= x,y,z <= n.
- A006221 (program): From Apery continued fraction for zeta(3): zeta(3)=6/(5-1^6/(117-2^6/(535-3^6/(1463…))).
- A006222 (program): 11*n^2 + 11*n + 3.
- A006228 (program): Expansion of exp(arcsin(x)).
- A006230 (program): Bitriangular permutations.
- A006231 (program): a(n) = Sum_{k=2..n} n(n-1)…(n-k+1)/k.
- A006234 (program): a(n) = n*3^(n-4).
- A006235 (program): Complexity of doubled cycle (regarding case n = 2 as a multigraph).
- A006236 (program): n^(n-2)*(n+2)^(n-1).
- A006238 (program): Complexity of (or spanning trees in) a 3 X n grid.
- A006239 (program): Row 3 of array in A212801.
- A006244 (program): Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).
- A006252 (program): Expansion of e.g.f. 1/(1 - log(1+x)).
- A006253 (program): Number of perfect matchings (or domino tilings) in C_4 X P_n.
- A006254 (program): Numbers k such that 2k-1 is prime.
- A006256 (program): a(n) = Sum_{k=0..n} binomial(3k,k)*binomial(3n-3k,n-k).
- A006257 (program): Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.
- A006261 (program): a(n) = Sum_{k=0..5} C(n,k).
- A006264 (program): Diagonal length function.
- A006277 (program): a(n) = (a(n-1) + 1)*a(n-2).
- A006278 (program): a(n) is the product of the first n primes congruent to 1 (mod 4).
- A006279 (program): Denominators of convergents to Cahen’s constant: a(n+2) = a(n)^2*a(n+1) + a(n).
- A006280 (program): Partial quotients in continued fraction expansion of Cahen’s constant.
- A006282 (program): Sorting numbers: number of comparisons in Batcher’s parallel sort.
- A006287 (program): Sum of squares of digits of ternary representation of n.
- A006288 (program): Loxton-van der Poorten sequence: base-4 representation contains only -1, 0, +1.
- A006298 (program): Number of genus 2 rooted maps with 1 face with n vertices.
- A006308 (program): Coefficients of period polynomials.
- A006318 (program): Large Schröder numbers (or large Schroeder numbers, or big Schroeder numbers).
- A006319 (program): Royal paths in a lattice (convolution of A006318).
- A006320 (program): Royal paths in a lattice.
- A006321 (program): Royal paths in a lattice.
- A006322 (program): 4-dimensional analog of centered polygonal numbers.
- A006323 (program): 4-dimensional analog of centered polygonal numbers.
- A006324 (program): a(n) = n*(n + 1)*(2*n^2 + 2*n - 1)/6.
- A006325 (program): 4-dimensional analog of centered polygonal numbers.
- A006326 (program): Total preorders.
- A006327 (program): a(n) = Fibonacci(n) - 3. Number of total preorders.
- A006328 (program): Total preorders.
- A006331 (program): a(n) = n*(n+1)*(2*n+1)/3.
- A006332 (program): From the enumeration of corners.
- A006333 (program): From the enumeration of corners.
- A006334 (program): From the enumeration of corners.
- A006335 (program): a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
- A006337 (program): An “eta-sequence”: a(n) = floor( (n+1)*sqrt(2) ) - floor( n*sqrt(2) ).
- A006338 (program): An “eta-sequence”: floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2).
- A006340 (program): An “eta-sequence”: [ (n+1)*tau + 1/2 ] - [ n*tau + 1/2 ], tau = (1 + sqrt(5))/2.
- A006342 (program): Coloring a circuit with 4 colors.
- A006347 (program): a(n) = (n+1) a(n-1) + (-1)^n.
- A006348 (program): a(n) = (n+2)*a(n-1) + (-1)^n.
- A006352 (program): Coefficients in expansion of Eisenstein series E_2 (also called E_1 or G_2).
- A006353 (program): Expansion of (phi(-q^3) * psi(q))^3 / (phi(-q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
- A006355 (program): Number of binary vectors of length n containing no singletons.
- A006356 (program): a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.
- A006357 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
- A006358 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.
- A006359 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.
- A006364 (program): Numbers n with an even number of 1’s in binary, ignoring last bit.
- A006367 (program): Number of binary vectors of length n+1 beginning with 0 and containing just 1 singleton.
- A006368 (program): The “amusical permutation” of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.
- A006369 (program): a(n) = 2*n/3 for n divisible by 3, otherwise a(n) = round(4*n/3). Or, equivalently, a(3*n-2) = 4*n-3, a(3*n-1) = 4*n-1, a(3*n) = 2*n.
- A006370 (program): The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.
- A006380 (program): Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns.
- A006411 (program): Number of nonseparable tree-rooted planar maps with n + 2 edges and 3 vertices.
- A006414 (program): Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.
- A006416 (program): Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.
- A006419 (program): a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).
- A006428 (program): Number of loopless tree-rooted planar maps with 3 vertices and n faces and no isthmuses.
- A006438 (program): Expansion of e.g.f. 1/sqrt(1-8x+x^2).
- A006442 (program): Expansion of 1/sqrt(1 - 10*x + x^2).
- A006446 (program): Numbers k such that floor(sqrt(k)) divides k.
- A006449 (program): Row sums of Fibonacci-Pascal triangle in A045995.
- A006450 (program): Prime-indexed primes: primes with prime subscripts.
- A006451 (program): Numbers k such that k*(k+1)/2 + 1 is a square.
- A006452 (program): a(n) = 6*a(n-2) - a(n-4).
- A006453 (program): Expansion of 1/sqrt(1 - 12x + x^2).
- A006454 (program): Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
- A006456 (program): Number of compositions (ordered partitions) of n into squares.
- A006457 (program): Number of elements in Z[ i ] whose ‘smallest algorithm’ is <= n.
- A006460 (program): Image of n after 3k iterates of ‘3x+1’ map (k large).
- A006463 (program): Convolve natural numbers with characteristic function of triangular numbers.
- A006464 (program): Continued fraction for Sum_{n>=0} 1/4^(2^n).
- A006468 (program): Number of rooted planar maps with 4 faces and n vertices and no isthmuses.
- A006470 (program): Number of tree-rooted planar maps with 3 faces and n vertices and no isthmuses.
- A006472 (program): a(n) = n!*(n-1)!/2^(n-1).
- A006474 (program): Related to Ramsey numbers.
- A006477 (program): Number of partitions of n with at least 1 odd and 1 even part.
- A006478 (program): a(n) = a(n-1) + a(n-2) + F(n) - 1, a(0) = a(1) = 0, where F() = Fibonacci numbers A000045.
- A006479 (program): From variance of Fibonacci search.
- A006480 (program): De Bruijn’s S(3,n): (3n)!/(n!)^3.
- A006481 (program): Euler characteristics of polytopes.
- A006483 (program): a(n) = Fibonacci(n)*2^n + 1.
- A006484 (program): a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
- A006490 (program): a(1) = 1, a(2) = 0; for n > 2, a(n) = n*Fibonacci(n-2) (with the convention Fibonacci(0)=0, Fibonacci(1)=1).
- A006491 (program): Generalized Lucas numbers.
- A006492 (program): Generalized Lucas numbers.
- A006493 (program): Generalized Lucas numbers.
- A006495 (program): Real part of (1 + 2*i)^n, where i is sqrt(-1).
- A006496 (program): Imaginary part of (1+2i)^n.
- A006497 (program): a(n) = 3*a(n-1) + a(n-2) with a(0) = 2, a(1) = 3.
- A006498 (program): a(n) = a(n-1) + a(n-3) + a(n-4), a(0) = a(1) = a(2) = 1, a(3) = 2.
- A006499 (program): Number of restricted circular combinations.
- A006500 (program): Restricted combinations.
- A006501 (program): Expansion of (1+x^2) / ( (1-x)^2 * (1-x^3)^2 ).
- A006503 (program): a(n) = n*(n+1)*(n+8)/6.
- A006504 (program): Coefficient of x^4 in (1-x-x^2)^(-n).
- A006505 (program): Number of partitions of an n-set into boxes of size >2.
- A006507 (program): a(n+1) = a(n) + sum of digits of a(n), with a(1)=7.
- A006512 (program): Greater of twin primes.
- A006513 (program): Limit of the image of n after 2k iterates of `(3x+1)/2’ map as k grows.
- A006516 (program): a(n) = 2^(n-1)*(2^n - 1), n >= 0.
- A006519 (program): Highest power of 2 dividing n.
- A006520 (program): Partial sums of A006519.
- A006522 (program): 4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.
- A006527 (program): a(n) = (n^3 + 2*n)/3.
- A006528 (program): a(n) = (n^4 + n^2 + 2*n)/4.
- A006530 (program): Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.
- A006532 (program): Numbers whose sum of divisors is a square.
- A006542 (program): a(n) = binomial(n,3)*binomial(n-1,3)/4.
- A006547 (program): Sum ((-1)^(i+1)*binomial(n,i)*2^i*(2*i-1)!,i=1..n).
- A006548 (program): (2*n)!-Sum ((-1)^(i+1)*binomial(n,i)*2^i*(2*n-1)!,i=1..n).
- A006551 (program): Maximal Eulerian numbers.
- A006564 (program): Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.
- A006565 (program): Number of ways to color vertices of a hexagon using <= n colors, allowing only rotations.
- A006566 (program): Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.
- A006577 (program): Number of halving and tripling steps to reach 1 in ‘3x+1’ problem, or -1 if 1 is never reached.
- A006578 (program): Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).
- A006579 (program): a(n) = Sum_{k=1..n-1} gcd(n,k).
- A006580 (program): a(n) = Sum_{k=1..n-1} lcm(k,n-k).
- A006581 (program): a(n) = Sum_{k=1..n-1} (k AND n-k).
- A006582 (program): a(n) = Sum_{k=1..n-1} k XOR n-k.
- A006583 (program): a(n) = Sum_{k=1..n-1} (k OR n-k).
- A006584 (program): If n mod 2 = 0 then n*(n^2-4)/12 else n*(n^2-1)/12.
- A006586 (program): a(n) = Sum_{k=1..n} floor((2n-1)/(2k+1)).
- A006587 (program): a(n) = 3*2^(2*n)*(3*n)!/((2*n)!*n!).
- A006588 (program): a(n) = 4^n*(3*n)!/((2*n)!*n!).
- A006589 (program): a(n) = (n+3)*2^n - 1.
- A006590 (program): a(n) = Sum_{k=1..n} ceiling(n/k).
- A006591 (program): a(n) = Sum_{k=1..n} nearest integer to n/k (if n/k is midway between two numbers take the smaller).
- A006592 (program): a(n) = 10*n^3 - 6*n^2.
- A006594 (program): A Beatty sequence: [ n(1 + 1/e) ].
- A006595 (program): a(n) = (n+2)!/4 + n!/2.
- A006597 (program): a(n) = n^2*(5*n-3)/2.
- A006603 (program): Generalized Fibonacci numbers.
- A006604 (program): Generalized Fibonacci numbers.
- A006605 (program): Number of modes of connections of 2n points.
- A006617 (program): Zarankiewicz’s problem.
- A006620 (program): Zarankiewicz’s problem.
- A006621 (program): Zarankiewicz’s problem k_3(n,n+1).
- A006629 (program): Self-convolution 4th power of A001764, which enumerates ternary trees.
- A006630 (program): From generalized Catalan numbers.
- A006631 (program): From generalized Catalan numbers.
- A006632 (program): a(n) = 3*binomial(4*n-1,n-1)/(4*n-1).
- A006633 (program): From generalized Catalan numbers.
- A006634 (program): From generalized Catalan numbers.
- A006635 (program): From generalized Catalan numbers.
- A006636 (program): From generalized Catalan numbers.
- A006637 (program): From generalized Catalan numbers.
- A006645 (program): Self-convolution of Pell numbers (A000129).
- A006646 (program): Exponential self-convolution of Pell numbers.
- A006659 (program): Number of closed meander systems of order n+1 with n components.
- A006666 (program): Number of halving steps to reach 1 in ‘3x+1’ problem, or -1 if this never happens.
- A006667 (program): Number of tripling steps to reach 1 from n in ‘3x+1’ problem, or -1 if 1 is never reached.
- A006668 (program): Exponential self-convolution of Pell numbers (divided by 2).
- A006671 (program): Edge-distinguishing chromatic number of cycle with n nodes.
- A006672 (program): Ramsey numbers.
- A006675 (program): Number of paths through an array.
- A006677 (program): Number of planted binary phylogenetic trees with n labels.
- A006681 (program): Number of binary phylogenetic trees with n labels.
- A006684 (program): Convolve Fibonacci and Pell numbers.
- A006695 (program): a(2n)=2*a(2n-2)^2-1, a(2n+1)=2a(2n)-1, a(0)=2.
- A006697 (program): Number of subwords of length n in infinite word generated by a -> aab, b -> b.
- A006720 (program): Somos-4 sequence: a(0)=a(1)=a(2)=a(3)=1; for n >= 4, a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
- A006721 (program): Somos-5 sequence: a(n) = (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
- A006722 (program): Somos-6 sequence: a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-4) + a(n-3)^2) / a(n-6), a(0) = … = a(5) = 1.
- A006723 (program): Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = … = a(6) = 1.
- A006769 (program): Elliptic divisibility sequence associated with elliptic curve “37a1”: y^2 + y = x^3 - x and multiples of the point (0,0).
- A006788 (program): a(n) = floor(2^(n-1)/n).
- A006833 (program): Decimal expansion of neutron-to-electron mass ratio.
- A006834 (program): Decimal expansion of neutron-to-proton mass ratio.
- A006847 (program): Number of extreme points of the set of n X n symmetric doubly-stochastic matrices.
- A006857 (program): a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5).
- A006858 (program): Expansion of x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^7.
- A006859 (program): From paths in the plane.
- A006862 (program): Euclid numbers: 1 + product of the first n primes.
- A006863 (program): Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers.
- A006864 (program): Number of Hamiltonian cycles in P_4 X P_n.
- A006865 (program): Number of Hamiltonian cycles in P_5 X P_{2n}: a(n) = 11a(n-1)+2a(n-3).
- A006875 (program): Non-seed mu-atoms of period n in Mandelbrot set.
- A006881 (program): Squarefree semiprimes: Numbers that are the product of two distinct primes.
- A006882 (program): Double factorials n!!: a(n) = n*a(n-2) for n > 1, a(0) = a(1) = 1.
- A006888 (program): a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1.
- A006892 (program): Representation as a sum of squares requires n squares with greedy algorithm.
- A006893 (program): Smallest number whose representation requires n triangular numbers with greedy algorithm; also number of 1-2 rooted trees of height n.
- A006894 (program): Number of planted 3-trees of height < n.
- A006896 (program): a(n) is the number of hierarchical linear models on n labeled factors allowing 2-way interactions (but no higher order interactions); or the number of simple labeled graphs with nodes chosen from an n-set.
- A006898 (program): a(n) = Sum_{k=0..n} C(n,k)*2^(k*(k+1)/2).
- A006899 (program): Numbers of the form 2^i or 3^j.
- A006902 (program): a(n) = (2n)! * Sum_{k=0..n} (-1)^k * binomial(n,k) / (n+k)!.
- A006904 (program): a(n) = a(n-1) + 2*a(n-2) + (-1)^n.
- A006906 (program): a(n) is the sum of products of terms in all partitions of n.
- A006918 (program): a(n) = binomial(n+3, 3)/4, n odd; n(n+2)(n+4)/24, n even.
- A006921 (program): Diagonals of Pascal’s triangle mod 2 interpreted as binary numbers.
- A006922 (program): Expansion of 1/eta(q)^24; Fourier coefficients of T_{14}.
- A006928 (program): a(n) = length of (n+1)st run, with initial terms 1, 2.
- A006932 (program): Number of permutations of [n] with at least one strong fixed point (a permutation p of {1,2,…,n} is said to have j as a strong fixed point if p(k) < j for k < j and p(k) > j for k > j).
- A006939 (program): Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).
- A006940 (program): Rows of Pascal’s triangle mod 3.
- A006943 (program): Rows of Sierpiński’s triangle (Pascal’s triangle mod 2).
- A006946 (program): Independence number of De Bruijn graph of order n on two symbols.
- A006949 (program): A well-behaved cousin of the Hofstadter sequence: a(n) = a(n - 1 - a(n-1)) + a(n - 2 - a(n-2)) for n > 2 with a(0) = a(1) = a(2) = 1.
- A006950 (program): G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).
- A006953 (program): a(n) = denominator of Bernoulli(2n)/(2n).
- A006954 (program): Denominators of Bernoulli numbers B_0, B_1, B_2, B_4, B_6, …
- A006955 (program): Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
- A006956 (program): Denominator of (2n+1)(2n+2) B_{2n}, where B_n are the Bernoulli numbers. Also denominators of the asymptotic expansion of the polygamma function psi’’‘(z).
- A006960 (program): Reverse and Add! sequence starting with 196.
- A006963 (program): Number of planar embedded labeled trees with n nodes: (2n-3)!/(n-1)! for n >= 2, a(1) = 1.
- A006974 (program): Coefficients of Chebyshev T polynomials: a(n) = A053120(n+8, n), n >= 0.
- A006975 (program): Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+10, n), n >= 0.
- A006976 (program): Coefficients of Chebyshev T polynomials: a(n) = A053120(n+12, n), n >= 0.
- A006977 (program): Cellular automaton with Rule 230: 000, 001, 010, 011, …, 111 -> 0,1,1,0,0,1,1,1.
- A006978 (program): Successive states of the Rule 110 cellular automaton defined by 000, 001, 010, 011, …, 111 -> 0,1,1,1,0,1,1,0 when started with a single ON cell.
- A006995 (program): Binary palindromes: numbers whose binary expansion is palindromic.
- A006996 (program): C(2n,n) mod 3.
- A006998 (program): Partitioning integers to avoid arithmetic progressions of length 3.
- A006999 (program): Partitioning integers to avoid arithmetic progressions of length 3.
- A007000 (program): Number of partitions of n into Fibonacci parts (with 2 types of 1).
- A007001 (program): Trajectory of 1 under the morphism 1 -> 12, 2 -> 123, 3 -> 1234, etc.
- A007004 (program): a(n) = (3*n)! / ((n+1)*(n!)^3).
- A007007 (program): Valence of graph of maximal intersecting families of sets.
- A007008 (program): Chvatal conjecture for radius of graph of maximal intersecting sets.
- A007009 (program): Number of 3-voter voting schemes with n linearly ranked choices.
- A007019 (program): a(n) = (2n+1)! / 2^n.
- A007039 (program): Number of cyclic binary n-bit strings with no alternating substring of length > 2.
- A007040 (program): Number of (marked) cyclic n-bit binary strings containing no runs of length > 2.
- A007042 (program): Left diagonal of partition triangle A047812.
- A007044 (program): Left diagonal of partition triangle A047812.
- A007047 (program): Number of chains in power set of n-set.
- A007051 (program): a(n) = (3^n + 1)/2.
- A007052 (program): Number of order-consecutive partitions of n.
- A007054 (program): Super ballot numbers: 6(2n)!/(n!(n+2)!).
- A007060 (program): Number of ways n couples can sit in a row without any spouses next to each other.
- A007062 (program): Let P(n) of a sequence s(1),s(2),s(3),… be obtained by leaving s(1),…,s(n) fixed and reversing every n consecutive terms thereafter; apply P(2) to 1,2,3,… to get PS(2), then apply P(3) to PS(2) to get PS(3), then apply P(4) to PS(3), etc. The limit of PS(n) is A007062.
- A007064 (program): Numbers not of form “nearest integer to n*tau”, tau = (1+sqrt(5))/2.
- A007066 (program): a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2.
- A007067 (program): Nearest integer to n*tau.
- A007068 (program): a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2.
- A007069 (program): First column of spectral array W(sqrt 2).
- A007070 (program): a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.
- A007071 (program): First row of 2-shuffle of spectral array W( sqrt 2 ).
- A007073 (program): First column of array associated with lexicographically justified array.
- A007088 (program): The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.
- A007089 (program): Numbers in base 3.
- A007090 (program): Numbers in base 4.
- A007091 (program): Numbers in base 5.
- A007092 (program): Numbers in base 6.
- A007093 (program): Numbers in base 7.
- A007094 (program): Numbers in base 8.
- A007095 (program): Numbers in base 9.
- A007106 (program): Number of labeled odd degree trees with 2n nodes.
- A007123 (program): Number of connected unit interval graphs with n nodes; also number of bracelets (turnover necklaces) with n black beads and n-1 white beads.
- A007147 (program): Number of self-dual 2-colored necklaces with 2n beads.
- A007148 (program): Number of self-complementary 2-colored bracelets (turnover necklaces) with 2n beads.
- A007160 (program): Number of diagonal dissections of a convex (n+6)-gon into n regions.
- A007165 (program): Number of P-graphs with 2n edges.
- A007179 (program): Dual pairs of integrals arising from reflection coefficients.
- A007185 (program): Automorphic numbers ending in digit 5: a(n) = 5^(2^n) mod 10^n.
- A007191 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = -24.
- A007202 (program): Crystal ball sequence for hexagonal close-packing.
- A007204 (program): Crystal ball sequence for D_4 lattice.
- A007223 (program): Number of distinct perforation patterns for deriving (v,b) = (n+2,n) punctured convolutional codes from (2,1).
- A007224 (program): Number of distinct perforation patterns for deriving (v,b) = (n+3,n) punctured convolutional codes from (2,1).
- A007226 (program): a(n) = 2*det(M(n; -1))/det(M(n; 0)), where M(n; m) is the n X n matrix with (i,j)-th element equal to 1/binomial(n + i + j + m, n).
- A007228 (program): a(n) = 3*binomial(4*n,n)/(n+1).
- A007238 (program): Length of longest chain of subgroups in S_n.
- A007244 (program): McKay-Thompson series of class 3B for the Monster group.
- A007246 (program): McKay-Thompson series of class 2B for the Monster group.
- A007248 (program): McKay-Thompson series of class 4C for the Monster group.
- A007249 (program): McKay-Thompson series of class 4D for the Monster group.
- A007252 (program): McKay-Thompson series of class 5B for the Monster group with a(0) = 0.
- A007255 (program): McKay-Thompson series of class 6B for Monster.
- A007257 (program): McKay-Thompson series of class 6D for Monster.
- A007258 (program): McKay-Thompson series of class 6E for Monster (and, apart from signs, of class 12B).
- A007259 (program): Expansion of Product_{m>=1} (1 + q^m)^(-8).
- A007262 (program): McKay-Thompson series of class 6c for Monster.
- A007272 (program): Super ballot numbers: 60(2n)!/(n!(n+3)!).
- A007281 (program): Number of `(n,2)’-sequences of length 2n.
- A007283 (program): a(n) = 3*2^n.
- A007286 (program): E.g.f.: (sin x + cos 2x) / cos 3x.
- A007290 (program): a(n) = 2*binomial(n,3).
- A007291 (program): Series expansion for rectilinear polymers on square lattice.
- A007293 (program): Dimension of space of weight systems of chord diagrams.
- A007294 (program): Number of partitions of n into nonzero triangular numbers.
- A007297 (program): Number of connected graphs on n labeled nodes on a circle with straight-line edges that don’t cross.
- A007298 (program): Sums of consecutive Fibonacci numbers.
- A007302 (program): Optimal cost function between two processors at distance n.
- A007304 (program): Sphenic numbers: products of 3 distinct primes.
- A007305 (program): Numerators of Farey (or Stern-Brocot) tree fractions.
- A007306 (program): Denominators of Farey tree fractions (i.e., the Stern-Brocot subtree in the range [0,1]).
- A007307 (program): a(n) = a(n-2) + a(n-3).
- A007309 (program): a(n)=a(n-2)+a(n-3).
- A007310 (program): Numbers congruent to 1 or 5 mod 6.
- A007317 (program): Binomial transform of Catalan numbers.
- A007318 (program): Pascal’s triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
- A007325 (program): G.f.: Product_{k>0} (1-x^(5k-1))*(1-x^(5k-4))/((1-x^(5k-2))*(1-x^(5k-3))).
- A007331 (program): Fourier coefficients of E_{infinity,4}.
- A007334 (program): Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
- A007339 (program): a(n) = n! - n^3.
- A007345 (program): Number of Havender tableaux of height 2 with n columns.
- A007369 (program): Numbers n such that sigma(x) = n has no solution.
- A007378 (program): a(n), for n >= 2, is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = 2n.
- A007380 (program): Number of 5th-order maximal independent sets in path graph.
- A007381 (program): 7th-order maximal independent sets in path graph.
- A007382 (program): Number of strict (-1)st-order maximal independent sets in path graph.
- A007383 (program): Number of strict first-order maximal independent sets in path graph.
- A007384 (program): Number of strict 3rd-order maximal independent sets in path graph.
- A007385 (program): Number of strict 5th-order maximal independent sets in path graph.
- A007386 (program): Number of strict 7th-order maximal independent sets in path graph.
- A007387 (program): Number of 3rd-order maximal independent sets in cycle graph.
- A007390 (program): Number of strict (-1)st-order maximal independent sets in cycle graph.
- A007391 (program): Number of strict first-order maximal independent sets in cycle graph.
- A007395 (program): Constant sequence: the all 2’s sequence.
- A007396 (program): Add 2, then reverse digits!.
- A007397 (program): Add 5, then reverse digits!.
- A007398 (program): Add 7, then reverse digits.
- A007399 (program): Add 8, then reverse digits!.
- A007400 (program): Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931…
- A007401 (program): Add n-1 to n-th term of ‘n appears n times’ sequence (A002024).
- A007403 (program): a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^3 = (n+2)*2^(3*n-1) - 3*2^(n-2)*n*binomial(2*n,n).
- A007404 (program): Decimal expansion of Sum_{n>=0} 1/2^(2^n).
- A007405 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=2.
- A007406 (program): Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^2.
- A007407 (program): a(n) = denominator of Sum_{k=1..n} 1/k^2.
- A007408 (program): Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.
- A007409 (program): Denominators of Sum_{k=1..n} 1/k^3.
- A007410 (program): Numerator of Sum_{k=1..4} k^(-4).
- A007412 (program): The noncubes: a(n) = n + floor((n + floor(n^(1/3)))^(1/3)).
- A007413 (program): A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.
- A007415 (program): Expand sin x / exp x = x-x^2+x^3/3-x^5/30+… and invert nonzero coefficients.
- A007417 (program): If k appears, 3k does not.
- A007420 (program): Berstel sequence: a(n+1) = 2*a(n) - 4*a(n-1) + 4*a(n-2).
- A007421 (program): Liouville’s function: parity of number of primes dividing n (with multiplicity).
- A007422 (program): Multiplicatively perfect numbers j: product of divisors of j is j^2.
- A007423 (program): a(n) = mu(n) + 1, where mu is the Moebius function.
- A007424 (program): a(n) = 1 if n is squarefree, otherwise 2.
- A007425 (program): d_3(n), or tau_3(n), the number of ordered factorizations of n as n = r s t.
- A007426 (program): d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu.
- A007427 (program): Moebius transform applied twice to sequence 1,0,0,0,….
- A007428 (program): Moebius transform applied thrice to sequence 1,0,0,0,….
- A007429 (program): Inverse Moebius transform applied twice to natural numbers.
- A007430 (program): Inverse Moebius transform applied thrice to natural numbers.
- A007431 (program): a(n) = Sum_{d|n} phi(d)*mu(n/d).
- A007432 (program): Moebius transform applied thrice to natural numbers.
- A007433 (program): Inverse Moebius transform applied twice to squares.
- A007434 (program): Jordan function J_2(n) (a generalization of phi(n)).
- A007435 (program): Inverse Moebius transform of Fibonacci numbers 1,1,2,3,5,8,…
- A007437 (program): Inverse Moebius transform of triangular numbers.
- A007438 (program): Moebius transform of triangular numbers.
- A007439 (program): Number of planted trees: all sub-rooted trees from any node are identical; non-root, non-leaf nodes an even distance from the root are of degree 2.
- A007440 (program): Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ….
- A007442 (program): Inverse binomial transform of primes.
- A007443 (program): Binomial transform of primes.
- A007444 (program): Moebius transform of primes.
- A007445 (program): Inverse Moebius transform of primes.
- A007450 (program): Decimal expansion of 1/17.
- A007452 (program): Expand cos x / exp x and invert nonzero coefficients.
- A007455 (program): Number of subsequences of [ 1,…,n ] in which each odd number has an even neighbor.
- A007456 (program): Number of days required to spread gossip to n people.
- A007457 (program): Number of (j,k): j+k=n, (j,n)=(k,n)=1, j,k squarefree.
- A007465 (program): Exponential-convolution of triangular numbers with themselves.
- A007466 (program): Exponential-convolution of natural numbers with themselves.
- A007468 (program): Sum of next n primes.
- A007472 (program): Shifts 2 places left when binomial transform is applied twice.
- A007473 (program): Dimension of space of Vassiliev knot invariants of order n.
- A007476 (program): Shifts 2 places left under binomial transform.
- A007477 (program): Shifts 2 places left when convolved with itself.
- A007478 (program): Dimension of primitive Vassiliev knot invariants of order n.
- A007480 (program): a(n) = denominator of sum_{k=1..n} k^(-4).
- A007481 (program): Number of subsequences of [ 1,…,n ] in which each even number has an odd neighbor.
- A007482 (program): a(n) is the number of subsequences of [ 1, …, 2n ] in which each odd number has an even neighbor.
- A007483 (program): a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=1, a(1)=5.
- A007484 (program): a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=2, a(1)=7.
- A007486 (program): a(n) = a(n-1) + a(n-2) + a(n-3).
- A007487 (program): Sum of 9th powers.
- A007489 (program): a(n) = Sum_{k=1..n} k!.
- A007491 (program): Smallest prime > n^2.
- A007492 (program): Fibonacci(n) - (-1)^n.
- A007493 (program): Decimal expansion of Wallis’ number, the real root of x^3 - 2*x - 5.
- A007494 (program): Numbers that are congruent to 0 or 2 mod 3.
- A007495 (program): Josephus problem: survivors.
- A007496 (program): Numbers n such that the decimal expansions of 2^n and 5^n contain no 0’s (probably 33 is last term).
- A007500 (program): Primes whose reversal in base 10 is also prime (called “palindromic primes” by D. Wells, although that name usually refers to A002385). Also called reversible primes.
- A007501 (program): a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2.
- A007502 (program): Les Marvin sequence: a(n) = F(n)+(n-1)*F(n-1), F() = Fibonacci numbers.
- A007503 (program): Number of subgroups of dihedral group: sigma(n) + d(n).
- A007504 (program): Sum of the first n primes.
- A007509 (program): Numerator of Sum_{k=0..n} (-1)^k/(2*k+1).
- A007510 (program): Single (or isolated or non-twin) primes: Primes p such that neither p-2 nor p+2 is prime.
- A007517 (program): a(n) = phi(n) * (sigma(n) - n).
- A007518 (program): a(n) = floor(n*(n+2)*(2*n-1)/8).
- A007519 (program): Primes of form 8n+1, that is, primes congruent to 1 mod 8.
- A007520 (program): Primes == 3 (mod 8).
- A007521 (program): Primes of the form 8k + 5.
- A007522 (program): Primes of the form 8n+7, that is, primes congruent to -1 mod 8.
- A007525 (program): Decimal expansion of log_2 e.
- A007526 (program): a(n) = n(a(n-1) + 1), a(0) = 0.
- A007528 (program): Primes of the form 6k-1.
- A007531 (program): a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).
- A007533 (program): a(n) = (5n+1)^2 + 4n+1.
- A007538 (program): A self-generating sequence: there are a(n) 3’s between successive 2’s.
- A007543 (program): Frequency of n-th largest distance in N times N grid, N > n.
- A007554 (program): Unique attractor for (RIGHT then MOBIUS) transform.
- A007555 (program): Number of standard paths of length n in composition poset.
- A007556 (program): Number of 8-ary trees with n vertices.
- A007559 (program): Triple factorial numbers (3*n-2)!!! with leading 1 added.
- A007564 (program): Shifts left when INVERT transform applied thrice.
- A007566 (program): a(n+1) = (2n+3)*a(n) - 2n*a(n-1) + 8n, a(0) = 1, a(1) = 3.
- A007568 (program): Knopfmacher expansion of 2/3: a(n+1) = a(n-1)(a(n)+1)-1.
- A007570 (program): a(n) = F(F(n)), where F is a Fibonacci number.
- A007572 (program): Generalization of the golden ratio (expansion of (5-13x)/((1+x)(1-4x))).
- A007574 (program): Patterns in a dual ring.
- A007581 (program): a(n) = (2^n+1)*(2^n+2)/6.
- A007582 (program): a(n) = 2^(n-1)*(1+2^n).
- A007583 (program): a(n) = (2^(2*n + 1) + 1)/3.
- A007584 (program): 9-gonal (or enneagonal) pyramidal numbers: a(n) = n*(n+1)*(7*n-4)/6.
- A007585 (program): 10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.
- A007586 (program): 11-gonal (or hendecagonal) pyramidal numbers: n*(n+1)*(3*n-2)/2.
- A007587 (program): 12-gonal (or dodecagonal) pyramidal numbers: n(n+1)(10n-7)/6.
- A007588 (program): Stella octangula numbers: a(n) = n*(2*n^2 - 1).
- A007590 (program): a(n) = floor(n^2/2).
- A007591 (program): Numbers k such that k^2 + 4 is prime.
- A007595 (program): a(n) = C_n / 2 if n is even or ( C_n + C_((n-1)/2) ) / 2 if n is odd, where C = Catalan numbers (A000108).
- A007598 (program): Squared Fibonacci numbers: F(n)^2 where F = A000045.
- A007600 (program): Minimal number of subsets in a separating family for a set of n elements.
- A007601 (program): Positions where A007600 increases.
- A007605 (program): Sum of digits of n-th prime.
- A007606 (program): Take 1, skip 2, take 3, etc.
- A007607 (program): Skip 1, take 2, skip 3, etc.
- A007609 (program): Values taken by the sigma function A000203, listed with multiplicity and in ascending order.
- A007611 (program): a(n) = n! + 2^n.
- A007612 (program): a(n+1) = a(n) + digital root (A010888) of a(n).
- A007613 (program): a(n) = (8^n + 2(-1)^n)/3.
- A007618 (program): a(n) = a(n-1) + sum of digits of a(n-1), a(1) = 5.
- A007619 (program): Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.
- A007623 (program): Integers written in factorial base.
- A007624 (program): Numbers m such that the product of proper divisors of m = m^k, k>1.
- A007634 (program): Numbers n such that n^2 + n + 41 is composite.
- A007635 (program): Primes of form n^2 + n + 17.
- A007636 (program): Numbers k such that k^2 + k + 17 is composite.
- A007637 (program): Primes of form 3n^2-3n+23.
- A007638 (program): Numbers k such that 3*k^2 - 3*k + 23 is composite.
- A007639 (program): Primes of form 2n^2 - 2n + 19.
- A007640 (program): Numbers k such that 2*k^2 - 2*k + 19 is composite.
- A007641 (program): Primes of the form 2*k^2 + 29.
- A007642 (program): Numbers k such that 2*k^2 +29 is composite.
- A007645 (program): Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).
- A007652 (program): Final digit of prime(n).
- A007654 (program): Numbers k such that the standard deviation of 1,…,k is an integer.
- A007655 (program): Standard deviation of A007654.
- A007660 (program): a(n) = a(n-1)*a(n-2) + 1 with a(0) = a(1) = 0.
- A007661 (program): Triple factorial numbers a(n) = n!!!, defined by a(n) = n*a(n-3), a(0) = a(1) = 1, a(2) = 2. Sometimes written n!3.
- A007662 (program): Quadruple factorial numbers n!!!!: a(n) = n*a(n-4).
- A007663 (program): Fermat quotients: (2^(p-1)-1)/p, where p=prime(n).
- A007664 (program): Reve’s puzzle: number of moves needed to solve the Towers of Hanoi puzzle with 4 pegs and n disks, according to the Frame-Stewart algorithm.
- A007665 (program): Tower of Hanoi with 5 pegs.
- A007667 (program): The sum of both two and three consecutive squares.
- A007672 (program): a(n) = A002034(n)!/n.
- A007674 (program): Numbers n such that n and n+1 are squarefree.
- A007675 (program): Numbers m such that m, m+1 and m+2 are squarefree.
- A007676 (program): Numerators of convergents to e.
- A007677 (program): Denominators of convergents to e.
- A007679 (program): If n mod 4 = 0 then 2^(n-1)+1 elif n mod 4 = 2 then 2^(n-1)-1 else 2^(n-1).
- A007680 (program): a(n) = (2n+1)*n!.
- A007681 (program): a(n) = (2*n+1)^2*n!.
- A007685 (program): a(n) = Product_{k=1..n} binomial(2*k,k).
- A007689 (program): a(n) = 2^n + 3^n.
- A007692 (program): Numbers that are the sum of 2 nonzero squares in 2 or more ways.
- A007693 (program): Primes p such that 6*p + 1 is also prime.
- A007694 (program): Numbers k such that phi(k) divides k.
- A007696 (program): Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).
- A007698 (program): a(n) = 22*a(n-1) - 3*a(n-2) + 18*a(n-3) - 11*a(n-4). Deviates from A007699 at the 1403rd term.
- A007699 (program): Pisot sequence E(10,219): a(n) = nearest integer to a(n-1)^2 / a(n-2), starting 10, 219, … Deviates from A007698 at 1403rd term.
- A007700 (program): Numbers n such that n, 2n+1, and 4n+3 all prime.
- A007701 (program): a(0) = 0; for n > 0, a(n) = n^n*2^((n-1)^2).
- A007704 (program): a(n+2) = (a(n) - 1)*a(n+1) + 1.
- A007706 (program): a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)).
- A007715 (program): Number of 5-leaf rooted trees with n levels.
- A007724 (program): Even minus odd extensions of truncated 3 X 2n grid diagram.
- A007728 (program): 5th binary partition function.
- A007729 (program): 6th binary partition function.
- A007730 (program): 7th binary partition function.
- A007733 (program): Period of binary representation of 1/n. Also, multiplicative order of 2 modulo the odd part of n (= A000265(n)).
- A007735 (program): Period of base 4 representation of 1/n.
- A007737 (program): Period of repeating digits of 1/n in base 6.
- A007739 (program): Period of repeating digits of 1/n in base 8.
- A007742 (program): a(n) = n*(4*n+1).
- A007744 (program): Expansion of (1+6*x)/(1-4*x)^(7/2).
- A007745 (program): a(n) = n OR n^2 (applied to binary expansions).
- A007750 (program): Nonnegative integers n such that n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 is a square.
- A007751 (program): Even bisection of A007750.
- A007752 (program): Odd bisection of A007750.
- A007754 (program): Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.
- A007757 (program): Dwork-Kontsevich sequence evaluated at 2*n.
- A007758 (program): a(n) = 2^n*n^2.
- A007762 (program): Number of domino tilings of a certain region.
- A007770 (program): Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1.
- A007774 (program): Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.
- A007775 (program): Numbers not divisible by 2, 3 or 5.
- A007778 (program): a(n) = n^(n+1).
- A007781 (program): a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
- A007793 (program): Number of conjugacy classes of compact Cartan subgroups in Sp_{2n}(F), where p>n and the p-adic field F contains all r-th roots of unity for all r <= 2n.
- A007794 (program): Juxtapose pairs of primes (starting at 1).
- A007795 (program): Juxtapose pairs of primes.
- A007798 (program): Expected number of random moves in Tower of Hanoi problem with n disks starting with a randomly chosen position and ending at a position with all disks on the same peg.
- A007800 (program): From a problem in AI planning: a(n) = 4+a(n-1)+a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-6)-a(n-7), n>7.
- A007805 (program): a(n) = Fibonacci(6*n + 3)/2.
- A007807 (program): A variation on Euclid: a(n)=g(n)-1, where g(0)=0, g(1)=1, g(n+1)=g(n)(g(n-1)+1).
- A007808 (program): Number of directed column-convex polyominoes of height n: a(k+1)=(k+1)*a(k)+(a(1)+…+a(k)).
- A007814 (program): Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.
- A007817 (program): Number of abstract simplicial 2-complexes on {1,2,3,…,n+4} which triangulate a Moebius band in such a way that all vertices lie on the boundary and are traversed in the order 1,2,3,… as one goes around the boundary.
- A007818 (program): Maximal number of bonds joining n nodes in simple cubic lattice.
- A007819 (program): a(n) = Sum_{j=1..n} binomial(n^2, j).
- A007820 (program): Stirling numbers of second kind S(2n,n).
- A007821 (program): Primes p such that pi(p) is not prime.
- A007823 (program): A007824(n)/16.
- A007824 (program): a(n) = f(a(n-1)), with f(m) = Sum i*b(i)*2^(i-1), m = Sum b(i)*2^i, and starting value 16.
- A007830 (program): a(n) = (n+3)^n.
- A007831 (program): Number of edge-labeled series-reduced trees with n nodes.
- A007840 (program): Number of factorizations of permutations of n letters into ordered cycles.
- A007843 (program): Least positive integer k for which 2^n divides k!.
- A007844 (program): Least positive integer k for which 3^n divides k!.
- A007845 (program): Least positive integer k for which 5^n divides k!.
- A007851 (program): Number of elements w of the Weyl group D(n) such that the roots sent negative by w span an Abelian subalgebra of the Lie algebra.
- A007852 (program): Antichains in rooted plane trees on n nodes.
- A007854 (program): G.f.: 1/(1 - 3*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.
- A007856 (program): Subtrees in rooted plane trees on n nodes.
- A007857 (program): Number of independent sets in rooted plane trees on n nodes.
- A007858 (program): G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+… is 1/x times g.f. for A063020.
- A007859 (program): Number of matchings in rooted plane trees on n nodes.
- A007862 (program): Number of triangular numbers that divide n.
- A007863 (program): Number of hybrid binary trees with n internal nodes.
- A007868 (program): Number of inverse pairs of elements in symmetric group S_n, or pairs of total orders on n nodes (average of A000085 and A000142).
- A007875 (program): Number of ways of writing n as p*q, with p <= q, gcd(p, q) = 1.
- A007876 (program): a(2n-1) = n*a(2n-2), a(2n) = n*a(2n-1) + 1.
- A007877 (program): Period 4 zigzag sequence: repeat [0,1,2,1].
- A007879 (program): Chimes made by clock striking the hour and half-hour.
- A007882 (program): Number of lattice points inside circle of radius n is 4(a(n)+n)-3.
- A007886 (program): Number of cycles induced by iterating the Gray-coding of an n-bit number: a(n+1) = a(n) + ( 2^n / C_n), where C_n = least power of 2 >= n (C_n is the length of the cycle).
- A007887 (program): a(n) = Fibonacci(n) mod 9.
- A007889 (program): Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i<j<k are both (i,j) and (j,k) edges.
- A007891 (program): A Kutz sequence.
- A007892 (program): A Kutz sequence.
- A007893 (program): A Kutz sequence.
- A007895 (program): Number of terms in the Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
- A007899 (program): Coordination sequence for hexagonal close-packing.
- A007900 (program): Coordination sequence for D_4 lattice.
- A007904 (program): Crystal ball sequence for diamond.
- A007907 (program): Concatenation of sequence (1, 2, …, floor((n-1)/2), floor(n/2), floor(n/2)-1, …, 1) for n >= 1.
- A007908 (program): Triangle of the gods: to get a(n), concatenate the decimal numbers 1,2,3,…,n.
- A007909 (program): Expansion of (1-x)/(1-2*x+x^2-2*x^3).
- A007910 (program): Expansion of 1/((1-2*x)*(1+x^2)).
- A007911 (program): a(n) = (n-1)!! - (n-2)!!.
- A007912 (program): Quantum factorials: (n-1)!! - (n-2)!! (mod n).
- A007913 (program): Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square.
- A007916 (program): Numbers that are not perfect powers.
- A007917 (program): Version 1 of the “previous prime” function: largest prime <= n.
- A007918 (program): Least prime >= n (version 1 of the “next prime” function).
- A007920 (program): Smallest number k such that n + k is prime.
- A007921 (program): Numbers that are not the difference of two primes.
- A007923 (program): Lengths increase by 1, digits cycle through positive digits.
- A007925 (program): a(n) = n^(n+1) - (n+1)^n.
- A007928 (program): Numbers containing an even digit.
- A007929 (program): Odd numbers containing an even digit.
- A007931 (program): Numbers that contain only 1’s and 2’s. Nonempty binary strings of length n in lexicographic order.
- A007932 (program): Numbers that contain only 1’s, 2’s and 3’s.
- A007943 (program): Concatenation of sequence (1,3,..,2n-1,2n,2n-2,..,2).
- A007945 (program): Expansion of (2-x-2*x^2)/((1-x)*(1-x+x^2)).
- A007946 (program): a(n) = 6*(2*n+1)! / ((n!)^2*(n+3)).
- A007947 (program): Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
- A007948 (program): Largest cubefree number dividing n.
- A007949 (program): Greatest k such that 3^k divides n. Or, 3-adic valuation of n.
- A007950 (program): Binary sieve: delete every 2nd number, then every 4th, 8th, etc.
- A007952 (program): Generated by a sieve: keep first number, drop every 2nd, keep first, drop every 3rd, keep first, drop every 4th, etc.
- A007953 (program): Digital sum (i.e., sum of digits) of n; also called digsum(n).
- A007954 (program): Product of decimal digits of n.
- A007955 (program): Product of divisors of n.
- A007956 (program): Product of the proper divisors of n.
- A007957 (program): Numbers that contain an odd digit.
- A007958 (program): Even numbers with at least one odd digit.
- A007961 (program): n written in base where place values are positive squares.
- A007971 (program): INVERTi transform of central trinomial coefficients (A002426).
- A007972 (program): Number of permutations that are 2 “block reversals” away from 12…n.
- A007978 (program): Least non-divisor of n.
- A007979 (program): Expansion of (1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)).
- A007980 (program): Expansion of (1+x^2)/((1-x)^2*(1-x^3)).
- A007981 (program): Number of nonsplit type 2 metacyclic 2-groups of order 2^n.
- A007983 (program): Number of non-Abelian metacyclic groups of order p^n (p odd).
- A007987 (program): Number of irreducible words of length 2n in the free group with generators x,y such that the total degree of x and the total degree of y both equal zero.
- A007988 (program): Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)).
- A007993 (program): Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
- A007997 (program): a(n) = ceiling((n-3)(n-4)/6).
- A008000 (program): Coordination sequence T1 for Zeolite Code ABW and ATN.
- A008013 (program): Coordination sequence occurring in Zeolite Codes AFG, CAN, LIO, LOS.
- A008062 (program): a(n) = maximal value of m such that an n X m radar array exists. (A (0,1) matrix A such that any horizontal shift of A overlaps A in at most a single 1.)
- A008084 (program): Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO.
- A008123 (program): Coordination sequence T1 for Zeolite Code KFI.
- A008130 (program): a(n) = floor(n/3)*ceiling(n/3).
- A008133 (program): a(n) = floor(n/3)*floor((n+1)/3).
- A008137 (program): Coordination sequence T1 for Zeolite Code LTA and RHO.
- A008160 (program): Coordination sequence T1 for Zeolite Code MER.
- A008217 (program): a(n) = floor(n/4)*floor((n+1)/4).
- A008218 (program): Floor(n/4)*floor((n+1)/4)*floor((n+2)/4).
- A008233 (program): a(n) = floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4).
- A008238 (program): a(n) = floor(n/4)*ceiling(n/4).
- A008253 (program): Coordination sequence for diamond.
- A008255 (program): Coordination sequence T2 for feldspar.
- A008259 (program): Coordination sequence T2 for Moganite, also for BGB1.
- A008260 (program): Coordination sequence for Paracelsian.
- A008261 (program): Coordination sequence for quartz.
- A008264 (program): Coordination sequence for tridymite, lonsdaleite, and wurtzite.
- A008266 (program): Coordination sequence T1 for Zeolite Code GIS.
- A008269 (program): Number of strings on n symbols in Stockhausen problem.
- A008270 (program): Total length of strings on n symbols in Stockhausen problem.
- A008279 (program): Triangle T(n,k) = n!/(n-k)! (0 <= k <= n) read by rows, giving number of permutations of n things k at a time.
- A008280 (program): Boustrophedon version of triangle of Euler-Bernoulli or Entringer numbers read by rows.
- A008281 (program): Triangle of Euler-Bernoulli or Entringer numbers read by rows.
- A008282 (program): Triangle of Euler-Bernoulli or Entringer numbers read by rows: T(n,k) is the number of down-up permutations of n+1 starting with k+1.
- A008287 (program): Triangle of quadrinomial coefficients, row n is the sequence of coefficients of (1 + x + x^2 + x^3)^n.
- A008288 (program): Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals.
- A008290 (program): Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).
- A008291 (program): Triangle of rencontres numbers.
- A008292 (program): Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.
- A008297 (program): Triangle of Lah numbers.
- A008310 (program): Triangle of coefficients of Chebyshev polynomials T_n(x).
- A008311 (program): Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).
- A008312 (program): Triangle of coefficients of Chebyshev polynomials U_n(x).
- A008313 (program): Triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
- A008314 (program): Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials.
- A008315 (program): Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
- A008328 (program): Number of divisors of prime(n)-1.
- A008329 (program): Number of divisors of p+1, p prime.
- A008330 (program): phi(p-1), as p runs through the primes.
- A008331 (program): a(n) = phi(prime(n)+1).
- A008332 (program): Sum of divisors of p-1, p prime.
- A008333 (program): Sum of divisors of p+1, p prime.
- A008334 (program): Number of distinct primes dividing p-1, where p = n-th prime.
- A008335 (program): Number of primes dividing p+1 as p runs through the primes.
- A008336 (program): a(n+1) = a(n)/n if n|a(n) else a(n)*n, a(1) = 1.
- A008339 (program): a(1)=1; for n >= 1, a(n+1) = lcm(a(n),n) / gcd(a(n),n).
- A008343 (program): a(1)=1; thereafter a(n+1) = a(n)-n if a(n) >= n otherwise a(n+1) = a(n)+n.
- A008344 (program): a(1)=0; thereafter a(n+1) = a(n) - n if a(n) >= n otherwise a(n+1) = a(n) + n.
- A008345 (program): a(n+1) = a(n)-b(n+1) if a(n) >= b(n+1) else a(n)+b(n+1), where {b(n)} are the triangular numbers A000217.
- A008346 (program): a(n) = Fibonacci(n) + (-1)^n.
- A008347 (program): a(n) = Sum_{i=0..n-1} (-1)^i * prime(n-i).
- A008348 (program): a(0)=0; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n).
- A008351 (program): a(n) is the concatenation of a(n-1) and a(n-2) with a(1)=1, a(2)=2.
- A008352 (program): a(n) is formed by concatenating a(n-2) and a(n-1), with a(0) = 1, a(1) = 2;
- A008353 (program): 2^n*(2^(n+1) - n - 1).
- A008354 (program): a(n) = (5*n^2 + 1)*n^2 / 6.
- A008355 (program): Coordination sequence for D_5 lattice.
- A008356 (program): Crystal ball sequence for D_5 lattice.
- A008363 (program): a(n) = floor(n/5)*ceiling(n/5).
- A008364 (program): 11-rough numbers: not divisible by 2, 3, 5 or 7.
- A008365 (program): Smallest prime factor is >= 13.
- A008366 (program): Smallest prime factor is >= 17.
- A008368 (program): Number of orbits on points that are at n steps from the origin in the f.c.c. lattice.
- A008369 (program): Number of orbits on points that are at n steps from 0 in D_4 lattice.
- A008380 (program): 4*(2n-1)!*H(2n), where H(n) = Sum 1/i are harmonic numbers.
- A008381 (program): floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5).
- A008382 (program): a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5).
- A008383 (program): Coordination sequence for A_4 lattice.
- A008384 (program): Crystal ball sequence for A_4 lattice.
- A008385 (program): Coordination sequence for A_5 lattice.
- A008386 (program): Crystal ball sequence for A_5 lattice.
- A008387 (program): Coordination sequence for A_6 lattice.
- A008388 (program): Crystal ball sequence for A_6 lattice.
- A008389 (program): Coordination sequence for A_7 lattice.
- A008390 (program): Crystal ball sequence for A_7 lattice.
- A008391 (program): Coordination sequence for A_8 lattice.
- A008392 (program): Crystal ball sequence for A_8 lattice.
- A008393 (program): Coordination sequence for A_9 lattice.
- A008394 (program): Crystal ball sequence for A_9 lattice.
- A008395 (program): Coordination sequence for A_10 lattice.
- A008396 (program): Crystal ball sequence for A_10 lattice.
- A008401 (program): Coordination sequence for {E_6}* lattice.
- A008402 (program): Crystal ball sequence for {E_6}* lattice.
- A008410 (program): a(0) = 1, a(n) = 480*sigma_7(n).
- A008412 (program): Coordination sequence for 4-dimensional cubic lattice (points on surface of 4-dimensional cross-polytope).
- A008413 (program): Coordination sequence for 5-dimensional cubic lattice.
- A008414 (program): Coordination sequence for 6-dimensional cubic lattice.
- A008415 (program): Coordination sequence for 7-dimensional cubic lattice.
- A008416 (program): Coordination sequence for 8-dimensional cubic lattice.
- A008417 (program): Crystal ball sequence for 8-dimensional cubic lattice.
- A008418 (program): Coordination sequence for 9-dimensional cubic lattice.
- A008419 (program): Crystal ball sequence for 9-dimensional cubic lattice.
- A008420 (program): Coordination sequence for 10-dimensional cubic lattice.
- A008421 (program): Crystal ball sequence for 10-dimensional cubic lattice.
- A008427 (program): Theta series of {D_8}* lattice.
- A008428 (program): Theta series of D_6 lattice.
- A008429 (program): Theta series of D_7 lattice.
- A008430 (program): Theta series of D_8 lattice.
- A008431 (program): Theta series of D_9 lattice.
- A008432 (program): Theta series of D_10 lattice.
- A008437 (program): Expansion of Jacobi theta constant theta_2^3 /8.
- A008438 (program): Sum of divisors of 2*n + 1.
- A008439 (program): Expansion of Jacobi theta constant theta_2^5 /32.
- A008440 (program): Expansion of Jacobi theta constant theta_2^6 /(64q^(3/2)).
- A008441 (program): Number of ways of writing n as the sum of 2 triangular numbers.
- A008442 (program): Expansion of Jacobi theta constant (theta_2(2z))^2/4.
- A008443 (program): Number of ordered ways of writing n as the sum of 3 triangular numbers.
- A008451 (program): Number of ways of writing n as a sum of 7 squares.
- A008452 (program): Number of ways of writing n as a sum of 9 squares.
- A008453 (program): Number of ways of writing n as a sum of 11 squares.
- A008454 (program): Tenth powers: a(n) = n^10.
- A008455 (program): 11th powers: a(n) = n^11.
- A008456 (program): 12th powers: a(n) = n^12.
- A008457 (program): a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^3.
- A008458 (program): Coordination sequence for hexagonal lattice.
- A008459 (program): Square the entries of Pascal’s triangle.
- A008460 (program): Take sum of squares of digits of previous term; start with 6.
- A008461 (program): Take sum of squares of digits of previous term.
- A008462 (program): Take sum of squares of digits of previous term; start with 8.
- A008463 (program): Take sum of squares of digits of previous term; start with 9.
- A008464 (program): a(n) = 2^(2n+3) - 2^n*(n+3).
- A008466 (program): a(n) = 2^n - Fibonacci(n+2).
- A008468 (program): a(n) = n OR n^3 (applied to binary expansions).
- A008472 (program): Sum of the distinct primes dividing n.
- A008473 (program): If n = Product (p_j^k_j) then a(n) = Product (p_j + k_j).
- A008474 (program): If n = Product (p_j^k_j) then a(n) = Sum (p_j + k_j).
- A008475 (program): If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
- A008476 (program): If n = Product (p_j^k_j) then a(n) = Sum (k_j^p_j).
- A008477 (program): If n = Product (p_j^k_j) then a(n) = Product (k_j^p_j).
- A008480 (program): Number of ordered prime factorizations of n.
- A008482 (program): Coefficients in expansion of (x-1)*(1+x)^(n-1), n > 0.
- A008483 (program): Number of partitions of n into parts >= 3.
- A008485 (program): Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.
- A008486 (program): Expansion of (1 + x + x^2)/(1 - x)^2.
- A008487 (program): Expansion of (1-x^5) / (1-x)^5.
- A008488 (program): Expansion of (1-x^6) / (1-x)^6.
- A008489 (program): Expansion of (1-x^7)/(1-x)^7.
- A008490 (program): Expansion of (1-x^8) / (1-x)^8.
- A008491 (program): Expansion of (1-x^9 ) / (1-x)^9.
- A008492 (program): Expansion of (1-x^10) / (1-x)^10.
- A008493 (program): Expansion of (1-x^11) / (1-x)^11.
- A008494 (program): Expansion of (1-x^12) / (1-x)^12.
- A008495 (program): Expansion of (1-x^13) / (1-x)^13.
- A008496 (program): a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5).
- A008497 (program): a(n) = floor(n/5)*floor((n+1)/5).
- A008498 (program): 4-dimensional centered tetrahedral numbers.
- A008499 (program): Number of 5-dimensional centered tetrahedral numbers.
- A008500 (program): 6-dimensional centered tetrahedral numbers.
- A008501 (program): 7-dimensional centered tetrahedral numbers.
- A008502 (program): 8-dimensional centered tetrahedral numbers.
- A008503 (program): 9-dimensional centered tetrahedral numbers.
- A008504 (program): 10-dimensional centered tetrahedral numbers.
- A008505 (program): 11-dimensional centered tetrahedral numbers.
- A008506 (program): 12-dimensional centered tetrahedral numbers.
- A008507 (program): Number of odd composite numbers less than n-th odd prime.
- A008508 (program): Number of odd primes less than n-th odd composite number.
- A008511 (program): Number of points on surface of 4-dimensional cube.
- A008512 (program): Number of points on the surface of 5-dimensional cube.
- A008513 (program): Number of points on surface of 6-dimensional cube.
- A008514 (program): 4-dimensional centered cube numbers.
- A008515 (program): 5-dimensional centered cube numbers.
- A008516 (program): 6-dimensional centered cube numbers.
- A008518 (program): Triangle of Eulerian numbers with rows multiplied by 1 + x.
- A008522 (program): Numbers that contain the letter `t’.
- A008527 (program): Coordination sequence for body-centered tetragonal lattice.
- A008528 (program): Coordination sequence for 4-dimensional RR-centered di-isohexagonal orthogonal lattice.
- A008529 (program): Coordination sequence for 4-dimensional face-centered cubic orthogonal lattice.
- A008530 (program): Coordination sequence for 4-dimensional primitive di-isohexagonal orthogonal lattice.
- A008531 (program): Coordination sequence for {A_4}* lattice.
- A008532 (program): Coordination sequence for 4-dimensional I-centered cubic orthogonal lattice.
- A008533 (program): Coordination sequence for {A_5}* lattice.
- A008534 (program): Coordination sequence for {A_6}* lattice.
- A008535 (program): Coordination sequence for {A_7}* lattice.
- A008538 (program): Numbers that contain the letter ‘s’.
- A008539 (program): Numbers that do not contain the letter `s’.
- A008540 (program): Numbers that contain the letter `f’.
- A008541 (program): Numbers that do not contain the letter `f’.
- A008542 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).
- A008543 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).
- A008544 (program): Triple factorial numbers: Product_{k=0..n-1} (3*k+2).
- A008545 (program): Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).
- A008546 (program): Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).
- A008548 (program): Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
- A008549 (program): Number of ways of choosing at most n-1 items from a set of size 2*n+1.
- A008550 (program): Table T(n,k), n>=0 and k>=0, read by antidiagonals: the k-th column given by the k-th Narayana polynomial.
- A008553 (program): Numbers that contain the letter `y’.
- A008556 (program): Triangle of coefficients of Legendre polynomials 2^n P_n (x).
- A008557 (program): Repeatedly convert from decimal to octal.
- A008558 (program): Repeatedly convert from decimal to octal.
- A008560 (program): a(1) = 2; to get a(n), n >= 2, convert a(n-1) from base 3 to base 2.
- A008574 (program): a(0) = 1, thereafter a(n) = 4n.
- A008576 (program): Coordination sequence for planar net 4.8.8.
- A008577 (program): Crystal ball sequence for planar net 4.8.8.
- A008578 (program): Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).
- A008579 (program): Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.
- A008580 (program): Crystal ball sequence for planar net 3.6.3.6.
- A008581 (program): Molien series for 6-dimensional complex reflection group 4.U_4 (3) of order 2^9 .3^7 .5.7.
- A008583 (program): Molien series for Weyl group E_7.
- A008584 (program): Molien series for Weyl group E_6.
- A008585 (program): a(n) = 3*n.
- A008586 (program): Multiples of 4.
- A008587 (program): Multiples of 5: a(n) = 5 * n.
- A008588 (program): Nonnegative multiples of 6.
- A008589 (program): Multiples of 7.
- A008590 (program): Multiples of 8.
- A008591 (program): Multiples of 9: a(n) = 9*n.
- A008592 (program): Multiples of 10: a(n) = 10 * n.
- A008593 (program): Multiples of 11.
- A008594 (program): Multiples of 12: a(n) = 12*n.
- A008595 (program): Multiples of 13.
- A008596 (program): Multiples of 14.
- A008597 (program): Multiples of 15.
- A008598 (program): Multiples of 16.
- A008599 (program): Multiples of 17.
- A008600 (program): Multiples of 18.
- A008601 (program): Multiples of 19.
- A008602 (program): Multiples of 20.
- A008603 (program): Multiples of 21.
- A008604 (program): Multiples of 22.
- A008605 (program): Multiples of 23.
- A008606 (program): Multiples of 24.
- A008607 (program): Multiples of 25.
- A008609 (program): a(n) = n + max_{0 <= i <n} ((n-i)*a(i)), a(0) = 1.
- A008610 (program): Molien series of 4-dimensional representation of cyclic group of order 4 over GF(2) (not Cohen-Macaulay).
- A008611 (program): a(n) = a(n-3) + 1, with a(0)=a(2)=1, a(1)=0.
- A008612 (program): Molien series of 2-dimensional representation of SL(2,3).
- A008613 (program): Molien series for 3-dimensional representation of A_5.
- A008615 (program): a(n) = floor(n/2) - floor(n/3).
- A008616 (program): Expansion of 1/((1-x^2)(1-x^5)).
- A008617 (program): Expansion of 1/((1-x^2)(1-x^7)).
- A008618 (program): Expansion of 1/((1-x^2)(1-x^9)).
- A008619 (program): Positive integers repeated.
- A008620 (program): Positive integers repeated three times.
- A008621 (program): Expansion of 1/((1-x)*(1-x^4)).
- A008622 (program): Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)).
- A008624 (program): Expansion of (1+x^3)/((1-x^2)*(1-x^4)) = (1-x+x^2)/((1+x)*(1-x)^2*(1+x^2)).
- A008625 (program): G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^6)*(1-x^7)) (or (1+x^5)(1+x^6)/((1-x^3)*(1-x^4)*(1-x^7))).
- A008627 (program): Molien series for A_4.
- A008628 (program): Molien series for A_5.
- A008630 (program): Molien series for A_7.
- A008636 (program): Number of partitions of n into at most 7 parts.
- A008637 (program): Number of partitions of n into at most 8 parts.
- A008638 (program): Number of partitions of n into at most 9 parts.
- A008639 (program): Number of partitions of n into at most 10 parts.
- A008642 (program): Quarter-squares repeated.
- A008643 (program): Molien series for group of 4 X 4 upper triangular matrices over GF(2).
- A008644 (program): Molien series of 5 X 5 upper triangular matrices over GF( 2 ).
- A008645 (program): Molien series of 6 X 6 upper triangular matrices over GF( 2 ).
- A008646 (program): Molien series for cyclic group of order 5.
- A008647 (program): Expansion of g.f.: (1+x^9)/((1-x^4)*(1-x^6)).
- A008648 (program): Molien series of 3 X 3 upper triangular matrices over GF( 5 ).
- A008649 (program): Molien series of 3 X 3 upper triangular matrices over GF( 3 ).
- A008650 (program): Molien series of 4 X 4 upper triangular matrices over GF( 3 ).
- A008651 (program): Molien series of binary icosahedral group.
- A008652 (program): Molien series for group of 3 X 3 upper triangular matrices over GF( 4 ).
- A008653 (program): Theta series of direct sum of 2 copies of hexagonal lattice.
- A008658 (program): Theta series of direct sum of 2 copies of D_4 lattice in powers of q^2.
- A008666 (program): Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)).
- A008667 (program): Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
- A008668 (program): Molien series for 4-dimensional reflection group [3,3,5] of order 14400.
- A008669 (program): Molien series for 4-dimensional complex reflection group of order 7680 (in powers of x^4).
- A008670 (program): Molien series for Weyl group F_4.
- A008671 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^7)).
- A008672 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)).
- A008673 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)).
- A008674 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)).
- A008675 (program): Expansion of 1/( Product_{j=0..5} (1-x^(2*j+1)) ).
- A008676 (program): Expansion of 1/((1-x^3)*(1-x^5)).
- A008677 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)).
- A008678 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)).
- A008679 (program): Expansion of 1/((1-x^3)*(1-x^4)).
- A008680 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)).
- A008681 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)).
- A008682 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^6)).
- A008683 (program): Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.
- A008687 (program): Number of 1’s in 2’s complement representation of -n.
- A008705 (program): Coefficient of x^n in (Product_{m=1..n}(1-x^m))^n.
- A008706 (program): Coordination sequence for 3.3.3.4.4 planar net.
- A008718 (program): Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).
- A008719 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).
- A008720 (program): Molien series for 3-dimensional group [2,5] = *225.
- A008721 (program): Molien series for 3-dimensional group [2,7] = *227.
- A008722 (program): Molien series for 3-dimensional group [2,9] = *229.
- A008723 (program): Molien series for 3-dimensional group [2,11] = *2 2 11.
- A008724 (program): a(n) = floor(n^2/12).
- A008725 (program): Molien series for 3-dimensional group [2,n] = *22n.
- A008726 (program): Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.
- A008727 (program): Molien series for 3-dimensional group [2,n] = *22n.
- A008728 (program): Molien series for 3-dimensional group [2,n ] = *22n.
- A008729 (program): Molien series for 3-dimensional group [2, n] = *22n.
- A008730 (program): Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
- A008731 (program): Molien series for 3-dimensional group [2, n] = *22n.
- A008732 (program): Molien series for 3-dimensional group [2,n] = *22n.
- A008733 (program): Molien series for 3-dimensional group [2+, n] = 2*(n/2).
- A008734 (program): Molien series for 3-dimensional group [2+,n ] = 2*(n/2).
- A008735 (program): Molien series for 3-dimensional group [2+,n ] = 2*(n/2).
- A008736 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
- A008737 (program): a(n) = floor(n/6)*ceiling(n/6).
- A008738 (program): a(n) = floor((n^2 + 1)/5).
- A008739 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
- A008740 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
- A008742 (program): Molien series for 3-dimensional group [3,3 ]+ = 332.
- A008743 (program): Molien series for 3-dimensional group [3,4]+ = 432.
- A008747 (program): Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)).
- A008748 (program): Expansion of (1 + x^5) / ((1-x) * (1-x^2) * (1-x^3)) in powers of x.
- A008749 (program): Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)).
- A008750 (program): Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)).
- A008751 (program): Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)).
- A008752 (program): Expansion of (1+x^9)/((1-x)*(1-x^2)*(1-x^3)).
- A008753 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)).
- A008754 (program): Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)).
- A008755 (program): Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)).
- A008756 (program): Expansion of (1+x^13)/((1-x)*(1-x^2)*(1-x^3)).
- A008757 (program): Expansion of (1+x^14)/((1-x)*(1-x^2)*(1-x^3)).
- A008758 (program): Expansion of (1+x^15)/((1-x)*(1-x^2)*(1-x^3)).
- A008759 (program): Expansion of (1+x^16)/(1-x)/(1-x^2)/(1-x^3).
- A008760 (program): Expansion of (1+x^17)/((1-x)*(1-x^2)*(1-x^3)).
- A008761 (program): Expansion of (1+x^18)/((1-x)*(1-x^2)*(1-x^3)).
- A008762 (program): Expansion of (1+x)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008763 (program): Expansion of g.f.: x^4/((1-x)*(1-x^2)^2*(1-x^3)).
- A008764 (program): Number of 3 X 3 symmetric stochastic matrices under row and column permutations.
- A008765 (program): Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008766 (program): Expansion of (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008767 (program): a(n) = floor(n/7)*ceiling(n/7).
- A008768 (program): Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008769 (program): Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008770 (program): Expansion of (1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008771 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008772 (program): Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008773 (program): Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
- A008776 (program): Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
- A008778 (program): a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.
- A008779 (program): Number of n-dimensional partitions of 5.
- A008780 (program): a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).
- A008784 (program): Numbers n such that sqrt(-1) mod n exists; or, numbers n that are primitively represented by x^2 + y^2.
- A008785 (program): a(n) = (n+4)^n.
- A008786 (program): a(n) = (n+5)^n.
- A008787 (program): a(n) = (n + 6)^n.
- A008788 (program): a(n) = n^(n+2).
- A008789 (program): a(n) = n^(n+3).
- A008790 (program): a(n) = n^(n+4).
- A008791 (program): a(n) = n^(n+5).
- A008794 (program): Squares repeated; a(n) = floor(n/2)^2.
- A008795 (program): Molien series for 3-dimensional representation of dihedral group D_6 of order 6.
- A008796 (program): Molien series for 3-dimensional group [2,3]+ = 223; also for group H_{1,2} of order 384.
- A008797 (program): Molien series for group [2,4]+ = 224.
- A008798 (program): Molien series for group [2,5]+ = 225.
- A008799 (program): Molien series for group [2,6]+ = 226.
- A008800 (program): Molien series for group [2,7]+ = 227.
- A008801 (program): Molien series for group [2,8]+ = 228.
- A008802 (program): Molien series for group [2,9]+ = 229.
- A008803 (program): Molien series for group [2,10]+ = 2 2 10.
- A008804 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^4)).
- A008805 (program): Triangular numbers repeated.
- A008806 (program): Expansion of (1+x^3)/((1-x^2)^2*(1-x^3)).
- A008807 (program): Expansion of (1+x^5)/((1-x^2)^2*(1-x^5)).
- A008808 (program): Expansion of (1+x^7)/((1-x^2)^2*(1-x^7)).
- A008809 (program): Expansion of (1+x^9)/((1-x^2)^2*(1-x^9)).
- A008810 (program): a(n) = ceiling(n^2/3).
- A008811 (program): Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
- A008812 (program): Expansion of (1+x^5)/((1-x)^2*(1-x^5)).
- A008813 (program): Expansion of (1+x^6)/((1-x)^2*(1-x^6)).
- A008814 (program): Expansion of (1+x^7)/((1-x)^2*(1-x^7)).
- A008815 (program): Expansion of (1+x^8)/((1-x)^2*(1-x^8)).
- A008816 (program): Expansion of (1+x^9)/((1-x)^2*(1-x^9)).
- A008817 (program): Expansion of (1+x^10)/((1-x)^2*(1-x^10)).
- A008818 (program): Expansion of (1+2*x^3+x^4)/((1-x^2)^2*(1-x^4)); Molien series for 3-dimensional representation of group 2x = [ 2+,4+ ] = CC_4 = C4.
- A008819 (program): Expansion of (1+2*x^5+x^8)/((1-x^2)^2*(1-x^8)).
- A008820 (program): Expansion of (1+2*x^7+x^12)/((1-x^2)^2*(1-x^12)).
- A008821 (program): Expansion of (1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)).
- A008822 (program): Expansion of (1 + 2*x^2 + x^3)/((1 - x)^2*(1 - x^3)).
- A008823 (program): Expansion of (1+2*x^3+x^5)/((1-x)^2*(1-x^5)).
- A008824 (program): Expansion of (1+2*x^4+x^7)/((1-x)^2*(1-x^7)).
- A008825 (program): Expansion of (1+2*x^5+x^9)/((1-x)^2*(1-x^9)).
- A008827 (program): Coefficients from fractional iteration of exp(x) -1.
- A008830 (program): Discrete logarithm of n to the base 2 modulo 11.
- A008831 (program): Discrete logarithm of n to the base 2 modulo 13.
- A008832 (program): Discrete logarithm of n to the base 2 modulo 19.
- A008833 (program): Largest square dividing n.
- A008834 (program): Largest cube dividing n.
- A008835 (program): Largest 4th power dividing n.
- A008836 (program): Liouville’s function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).
- A008837 (program): a(n) = p*(p-1)/2 for p = prime(n).
- A008838 (program): a(n) = floor(n/8)*ceiling(n/8).
- A008839 (program): Numbers k such that the decimal expansion of 5^k contains no zeros.
- A008843 (program): Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.
- A008844 (program): Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.
- A008845 (program): Numbers k such that k+1 and k/2+1 are squares.
- A008846 (program): Hypotenuses of primitive Pythagorean triangles.
- A008851 (program): Congruent to 0 or 1 mod 5.
- A008852 (program): Numbers n such that n^2 and n have same last 2 digits.
- A008854 (program): Numbers that are congruent to {0, 1, 4} mod 5.
- A008857 (program): a(n) = floor(n/9)*ceiling(n/9).
- A008859 (program): a(n) = Sum_{k=0..6} C(n,k).
- A008860 (program): a(n) = Sum_{k=0..7} binomial(n,k).
- A008861 (program): a(n) = Sum_{k=0..8} C(n,k).
- A008862 (program): a(n) = Sum_{k=0..9} C(n,k).
- A008863 (program): a(n) = Sum_{k=0..10} C(n,k).
- A008864 (program): a(n) = prime(n) + 1.
- A008865 (program): a(n) = n^2 - 2.
- A008866 (program): Prime(A052928(n+1)) + (-1)^n* prime(A109613(n)).
- A008867 (program): Triangle of truncated triangular numbers: k-th term in n-th row is number of dots in hexagon of sides k, n-k, k, n-k, k, n-k.
- A008873 (program): 3x+1 sequence starting at 97.
- A008874 (program): 3x+1 sequence starting at 63.
- A008875 (program): 3x+1 sequence starting at 95.
- A008876 (program): 3x+1 sequence starting at 81.
- A008877 (program): 3x+1 sequence starting at 57.
- A008878 (program): 3x+1 sequence starting at 39.
- A008879 (program): 3x+1 sequence starting at 87.
- A008880 (program): 3x + 1 sequence starting at 33.
- A008881 (program): a(n) = Product_{j=0..5} floor((n+j)/6).
- A008882 (program): 3x+1 sequence starting at 99.
- A008883 (program): 3x+1 sequence starting at 51.
- A008884 (program): 3x+1 sequence starting at 27.
- A008885 (program): Aliquot sequence starting at 30.
- A008886 (program): Aliquot sequence starting at 42.
- A008887 (program): Aliquot sequence starting at 60.
- A008891 (program): Aliquot sequence starting at 180.
- A008893 (program): Number of equilateral triangles formed by triples of points taken from a hexagonal chunk of side n in the hexagonal lattice.
- A008894 (program): 3x - 1 sequence starting at 36.
- A008895 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008896 (program): 3x - 1 sequence starting at 66.
- A008897 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008898 (program): Trajectory of 84 under the map x -> x/2 for x even, x -> 3x - 1 for x odd.
- A008899 (program): x -> x/2 if x even, x -> 3x - 1 if x odd.
- A008900 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008901 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008902 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008903 (program): x->x/2 if x even, x->3x-1 if x odd.
- A008904 (program): a(n) is the final nonzero digit of n!.
- A008905 (program): Leading digit of n!.
- A008906 (program): Number of digits in n! excluding final zeros.
- A008908 (program): (1 + number of halving and tripling steps to reach 1 in the Collatz (3x+1) problem), or -1 if 1 is never reached.
- A008909 (program): Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is a path.
- A008911 (program): a(n) = n^2*(n^2 - 1)/6.
- A008912 (program): Truncated triangular numbers (of form n*(n-3)/2 - k^2+k*n+1 for 1<=k<n).
- A008914 (program): Order of simple Chevalley group G_2 (q), q = prime power.
- A008931 (program): Expansion of (2/(1+sqrt(1-36*x)))^(1/3).
- A008935 (program): If 2n = Sum 2^e(k) then a(n) = Sum e(k)^2.
- A008936 (program): Expansion of (1 - 2*x -x^4)/(1 - 2*x)^2 in powers of x.
- A008937 (program): a(n) = Sum_{k=0..n} T(k) where T(n) are the tribonacci numbers A000073.
- A008949 (program): Triangle read by rows of partial sums of binomial coefficients: T(n,k) = Sum_{i=0..k} binomial(n,i) (0 <= k <= n); also dimensions of Reed-Muller codes.
- A008952 (program): Leading digit of 2^n.
- A008953 (program): a(n) is the leading digit of the n-th triangular number, n*(n+1)/2.
- A008954 (program): Final digit of triangular number n*(n+1)/2.
- A008959 (program): Final digit of squares: a(n) = n^2 mod 10.
- A008960 (program): Final digit of cubes: n^3 mod 10.
- A008963 (program): Initial digit of Fibonacci number F(n).
- A008965 (program): Number of necklaces of sets of beads containing a total of n beads.
- A008966 (program): a(n) = 1 if n is squarefree, otherwise 0.
- A008967 (program): Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon’s statistic. Irregular triangle read by rows.
- A008973 (program): Fibonacci number F(n) to power F(n).
- A008975 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 10.
- A008977 (program): a(n) = (4*n)!/(n!)^4.
- A008978 (program): a(n) = (5*n)!/(n!)^5.
- A008998 (program): a(n) = 2*a(n-1) + a(n-3), with a(0)=1 and a(1)=2.
- A008999 (program): a(n) = 2*a(n-1) + a(n-4).
- A009000 (program): Ordered hypotenuse numbers (squares are sums of 2 distinct nonzero squares).
- A009001 (program): Expansion of e.g.f: (1+x)*cos(x).
- A009002 (program): Expansion of (1+x)/cos(x).
- A009003 (program): Hypotenuse numbers (squares are sums of 2 nonzero squares).
- A009005 (program): All natural numbers except 1, 2 and 4.
- A009006 (program): Expansion of e.g.f.: 1 + tan(x).
- A009014 (program): Expansion of E.g.f.: (1 + x)/(1 + x + x^2/2).
- A009015 (program): Expansion of E.g.f.: cos(x*cos(x)) (even powers only).
- A009017 (program): Expansion of e.g.f. cos(x*exp(x)).
- A009024 (program): Expansion of e.g.f.: x*cos(log(1+x)).
- A009027 (program): Expansion of cos(log(1+x))/exp(x).
- A009041 (program): Ordered legs of Pythagorean triangles.
- A009042 (program): Expansion of x*cos(sin(x)), odd terms only.
- A009045 (program): Expansion of cos(sin(x))/exp(x).
- A009046 (program): Expansion of cos(sin(x)*cos(x)), even terms only.
- A009056 (program): Numbers >= 3.
- A009061 (program): Expansion of e.g.f. cos(sinh(x)*exp(x)).
- A009070 (program): Ordered sides of Pythagorean triangles.
- A009087 (program): Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).
- A009096 (program): Ordered perimeters of Pythagorean triangles.
- A009097 (program): Expansion of e.g.f. cos(x)*cos(log(1+x)).
- A009101 (program): Fixed point when iterating the function f on n, where f(x) = x + product of digits of x.
- A009102 (program): Expansion of e.g.f. cos(x)/(1+x).
- A009108 (program): Expansion of e.g.f. cos(x)/cosh(log(1+x)).
- A009116 (program): Expansion of e.g.f. cos(x) / exp(x).
- A009117 (program): Expansion of e.g.f.: 1/2 + exp(-4*x)/2.
- A009120 (program): a(n) = (4n)!/(2n)!.
- A009121 (program): Expansion of e.g.f. cosh(exp(x)*x).
- A009124 (program): Expansion of e.g.f. cosh(log(1+sinh(x))).
- A009126 (program): Expansion of e.g.f. cosh(log(1+tanh(x))).
- A009128 (program): Expansion of e.g.f. cosh(log(1+x))*cos(x).
- A009129 (program): Perimeter of more than one Pythagorean triangle.
- A009131 (program): Expansion of e.g.f. cosh(log(1+x))/cosh(x).
- A009132 (program): Expansion of e.g.f. cosh(log(1+x))/exp(x).
- A009152 (program): Expansion of e.g.f. cosh(sinh(x))/exp(x).
- A009153 (program): Expansion of e.g.f. cosh(sinh(x)*exp(x)).
- A009174 (program): Expansion of e.g.f.: cosh(x)*cos(log(1+x)).
- A009175 (program): Expansion of cosh(x)*cos(sin(x)).
- A009177 (program): Numbers that are the hypotenuses of more than one Pythagorean triangle.
- A009178 (program): Expansion of cosh(x)*cosh(log(1+x)).
- A009179 (program): E.g.f. cosh(x)/(1+x).
- A009183 (program): Expansion of e.g.f.: cosh(x)/cosh(log(1+x)).
- A009188 (program): Short leg of more than one Pythagorean triangle.
- A009191 (program): a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).
- A009194 (program): a(n) = gcd(n, sigma(n)).
- A009195 (program): a(n) = gcd(n, phi(n)).
- A009205 (program): a(n) = gcd(d(n), sigma(n)).
- A009213 (program): a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler’s totient function (A000010).
- A009218 (program): Expansion of exp(sinh(log(1+x))).
- A009223 (program): a(n) = gcd(sigma(n), phi(n)).
- A009224 (program): Expansion of exp(sinh(x))*x.
- A009227 (program): Expansion of e.g.f.: exp(sinh(x))/exp(x).
- A009229 (program): Expansion of e.g.f. exp(sinh(x)*cosh(x)).
- A009230 (program): a(n) = lcm(n, d(n)).
- A009233 (program): Expansion of e.g.f. exp(sinh(x)*x) (even powers only).
- A009235 (program): E.g.f. exp( sinh(x) / exp(x) ) = exp( (1-exp(-2*x))/2 ).
- A009236 (program): E.g.f. exp(sinh(x)^2) (even powers only).
- A009242 (program): a(n) = lcm(n, sigma(n)).
- A009262 (program): a(n) = lcm(n, phi(n)).
- A009278 (program): a(n) = lcm(d(n), sigma(n)).
- A009279 (program): a(n) = lcm(d(n), phi(n)).
- A009280 (program): Expansion of exp(x)*cos(log(1+x)).
- A009281 (program): Expansion of exp(x)*cosh(log(1+x)).
- A009283 (program): E.g.f.: exp(x + sinh(x)).
- A009286 (program): a(n) = lcm(sigma(n), phi(n)).
- A009294 (program): Expansion of e.g.f.: exp(x)/cosh(log(1+x)).
- A009306 (program): Expansion of e.g.f.: log(1 + exp(x)*x).
- A009334 (program): E.g.f. log(1+sin(x))*exp(x).
- A009337 (program): Expansion of e.g.f.: log(1+sin(x))/exp(x).
- A009362 (program): Expansion of log(1 + sinh(x)/exp(x)).
- A009383 (program): Expansion of log(1+tanh(log(1+x))).
- A009390 (program): Expansion of e.g.f.: log(1 + tanh(x))*exp(x).
- A009405 (program): Expansion of log(1+x)*cos(log(1+x)).
- A009410 (program): E.g.f. log(1+x)*cos(x).
- A009416 (program): Expansion of e.g.f. log(1+x)*cosh(x).
- A009429 (program): E.g.f. log(1+x)/cos(x).
- A009430 (program): Expansion of log(1+x)/cosh(log(1+x)).
- A009435 (program): Expansion of e.g.f.: log(1+x)/cosh(x).
- A009440 (program): a(n) is the concatenation of n and 6n.
- A009441 (program): a(n) is the concatenation of n and 7n.
- A009444 (program): E.g.f. log(1 + x*exp(-x)).
- A009445 (program): a(n) = (2*n+1)!.
- A009446 (program): E.g.f. sin(x*cos(x)) (odd powers only)
- A009448 (program): E.g.f. sin(x*exp(x)).
- A009454 (program): Expansion of e.g.f. sin(log(1+x)).
- A009455 (program): Expansion of sin(log(1+x))*cos(x).
- A009456 (program): Expansion of sin(log(1+x))*cosh(x).
- A009457 (program): Expansion of sin(log(1+x))*exp(x).
- A009458 (program): Expansion of sin(log(1+x))*log(1+x).
- A009461 (program): Expansion of e.g.f.: sin(log(1+x))/exp(x).
- A009470 (program): a(n) is the concatenation of n and 8n.
- A009474 (program): a(n) is the concatenation of n and 9n.
- A009478 (program): Expansion of sin(sin(x))*x.
- A009481 (program): Expansion of sin(sin(x)*cos(x)).
- A009496 (program): Expansion of e.g.f. sin(sinh(x)*exp(x)).
- A009531 (program): Expansion of the e.g.f. sin(x)*(1+x).
- A009532 (program): Expansion of sin(x)*cos(log(1+x)).
- A009537 (program): Expansion of sin(x)*cosh(log(1+x)).
- A009545 (program): E.g.f. sin(x)*exp(x).
- A009546 (program): Expansion of e.g.f. sin(x)*sin(sin(x)) (even powers only).
- A009551 (program): Expansion of sin(x)/(1-x).
- A009557 (program): Expansion of e.g.f. sin(x)/cosh(log(1+x)).
- A009564 (program): E.g.f. sin(x^2)/2, coefficients of x^(4*n + 2).
- A009565 (program): Expansion of e.g.f. sinh(exp(x)*x).
- A009568 (program): Expansion of e.g.f.: sinh(log(1+sinh(x))).
- A009570 (program): Expansion of e.g.f. sinh(log(1+tanh(x))).
- A009572 (program): Expansion of e.g.f. sinh(log(1+x))*cos(x).
- A009573 (program): Expansion of e.g.f. sinh(log(1+x))*cosh(x).
- A009574 (program): Expansion of e.g.f. sinh(log(1+x))*exp(x).
- A009575 (program): E.g.f. sinh(log(1+x))*log(1+x).
- A009576 (program): Expansion of e.g.f. sinh(log(1+x))/cos(x).
- A009577 (program): Expansion of e.g.f. sinh(log(1+x))/cosh(x).
- A009578 (program): E.g.f. sinh(log(1+x))/exp(x). Unsigned sequence gives degrees of (finite by nilpotent) representations of Braid groups.
- A009598 (program): Expansion of e.g.f. sinh(sinh(x))*exp(x).
- A009599 (program): Expansion of e.g.f. sinh(sinh(x)*exp(x)).
- A009618 (program): Expansion of sinh(x)*cos(log(1+x)).
- A009621 (program): Expansion of sinh(x)*cosh(log(1+x)).
- A009623 (program): Expansion of sinh(x).exp(sinh(x)).
- A009628 (program): Expansion of sinh(x)/(1+x).
- A009632 (program): Expansion of sinh(x)/cosh(log(1+x)).
- A009641 (program): a(n) = Product_{i=0..6} floor((n+i)/7).
- A009661 (program): Smallest number m such that m^m+1 is divisible by n.
- A009694 (program): a(n) = Product_{i=0..7} floor((n+i)/8).
- A009714 (program): a(n) = Product_{i=0..8} floor((n+i)/9).
- A009724 (program): Denominators of Taylor series for 1/(sin x + tan x).
- A009725 (program): Expansion of e.g.f.: tan(x)*(1+x).
- A009731 (program): Expansion of tan(x)*cosh(log(1+x)).
- A009739 (program): E.g.f. tan(x)*exp(x).
- A009744 (program): Expansion of e.g.f. tan(x)*sin(x) (even powers only).
- A009747 (program): E.g.f. tan(x)*sinh(x) (even powers only).
- A009752 (program): Expansion of e.g.f. tan(x)*x (even powers only).
- A009753 (program): Expansion of tan(x)/(1+x).
- A009759 (program): Expansion of (3 - 21*x + 4*x^2)/((x-1)*(x^2 - 6*x + 1)).
- A009764 (program): Tan(x)^2 = sum(n>=0, a(n)*x^(2*n)/(2*n)! ).
- A009766 (program): Catalan’s triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).
- A009769 (program): Expansion of tanh(log(1+1/x)).
- A009775 (program): Exponential generating function is tanh(log(1+x)).
- A009776 (program): E.g.f.: tanh(log(1+x))*cos(x).
- A009777 (program): E.g.f. tanh(log(1+x))*cosh(x).
- A009778 (program): Expansion of e.g.f.: tanh(log(1+x))*exp(x).
- A009779 (program): Expansion of e.g.f.: tanh(log(1+x))*log(1+x).
- A009782 (program): E.g.f.: expansion of tanh(log(1+x))/exp(x).
- A009832 (program): Expansion of e.g.f. tanh(x)*exp(x).
- A009838 (program): Expansion of e.g.f.: tanh(x)/(1+x).
- A009843 (program): E.g.f. x/cos(x) (odd powers only).
- A009925 (program): Coordination sequence for CaF2(2), F position.
- A009926 (program): Coordination sequence for CaF2(2), Ca position.
- A009940 (program): a(n) = n!*L_{n}(1), where L_{n}(x) is the n-th Laguerre polynomial.
- A009942 (program): Coordination sequence for Ni2In, Position Ni2.
- A009943 (program): Coordination sequence for NiAs(1), As position.
- A009945 (program): Coordination sequence for NiAs(2), As position.
- A009946 (program): Coordination sequence for NiAs(2), Ni position.
- A009947 (program): Sequence of nonnegative integers, but insert n/2 after every even number n.
- A009948 (program): Coordination sequence for alpha-Nd, Position Nd1.
- A009955 (program): Coordination sequence for FeS2-Marcasite, Fe position.
- A009964 (program): Powers of 20.
- A009965 (program): Powers of 21.
- A009966 (program): Powers of 22.
- A009967 (program): Powers of 23.
- A009968 (program): Powers of 24: a(n) = 24^n.
- A009969 (program): Powers of 25.
- A009970 (program): Powers of 26.
- A009971 (program): Powers of 27.
- A009972 (program): Powers of 28.
- A009973 (program): Powers of 29.
- A009974 (program): Powers of 30.
- A009975 (program): Powers of 31: a(n) = 31^n.
- A009976 (program): Powers of 32.
- A009977 (program): Powers of 33.
- A009978 (program): Powers of 34.
- A009979 (program): Powers of 35.
- A009980 (program): Powers of 36.
- A009981 (program): Powers of 37.
- A009982 (program): Powers of 38.
- A009983 (program): Powers of 39.
- A009984 (program): Powers of 40.
- A009985 (program): Powers of 41.
- A009986 (program): Powers of 42.
- A009987 (program): Powers of 43.
- A009988 (program): Powers of 44.
- A009989 (program): Powers of 45.
- A009990 (program): Powers of 46.
- A009991 (program): Powers of 47.
- A009992 (program): Powers of 48: a(n) = 48^n.
- A009994 (program): Numbers with digits in nondecreasing order.
- A009998 (program): Triangle in which j-th entry in i-th row is (j+1)^(i-j).
- A009999 (program): Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.
- A010000 (program): a(0) = 1, a(n) = n^2 + 2 for n > 0.
- A010001 (program): a(0) = 1, a(n) = 5*n^2 + 2 for n>0.
- A010002 (program): a(0) = 1, a(n) = 9*n^2 + 2 for n>0.
- A010003 (program): a(0) = 1, a(n) = 11*n^2 + 2 for n>0.
- A010004 (program): a(0) = 1, a(n) = 13*n^2 + 2 for n>0.
- A010005 (program): a(0) = 1, a(n) = 15*n^2 + 2 for n>0.
- A010006 (program): Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.
- A010007 (program): a(0) = 1, a(n) = 17*n^2 + 2 for n>0.
- A010008 (program): a(0) = 1, a(n) = 18*n^2 + 2 for n>0.
- A010009 (program): a(0) = 1, a(n) = 19*n^2 + 2 for n>0.
- A010010 (program): a(0) = 1, a(n) = 20*n^2 + 2 for n>0.
- A010011 (program): a(0) = 1, a(n) = 21*n^2 + 2 for n>0.
- A010012 (program): a(0) = 1, a(n) = 22*n^2 + 2 for n>0.
- A010013 (program): a(0) = 1, a(n) = 23*n^2 + 2 for n>0.
- A010014 (program): a(0) = 1, a(n) = 24*n^2 + 2 for n>0.
- A010015 (program): a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.
- A010016 (program): a(0) = 1, a(n) = 26*n^2 + 2 for n>0.
- A010017 (program): a(0) = 1, a(n) = 27*n^2 + 2 for n>0.
- A010018 (program): a(0) = 1, a(n) = 28*n^2 + 2 for n>0.
- A010019 (program): a(0) = 1, a(n) = 29*n^2 + 2 for n>0.
- A010020 (program): a(0) = 1, a(n) = 31*n^2 + 2 for n>0.
- A010021 (program): a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.
- A010022 (program): a(0) = 1, a(n) = 40*n^2 + 2 for n>0.
- A010023 (program): a(0) = 1, a(n) = 42*n^2 + 2 for n>0.
- A010024 (program): Coordination sequence for squashed {D_5}* lattice, perhaps the smallest example of a “non-superficial” lattice.
- A010025 (program): Crystal ball sequence for squashed {D_5}^* lattice, perhaps the smallest example of a “non-superficial” lattice.
- A010027 (program): Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
- A010035 (program): a(n) = 2*3^(2*n)-3^n.
- A010036 (program): Sum of 2^n, …, 2^(n+1) - 1.
- A010037 (program): Numbers n such that gcd(n^5 + 5, (n+1)^5 + 5) > 1.
- A010049 (program): Second-order Fibonacci numbers.
- A010050 (program): a(n) = (2n)!.
- A010051 (program): Characteristic function of primes: 1 if n is prime, else 0.
- A010052 (program): Characteristic function of squares: a(n) = 1 if n is a square, otherwise 0.
- A010053 (program): a(n) = 4^n*(2*n+1)!*(n!)^2/(n+1).
- A010054 (program): a(n) = 1 if n is a triangular number, otherwise 0.
- A010055 (program): 1 if n is a prime power p^k (k >= 0), otherwise 0.
- A010056 (program): Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.
- A010057 (program): a(n) = 1 if n is a cube, else 0.
- A010058 (program): 1 if n is a Catalan number else 0.
- A010059 (program): Another version of the Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0’s and 1’s.
- A010060 (program): Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0’s and 1’s.
- A010061 (program): Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.
- A010062 (program): a(0)=1; thereafter a(n+1) = a(n) + number of 1’s in binary representation of a(n).
- A010063 (program): a(n+1) = a(n) + sum of digits in base 3 representation of a(n), with a(0) = 1.
- A010064 (program): Base 4 self or Colombian numbers (not of form k + sum of base 4 digits of k).
- A010065 (program): a(n+1) = a(n) + sum of digits in base 4 representation of a(n), with a(0) = 1.
- A010066 (program): a(n+1) = a(n) + sum of digits in base 5 representation of a(n).
- A010068 (program): a(n+1) = a(n) + sum of digits in base 6 representation of a(n).
- A010069 (program): a(n+1) = a(n) + sum of digits in base 7 representation of a(n).
- A010071 (program): a(n+1) = a(n) + sum of digits in base 8 representation of a(n).
- A010072 (program): a(n+1) = a(n) + sum of digits in base 9 representation of a(n).
- A010073 (program): a(n) = sum of base-6 digits of a(n-1) + sum of base-6 digits of a(n-2); a(0)=0, a(1)=1.
- A010074 (program): a(n) = sum of base-7 digits of a(n-1) + sum of base-7 digits of a(n-2).
- A010075 (program): a(n) = sum of base-8 digits of a(n-1) + sum of base-8 digits of a(n-2).
- A010076 (program): a(n) = sum of base-9 digits of a(n-1) + sum of base-9 digits of a(n-2).
- A010077 (program): a(n) = sum of digits of a(n-1) + sum of digits of a(n-2); a(0) = 0, a(1) = 1.
- A010078 (program): Shortest representation of -n in 2’s-complement format.
- A010079 (program): Coordination sequence for net formed by holes in D_4 lattice.
- A010094 (program): Triangle of Euler-Bernoulli or Entringer numbers.
- A010096 (program): log2*(n) (version 1): number of times floor(log_2(x)) is used in floor(log_2(floor(log_2(…(floor(log_2(n)))…)))) = 0.
- A010098 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=3.
- A010099 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=4.
- A010100 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=10.
- A010121 (program): Continued fraction for sqrt(7).
- A010122 (program): Continued fraction for sqrt(13).
- A010123 (program): Continued fraction for sqrt(14).
- A010124 (program): Continued fraction for sqrt(19).
- A010125 (program): Continued fraction for sqrt(21).
- A010126 (program): Continued fraction for sqrt(22).
- A010127 (program): Continued fraction for sqrt(23).
- A010128 (program): Continued fraction for sqrt(29).
- A010129 (program): Continued fraction for sqrt(31).
- A010130 (program): Continued fraction for sqrt(32).
- A010131 (program): Continued fraction for sqrt(33).
- A010132 (program): Continued fraction for sqrt(34).
- A010133 (program): Continued fraction for sqrt(41).
- A010135 (program): Continued fraction for sqrt(45).
- A010137 (program): Continued fraction for sqrt(47).
- A010138 (program): Continued fraction for sqrt(52).
- A010139 (program): Continued fraction for sqrt(53).
- A010140 (program): Continued fraction for sqrt(54).
- A010141 (program): Continued fraction for sqrt(55).
- A010142 (program): Continued fraction for sqrt(57).
- A010143 (program): Continued fraction for sqrt(58).
- A010144 (program): Continued fraction for sqrt(59).
- A010146 (program): Continued fraction for sqrt(62).
- A010148 (program): Continued fraction for sqrt(69).
- A010149 (program): Continued fraction for sqrt(70).
- A010150 (program): Continued fraction for sqrt(71).
- A010152 (program): Continued fraction for sqrt(74).
- A010153 (program): Continued fraction for sqrt(75) (or 5*sqrt(3)).
- A010155 (program): Continued fraction for sqrt(77).
- A010156 (program): Continued fraction for sqrt(78).
- A010157 (program): Continued fraction for sqrt(79).
- A010158 (program): Continued fraction for sqrt(85).
- A010160 (program): Continued fraction for sqrt(88).
- A010161 (program): Continued fraction for sqrt(89).
- A010162 (program): Continued fraction for sqrt(91).
- A010163 (program): Continued fraction for sqrt(92).
- A010164 (program): Continued fraction for sqrt(93).
- A010166 (program): Continued fraction for sqrt(95).
- A010167 (program): Continued fraction for sqrt(96).
- A010169 (program): Continued fraction for sqrt(98).
- A010170 (program): Continued fraction for sqrt(99).
- A010173 (program): Continued fraction for sqrt(107).
- A010174 (program): Continued fraction for sqrt(108).
- A010176 (program): Continued fraction for sqrt(111).
- A010177 (program): Continued fraction for sqrt(112).
- A010178 (program): Continued fraction for sqrt(113).
- A010179 (program): Continued fraction for sqrt(114).
- A010180 (program): Continued fraction for sqrt(115).
- A010182 (program): Continued fraction for sqrt(117).
- A010183 (program): Continued fraction for sqrt(118).
- A010184 (program): Continued fraction for sqrt(119).
- A010186 (program): Continued fraction for sqrt(125).
- A010187 (program): Continued fraction for sqrt(126).
- A010189 (program): Continued fraction for sqrt(128).
- A010191 (program): Continued fraction for sqrt(131).
- A010194 (program): Continued fraction for sqrt(135).
- A010195 (program): Continued fraction for sqrt(136).
- A010196 (program): Continued fraction for sqrt(137).
- A010197 (program): Continued fraction for sqrt(138).
- A010199 (program): Continued fraction for sqrt(140).
- A010200 (program): Continued fraction for sqrt(141).
- A010201 (program): Continued fraction for sqrt(142).
- A010204 (program): Continued fraction for sqrt(153).
- A010207 (program): Continued fraction for sqrt(158).
- A010208 (program): Continued fraction for sqrt(159).
- A010209 (program): Continued fraction for sqrt(160).
- A010211 (program): Continued fraction for sqrt(162).
- A010213 (program): Continued fraction for sqrt(165).
- A010215 (program): Continued fraction for sqrt(167).
- A010217 (program): Continued fraction for sqrt(173).
- A010218 (program): Continued fraction for sqrt(174).
- A010219 (program): Continued fraction for sqrt(175).
- A010220 (program): Continued fraction for sqrt(176).
- A010221 (program): Continued fraction for sqrt(177).
- A010222 (program): Continued fraction for sqrt(178).
- A010225 (program): Continued fraction for sqrt(183).
- A010227 (program): Continued fraction for sqrt(185).
- A010229 (program): Continued fraction for sqrt(187).
- A010230 (program): Continued fraction for sqrt(188).
- A010231 (program): Continued fraction for sqrt(189).
- A010234 (program): Continued fraction for sqrt(192).
- A010236 (program): Continued fraction for sqrt(194).
- A010238 (program): Maximal size of binary code of length n and asymmetric distance 3.
- A010334 (program): Maximal size of binary code of length n and asymmetric distance 4.
- A010362 (program): Class B multi-edge stars with n edges and 2 odd unlabeled roots.
- A010365 (program): Class B multi-edge stars with n edges and 2 odd labeled roots.
- A010368 (program): Number of points of L1 norm 2n in Hamming code version of E_8 lattice.
- A010370 (program): a(n) = binomial(2*n, n)^2 / (1-2*n).
- A010381 (program): Squares mod 19.
- A010384 (program): Squares mod 22.
- A010385 (program): Squares mod 23.
- A010387 (program): Squares mod 25.
- A010388 (program): Squares mod 26.
- A010389 (program): Squares mod 27.
- A010391 (program): Squares mod 29.
- A010392 (program): Squares mod 31.
- A010394 (program): Squares mod 33.
- A010395 (program): Squares mod 34.
- A010396 (program): Squares mod 35.
- A010398 (program): Squares mod 37.
- A010399 (program): Squares mod 38.
- A010400 (program): Squares mod 39.
- A010402 (program): Squares mod 41.
- A010403 (program): Squares mod 42.
- A010404 (program): Squares mod 43.
- A010405 (program): Squares mod 44.
- A010406 (program): Squares mod 45.
- A010407 (program): Squares mod 46.
- A010408 (program): Squares mod 47.
- A010410 (program): Squares mod 49.
- A010411 (program): Squares mod 50.
- A010412 (program): Squares mod 51.
- A010413 (program): Squares mod 52.
- A010414 (program): Squares mod 53.
- A010415 (program): Squares mod 54.
- A010416 (program): Squares mod 55.
- A010417 (program): Squares mod 56.
- A010418 (program): Squares mod 57.
- A010419 (program): Squares mod 58.
- A010420 (program): Squares mod 59.
- A010421 (program): Squares mod 60.
- A010422 (program): Squares mod 61.
- A010423 (program): Squares mod 62.
- A010424 (program): Squares mod 63.
- A010425 (program): Squares mod 64.
- A010426 (program): Squares mod 65.
- A010427 (program): Squares mod 66.
- A010428 (program): Squares mod 67.
- A010429 (program): Squares mod 68.
- A010430 (program): Squares mod 69.
- A010431 (program): Squares mod 70.
- A010433 (program): Squares mod 72.
- A010435 (program): Squares mod 74.
- A010436 (program): Squares mod 75.
- A010437 (program): Squares mod 76.
- A010438 (program): Squares mod 77.
- A010439 (program): Squares mod 78.
- A010440 (program): Squares mod 79.
- A010441 (program): Squares mod 80.
- A010442 (program): Squares mod 81.
- A010443 (program): Squares mod 82.
- A010444 (program): Squares mod 83.
- A010445 (program): Squares mod 84.
- A010446 (program): Squares mod 85.
- A010447 (program): Squares mod 86.
- A010448 (program): Squares mod 87.
- A010449 (program): Squares mod 88.
- A010451 (program): Squares mod 90.
- A010452 (program): Squares mod 91.
- A010453 (program): Squares mod 92.
- A010454 (program): Squares mod 93.
- A010455 (program): Squares mod 94.
- A010456 (program): Squares mod 95.
- A010457 (program): Squares mod 96.
- A010459 (program): Squares mod 98.
- A010460 (program): Squares mod 99.
- A010461 (program): Squares mod 100.
- A010462 (program): Squares mod 30.
- A010464 (program): Decimal expansion of square root of 6.
- A010465 (program): Decimal expansion of square root of 7.
- A010466 (program): Decimal expansion of square root of 8.
- A010467 (program): Decimal expansion of square root of 10.
- A010468 (program): Decimal expansion of square root of 11.
- A010469 (program): Decimal expansion of square root of 12.
- A010470 (program): Decimal expansion of square root of 13.
- A010471 (program): Decimal expansion of square root of 14.
- A010472 (program): Decimal expansion of square root of 15.
- A010473 (program): Decimal expansion of square root of 17.
- A010474 (program): Decimal expansion of square root of 18.
- A010475 (program): Decimal expansion of square root of 19.
- A010476 (program): Decimal expansion of square root of 20.
- A010477 (program): Decimal expansion of square root of 21.
- A010478 (program): Decimal expansion of square root of 22.
- A010479 (program): Decimal expansion of square root of 23.
- A010480 (program): Decimal expansion of square root of 24.
- A010481 (program): Decimal expansion of square root of 26.
- A010482 (program): Decimal expansion of square root of 27.
- A010483 (program): Decimal expansion of square root of 28.
- A010484 (program): Decimal expansion of square root of 29.
- A010485 (program): Decimal expansion of square root of 30.
- A010486 (program): Decimal expansion of square root of 31.
- A010487 (program): Decimal expansion of square root of 32.
- A010488 (program): Decimal expansion of square root of 33.
- A010489 (program): Decimal expansion of square root of 34.
- A010490 (program): Decimal expansion of square root of 35.
- A010491 (program): Decimal expansion of square root of 37.
- A010492 (program): Decimal expansion of square root of 38.
- A010493 (program): Decimal expansion of square root of 39.
- A010494 (program): Decimal expansion of square root of 40.
- A010495 (program): Decimal expansion of square root of 41.
- A010496 (program): Decimal expansion of square root of 42.
- A010497 (program): Decimal expansion of square root of 43.
- A010498 (program): Decimal expansion of square root of 44.
- A010499 (program): Decimal expansion of square root of 45.
- A010500 (program): Decimal expansion of square root of 46.
- A010501 (program): Decimal expansion of square root of 47.
- A010502 (program): Decimal expansion of square root of 48.
- A010503 (program): Decimal expansion of 1/sqrt(2).
- A010504 (program): Decimal expansion of square root of 51.
- A010505 (program): Decimal expansion of square root of 52.
- A010506 (program): Decimal expansion of square root of 53.
- A010507 (program): Decimal expansion of square root of 54.
- A010508 (program): Decimal expansion of square root of 55.
- A010509 (program): Decimal expansion of square root of 56.
- A010510 (program): Decimal expansion of square root of 57.
- A010511 (program): Decimal expansion of square root of 58.
- A010512 (program): Decimal expansion of square root of 59.
- A010513 (program): Decimal expansion of square root of 60.
- A010514 (program): Decimal expansion of square root of 61.
- A010515 (program): Decimal expansion of square root of 62.
- A010516 (program): Decimal expansion of square root of 63.
- A010517 (program): Decimal expansion of square root of 65.
- A010518 (program): Decimal expansion of square root of 66.
- A010519 (program): Decimal expansion of square root of 67.
- A010520 (program): Decimal expansion of square root of 68.
- A010521 (program): Decimal expansion of square root of 69.
- A010522 (program): Decimal expansion of square root of 70.
- A010523 (program): Decimal expansion of square root of 71.
- A010524 (program): Decimal expansion of square root of 72.
- A010525 (program): Decimal expansion of square root of 73.
- A010526 (program): Decimal expansion of square root of 74.
- A010527 (program): Decimal expansion of sqrt(3)/2.
- A010528 (program): Decimal expansion of square root of 76.
- A010529 (program): Decimal expansion of square root of 77.
- A010530 (program): Decimal expansion of square root of 78.
- A010531 (program): Decimal expansion of square root of 79.
- A010532 (program): Decimal expansion of square root of 80.
- A010533 (program): Decimal expansion of square root of 82.
- A010534 (program): Decimal expansion of square root of 83.
- A010535 (program): Decimal expansion of square root of 84.
- A010536 (program): Decimal expansion of square root of 85.
- A010537 (program): Decimal expansion of square root of 86.
- A010538 (program): Decimal expansion of square root of 87.
- A010539 (program): Decimal expansion of square root of 88.
- A010540 (program): Decimal expansion of square root of 89.
- A010541 (program): Decimal expansion of square root of 90.
- A010542 (program): Decimal expansion of square root of 91.
- A010543 (program): Decimal expansion of square root of 92.
- A010544 (program): Decimal expansion of square root of 93.
- A010545 (program): Decimal expansion of square root of 94.
- A010546 (program): Decimal expansion of square root of 95.
- A010547 (program): Decimal expansion of square root of 96.
- A010548 (program): Decimal expansion of square root of 97.
- A010549 (program): Decimal expansion of square root of 98.
- A010550 (program): Decimal expansion of square root of 99.
- A010551 (program): Multiply successively by 1,1,2,2,3,3,4,4,…, n >= 1, a(0) = 1.
- A010552 (program): Multiply successively by 1 (once), 2 (twice), 3 (thrice), etc.
- A010553 (program): a(n) = tau(tau(n)).
- A010554 (program): a(n) = phi(phi(n)), where phi is the Euler totient function.
- A010555 (program): a(n) = 1 if n is the product of an even number of distinct primes, otherwise a(n) = -1.
- A010578 (program): Maximal size of binary code of length n correcting 3 unidirectional errors.
- A010581 (program): Decimal expansion of cube root of 9.
- A010582 (program): Decimal expansion of cube root of 10.
- A010583 (program): Decimal expansion of cube root of 11.
- A010584 (program): Decimal expansion of cube root of 12.
- A010585 (program): Decimal expansion of cube root of 13.
- A010586 (program): Decimal expansion of cube root of 14.
- A010587 (program): Decimal expansion of cube root of 15.
- A010588 (program): Decimal expansion of cube root of 16.
- A010589 (program): Decimal expansion of cube root of 17.
- A010590 (program): Decimal expansion of cube root of 18.
- A010591 (program): Decimal expansion of cube root of 19.
- A010592 (program): Decimal expansion of cube root of 20.
- A010593 (program): Decimal expansion of cube root of 21.
- A010594 (program): Decimal expansion of cube root of 22.
- A010595 (program): Decimal expansion of cube root of 23.
- A010596 (program): Decimal expansion of cube root of 24.
- A010597 (program): Decimal expansion of cube root of 25.
- A010598 (program): Decimal expansion of cube root of 26.
- A010599 (program): Decimal expansion of cube root of 28.
- A010600 (program): Decimal expansion of cube root of 29.
- A010601 (program): Decimal expansion of cube root of 30.
- A010602 (program): Decimal expansion of cube root of 31.
- A010603 (program): Decimal expansion of cube root of 32.
- A010604 (program): Decimal expansion of cube root of 33.
- A010605 (program): Decimal expansion of cube root of 34.
- A010606 (program): Decimal expansion of cube root of 35.
- A010607 (program): Decimal expansion of cube root of 36.
- A010608 (program): Decimal expansion of cube root of 37.
- A010609 (program): Decimal expansion of cube root of 38.
- A010610 (program): Decimal expansion of cube root of 39.
- A010611 (program): Decimal expansion of cube root of 40.
- A010612 (program): Decimal expansion of cube root of 41.
- A010613 (program): Decimal expansion of cube root of 42.
- A010614 (program): Decimal expansion of cube root of 43.
- A010615 (program): Decimal expansion of cube root of 44.
- A010616 (program): Decimal expansion of cube root of 45.
- A010617 (program): Decimal expansion of cube root of 46.
- A010618 (program): Decimal expansion of cube root of 47.
- A010619 (program): Decimal expansion of cube root of 48.
- A010620 (program): Decimal expansion of cube root of 49.
- A010621 (program): Decimal expansion of cube root of 50.
- A010622 (program): Decimal expansion of cube root of 51.
- A010623 (program): Decimal expansion of cube root of 52.
- A010624 (program): Decimal expansion of cube root of 53.
- A010625 (program): Decimal expansion of cube root of 54.
- A010626 (program): Decimal expansion of cube root of 55.
- A010627 (program): Decimal expansion of cube root of 56.
- A010628 (program): Decimal expansion of cube root of 57.
- A010629 (program): Decimal expansion of cube root of 58.
- A010630 (program): Decimal expansion of cube root of 59.
- A010631 (program): Decimal expansion of cube root of 60.
- A010632 (program): Decimal expansion of cube root of 61.
- A010633 (program): Decimal expansion of cube root of 62.
- A010634 (program): Decimal expansion of cube root of 63.
- A010635 (program): Decimal expansion of cube root of 65.
- A010636 (program): Decimal expansion of cube root of 66.
- A010637 (program): Decimal expansion of cube root of 67.
- A010638 (program): Decimal expansion of cube root of 68.
- A010639 (program): Decimal expansion of cube root of 69.
- A010640 (program): Decimal expansion of cube root of 70.
- A010641 (program): Decimal expansion of cube root of 71.
- A010642 (program): Decimal expansion of cube root of 72.
- A010643 (program): Decimal expansion of cube root of 73.
- A010644 (program): Decimal expansion of cube root of 74.
- A010645 (program): Decimal expansion of cube root of 75.
- A010646 (program): Decimal expansion of cube root of 76.
- A010647 (program): Decimal expansion of cube root of 77.
- A010648 (program): Decimal expansion of cube root of 78.
- A010649 (program): Decimal expansion of cube root of 79.
- A010650 (program): Decimal expansion of cube root of 80.
- A010651 (program): Decimal expansion of cube root of 81.
- A010652 (program): Decimal expansion of cube root of 82.
- A010653 (program): Decimal expansion of cube root of 83.
- A010654 (program): Decimal expansion of cube root of 84.
- A010655 (program): Decimal expansion of cube root of 85.
- A010656 (program): Decimal expansion of cube root of 86.
- A010657 (program): Decimal expansion of cube root of 87.
- A010658 (program): Decimal expansion of cube root of 88.
- A010659 (program): Decimal expansion of cube root of 89.
- A010660 (program): Decimal expansion of cube root of 90.
- A010661 (program): Decimal expansion of cube root of 91.
- A010662 (program): Decimal expansion of cube root of 92.
- A010663 (program): Decimal expansion of cube root of 93.
- A010664 (program): Decimal expansion of cube root of 94.
- A010665 (program): Decimal expansion of cube root of 95.
- A010666 (program): Decimal expansion of cube root of 96.
- A010667 (program): Decimal expansion of cube root of 97.
- A010668 (program): Decimal expansion of cube root of 98.
- A010669 (program): Decimal expansion of cube root of 99.
- A010670 (program): Decimal expansion of cube root of 100.
- A010671 (program): Maximal size of binary code of length n correcting 4 unidirectional errors.
- A010673 (program): Period 2: repeat [0, 2].
- A010674 (program): Period 2: repeat (0,3).
- A010675 (program): Period 2: repeat (0,4).
- A010676 (program): Period 2: repeat [0, 5].
- A010677 (program): Period 2: repeat (0,6).
- A010678 (program): Period 2: repeat (0,7).
- A010679 (program): Period 2: repeat (0,8).
- A010680 (program): Decimal expansion of 1/11.
- A010681 (program): Period 2: repeat (0,10).
- A010683 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), …} and never pass below y = x. Sequence gives S(n-1,n) = number of ‘Schröder’ trees with n+1 leaves and root of degree 2.
- A010684 (program): Period 2: repeat (1,3); offset 0.
- A010685 (program): Period 2: repeat (1,4).
- A010686 (program): Periodic sequence: repeat [1, 5].
- A010687 (program): Repeat (1,6): Period 2.
- A010688 (program): Period 2: repeat (1,7).
- A010689 (program): Periodic sequence: Repeat 1, 8.
- A010690 (program): Period 2: repeat (1,9).
- A010691 (program): Period 2: repeat (1,10).
- A010692 (program): Constant sequence: a(n) = 10.
- A010693 (program): Periodic sequence: Repeat 2,3.
- A010694 (program): Period 2: repeat (2,4).
- A010695 (program): Period 2: repeat (2,5).
- A010696 (program): Periodic sequence: Repeat 2,6.
- A010697 (program): Period 2: repeat (2,7).
- A010698 (program): Period 2: repeat (2,8).
- A010699 (program): Period 2: repeat (2,9).
- A010700 (program): Period 2: repeat (2,10).
- A010701 (program): Constant sequence: the all 3’s sequence.
- A010702 (program): Period 2: repeat (3,4).
- A010703 (program): Period 2: repeat (3,5).
- A010704 (program): Period 2: repeat (3,6).
- A010705 (program): Period 2: repeat (3,7).
- A010706 (program): Period 2: repeat (3,8).
- A010707 (program): Period 2: repeat (3,9).
- A010708 (program): Period 2: repeat (3,10).
- A010709 (program): Constant sequence: the all 4’s sequence.
- A010710 (program): Period 2: repeat (4,5).
- A010711 (program): Period 2: repeat (4,6).
- A010712 (program): Period 2: repeat (4,7).
- A010713 (program): Period 2: repeat (4,8).
- A010714 (program): Period 2: repeat (4,9).
- A010715 (program): Period 2: repeat (4,10).
- A010716 (program): Constant sequence: the all 5’s sequence.
- A010717 (program): Period 2: repeat (5,6).
- A010718 (program): Periodic sequence: repeat [5, 7].
- A010719 (program): Period 2: repeat {5,8}.
- A010720 (program): Period 2: repeat (5,9).
- A010721 (program): Period 2: repeat (5,10).
- A010722 (program): Constant sequence: the all 6’s sequence.
- A010723 (program): Period 2: repeat (6,7).
- A010724 (program): Period 2: repeat (6,8).
- A010725 (program): Period 2: repeat (6,9).
- A010726 (program): Period 2: repeat (6,10).
- A010727 (program): Constant sequence: the all 7’s sequence.
- A010728 (program): Period 2: repeat (7,8).
- A010729 (program): a(n) = 8 - (-1)^n.
- A010730 (program): a(n) = (17 -3*(-1)^n)/2.
- A010731 (program): Constant sequence: the all 8’s sequence.
- A010732 (program): (17-(-1)^n)/2.
- A010733 (program): Period 2: repeat (8,10).
- A010734 (program): Constant sequence: the all 9’s sequence.
- A010735 (program): Period 2: repeat (9,10).
- A010736 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x. Sequence gives S(n-2,n).
- A010737 (program): a(n) = 2*a(n-2) + 1.
- A010738 (program): Shifts 2 places right under binomial transform.
- A010739 (program): Shifts 2 places left under inverse binomial transform.
- A010748 (program): Shifts 4 places right under inverse binomial transform.
- A010749 (program): Shifts 5 places right under inverse binomial transform.
- A010750 (program): Shifts 6 places right under inverse binomial transform.
- A010751 (program): Up once, down twice, up three times, down four times, …
- A010752 (program): Sum along upward diagonal of Pascal triangle to center.
- A010753 (program): Sum along upward diagonal of Pascal triangle up to (but not including) center.
- A010754 (program): Sum along upward diagonal of Pascal triangle to halfway point.
- A010755 (program): Sum along upward diagonal of Pascal triangle up to (but not including) halfway point.
- A010756 (program): Sum along upward diagonal of Pascal triangle from (but not including) center.
- A010757 (program): Sum along upward diagonal of Pascal triangle from center.
- A010758 (program): Sum along upward diagonal of Pascal triangle from (but not including) halfway point.
- A010759 (program): Sum along upward diagonal of Pascal triangle from halfway point.
- A010761 (program): a(n) = floor(n/2) + floor(n/3).
- A010762 (program): a(n) = floor( n/2 ) * floor( n/3 ).
- A010763 (program): a(n) = binomial(2n+1, n+1) - 1.
- A010764 (program): a(n) = floor(n/2) mod floor(n/3).
- A010765 (program): a(n) = floor(n/2)^floor(n/3).
- A010766 (program): Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.
- A010767 (program): Decimal expansion of 4th root of 2.
- A010768 (program): Decimal expansion of 6th root of 2.
- A010769 (program): Decimal expansion of 7th root of 2.
- A010770 (program): Decimal expansion of 8th root of 2.
- A010771 (program): Decimal expansion of 9th root of 2.
- A010772 (program): Decimal expansion of 10th root of 2.
- A010773 (program): Decimal expansion of 11th root of 2.
- A010774 (program): Decimal expansion of 12th root of 2.
- A010775 (program): Decimal expansion of 13th root of 2.
- A010776 (program): Decimal expansion of 14th root of 2.
- A010783 (program): Triangle of numbers floor(n/(n-k)).
- A010785 (program): Repdigit numbers, or numbers with repeated digits.
- A010786 (program): Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).
- A010790 (program): a(n) = n!*(n+1)!.
- A010791 (program): a(n) = n!*(n+2)!/2.
- A010792 (program): a(n) = n!*(n+3)! / 3!.
- A010793 (program): a(n) = n!*(n+4)! / 4!.
- A010794 (program): a(n) = n!*(n+5)!/5!.
- A010795 (program): a(n) = n!*(n+6)! / 6!.
- A010796 (program): a(n) = n!*(n+1)!/2.
- A010797 (program): n!.(n+1)!.(n+2)! / 2!.3!.
- A010798 (program): n!.(n+1)!.(n+2)!.(n+3)! / 2!.3!.4!.
- A010800 (program): n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)! / 2!*3!*4!*5!*6!.
- A010801 (program): 13th powers: a(n) = n^13.
- A010802 (program): 14th powers: a(n) = n^14.
- A010803 (program): 15th powers: a(n) = n^15.
- A010804 (program): 16th powers: a(n) = n^16.
- A010805 (program): 17th powers: a(n) = n^17.
- A010806 (program): 18th powers: a(n) = n^18.
- A010807 (program): 19th powers: a(n) = n^19.
- A010808 (program): 20th powers: a(n) = n^20.
- A010809 (program): 21st powers: a(n) = n^21.
- A010810 (program): 22nd powers: a(n) = n^22.
- A010811 (program): 23rd powers: a(n) = n^23.
- A010812 (program): 24th powers: a(n) = n^24.
- A010813 (program): 25th powers: a(n) = n^25.
- A010814 (program): Perimeters of integer-sided right triangles.
- A010815 (program): From Euler’s Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).
- A010816 (program): Expansion of Product_{k>=1} (1 - x^k)^3.
- A010817 (program): Expansion of Product_{k>=1} (1 - x^k)^9.
- A010818 (program): Expansion of Product (1 - x^k)^10 in powers of x.
- A010819 (program): Expansion of Product_{k>=1} (1 - x^k)^11.
- A010820 (program): Expansion of Product_{k>=1} (1 - x^k)^13.
- A010821 (program): Expansion of Product_{k>=1} (1 - x^k)^14.
- A010822 (program): Expansion of Product_{k>=1} (1 - x^k)^15.
- A010823 (program): Expansion of Product_{k>=1} (1 - x^k)^17.
- A010824 (program): Expansion of Product_{k>=1} (1 - x^k)^18.
- A010825 (program): Expansion of Product_{k>=1} (1 - x^k)^19.
- A010826 (program): Expansion of Product_{k>=1} (1 - x^k)^20.
- A010827 (program): Expansion of Product_{k>=1} (1 - x^k)^21.
- A010828 (program): Expansion of Product_{k>=1} (1 - x^k)^22.
- A010829 (program): Expansion of Product_{k>=1} (1 - x^k)^23.
- A010830 (program): Expansion of Product_{k>=1} (1-x^k )^25.
- A010831 (program): Expansion of Product (1-x^k )^26.
- A010832 (program): Expansion of Product_{k>=1} (1-x^k )^27.
- A010833 (program): Expansion of Product (1-x^k )^28.
- A010834 (program): Expansion of Product_{k>=1} (1-x^k )^29.
- A010835 (program): Expansion of Product (1-x^k)^30.
- A010836 (program): Expansion of Product_{k>=1} (1-x^k )^31.
- A010837 (program): Expansion of Product (1-x^k )^32.
- A010838 (program): Expansion of Product (1-x^k )^44.
- A010839 (program): Expansion of Product_{k >= 1} (1-x^k)^48.
- A010840 (program): Expansion of Product (1-x^k )^40.
- A010841 (program): Expansion of Product_{k>=1} (1-x^k)^64.
- A010842 (program): Expansion of e.g.f.: exp(2*x)/(1-x).
- A010843 (program): Incomplete Gamma Function at -3.
- A010844 (program): a(n) = 2*n*a(n-1) + 1 with a(0) = 1.
- A010845 (program): a(n) = 3*n*a(n-1) + 1, a(0) = 1.
- A010846 (program): Number of numbers <= n whose set of prime factors is a subset of the set of prime factors of n.
- A010847 (program): Number of numbers <= n with a prime factor that does not divide n.
- A010848 (program): Number of numbers k <= n such that at least one prime factor of n is not a prime factor of k.
- A010849 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x. Sequence gives S(n-3,n).
- A010850 (program): Constant sequence: a(n) = 11.
- A010851 (program): Constant sequence: a(n) = 12.
- A010852 (program): Constant sequence: a(n) = 13.
- A010853 (program): Constant sequence: a(n) = 14.
- A010854 (program): Constant sequence: a(n) = 15.
- A010855 (program): Constant sequence: a(n) = 16.
- A010856 (program): Constant sequence: a(n) = 17.
- A010857 (program): Constant sequence: a(n) = 18.
- A010858 (program): Constant sequence: a(n) = 19.
- A010859 (program): Constant sequence: a(n) = 20.
- A010860 (program): Constant sequence: a(n) = 21.
- A010861 (program): Constant sequence: a(n) = 22.
- A010862 (program): Constant sequence: a(n) = 23.
- A010863 (program): Constant sequence: a(n) = 24.
- A010864 (program): Constant sequence: a(n) = 25.
- A010865 (program): Constant sequence: a(n) = 26.
- A010866 (program): Constant sequence: a(n) = 27.
- A010867 (program): Constant sequence: a(n) = 28.
- A010868 (program): Constant sequence: a(n) = 29.
- A010869 (program): Constant sequence: a(n) = 30.
- A010870 (program): Constant sequence: a(n) = 31.
- A010871 (program): Constant sequence: a(n) = 32.
- A010872 (program): a(n) = n mod 3.
- A010873 (program): a(n) = n mod 4.
- A010874 (program): a(n) = n mod 5.
- A010875 (program): a(n) = n mod 6.
- A010876 (program): a(n) = n mod 7.
- A010877 (program): a(n) = n mod 8.
- A010878 (program): a(n) = n mod 9.
- A010879 (program): Final digit of n.
- A010880 (program): a(n) = n mod 11.
- A010881 (program): Simple periodic sequence: n mod 12.
- A010882 (program): Period 3: repeat [1, 2, 3].
- A010883 (program): Simple periodic sequence: repeat 1,2,3,4.
- A010884 (program): Period 5: repeat [1,2,3,4,5].
- A010885 (program): Period 6: repeat [1, 2, 3, 4, 5, 6].
- A010886 (program): Period 7: repeat [1, 2, 3, 4, 5, 6, 7].
- A010887 (program): Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.
- A010888 (program): Digital root of n (repeatedly add the digits of n until a single digit is reached).
- A010889 (program): Simple periodic sequence: repeat 1,2,3,4,5,6,7,8,9,10.
- A010891 (program): Inverse of 5th cyclotomic polynomial.
- A010892 (program): Inverse of 6th cyclotomic polynomial. A period 6 sequence.
- A010895 (program): Minimal scope of a (2,n) difference triangle.
- A010900 (program): Pisot sequence E(4,13): a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A010901 (program): Pisot sequences E(4,7), P(4,7).
- A010902 (program): Pisot sequence E(14,23), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
- A010903 (program): Pisot sequence E(3,13): a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
- A010904 (program): Pisot sequence E(4,14): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=14.
- A010905 (program): Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15.
- A010907 (program): Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
- A010908 (program): Pisot sequence E(4,21), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
- A010909 (program): Pisot sequence E(4,25): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=25.
- A010910 (program): Pisot sequence E(4,27): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=27.
- A010911 (program): Pisot sequence E(3,11), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
- A010912 (program): Pisot sequences E(3,7), P(3,7).
- A010913 (program): Pisot sequence E(3,17), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
- A010914 (program): Pisot sequence E(5,17), a(n) = floor(a(n-1)^2 / a(n-2) + 1/2).
- A010915 (program): Pisot sequence E(6,16), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A010916 (program): Pisot sequence E(8,10), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A010917 (program): Pisot sequence E(5,21), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A010918 (program): Shallit sequence S(8,55): a(n) = floor(a(n-1)^2/a(n-2) + 1).
- A010919 (program): Pisot sequence T(4,13), a(n) = floor(a(n-1)^2/a(n-2)).
- A010920 (program): Pisot sequence T(3,13), a(n) = floor( a(n-1)^2/a(n-2) ).
- A010921 (program): Shallit sequence S(3,13), a(n)=[ a(n-1)^2/a(n-2)+1 ].
- A010922 (program): Pisot sequence T(14,23), a(n)=[ a(n-1)^2/a(n-2) ].
- A010923 (program): Shallit sequence S(14,23), a(n)=[ a(n-1)^2/a(n-2)+1 ].
- A010924 (program): Pisot sequence E(8,55), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
- A010925 (program): Pisot sequence T(5,21), a(n) = floor( a(n-1)^2/a(n-2) ).
- A010926 (program): Binomial coefficients C(10,n).
- A010927 (program): Binomial coefficient C(11,n).
- A010928 (program): Binomial coefficient C(12,n).
- A010929 (program): Binomial coefficient C(13,n).
- A010930 (program): Binomial coefficient C(14,n).
- A010931 (program): Binomial coefficient C(15,n).
- A010932 (program): Binomial coefficient C(16,n).
- A010933 (program): Binomial coefficient C(17,n).
- A010934 (program): Binomial coefficient C(18,n).
- A010935 (program): Binomial coefficient C(19,n).
- A010936 (program): Binomial coefficient C(20,n).
- A010937 (program): Binomial coefficient C(21,n).
- A010938 (program): Binomial coefficient C(22,n).
- A010939 (program): Binomial coefficient C(23,n).
- A010940 (program): Binomial coefficient C(24,n).
- A010941 (program): Binomial coefficient C(25,n).
- A010942 (program): Binomial coefficient C(26,n).
- A010943 (program): Binomial coefficient C(27,n).
- A010944 (program): Binomial coefficient C(28,n).
- A010945 (program): Binomial coefficient C(29,n).
- A010946 (program): Binomial coefficient C(30,n).
- A010947 (program): Binomial coefficient C(31,n).
- A010948 (program): Binomial coefficient C(32,n).
- A010949 (program): Binomial coefficient C(33,n).
- A010950 (program): Binomial coefficient C(34,n).
- A010951 (program): Binomial coefficient C(35,n).
- A010952 (program): Binomial coefficient C(36,n).
- A010953 (program): Binomial coefficient C(37,n).
- A010954 (program): Binomial coefficient C(38,n).
- A010955 (program): Binomial coefficient C(39,n).
- A010956 (program): Binomial coefficient C(40,n).
- A010957 (program): Binomial coefficient C(41,n).
- A010958 (program): Binomial coefficient C(42,n).
- A010959 (program): Binomial coefficient C(43,n).
- A010960 (program): Binomial coefficient C(44,n).
- A010961 (program): Binomial coefficient C(45,n).
- A010962 (program): Binomial coefficient C(46,n).
- A010963 (program): Binomial coefficient C(47,n).
- A010964 (program): Binomial coefficient C(48,n).
- A010965 (program): a(n) = binomial(n,12).
- A010966 (program): a(n) = binomial(n,13).
- A010967 (program): a(n) = binomial coefficient C(n,14).
- A010968 (program): a(n) = binomial(n,15).
- A010969 (program): a(n) = binomial(n,16).
- A010970 (program): a(n) = binomial(n,17).
- A010971 (program): a(n) = binomial(n,18).
- A010972 (program): a(n) = binomial(n,19).
- A010973 (program): a(n) = binomial(n,20).
- A010974 (program): a(n) = binomial(n,21).
- A010975 (program): a(n) = binomial(n,22).
- A010976 (program): Binomial coefficient C(n,23).
- A010977 (program): a(n) = binomial coefficient C(n,24).
- A010978 (program): a(n) = binomial(n,25).
- A010979 (program): Binomial coefficient C(n,26).
- A010980 (program): a(n) = binomial(n,27).
- A010981 (program): Binomial coefficient C(n,28).
- A010982 (program): Binomial coefficient C(n,29).
- A010983 (program): Binomial coefficient C(n,30).
- A010984 (program): Binomial coefficient C(n,31).
- A010985 (program): Binomial coefficient C(n,32).
- A010986 (program): Binomial coefficient C(n,33).
- A010987 (program): Binomial coefficient C(n,34).
- A010988 (program): Binomial coefficient C(n,35).
- A010989 (program): Binomial coefficient C(n,36).
- A010990 (program): Binomial coefficient C(n,37).
- A010991 (program): Binomial coefficient C(n,38).
- A010992 (program): Binomial coefficient C(n,39).
- A010993 (program): Binomial coefficient C(n,40).
- A010994 (program): a(n) = binomial coefficient C(n,41).
- A010995 (program): Binomial coefficient C(n,42).
- A010996 (program): Binomial coefficient C(n,43).
- A010997 (program): a(n) = binomial coefficient C(n,44).
- A010998 (program): a(n) = binomial coefficient C(n,45).
- A010999 (program): a(n) = binomial coefficient C(n,46).
- A011000 (program): a(n) = binomial coefficient C(n,47).
- A011001 (program): Binomial coefficient C(n,48).
- A011002 (program): Decimal expansion of 4th root of 3.
- A011003 (program): Decimal expansion of 4th root of 5.
- A011004 (program): Decimal expansion of 4th root of 6.
- A011005 (program): Decimal expansion of 4th root of 7.
- A011006 (program): Decimal expansion of 4th root of 8.
- A011007 (program): Decimal expansion of 4th root of 10.
- A011008 (program): Decimal expansion of 4th root of 11.
- A011009 (program): Decimal expansion of 4th root of 12.
- A011010 (program): Decimal expansion of 4th root of 13.
- A011011 (program): Decimal expansion of 4th root of 14.
- A011012 (program): Decimal expansion of 4th root of 15.
- A011013 (program): Decimal expansion of 4th root of 17.
- A011014 (program): Decimal expansion of 4th root of 18.
- A011015 (program): Decimal expansion of 4th root of 19.
- A011016 (program): Decimal expansion of 4th root of 20.
- A011017 (program): Decimal expansion of 4th root of 21.
- A011018 (program): Decimal expansion of 4th root of 22.
- A011019 (program): Decimal expansion of 4th root of 23.
- A011020 (program): Decimal expansion of 4th root of 24.
- A011021 (program): Decimal expansion of 4th root of 26.
- A011022 (program): Decimal expansion of 4th root of 27.
- A011023 (program): Decimal expansion of 4th root of 28.
- A011024 (program): Decimal expansion of 4th root of 29.
- A011025 (program): Decimal expansion of 4th root of 30.
- A011026 (program): Decimal expansion of 4th root of 31.
- A011027 (program): Decimal expansion of 4th root of 32.
- A011028 (program): Decimal expansion of 4th root of 33.
- A011029 (program): Decimal expansion of 4th root of 34.
- A011030 (program): Decimal expansion of 4th root of 35.
- A011031 (program): Decimal expansion of 4th root of 37.
- A011032 (program): Decimal expansion of 4th root of 38.
- A011033 (program): Decimal expansion of 4th root of 39.
- A011034 (program): Decimal expansion of 4th root of 40.
- A011035 (program): Decimal expansion of 4th root of 41.
- A011036 (program): Decimal expansion of 4th root of 42.
- A011037 (program): Decimal expansion of 4th root of 43.
- A011038 (program): Decimal expansion of 4th root of 44.
- A011039 (program): Decimal expansion of 4th root of 45.
- A011040 (program): Decimal expansion of 4th root of 46.
- A011041 (program): Decimal expansion of 4th root of 47.
- A011042 (program): Decimal expansion of 4th root of 48.
- A011043 (program): Decimal expansion of 4th root of 50.
- A011044 (program): Decimal expansion of 4th root of 51.
- A011045 (program): Decimal expansion of 4th root of 52.
- A011046 (program): Decimal expansion of 4th root of 53.
- A011047 (program): Decimal expansion of 4th root of 54.
- A011048 (program): Decimal expansion of 4th root of 55.
- A011049 (program): Decimal expansion of 4th root of 56.
- A011050 (program): Decimal expansion of 4th root of 57.
- A011051 (program): Decimal expansion of 4th root of 58.
- A011052 (program): Decimal expansion of 4th root of 59.
- A011053 (program): Decimal expansion of 4th root of 60.
- A011054 (program): Decimal expansion of 4th root of 61.
- A011055 (program): Decimal expansion of 4th root of 62.
- A011056 (program): Decimal expansion of 4th root of 63.
- A011057 (program): Decimal expansion of 4th root of 65.
- A011058 (program): Decimal expansion of 4th root of 66.
- A011059 (program): Decimal expansion of 4th root of 67.
- A011060 (program): Decimal expansion of 4th root of 68.
- A011061 (program): Decimal expansion of 4th root of 69.
- A011062 (program): Decimal expansion of 4th root of 70.
- A011063 (program): Decimal expansion of 4th root of 71.
- A011064 (program): Decimal expansion of 4th root of 72.
- A011065 (program): Decimal expansion of 4th root of 73.
- A011066 (program): Decimal expansion of 4th root of 74.
- A011067 (program): Decimal expansion of 4th root of 75.
- A011068 (program): Decimal expansion of 4th root of 76.
- A011069 (program): Decimal expansion of 4th root of 77.
- A011070 (program): Decimal expansion of 4th root of 78.
- A011071 (program): Decimal expansion of 4th root of 79.
- A011072 (program): Decimal expansion of 4th root of 80.
- A011073 (program): Decimal expansion of 4th root of 82.
- A011074 (program): Decimal expansion of 4th root of 83.
- A011075 (program): Decimal expansion of 4th root of 84.
- A011076 (program): Decimal expansion of 4th root of 85.
- A011077 (program): Decimal expansion of 4th root of 86.
- A011078 (program): Decimal expansion of 4th root of 87.
- A011079 (program): Decimal expansion of 4th root of 88.
- A011080 (program): Decimal expansion of 4th root of 89.
- A011081 (program): Decimal expansion of 4th root of 90.
- A011082 (program): Decimal expansion of 4th root of 91.
- A011083 (program): Decimal expansion of 4th root of 92.
- A011084 (program): Decimal expansion of 4th root of 93.
- A011085 (program): Decimal expansion of 4th root of 94.
- A011086 (program): Decimal expansion of 4th root of 95.
- A011087 (program): Decimal expansion of 4th root of 96.
- A011088 (program): Decimal expansion of 4th root of 97.
- A011089 (program): Decimal expansion of 4th root of 98.
- A011090 (program): Decimal expansion of 4th root of 99.
- A011091 (program): Decimal expansion of 5th root of 6.
- A011092 (program): Decimal expansion of 5th root of 7.
- A011093 (program): Decimal expansion of 5th root of 8.
- A011094 (program): Decimal expansion of 5th root of 9.
- A011095 (program): Decimal expansion of 5th root of 10.
- A011096 (program): Decimal expansion of 5th root of 11.
- A011097 (program): Decimal expansion of 5th root of 12.
- A011098 (program): Decimal expansion of 5th root of 13.
- A011099 (program): Decimal expansion of 5th root of 14.
- A011100 (program): Decimal expansion of 5th root of 15.
- A011101 (program): Decimal expansion of 5th root of 16.
- A011102 (program): Decimal expansion of 5th root of 17.
- A011103 (program): Decimal expansion of 5th root of 18.
- A011104 (program): Decimal expansion of 5th root of 19.
- A011105 (program): Decimal expansion of 5th root of 20.
- A011106 (program): Decimal expansion of 5th root of 21.
- A011107 (program): Decimal expansion of 5th root of 22.
- A011108 (program): Decimal expansion of 5th root of 23.
- A011109 (program): Decimal expansion of 5th root of 24.
- A011110 (program): Decimal expansion of 5th root of 25.
- A011111 (program): Decimal expansion of 5th root of 26.
- A011112 (program): Decimal expansion of 5th root of 27.
- A011113 (program): Decimal expansion of 5th root of 28.
- A011114 (program): Decimal expansion of 5th root of 29.
- A011115 (program): Decimal expansion of 5th root of 30.
- A011116 (program): Decimal expansion of 5th root of 31.
- A011117 (program): Triangle of numbers S(x,y) = number of lattice paths from (0,0) to (x,y) that use step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x.
- A011118 (program): Decimal expansion of 5th root of 33.
- A011119 (program): Decimal expansion of 5th root of 34.
- A011120 (program): Decimal expansion of 5th root of 35.
- A011121 (program): Decimal expansion of 5th root of 36.
- A011122 (program): Decimal expansion of 5th root of 37.
- A011123 (program): Decimal expansion of 5th root of 38.
- A011124 (program): Decimal expansion of 5th root of 39.
- A011125 (program): Decimal expansion of 5th root of 40.
- A011126 (program): Decimal expansion of 5th root of 41.
- A011127 (program): Decimal expansion of 5th root of 42.
- A011128 (program): Decimal expansion of 5th root of 43.
- A011129 (program): Decimal expansion of 5th root of 44.
- A011130 (program): Decimal expansion of 5th root of 45.
- A011131 (program): Decimal expansion of 5th root of 46.
- A011132 (program): Decimal expansion of 5th root of 47.
- A011133 (program): Decimal expansion of 5th root of 48.
- A011134 (program): Decimal expansion of 5th root of 49.
- A011135 (program): Decimal expansion of 5th root of 50.
- A011136 (program): Decimal expansion of 5th root of 51.
- A011137 (program): Decimal expansion of 5th root of 52.
- A011138 (program): Decimal expansion of 5th root of 53.
- A011139 (program): Decimal expansion of 5th root of 54.
- A011140 (program): Decimal expansion of 5th root of 55.
- A011141 (program): Decimal expansion of 5th root of 56.
- A011142 (program): Decimal expansion of 5th root of 57.
- A011143 (program): Decimal expansion of 5th root of 58.
- A011144 (program): Decimal expansion of 5th root of 59.
- A011145 (program): Decimal expansion of 5th root of 60.
- A011146 (program): Decimal expansion of 5th root of 61.
- A011147 (program): Decimal expansion of 5th root of 62.
- A011148 (program): Decimal expansion of 5th root of 63.
- A011149 (program): Decimal expansion of 5th root of 64.
- A011150 (program): Decimal expansion of 5th root of 65.
- A011151 (program): Decimal expansion of 5th root of 66.
- A011152 (program): Decimal expansion of 5th root of 67.
- A011153 (program): Decimal expansion of 5th root of 68.
- A011154 (program): Decimal expansion of 5th root of 69.
- A011155 (program): Decimal expansion of 5th root of 70.
- A011156 (program): Decimal expansion of 5th root of 71.
- A011157 (program): Decimal expansion of 5th root of 72.
- A011158 (program): Decimal expansion of 5th root of 73.
- A011159 (program): Decimal expansion of 5th root of 74.
- A011160 (program): Decimal expansion of 5th root of 75.
- A011161 (program): Decimal expansion of 5th root of 76.
- A011162 (program): Decimal expansion of 5th root of 77.
- A011163 (program): Decimal expansion of 5th root of 78.
- A011164 (program): Decimal expansion of 5th root of 79.
- A011165 (program): Decimal expansion of 5th root of 80.
- A011166 (program): Decimal expansion of 5th root of 81.
- A011167 (program): Decimal expansion of 5th root of 82.
- A011168 (program): Decimal expansion of 5th root of 83.
- A011169 (program): Decimal expansion of 5th root of 84.
- A011170 (program): Decimal expansion of 5th root of 85.
- A011171 (program): Decimal expansion of 5th root of 86.
- A011172 (program): Decimal expansion of 5th root of 87.
- A011173 (program): Decimal expansion of 5th root of 88.
- A011174 (program): Decimal expansion of 5th root of 89.
- A011175 (program): Decimal expansion of 5th root of 90.
- A011176 (program): Decimal expansion of 5th root of 91.
- A011177 (program): Decimal expansion of 5th root of 92.
- A011178 (program): Decimal expansion of 5th root of 93.
- A011179 (program): Decimal expansion of 5th root of 94.
- A011180 (program): Decimal expansion of 5th root of 95.
- A011181 (program): Decimal expansion of 5th root of 96.
- A011182 (program): Decimal expansion of 5th root of 97.
- A011183 (program): Decimal expansion of 5th root of 98.
- A011184 (program): Decimal expansion of 5th root of 99.
- A011186 (program): Decimal expansion of 7th root of 4.
- A011188 (program): Decimal expansion of 9th root of 4.
- A011190 (program): Decimal expansion of 11th root of 4.
- A011192 (program): Decimal expansion of 13th root of 4.
- A011195 (program): a(n) = n*(n+1)*(2*n+1)*(3*n+1)/6.
- A011197 (program): a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(4*n+1)/6.
- A011199 (program): a(n) = (n+1)*(2*n+1)*(3*n+1).
- A011200 (program): Decimal expansion of 6th root of 5.
- A011201 (program): Decimal expansion of 7th root of 5.
- A011202 (program): Decimal expansion of 8th root of 5.
- A011203 (program): Decimal expansion of 9th root of 5.
- A011204 (program): Decimal expansion of 10th root of 5.
- A011205 (program): Decimal expansion of 11th root of 5.
- A011206 (program): Decimal expansion of 12th root of 5.
- A011207 (program): Decimal expansion of 13th root of 5.
- A011215 (program): Decimal expansion of 6th root of 6.
- A011216 (program): Decimal expansion of 7th root of 6.
- A011217 (program): Decimal expansion of 8th root of 6.
- A011218 (program): Decimal expansion of 9th root of 6.
- A011219 (program): Decimal expansion of 10th root of 6.
- A011220 (program): Decimal expansion of 11th root of 6.
- A011221 (program): Decimal expansion of 12th root of 6.
- A011222 (program): Decimal expansion of 13th root of 6.
- A011230 (program): Decimal expansion of 6th root of 7.
- A011231 (program): Decimal expansion of 7th root of 7.
- A011232 (program): Decimal expansion of 8th root of 7.
- A011233 (program): Decimal expansion of 9th root of 7.
- A011234 (program): Decimal expansion of 10th root of 7.
- A011235 (program): Decimal expansion of 11th root of 7.
- A011236 (program): Decimal expansion of 12th root of 7.
- A011237 (program): Decimal expansion of 13th root of 7.
- A011245 (program): a(n) = (n+1)*(2*n+1)*(3*n+1)*(4*n+1).
- A011246 (program): Decimal expansion of 7th root of 8.
- A011247 (program): Decimal expansion of 8th root of 8.
- A011248 (program): Twice A000364.
- A011249 (program): Decimal expansion of 10th root of 8.
- A011250 (program): Decimal expansion of 11th root of 8.
- A011252 (program): Decimal expansion of 13th root of 8.
- A011261 (program): Decimal expansion of 7th root of 9.
- A011262 (program): In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse).
- A011263 (program): Decimal expansion of 9th root of 9.
- A011264 (program): In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).
- A011265 (program): Decimal expansion of 11th root of 9.
- A011266 (program): a(n) = 2^(n*(n-1)/2)*n!.
- A011267 (program): Decimal expansion of 13th root of 9.
- A011270 (program): Hybrid binary rooted trees with n nodes whose root is labeled by “n”.
- A011275 (program): Decimal expansion of 6th root of 10.
- A011276 (program): Decimal expansion of 7th root of 10.
- A011277 (program): Decimal expansion of 8th root of 10.
- A011278 (program): Decimal expansion of 9th root of 10.
- A011279 (program): Decimal expansion of 10th root of 10.
- A011280 (program): Decimal expansion of 11th root of 10.
- A011281 (program): Decimal expansion of 12th root of 10.
- A011282 (program): Decimal expansion of 13th root of 10.
- A011283 (program): Decimal expansion of 14th root of 10.
- A011290 (program): Decimal expansion of 6th root of 11.
- A011291 (program): Decimal expansion of 7th root of 11.
- A011292 (program): Decimal expansion of 8th root of 11.
- A011293 (program): Decimal expansion of 9th root of 11.
- A011294 (program): Decimal expansion of 10th root of 11.
- A011295 (program): Decimal expansion of 11th root of 11.
- A011296 (program): Decimal expansion of 12th root of 11.
- A011305 (program): Decimal expansion of 6th root of 12.
- A011306 (program): Decimal expansion of 7th root of 12.
- A011307 (program): Decimal expansion of 8th root of 12.
- A011308 (program): Decimal expansion of 9th root of 12.
- A011309 (program): Decimal expansion of 10th root of 12.
- A011310 (program): Decimal expansion of 11th root of 12.
- A011311 (program): Decimal expansion of 12th root of 12.
- A011320 (program): Decimal expansion of 6th root of 13.
- A011321 (program): Decimal expansion of 7th root of 13.
- A011322 (program): Decimal expansion of 8th root of 13.
- A011323 (program): Decimal expansion of 9th root of 13.
- A011324 (program): Decimal expansion of 10th root of 13.
- A011325 (program): Decimal expansion of 11th root of 13.
- A011326 (program): Decimal expansion of 12th root of 13.
- A011327 (program): Decimal expansion of 13th root of 13.
- A011335 (program): Decimal expansion of 6th root of 14.
- A011336 (program): Decimal expansion of 7th root of 14.
- A011337 (program): Decimal expansion of 8th root of 14.
- A011338 (program): Decimal expansion of 9th root of 14.
- A011339 (program): Decimal expansion of 10th root of 14.
- A011340 (program): Decimal expansion of 11th root of 14.
- A011341 (program): Decimal expansion of 12th root of 14.
- A011350 (program): Decimal expansion of 6th root of 15.
- A011351 (program): Decimal expansion of 7th root of 15.
- A011352 (program): Decimal expansion of 8th root of 15.
- A011353 (program): Decimal expansion of 9th root of 15.
- A011354 (program): Decimal expansion of 10th root of 15.
- A011355 (program): Decimal expansion of 11th root of 15.
- A011356 (program): Decimal expansion of 12th root of 15.
- A011357 (program): Decimal expansion of 13th root of 15.
- A011365 (program): Reciprocal of g.f. for A007863.
- A011366 (program): Decimal expansion of 7th root of 16.
- A011367 (program): Expansion of (1-x^2-x^3)/(1-2*x-5*x^2-4*x^3-x^4).
- A011368 (program): Decimal expansion of 9th root of 16.
- A011369 (program): a(n+1) = a(n) - F(n) if > 0, otherwise a(n) + F(n), where F() are Fibonacci numbers; a(0) = 0.
- A011370 (program): Decimal expansion of 11th root of 16.
- A011371 (program): a(n) = n minus (number of 1’s in binary expansion of n). Also highest power of 2 dividing n!.
- A011372 (program): Decimal expansion of 13th root of 16.
- A011373 (program): Number of 1’s in binary expansion of Fibonacci(n).
- A011375 (program): Length of n-th term in A006960.
- A011377 (program): Expansion of 1/((1-x)*(1-2*x)*(1-x^2)).
- A011379 (program): a(n) = n^2*(n+1).
- A011380 (program): Decimal expansion of 6th root of 17.
- A011381 (program): Decimal expansion of 7th root of 17.
- A011382 (program): Decimal expansion of 8th root of 17.
- A011383 (program): Decimal expansion of 9th root of 17.
- A011384 (program): Decimal expansion of 10th root of 17.
- A011385 (program): Decimal expansion of 11th root of 17.
- A011386 (program): Decimal expansion of 12th root of 17.
- A011387 (program): Decimal expansion of 13th root of 17.
- A011395 (program): Decimal expansion of 6th root of 18.
- A011396 (program): Decimal expansion of 7th root of 18.
- A011397 (program): Decimal expansion of 8th root of 18.
- A011398 (program): Decimal expansion of 9th root of 18.
- A011399 (program): Decimal expansion of 10th root of 18.
- A011400 (program): Decimal expansion of 11th root of 18.
- A011401 (program): Decimal expansion of 12th root of 18.
- A011402 (program): Decimal expansion of 13th root of 18.
- A011410 (program): Decimal expansion of 6th root of 19.
- A011411 (program): Decimal expansion of 7th root of 19.
- A011412 (program): Decimal expansion of 8th root of 19.
- A011413 (program): Decimal expansion of 9th root of 19.
- A011414 (program): Decimal expansion of 10th root of 19.
- A011415 (program): Decimal expansion of 11th root of 19.
- A011416 (program): Decimal expansion of 12th root of 19.
- A011417 (program): Decimal expansion of 13th root of 19.
- A011418 (program): Decimal expansion of 14th root of 19.
- A011425 (program): Decimal expansion of 6th root of 20.
- A011426 (program): Decimal expansion of 7th root of 20.
- A011427 (program): Decimal expansion of 8th root of 20.
- A011428 (program): Decimal expansion of 9th root of 20.
- A011429 (program): Decimal expansion of 10th root of 20.
- A011430 (program): Decimal expansion of 11th root of 20.
- A011431 (program): Decimal expansion of 12th root of 20.
- A011446 (program): Decimal expansion of 27th root of 27.
- A011455 (program): Sum 2^Fibonacci(i), i=2..n.
- A011531 (program): Numbers that contain a digit 1 in their decimal representation.
- A011532 (program): Numbers that contain a 2.
- A011533 (program): Numbers that contain a 3.
- A011534 (program): Numbers that contain a 4.
- A011535 (program): Numbers that contain a 5.
- A011536 (program): Numbers that contain a 6.
- A011537 (program): Numbers that contain at least one 7.
- A011538 (program): Numbers that contain an 8.
- A011539 (program): “9ish numbers”: decimal representation contains at least one nine.
- A011540 (program): Numbers that contain a digit 0.
- A011543 (program): Decimal expansion of e truncated to n places.
- A011544 (program): Decimal expansion of e rounded to n places.
- A011545 (program): Decimal expansion of Pi truncated to n places.
- A011546 (program): Decimal expansion of Pi rounded to n places.
- A011547 (program): Decimal expansion of sqrt(2) truncated to n places.
- A011548 (program): Decimal expansion of sqrt(2) rounded to n places.
- A011549 (program): Decimal expansion of sqrt(3) truncated to n places.
- A011550 (program): Decimal expansion of sqrt(3) rounded to n places.
- A011551 (program): Decimal expansion of phi truncated to n places.
- A011552 (program): Decimal expansion of phi rounded to n places.
- A011557 (program): Powers of 10: a(n) = 10^n.
- A011558 (program): Expansion of (x + x^3)/(1 + x + … + x^4) mod 2.
- A011582 (program): Legendre symbol (n,11).
- A011583 (program): Legendre symbol (n,13).
- A011584 (program): Legendre symbol (n,17).
- A011585 (program): Legendre symbol (n,19).
- A011587 (program): Legendre symbol (n,29).
- A011588 (program): Legendre symbol (n,31).
- A011592 (program): Legendre symbol (n,47).
- A011600 (program): Legendre symbol (n,83).
- A011603 (program): Legendre symbol (n,101).
- A011605 (program): Legendre symbol (n,107).
- A011609 (program): Legendre symbol (n,131).
- A011611 (program): Legendre symbol (n,139).
- A011612 (program): Legendre symbol (n,149).
- A011615 (program): Legendre symbol (n,163).
- A011617 (program): Legendre symbol (n,173).
- A011618 (program): Legendre symbol (n,179).
- A011619 (program): Legendre symbol (n,181).
- A011622 (program): Legendre symbol (n,197).
- A011624 (program): Legendre symbol (n,211).
- A011626 (program): Legendre symbol (n,227).
- A011632 (program): 28th cyclotomic polynomial.
- A011634 (program): 35th cyclotomic polynomial.
- A011635 (program): 42nd cyclotomic polynomial.
- A011636 (program): 45th cyclotomic polynomial.
- A011637 (program): 60th cyclotomic polynomial.
- A011638 (program): 63rd cyclotomic polynomial.
- A011639 (program): 65th cyclotomic polynomial.
- A011640 (program): 66th cyclotomic polynomial.
- A011641 (program): 70th cyclotomic polynomial.
- A011642 (program): 77th cyclotomic polynomial.
- A011643 (program): 84th cyclotomic polynomial.
- A011644 (program): 85th cyclotomic polynomial.
- A011645 (program): 90th cyclotomic polynomial.
- A011646 (program): 93rd cyclotomic polynomial.
- A011647 (program): 95th cyclotomic polynomial.
- A011648 (program): 99th cyclotomic polynomial.
- A011649 (program): 102nd cyclotomic polynomial.
- A011652 (program): 114th cyclotomic polynomial.
- A011653 (program): 115th cyclotomic polynomial.
- A011654 (program): 119th cyclotomic polynomial.
- A011655 (program): Period 3: repeat [0, 1, 1].
- A011656 (program): A binary m-sequence: expansion of reciprocal of x^3 + x^2 + 1 (mod 2), shifted by 2 initial 0’s.
- A011657 (program): A binary m-sequence: expansion of reciprocal of x^3 + x + 1 (mod 2, shifted by 2 initial 0’s).
- A011658 (program): Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2).
- A011659 (program): A binary m-sequence: expansion of reciprocal of x^4+x+1.
- A011660 (program): A binary m-sequence: expansion of reciprocal of x^5+x^4+x^2+x+1.
- A011661 (program): A binary m-sequence: expansion of reciprocal of x^5+x^3+x^2+x+1.
- A011662 (program): A binary m-sequence: expansion of reciprocal of x^5 + x^2 + 1.
- A011663 (program): A binary m-sequence: expansion of reciprocal of x^5+x^4+x^3+x+1.
- A011664 (program): A binary m-sequence: expansion of reciprocal of x^5+x^3+1.
- A011665 (program): A binary m-sequence: expansion of the reciprocal of x^5+x^4+x^3+x^2+1.
- A011666 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^4+x+1.
- A011667 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^3+x^2+1.
- A011668 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^2+x+1.
- A011669 (program): A binary m-sequence: expansion of reciprocal of x^6+x+1.
- A011670 (program): A binary m-sequence: expansion of reciprocal of x^6+x^4+x^3+x+1.
- A011671 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^4+x^2+1.
- A011672 (program): Expansion of reciprocal of x^6+x^3+1 (mod 2).
- A011673 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+1.
- A011674 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^4+x^3+x^2+1.
- A011675 (program): A binary m-sequence: expansion of reciprocal of x^7+x^4+1.
- A011676 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^4+x^2+1.
- A011677 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^2+x+1.
- A011678 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^3+x+1.
- A011679 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^4+x+1.
- A011680 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^4+x^2+x+1.
- A011681 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^3+x^2+x+1.
- A011682 (program): A binary m-sequence: expansion of reciprocal of x^7+x+1.
- A011683 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^4+x^3+x^2+x+1.
- A011684 (program): A binary m-sequence: expansion of reciprocal of x^7+x^4+x^3+x^2+1.
- A011685 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^3+x+1.
- A011686 (program): A binary m-sequence: expansion of reciprocal of x^7 + x^6 + 1.
- A011687 (program): A binary m-sequence: expansion of reciprocal of x^7 + x^6 + x^5 + x^4 + 1.
- A011688 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^4+x^3+1.
- A011689 (program): A binary m-sequence: expansion of reciprocal of x^7+x^3+x^2+x+1.
- A011690 (program): A binary m-sequence: expansion of reciprocal of x^7+x^3+1.
- A011691 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^2+1.
- A011692 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^4+x^3+x^2+x+1.
- A011693 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^4+x^3+1.
- A011694 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^3+1.
- A011695 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x^2+1.
- A011696 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x^3+1.
- A011697 (program): A binary m-sequence: expansion of reciprocal of x^8+x^4+x^3+x^2+1.
- A011698 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+x^2+x+1.
- A011699 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x+1.
- A011700 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^3+x+1.
- A011701 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^4+x^3+x^2+x+1.
- A011702 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^4+x^3+x^2+1.
- A011703 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^4+x^3+x^2+1.
- A011704 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^3+x^2+1.
- A011705 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^3+x^2+1.
- A011706 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^2+1.
- A011707 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^4+x^2+x+1.
- A011708 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^3+x^2+x+1.
- A011709 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^2+x+1.
- A011710 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x+1.
- A011711 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^2+x+1.
- A011712 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^4+1.
- A011713 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x+1.
- A011714 (program): A binary m-sequence: expansion of reciprocal of x^8+x^4+x^3+x+1.
- A011715 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+1.
- A011716 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x+1.
- A011717 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^3+x^2+1.
- A011718 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+x^3+x+1.
- A011719 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^3+x+1.
- A011720 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^4+x^3+x^2+x+1.
- A011721 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^3+1.
- A011722 (program): A binary m-sequence: expansion of reciprocal of x^9+x^4+1.
- A011724 (program): A binary m-sequence: expansion of reciprocal of x^11 + x^2 + 1 (mod 2, shifted by 10 initial 0’s).
- A011746 (program): Expansion of (1 + x^2)/(1 + x^2 + x^5) mod 2.
- A011747 (program): Expansion of (1 + x^2 + x^4)/(1 + x^2 + x^3 + x^4 + x^5) mod 2.
- A011748 (program): Expansion of (1 + x^2 + x^4)/(1 + x + x^2 + x^4 + x^5) mod 2.
- A011749 (program): Expansion of 1/(1 + x^3 + x^5) mod 2.
- A011750 (program): Expansion of (1 + x^2)/(1 + x + x^2 + x^3 + x^5) mod 2.
- A011751 (program): Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2.
- A011754 (program): Number of ones in the binary expansion of 3^n.
- A011755 (program): a(n) = Sum_{k=1..n} k*phi(k).
- A011756 (program): a(n) = prime(n(n+1)/2).
- A011757 (program): a(n) = prime(n^2).
- A011758 (program): Barker sequence of length 13.
- A011759 (program): Barker sequence of length 13.
- A011760 (program): Elevator buttons in U.S.A.: Positive integers except 13.
- A011761 (program): a(n) = a(n-1) + a(n-3), with a(0) = a(1) = 1, a(2) = 5.
- A011763 (program): Days in year in proleptic Gregorian calendar.
- A011765 (program): Period 4: repeat [0, 0, 0, 1].
- A011767 (program): From studying monochromatic solutions to x3-x2=x2-x1+2n.
- A011769 (program): a(0) = 1, a(n+1) = 3 * a(n) - F(n)*(F(n) + 1), where F(n) = A000045(n) is n-th Fibonacci number.
- A011772 (program): Smallest number m such that m(m+1)/2 is divisible by n.
- A011773 (program): Variant of Carmichael’s lambda function: a(p1^e1*…*pN^eN) = lcm((p1-1)*p1^(e1-1), …, (pN-1)*pN^(eN-1)).
- A011776 (program): a(1) = 1; for n > 1, a(n) is defined by the property that n^a(n) divides n! but n^(a(n)+1) does not.
- A011779 (program): Expansion of 1/((1-x)^3*(1-x^3)^2).
- A011780 (program): Expansion of 1/(1-2*x)^3/(1-x^2)^2.
- A011781 (program): Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).
- A011782 (program): Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
- A011785 (program): Number of 3 X 3 matrices whose determinant is 1 mod n.
- A011791 (program): Number of directed animals on a certain lattice.
- A011794 (program): Triangle defined by a(n+1,k)=a(n,k-1)+a(n-1,k), a(n,1)=1, a(1,k)=1, a(2,k)=min(2,k).
- A011795 (program): a(n) = floor(C(n,4)/5).
- A011796 (program): Number of irreducible alternating Euler sums of depth 6 and weight 6+2n.
- A011797 (program): a(n) = floor(C(n,6)/7).
- A011800 (program): Number of labeled forests of n nodes each component of which is a path.
- A011818 (program): Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,…,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }).
- A011819 (program): M-sequences m_0,m_1,m_2,m_3 with m_1 < n.
- A011826 (program): f-vectors for simplicial complexes of dimension at most 1 (graphs) on at most n-1 vertices.
- A011827 (program): f-vectors for simplicial complexes of dimension at most 2 on at most n-1 vertices.
- A011842 (program): a(n) = floor(n(n-1)(n-2)/24).
- A011843 (program): a(n) = floor(binomial(n,5)/6).
- A011844 (program): [ C(n,7)/8 ].
- A011845 (program): a(n) = floor( binomial(n,8)/9).
- A011846 (program): a(n) = floor( binomial(n,9)/10 ).
- A011847 (program): Triangle of numbers read by rows: T(n,k) = floor( C(n,k)/(k+1) ), where k=0..n-1 and n >= 1.
- A011848 (program): a(n) = floor(binomial(n,2)/2).
- A011849 (program): a(n) = floor(binomial(n,3)/3).
- A011850 (program): a(n) = floor(binomial(n,4)/4).
- A011851 (program): a(n) = floor(binomial(n,5)/5).
- A011852 (program): a(n) = floor(binomial(n,6)/6).
- A011853 (program): [ binomial(n,7)/7 ].
- A011854 (program): a(n) = floor(binomial(n,8)/8).
- A011855 (program): a(n) = floor(binomial(n,9)/9).
- A011856 (program): a(n) = floor(binomial(n,10)/10).
- A011857 (program): Triangle of numbers [ C(n,k)/k ], k=1..n-1.
- A011858 (program): a(n) = floor( n*(n-1)/5 ).
- A011860 (program): Floor( n(n-1)/7 ).
- A011861 (program): a(n) = floor(n(n-1)/8).
- A011862 (program): a(n) = floor(n*(n-1)/9).
- A011863 (program): Nearest integer to (n/2)^4.
- A011864 (program): a(n) = floor(n*(n - 1)/11).
- A011865 (program): a(n) = floor( n*(n - 1)/12 ).
- A011866 (program): a(n) = floor(n*(n-1)/13).
- A011867 (program): a(n) = floor(n*(n-1)/14).
- A011868 (program): a(n) = floor(n*(n-1)/15).
- A011869 (program): a(n) = floor(n*(n-1)/16).
- A011870 (program): a(n) = floor(n*(n-1)/17).
- A011871 (program): [ n(n-1)/18 ].
- A011872 (program): [ n(n-1)/19 ].
- A011873 (program): a(n) = floor(n(n-1)/20).
- A011874 (program): a(n) = floor(n*(n-1)/21).
- A011875 (program): Floor( n*(n-1)/22 ).
- A011876 (program): [ n(n-1)/23 ].
- A011877 (program): a(n) = floor(n*(n-1)/24).
- A011878 (program): a(n) = floor( n(n-1)/25 ).
- A011879 (program): a(n) = floor( n(n-1)/26 ).
- A011880 (program): a(n) = floor(n*(n-1)/27).
- A011881 (program): a(n) = floor(n*(n-1)/28).
- A011882 (program): [ n(n-1)/29 ].
- A011883 (program): a(n) = floor(n*(n-1)/30).
- A011884 (program): Floor(n(n - 1)/31).
- A011885 (program): [ n(n-1)/32 ].
- A011886 (program): a(n) = floor(n*(n-1)*(n-2)/4).
- A011887 (program): [ n(n-1)(n-2)/5 ].
- A011888 (program): Partial sums of A011863.
- A011889 (program): a(n) = floor(n*(n-1)*(n-2)/7).
- A011890 (program): [ n(n-1)(n-2)/8 ].
- A011891 (program): a(n) = floor( n*(n-1)*(n-2)/9 ).
- A011892 (program): [ n(n-1)(n-2)/10 ].
- A011893 (program): [ n(n-1)(n-2)/11 ].
- A011894 (program): a(n) = floor(n(n-1)(n-2)/12).
- A011895 (program): a(n) = floor(n*(n-1)*(n-2)/13).
- A011896 (program): [ n(n-1)(n-2)/14 ].
- A011897 (program): a(n) = floor(n*(n-1)*(n-2)/15).
- A011898 (program): a(n) = floor(n*(n-1)*(n-2)/16).
- A011899 (program): a(n) = floor(n*(n-1)*(n-2)/17).
- A011900 (program): a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3.
- A011901 (program): [ n(n-1)(n-2)/19 ].
- A011902 (program): [ n(n-1)(n-2)/20 ].
- A011903 (program): a(n) = floor(n*(n-1)*(n-2)/21).
- A011904 (program): [ n(n-1)(n-2)/22 ].
- A011905 (program): [ n(n-1)(n-2)/23 ].
- A011906 (program): If b(n) is A011900(n) and c(n) is A001109(n), then a(n) = b(n)*c(n) = b(n) + (b(n)+1) + (b(n)+2) + … + c(n).
- A011907 (program): [ n(n-1)(n-2)/25 ].
- A011908 (program): [ n(n-1)(n-2)/26 ].
- A011909 (program): a(n) = floor( n*(n-1)*(n-2)/27 ).
- A011910 (program): Floor( n(n-1)(n-2)/28 ).
- A011911 (program): [ n(n-1)(n-2)/29 ].
- A011912 (program): a(n) = floor(n(n-1)(n-2)/30).
- A011913 (program): a(n) = floor(n*(n - 1)*(n - 2)/31).
- A011914 (program): a(n) = floor(n*(n - 1)*(n - 2)/32).
- A011915 (program): a(n) = floor(n(n-1)(n-2)(n-3)/5).
- A011916 (program): a(n) = ((b(n)-1)+sqrt(3*b(n)^2-4*b(n)+1))/2, where b(n) is A011922(n).
- A011917 (program): [ n(n-1)(n-2)(n-3)/7 ].
- A011918 (program): a(n) = A011916(n) + A011922(n) - 1.
- A011919 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/9).
- A011920 (program): a(n) = b(n)*(b(n)+1) = b(n) + … + c(n), where b(n) = A011916(n), c(n) = A011918(n).
- A011921 (program): [ n(n-1)(n-2)(n-3)/11 ].
- A011922 (program): a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
- A011923 (program): [ n(n-1)(n-2)(n-3)/13 ].
- A011924 (program): Floor[n(n-1)(n-2)(n-3)/14].
- A011925 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/15).
- A011926 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/16).
- A011927 (program): [ n(n-1)(n-2)(n-3)/17 ].
- A011928 (program): a(n) = floor(n(n-1)(n-2)(n-3)/18).
- A011929 (program): a(n) = floor(n(n-1)(n-2)(n-3)/19).
- A011930 (program): a(n) = floor(n(n-1)(n-2)(n-3)/20).
- A011931 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/21).
- A011932 (program): [ n(n-1)(n-2)(n-3)/22 ].
- A011933 (program): a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).
- A011934 (program): a(n) = |1^3 - 2^3 + 3^3 - 4^3 + … + (-1)^(n+1)*n^3|.
- A011935 (program): [ n(n-1)(n-2)(n-3)/25 ].
- A011936 (program): a(n) = floor( n(n-1)(n-2)(n-3)/26 ).
- A011937 (program): [ n(n-1)(n-2)(n-3)/27 ].
- A011938 (program): a(n) = floor( n*(n-1)*(n-2)*(n-3)/28 ).
- A011939 (program): [ n(n-1)(n-2)(n-3)/29 ].
- A011940 (program): a(n) = floor(n(n-1)(n-2)(n-3)/30).
- A011941 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/31).
- A011942 (program): [ n(n-1)(n-2)(n-3)/32 ].
- A011943 (program): Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
- A011944 (program): a(n) = 14*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
- A011945 (program): Areas of almost-equilateral Heronian triangles (integral side lengths m-1, m, m+1 and integral area).
- A011946 (program): Number of Barlow packings with group P63/mmc(S) that repeat after 4n layers.
- A011947 (program): Number of Barlow packings with group P63/mmc(O) that repeat after 4n+2 layers.
- A011960 (program): Number of ferrites M_2Y_n that repeat after 6n+10 layers.
- A011965 (program): Second differences of Bell numbers.
- A011966 (program): Third differences of Bell numbers.
- A011967 (program): 4th differences of Bell numbers.
- A011968 (program): Apply (1+Shift) to Bell numbers.
- A011969 (program): Apply (1+Shift)^2 to Bell numbers.
- A011970 (program): Apply (1+Shift)^3 to Bell numbers.
- A011971 (program): Aitken’s array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).
- A011972 (program): Sequence formed by reading rows of triangle defined in A011971.
- A011973 (program): Irregular triangle of numbers read by rows: {binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials.
- A011974 (program): 2 followed by the numbers that are the sum of 2 successive primes.
- A011975 (program): Covering numbers C(n,3,2).
- A011978 (program): Covering numbers C(n,6,2) (next term is <= 15).
- A012000 (program): Expansion of 1/sqrt(1 - 4*x + 16*x^2).
- A012007 (program): cosh(log(cos(x))) = 1+3/4!*x^4+30/6!*x^6+693/8!*x^8+25260/10!*x^10…
- A012019 (program): E.g.f.: exp(sin(arctan(x))).
- A012020 (program): Expansion of e.g.f.: sin(sin(arctan(x))) (odd powers only).
- A012022 (program): Expansion of e.g.f.: arctan(sin(arctan(x))) (odd powers only).
- A012023 (program): Expansion of e.g.f. cos(sin(arctan(x))) (even powers).
- A012024 (program): E.g.f. sinh(sin(arctan(x))) (odd powers only).
- A012025 (program): E.g.f. arcsinh(sin(arctan(x))) = arcsinh(x/(1+x^2)^(1/2)) (odd powers only).
- A012027 (program): E.g.f. cosh(sin(arctan(x))) = cosh(x/sqrt(1+x^2)) (even powers only).
- A012125 (program): Expansion of x/ (1-4*x+16*x^2)^(3/2).
- A012132 (program): Numbers z such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x,y.
- A012150 (program): Expansion of e.g.f. exp(tan(arcsin(x))).
- A012244 (program): a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.
- A012245 (program): Characteristic function of factorial numbers; also decimal expansion of Liouville’s number or Liouville’s constant.
- A012249 (program): Volume of a certain rational polytope whose points with given denominator count certain sets of Standard Tableaux.
- A012250 (program): A012249(2n) divided by 2^(2n-1).
- A012393 (program): E.g.f. arctanh(tan(x)*tan(x)) (even powers only).
- A012493 (program): Take every 5th term of Padovan sequence A000931, beginning with the fifth term.
- A012509 (program): E.g.f.: -log(cos(x)*cos(x)) (even powers only).
- A012770 (program): -log(cosh(x)*cos(x))=-4/4!*x^4-544/8!*x^8-707584/12!*x^12…
- A012772 (program): Take every 5th term of Padovan sequence A000931, beginning with the sixth term.
- A012781 (program): Take every 5th term of Padovan sequence A000931, beginning with the second term.
- A012814 (program): Take every 5th term of Padovan sequence A000931, beginning with the third term.
- A012816 (program): E.g.f. arctan(sec(x)*sinh(x)) (odd powers only).
- A012853 (program): Expansion of sec(x)^2+sech(x)^2 in powers of x^4.
- A012855 (program): a(0) = 0, a(1) = 1, a(2) = 1; thereafter a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3).
- A012858 (program): Numerator of [x^(4n+2)] in the Taylor series log(cosec(x)*sinh(x))= x^2/3 +2*x^6/2835 +2*x^10/467775 +4*x^14/127702575 +..
- A012864 (program): Take every 5th term of Padovan sequence A000931, beginning with the first term.
- A012866 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
- A012870 (program): Numerator of [x^(4n+2)] in the Taylor series -log(cot(x)*tanh(x))= 2*x^2/3 +124*x^6/2835 +292*x^10/66825 +65528*x^14/127702575 -…
- A012880 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
- A012886 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
- A012899 (program): E.g.f.: exp(arcsin(x)+log(x+1)).
- A012960 (program): Expansion of e.g.f. exp(arctan(x)+log(x+1)).
- A013013 (program): exp(sinh(x)+log(x+1))=1+2*x+3/2!*x^2+5/3!*x^3+13/4!*x^4+37/5!*x^5…
- A013104 (program): sin(arcsinh(x)+arctan(x))=2*x-11/3!*x^3+185/5!*x^5-6785/7!*x^7…
- A013108 (program): cos(arcsinh(x)+arctan(x))=1-4/2!*x^2+40/4!*x^4-1030/6!*x^6+51160/8!*x^8…
- A013155 (program): Expansion of e.g.f.: exp(arctanh(x)+log(x+1))=1+2*x+3/2!*x^2+6/3!*x^3+21/4!*x^4+90/5!*x^5…
- A013170 (program): Expansion of e.g.f.: exp(arctanh(x)+arcsin(x)).
- A013174 (program): exp(arctanh(x) + arctan(x)) = 1 + 2*x + 4/2!*x^2 + 8/3!*x^3 + 16/4!*x^4 + 80/5!*x^5 +…
- A013175 (program): sin(arctanh(x)+arctan(x))=2*x-8/3!*x^3+80/5!*x^5-4160/7!*x^7…
- A013179 (program): cos(arctanh(x)+arctan(x))=1-4/2!*x^2+16/4!*x^4-640/6!*x^6+21760/8!*x^8…
- A013299 (program): -sinh(log(x+1)-arctanh(x)) = 1/2!*x^2 + 6/4!*x^4 + 135/6!*x^6 + 6300/8!*x^8 + …
- A013302 (program): E.g.f.: cosh(log(x+1)-arctanh(x)) (even powers only).
- A013304 (program): sech(log(x+1)-arctanh(x))=1-3/4!*x^4-90/6!*x^6-4095/8!*x^8…
- A013326 (program): Expansion of -(2*x^3-x^2+x-1)/(x^4-3*x^3+3*x^2-3*x+1).
- A013397 (program): exp(arcsin(x)-log(x+1))=1+1/2!*x^2-1/3!*x^3+9/4!*x^4-25/5!*x^5…
- A013430 (program): Expansion of e.g.f. exp(arcsin(x)-arctanh(x)).
- A013436 (program): cosh(arcsin(x)-arctanh(x))=1+10/6!*x^6+840/8!*x^8+87750/10!*x^10…
- A013459 (program): Expansion of e.g.f. exp(arctan(x) - log(x+1)).
- A013462 (program): Expansion of e.g.f.: exp(arctan(x)-arctanh(x))=1-4/3!*x^3+160/6!*x^6-1440/7!*x^7…
- A013463 (program): E.g.f.: sin(arctan(x) - arctanh(x)) (odd powers only).
- A013465 (program): cos(arctan(x)-arctanh(x))=1-160/6!*x^6-691200/10!*x^10+3942400/12!*x^12…
- A013488 (program): Expansion of e.g.f.: exp(sinh(x)-log(x+1))=1+1/2!*x^2-1/3!*x^3+9/4!*x^4-33/5!*x^5…
- A013492 (program): exp(arcsinh(x)-log(x+1)) = 1+1/2!*x^2-3/3!*x^3+9/4!*x^4-45/5!*x^5…
- A013498 (program): Number of permutations in S_n with a certain property.
- A013499 (program): a(n) = 2*n^n, n >= 2, otherwise a(n) = 1.
- A013523 (program): Denominator of [x^(2n+1)] in the Taylor expansion arcsinh(cosec(x) - cot(x)).
- A013525 (program): E.g.f.: x + (gdinv x - sinh x)/2, where gdinv = inverse-Gudermannian. Sequence has odd-indexed coefficients; others are zero.
- A013574 (program): Minimal scope of an (n,2) difference triangle.
- A013575 (program): Minimal scope of an (n,3) difference triangle.
- A013576 (program): Minimal scope of an (n,4) difference triangle.
- A013580 (program): Triangle formed in same way as Pascal’s triangle (A007318) except 1 is added to central element in even-numbered rows.
- A013588 (program): Smallest positive integer not the determinant of an n X n {0,1}-matrix.
- A013609 (program): Triangle of coefficients in expansion of (1+2*x)^n.
- A013610 (program): Triangle of coefficients in expansion of (1+3*x)^n.
- A013611 (program): Triangle of coefficients in expansion of (1+4x)^n.
- A013612 (program): Triangle of coefficients in expansion of (1+5x)^n.
- A013613 (program): Triangle of coefficients in expansion of (1+6x)^n.
- A013614 (program): Triangle of coefficients in expansion of (1+7x)^n.
- A013615 (program): Triangle of coefficients in expansion of (1+8x)^n.
- A013616 (program): Triangle of coefficients in expansion of (1+9x)^n.
- A013617 (program): Triangle of coefficients in expansion of (1+10x)^n.
- A013618 (program): Triangle of coefficients in expansion of (1+11x)^n.
- A013619 (program): Triangle of coefficients in expansion of (1+12x)^n.
- A013620 (program): Triangle of coefficients in expansion of (2+3x)^n.
- A013621 (program): Triangle of coefficients in expansion of (2+5x)^n.
- A013622 (program): Triangle of coefficients in expansion of (3+5x)^n.
- A013623 (program): Triangle of coefficients in expansion of (2+7x)^n.
- A013624 (program): Triangle of coefficients in expansion of (3+7x)^n.
- A013625 (program): Triangle of coefficients in expansion of (4+7x)^n.
- A013626 (program): Triangle of coefficients in expansion of (5+7x)^n.
- A013627 (program): Triangle of coefficients in expansion of (6+7x)^n.
- A013628 (program): Triangle of coefficients in expansion of (4+5x)^n.
- A013632 (program): Difference between n and the next prime greater than n.
- A013633 (program): nextprime(n) - prevprime(n).
- A013634 (program): a(n) = nextprime(n) + n.
- A013635 (program): a(n) = prevprime(n) + n.
- A013636 (program): n*nextprime(n).
- A013637 (program): n*prevprime(n).
- A013638 (program): a(n) = prevprime(n)*nextprime(n).
- A013654 (program): Each term of the period of continued fraction for sqrt(n) divides n.
- A013655 (program): a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.
- A013656 (program): a(n) = n*(9*n-2).
- A013661 (program): Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.
- A013662 (program): Decimal expansion of zeta(4).
- A013664 (program): Decimal expansion of zeta(6).
- A013697 (program): Second term in continued fraction for zeta(n).
- A013698 (program): a(n) = binomial(3*n+2, n-1).
- A013708 (program): a(n) = 3^(2n+1).
- A013709 (program): a(n) = 4^(2n+1).
- A013710 (program): a(n) = 5^(2*n + 1).
- A013711 (program): a(n) = 6^(2n+1).
- A013712 (program): a(n) = 7^(2*n + 1).
- A013713 (program): a(n) = 8^(2n+1).
- A013714 (program): a(n) = 9^(2*n + 1).
- A013715 (program): a(n) = 10^(2n+1).
- A013716 (program): a(n) = 11^(2*n + 1).
- A013717 (program): a(n) = 12^(2*n + 1).
- A013718 (program): a(n) = 13^(2*n + 1).
- A013719 (program): a(n) = 14^(2*n + 1).
- A013720 (program): a(n) = 15^(2*n + 1).
- A013721 (program): a(n) = 16^(2*n + 1).
- A013722 (program): a(n) = 17^(2*n + 1).
- A013723 (program): a(n) = 18^(2*n + 1).
- A013724 (program): a(n) = 19^(2*n + 1).
- A013725 (program): a(n) = 20^(2*n + 1).
- A013726 (program): a(n) = 21^(2*n + 1).
- A013727 (program): a(n) = 22^(2*n + 1).
- A013728 (program): a(n) = 23^(2*n + 1).
- A013729 (program): a(n) = 24^(2*n + 1).
- A013730 (program): a(n) = 2^(3n+1).
- A013731 (program): a(n) = 2^(3*n+2).
- A013732 (program): a(n) = 3^(3*n + 1).
- A013733 (program): a(n) = 3^(3n+2).
- A013734 (program): a(n) = 4^(3*n+1).
- A013735 (program): a(n) = 4^(3*n+2).
- A013736 (program): a(n) = 5^(3*n + 1).
- A013737 (program): a(n) = 5^(3*n + 2).
- A013738 (program): a(n) = 6^(3*n + 1).
- A013739 (program): a(n) = 6^(3*n + 2).
- A013740 (program): a(n) = 7^(3*n + 1).
- A013741 (program): a(n) = 7^(3*n + 2).
- A013742 (program): a(n) = 8^(3*n + 1).
- A013743 (program): a(n) = 8^(3*n + 2).
- A013744 (program): a(n) = 9^(3*n + 1).
- A013745 (program): a(n) = 9^(3*n + 2).
- A013746 (program): a(n) = 10^(3*n + 1).
- A013747 (program): a(n) = 10^(3*n + 2).
- A013748 (program): a(n) = 11^(3*n + 1).
- A013749 (program): a(n) = 11^(3*n + 2).
- A013750 (program): a(n) = 12^(3*n + 1).
- A013753 (program): a(n) = 13^(3*n + 2).
- A013754 (program): a(n) = 14^(3*n + 1).
- A013755 (program): a(n) = 14^(3*n + 2).
- A013756 (program): a(n) = 15^(3*n + 1).
- A013757 (program): a(n) = 15^(3*n + 2).
- A013758 (program): a(n) = 16^(3n+1).
- A013761 (program): a(n) = 17^(3*n + 2).
- A013766 (program): 20^(3n+1).
- A013767 (program): a(n) = 20^(3*n + 2).
- A013768 (program): a(n) = 21^(3*n + 1).
- A013769 (program): a(n) = 21^(3*n + 2).
- A013770 (program): a(n) = 22^(3*n + 1).
- A013771 (program): a(n) = 22^(3*n + 2).
- A013772 (program): a(n) = 23^(3*n + 1).
- A013776 (program): a(n) = 2^(4*n+1).
- A013777 (program): a(n) = 2^(4*n + 3).
- A013778 (program): a(n) = 3^(4*n + 1).
- A013779 (program): a(n) = 3^(4*n + 3).
- A013780 (program): a(n) = 4^(4*n + 1).
- A013781 (program): a(n) = 4^(4*n + 3).
- A013782 (program): a(n) = 5^(4*n + 1).
- A013783 (program): a(n) = 5^(4*n + 3).
- A013784 (program): a(n) = 6^(4*n + 1).
- A013785 (program): a(n) = 6^(4n+3).
- A013786 (program): a(n) = 7^(4*n + 1).
- A013787 (program): a(n) = 7^(4*n + 3).
- A013788 (program): a(n) = 8^(4*n + 1).
- A013789 (program): a(n) = 8^(4*n + 3).
- A013790 (program): a(n) = 9^(4*n + 1).
- A013791 (program): a(n) = 9^(4*n + 3).
- A013792 (program): a(n) = 10^(4*n + 1).
- A013794 (program): a(n) = 11^(4n+1).
- A013796 (program): a(n) = 12^(4*n + 1).
- A013822 (program): a(n) = 2^(5*n + 1).
- A013823 (program): a(n) = 2^(5*n + 2).
- A013824 (program): a(n) = 2^(5*n + 3).
- A013825 (program): a(n) = 2^(5*n + 4).
- A013826 (program): a(n) = 3^(5*n + 1).
- A013827 (program): a(n) = 3^(5*n + 2).
- A013828 (program): a(n) = 3^(5*n + 3).
- A013829 (program): a(n) = 3^(5*n + 4).
- A013830 (program): a(n) = 4^(5*n + 1).
- A013831 (program): a(n) = 4^(5n+2).
- A013832 (program): a(n) = 4^(5*n + 3).
- A013833 (program): a(n) = 4^(5*n + 4).
- A013834 (program): a(n) = 5^(5*n + 1).
- A013835 (program): a(n) = 5^(5*n + 2).
- A013836 (program): a(n) = 5^(5*n + 3).
- A013837 (program): a(n) = 5^(5*n + 4).
- A013838 (program): a(n) = 6^(5*n + 1).
- A013839 (program): a(n) = 6^(5n+2).
- A013840 (program): a(n) = 6^(5*n + 3).
- A013841 (program): a(n) = 6^(5*n + 4).
- A013842 (program): a(n) = 7^(5*n + 1).
- A013843 (program): a(n) = 7^(5*n + 2).
- A013915 (program): a(n) = F(n) + L(n) + n, where F(n) (A000045) and L(n) (A000204) are Fibonacci and Lucas numbers respectively.
- A013919 (program): Numbers n such that sum of first n composites is composite.
- A013920 (program): Composite numbers k such that the sum of all composites <= k is composite.
- A013921 (program): Composite numbers that are equal to the sum of the first k composites for some k.
- A013926 (program): a(n) = (2*n)! * D_{2*n}, where D_{2*n} = (1/Pi) * Integral_{x=0..oo} [1 - x^(2*n) / Product_{j=1..n} (x^2+j^2)] dx.
- A013928 (program): Number of (positive) squarefree numbers < n.
- A013929 (program): Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
- A013936 (program): a(n) = Sum_{k=1..n} floor(n/k^2).
- A013937 (program): a(n) = Sum_{k=1..n} floor(n/k^3).
- A013938 (program): a(n) = Sum_{k=1..n} floor(n/k^4).
- A013939 (program): Partial sums of sequence A001221 (number of distinct primes dividing n).
- A013940 (program): a(n) = Sum_{k=1..n} floor(n/prime(k)^2).
- A013941 (program): a(n) = Sum_{k = 1..n} floor(n/prime(k)^3).
- A013942 (program): Triangle of numbers T(n,k) = floor(2n/k), k=1..2n, read by rows.
- A013945 (program): Least d such that period of continued fraction for sqrt(d) contains n (n^2+2 if n odd, (n/2)^2+1 if n even).
- A013946 (program): Least d for which the number with continued fraction [n,n,n,n…] is in Q(sqrt(d)).
- A013947 (program): Positions of 1’s in Kolakoski sequence (A000002).
- A013948 (program): Positions of 2’s in Kolakoski sequence (A000002).
- A013954 (program): a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
- A013955 (program): a(n) = sigma_7(n), the sum of the 7th powers of the divisors of n.
- A013956 (program): sigma_8(n), the sum of the 8th powers of the divisors of n.
- A013957 (program): sigma_9(n), the sum of the 9th powers of the divisors of n.
- A013958 (program): a(n) = sigma_10(n), the sum of the 10th powers of the divisors of n.
- A013959 (program): a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.
- A013960 (program): a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.
- A013961 (program): a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
- A013962 (program): a(n) = sigma_14(n), the sum of the 14th powers of the divisors of n.
- A013963 (program): a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.
- A013964 (program): a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.
- A013965 (program): a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.
- A013966 (program): a(n) = sigma_18(n), the sum of the 18th powers of the divisors of n.
- A013967 (program): a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.
- A013968 (program): a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n.
- A013969 (program): a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.
- A013970 (program): a(n) = sum of 22nd powers of divisors of n.
- A013971 (program): a(n) = sum of 23rd powers of divisors of n.
- A013972 (program): a(n) = sum of 24th powers of divisors of n.
- A013973 (program): Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).
- A013974 (program): Eisenstein series E_10(q) (alternate convention E_5(q)).
- A013979 (program): Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).
- A013981 (program): Number of commutative elements in Coxeter group H_n.
- A013982 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5).
- A013983 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6).
- A013984 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7).
- A013985 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8).
- A013986 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
- A013987 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
- A013989 (program): a(n) = (n+1)*(a(n-1)/n + a(n-2)), with a(0)=1, a(1)=2.
- A013999 (program): From applying the “rational mean” to the number e.
- A014001 (program): Pisot sequence E(7,15), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
- A014002 (program): Pisot sequence E(8,14), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
- A014003 (program): Pisot sequence E(9,15), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A014004 (program): Pisot sequence E(9,17), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
- A014005 (program): Pisot sequence E(9,19), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
- A014006 (program): Pisot sequence E(10,18), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
- A014007 (program): Pisot sequence E(10,21), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
- A014008 (program): Pisot sequence E(10,22), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
- A014009 (program): First differences of Shallit sequence S(3,7) (A020730).
- A014010 (program): Linear recursion relative of Shallit sequence S(2,6).
- A014016 (program): Expansion of inverse of 7th cyclotomic polynomial; period 7: repeat [1, -1, 0, 0, 0, 0, 0].
- A014017 (program): Inverse of 8th cyclotomic polynomial.
- A014018 (program): Inverse of 9th cyclotomic polynomial.
- A014019 (program): Inverse of 10th cyclotomic polynomial.
- A014020 (program): Inverse of 11th cyclotomic polynomial.
- A014021 (program): Inverse of 12th cyclotomic polynomial.
- A014022 (program): Inverse of 13th cyclotomic polynomial.
- A014023 (program): Inverse of 14th cyclotomic polynomial.
- A014024 (program): Inverse of 15th cyclotomic polynomial.
- A014025 (program): Expansion of the inverse of the 16th cyclotomic polynomial.
- A014026 (program): Inverse of 17th cyclotomic polynomial.
- A014027 (program): Inverse of 18th cyclotomic polynomial.
- A014028 (program): Inverse of 19th cyclotomic polynomial.
- A014029 (program): Inverse of 20th cyclotomic polynomial.
- A014030 (program): Inverse of 21st cyclotomic polynomial.
- A014031 (program): Inverse of 22nd cyclotomic polynomial.
- A014032 (program): Inverse of 23rd cyclotomic polynomial.
- A014033 (program): Inverse of 24th cyclotomic polynomial.
- A014034 (program): Inverse of 25th cyclotomic polynomial.
- A014035 (program): Inverse of 26th cyclotomic polynomial.
- A014036 (program): Inverse of 27th cyclotomic polynomial.
- A014037 (program): Inverse of 28th cyclotomic polynomial.
- A014038 (program): Inverse of 29th cyclotomic polynomial.
- A014039 (program): Inverse of 30th cyclotomic polynomial.
- A014040 (program): Inverse of 31st cyclotomic polynomial.
- A014041 (program): Inverse of 32nd cyclotomic polynomial.
- A014043 (program): Inverse of 34th cyclotomic polynomial.
- A014045 (program): Inverse of 36th cyclotomic polynomial.
- A014047 (program): Inverse of 38th cyclotomic polynomial.
- A014049 (program): Inverse of 40th cyclotomic polynomial.
- A014050 (program): a(n) = (n^2+1)^n.
- A014051 (program): Inverse of 42nd cyclotomic polynomial.
- A014052 (program): a(n) = floor((n+1/n)^n).
- A014053 (program): Inverse of 44th cyclotomic polynomial.
- A014054 (program): Inverse of 45th cyclotomic polynomial.
- A014055 (program): Inverse of 46th cyclotomic polynomial.
- A014056 (program): Nearest integer to (n + 1/n)^n.
- A014057 (program): Inverse of 48th cyclotomic polynomial.
- A014058 (program): a(n) = ceiling((n+1/n)^n).
- A014059 (program): Inverse of 50th cyclotomic polynomial.
- A014061 (program): Inverse of 52nd cyclotomic polynomial.
- A014062 (program): a(n) = binomial(n^2, n).
- A014063 (program): Inverse of 54th cyclotomic polynomial.
- A014065 (program): Inverse of 56th cyclotomic polynomial.
- A014067 (program): Inverse of 58th cyclotomic polynomial.
- A014068 (program): a(n) = binomial(n*(n+1)/2, n).
- A014069 (program): Inverse of 60th cyclotomic polynomial.
- A014070 (program): a(n) = binomial(2^n, n).
- A014071 (program): Inverse of 62nd cyclotomic polynomial.
- A014072 (program): Inverse of 63rd cyclotomic polynomial.
- A014076 (program): Odd nonprimes.
- A014081 (program): a(n) is the number of occurrences of ‘11’ in binary expansion of n.
- A014082 (program): Number of occurrences of ‘111’ in binary expansion of n.
- A014084 (program): Inverse of 75th cyclotomic polynomial.
- A014085 (program): Number of primes between n^2 and (n+1)^2.
- A014089 (program): Sum of a square and a prime.
- A014091 (program): Numbers that are the sum of 2 primes.
- A014092 (program): Numbers that are not the sum of 2 primes.
- A014093 (program): Inverse of 84th cyclotomic polynomial.
- A014097 (program): a(n) = a(n-1)+a(n-4).
- A014098 (program): a(n)=a(n-1)+a(n-4).
- A014099 (program): Inverse of 90th cyclotomic polynomial.
- A014101 (program): a(n) = a(n-1) + a(n-4), starting 1,1,1,3.
- A014103 (program): Expansion of (eta(q^2) / eta(q))^24 in powers of q.
- A014105 (program): Second hexagonal numbers: a(n) = n*(2*n + 1).
- A014106 (program): a(n) = n*(2*n + 3).
- A014107 (program): a(n) = n*(2*n-3).
- A014109 (program): Number of possible circular rhymes of n strophes.
- A014110 (program): Number of ordered ways of writing n as a sum of 4 squares of natural numbers.
- A014112 (program): a(n) = n*(n-1) + (n-2)*(n-3) + … + 1*0 + 1 for n odd; otherwise, a(n) = n*(n-1) + (n-2)*(n-3) + … + 2*1.
- A014113 (program): a(n) = a(n-1) + 2*a(n-2) with a(0)=0, a(1)=2.
- A014118 (program): Write in binary and read in ternary!.
- A014125 (program): Bisection of A001400.
- A014126 (program): Number of partitions of 2*n into at most 4 parts.
- A014129 (program): Inverse of 120th cyclotomic polynomial.
- A014130 (program): ((n+3)!/6)*product( 2*k+1, k=0..n).
- A014131 (program): a(n) = 2*a(n-1) if n odd else 2*a(n-1) + 6.
- A014132 (program): Complement of triangular numbers (A000217); also array T(n,k) = ((n+k)^2 + n-k)/2, n, k > 0, read by antidiagonals.
- A014133 (program): Sum of a square and a triangular number.
- A014134 (program): Numbers that are not the sum of a square (A000290) and a triangular number (A000217).
- A014135 (program): Inverse of 126th cyclotomic polynomial.
- A014137 (program): Partial sums of Catalan numbers (A000108).
- A014138 (program): Partial sums of (Catalan numbers starting 1, 2, 5, …).
- A014140 (program): Apply partial sum operator twice to Catalan numbers.
- A014143 (program): Partial sums of A014138.
- A014144 (program): Apply partial sum operator twice to factorials.
- A014145 (program): Partial sums of A007489.
- A014146 (program): Partial sums of A003136.
- A014148 (program): a(n) = Sum_{m=1..n} Sum_{k=1..m} prime(k).
- A014150 (program): Apply partial sum operator thrice to primes.
- A014151 (program): Apply partial sum operator thrice to Catalan numbers.
- A014153 (program): Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).
- A014155 (program): Sum of a nonnegative cube and a triangular number.
- A014156 (program): Numbers that are not the sum of a nonnegative cube and a triangular number.
- A014159 (program): Inverse of 150th cyclotomic polynomial.
- A014160 (program): Apply partial sum operator thrice to partition numbers.
- A014161 (program): Apply partial sum operator 4 times to partition numbers.
- A014162 (program): Apply partial sum operator thrice to Fibonacci numbers.
- A014166 (program): Apply partial sum operator 4 times to Fibonacci numbers.
- A014176 (program): Decimal expansion of the silver mean, 1+sqrt(2).
- A014177 (program): Inverse of 168th cyclotomic polynomial.
- A014178 (program): a(n) = Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k).
- A014180 (program): Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k)^2.
- A014181 (program): Numbers > 9 with all digits the same.
- A014182 (program): Expansion of e.g.f. exp(1-x-exp(-x)).
- A014186 (program): Squares of palindromes.
- A014187 (program): Cubes of palindromes.
- A014188 (program): Fourth powers of palindromes.
- A014189 (program): Inverse of 180th cyclotomic polynomial.
- A014190 (program): Palindromes in base 3 (written in base 10).
- A014192 (program): Palindromes in base 4 (written in base 10).
- A014193 (program): n-th prime + mu(n).
- A014198 (program): Number of integer solutions to x^2 + y^2 <= n excluding (0,0).
- A014200 (program): Number of solutions to x^2 + y^2 <= n, excluding (0,0), divided by 4.
- A014201 (program): Number of solutions to x^2+x*y+y^2 <= n excluding (0,0).
- A014202 (program): Number of solutions to x^2 + x*y + y^2 <= n, excluding (0,0), divided by 6.
- A014203 (program): Sum {i^2+j^2+k^2}, i^2+j^2+k^2 <= n.
- A014205 (program): (1/12)*(n+5)*(n+1)*n^2.
- A014206 (program): a(n) = n^2 + n + 2.
- A014208 (program): Next prime after n-th Fibonacci number.
- A014209 (program): a(n) = n^2 + 3*n - 1.
- A014213 (program): Floor((e/2)^n).
- A014215 (program): [ sqrt(3/2)^n ].
- A014217 (program): a(n) = floor(phi^n), where phi = (1+sqrt(5))/2 is the golden ratio.
- A014220 (program): Next prime after n^3.
- A014228 (program): Product of 3 successive Catalan numbers.
- A014231 (program): (Product of 3 successive Catalan numbers)/2.
- A014235 (program): Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].
- A014236 (program): Expansion of g.f.: 2*x*(1-x)/((1-2*x)*(1-2*x^2)).
- A014237 (program): a(n) = (n-th prime) - (n-th nonprime).
- A014238 (program): a(n) = (n-th number that is 1 or prime) - (n-th composite number).
- A014241 (program): a(n) = ((n+1)-st Fibonacci number) - (n-th non-Fibonacci number).
- A014242 (program): (n-th Fibonacci number that is not 1) - (n-th number that is 1 or not a Fibonacci number).
- A014243 (program): a(n) = ((n+1)-st Lucas number) - (n-th non-Lucas number).
- A014244 (program): (n-th Lucas number that is not 1) - (n-th number that is 1 or not a Lucas number).
- A014245 (program): a(n) = (n-th term of Beatty sequence for (3+sqrt(3))/2) - (n-th term of Beatty sequence for sqrt(3)).
- A014252 (program): a(n) = b(n) - c(n) where b(n) is the n-th Lucas number greater than 3 and c(n) is the n-th number not in sequence b( ).
- A014253 (program): a(n) = b(n)^2, where b(n) = b(n-1)^2 + b(n-2)^2 (A000283).
- A014255 (program): Expansion of (1+2*x+3*x^2)/((1-x)*(1-x^2)^2).
- A014257 (program): Product of digits of 2^n.
- A014258 (program): Iccanobif numbers: add previous two terms and reverse the sum.
- A014259 (program): Iccanobif numbers: add reversal of a(n-1) to a(n-2).
- A014260 (program): Iccanobif numbers: add a(n-1) to reversal of a(n-2).
- A014261 (program): Numbers that contain odd digits only.
- A014263 (program): Numbers that contain even digits only.
- A014283 (program): a(n) = Fibonacci(n) - n^2.
- A014284 (program): Partial sums of primes, if 1 is regarded as a prime (as it was until quite recently, see A008578).
- A014285 (program): a(n) = Sum_{j=1..n} j*prime(j).
- A014286 (program): a(n) = Sum_{j=0..n} j*Fibonacci(j).
- A014288 (program): a(n) = floor(Sum_{k=0..n} k!/2), or floor( A003422(n+1)/2 ).
- A014291 (program): Imaginary Rabbits: imaginary part of a(0)=i; a(1)=-i; a(n) = a(n-1) + i*a(n-2), with i = sqrt(-1).
- A014292 (program): a(n) = 2*a(n-1) - a(n-2) - a(n-4) with a(0) = a(1) = 0, a(2) = 1, a(3) = 2.
- A014293 (program): a(n) = n^(n+1)-n+1.
- A014297 (program): a(n) = n! * C(n+2, 2) * 2^(n+1).
- A014298 (program): a(n) = 2^n * (3n)! / (2n+1)!.
- A014300 (program): Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
- A014301 (program): Number of internal nodes of even outdegree in all ordered rooted trees with n edges.
- A014302 (program): a(n) = prime(n)*(prime(n-1)-1)/2.
- A014303 (program): a(n) = prime(n)*(prime(n+1)-1)/2.
- A014304 (program): Expansion of e.g.f. 1/sqrt(exp(x)*(2-exp(x))).
- A014306 (program): a(n) = 0 if n of form m(m+1)(m+2)/6, otherwise 1.
- A014307 (program): Expansion of the e.g.f. sqrt(exp(x) / (2 - exp(x))).
- A014309 (program): a(n) = (n+2)*(n+1)*(n^2 + 7*n - 12)/24.
- A014311 (program): Numbers with exactly 3 ones in binary expansion.
- A014312 (program): Numbers with exactly 4 ones in binary expansion.
- A014313 (program): Numbers with exactly 5 ones in binary expansion.
- A014314 (program): Number of up steps in all length n left factors of Dyck paths.
- A014316 (program): Convolution of Catalan numbers and squares.
- A014317 (program): Inverse of 308th cyclotomic polynomial.
- A014318 (program): Convolution of Catalan numbers and powers of 2.
- A014334 (program): Exponential convolution of Fibonacci numbers with themselves.
- A014335 (program): Exponential convolution of Fibonacci numbers with themselves (divided by 2).
- A014336 (program): Three-fold exponential convolution of Fibonacci numbers with themselves.
- A014337 (program): Three-fold exponential convolution of Fibonacci numbers with themselves (divided by 6).
- A014368 (program): a(n) = bc, where n = C(b,2)+C(c,1), b>c>=0.
- A014369 (program): a(n) = bcd, where n = C(b,3)+C(c,2)+C(d,1), b>c>d>=0.
- A014370 (program): If n = binomial(b,2)+binomial(c,1), b>c>=0 then a(n) = binomial(b+1,3)+binomial(c+1,2).
- A014373 (program): Inverse of 364th cyclotomic polynomial.
- A014390 (program): Final 2 digits of 7^n.
- A014391 (program): Final digit of 8^n.
- A014392 (program): Final 2 digits of 8^n.
- A014393 (program): Final 2 digits of 9^n.
- A014401 (program): Denominators of coefficients of expansion of Bessel function J_3(x).
- A014402 (program): Numbers found in denominators of expansion of Airy function Ai(x).
- A014403 (program): Numbers found in denominators of expansion of Airy function Bi(x).
- A014409 (program): Number of inequivalent ways (mod D_4) a pair of checkers can be placed on an n X n board.
- A014410 (program): Elements in Pascal’s triangle (by row) that are not 1.
- A014411 (program): Triangular array formed from elements to right of middle of rows of Pascal’s triangle that are not 1.
- A014413 (program): Triangular array formed from elements to right of middle of Pascal’s triangle.
- A014414 (program): Odd elements in Pascal’s triangle that are not 1.
- A014417 (program): Representation of n in base of Fibonacci numbers (the Zeckendorf representation of n). Also, binary words starting with 1 not containing 11, with the word 0 added.
- A014419 (program): Write n in base of Catalan numbers, then interpret as if written in base 3.
- A014421 (program): Odd elements in Pascal’s triangle.
- A014428 (program): Even elements in Pascal’s triangle.
- A014430 (program): Subtract 1 from Pascal’s triangle, read by rows.
- A014431 (program): a(1) = 1, a(2) = 2, a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
- A014432 (program): a(n) = Sum_{i=1..n-1} a(i)*a(n-1-i), with a(0) = 1, a(1) = 3.
- A014433 (program): a(n) = sum(i=0..n-1, a(i)*a(n-i) ), a(0) = 1, a(1)=4.
- A014434 (program): Sum[ a[ i ]a[ n-i ],{i,0,n-1} ], a[ 0 ] == 1, a[ 1 ]==5.
- A014435 (program): Sum( a(i)*a(n-i), i=0..n-1 ), with a(0)=1, a(1)=6.
- A014436 (program): Inverse of 427th cyclotomic polynomial.
- A014437 (program): Odd Fibonacci numbers.
- A014442 (program): Largest prime factor of n^2 + 1.
- A014445 (program): Even Fibonacci numbers; or, Fibonacci(3*n).
- A014447 (program): Odd Lucas numbers.
- A014448 (program): Even Lucas numbers: L(3n).
- A014449 (program): Numbers in the triangle of Eulerian numbers (A008292) that are not 1.
- A014450 (program): Even numbers in the triangle of Eulerian numbers.
- A014455 (program): Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 1, 0; 0, 0, 2 ]. Number of integer solutions to x^2 + y^2 + 2*z^2 = n.
- A014459 (program): Odd numbers in the triangle of Eulerian numbers.
- A014461 (program): Odd numbers in the triangle of Eulerian numbers that are not 1.
- A014462 (program): Triangular array formed from elements to left of middle of Pascal’s triangle.
- A014463 (program): Triangular array formed from elements to left of middle of rows of Pascal’s triangle that are not 1.
- A014465 (program): A063691 without zeros.
- A014473 (program): Pascal’s triangle - 1.
- A014475 (program): Triangular array formed from odd elements to right of middle of rows of Pascal’s triangle.
- A014476 (program): Triangular array formed from even elements to right of middle of rows of Pascal’s triangle.
- A014477 (program): Expansion of (1 + 2*x)/(1 - 2*x)^3.
- A014479 (program): Exponential generating function = (1+2*x)/(1-2*x)^3.
- A014480 (program): Expansion of (1+2*x)/(1-2*x)^2.
- A014481 (program): a(n) = 2^n*n!*(2*n+1).
- A014483 (program): Expansion of (1+2*x) / (1-2*x)^4.
- A014484 (program): Expansion of (1+2x)/(1-2x)^4 (E.g.f.).
- A014485 (program): Inverse of 476th cyclotomic polynomial.
- A014486 (program): List of totally balanced sequences of 2n binary digits written in base 10. Binary expansion of each term contains n 0’s and n 1’s and reading from left to right (the most significant to the least significant bit), the number of 0’s never exceeds the number of 1’s.
- A014491 (program): a(n) = gcd(n, 2^n - 1).
- A014493 (program): Odd triangular numbers.
- A014494 (program): Even triangular numbers.
- A014495 (program): Central binomial coefficient - 1.
- A014499 (program): Number of 1’s in binary representation of n-th prime.
- A014506 (program): Inverse of 497th cyclotomic polynomial.
- A014508 (program): a(n) = floor( n! / e ).
- A014509 (program): Truncation of Bernoulli number: floor(|B_2n|) * sign(B_2n).
- A014523 (program): Number of Hamiltonian paths in a 4 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
- A014524 (program): Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
- A014528 (program): Neither == 0 (mod 4) nor a power of 3.
- A014531 (program): Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.
- A014532 (program): Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 3rd column from the center.
- A014533 (program): Form array in which n-th row is obtained by expanding (1 + x + x^2)^n and taking the 4th column from the center.
- A014541 (program): Inverse of 532nd cyclotomic polynomial.
- A014549 (program): Decimal expansion of 1 / M(1,sqrt(2)) (Gauss’s constant).
- A014550 (program): Binary reflected Gray code.
- A014551 (program): Jacobsthal-Lucas numbers.
- A014553 (program): Maximal multiplicative persistence (or length) of any n-digit number.
- A014557 (program): Multiplicity of K_3 in K_n.
- A014566 (program): Sierpiński numbers of the first kind: n^n + 1.
- A014567 (program): Numbers k such that k and sigma(k) are relatively prime, where sigma(k) = sum of divisors of k (A000203).
- A014571 (program): Consider the Morse-Thue sequence (A010060) as defining a binary constant and convert it to decimal.
- A014574 (program): Average of twin prime pairs.
- A014577 (program): The regular paper-folding sequence (or dragon curve sequence).
- A014578 (program): Binary expansion of Thue constant (or Roth’s constant).
- A014591 (program): a(n) = floor(n^2/12 + 5/4).
- A014601 (program): Numbers congruent to 0 or 3 mod 4.
- A014605 (program): Partial sums of A001935; at one time this was conjectured to agree with A007478.
- A014606 (program): a(n) = (3n)!/(6^n).
- A014608 (program): a(n) = (4n)!/(24^n).
- A014609 (program): a(n) = (5n)!/(5!^n).
- A014610 (program): Tetranacci numbers arising in connection with current algebras sp(2)_n.
- A014612 (program): Numbers that are the product of exactly three (not necessarily distinct) primes.
- A014613 (program): Numbers that are products of 4 primes.
- A014614 (program): Numbers that are products of 5 primes (or 5-almost primes, a generalization of semiprimes).
- A014616 (program): a(n) = solution to the postage stamp problem with 2 denominations and n stamps.
- A014619 (program): Exponential generating function is -f(x) * int(exp(exp(-t)-1),t,0,x) where f(x) = exp(1-x-exp(-x)) is an exponential generating function for A014182.
- A014625 (program): Inverse of 616th cyclotomic polynomial.
- A014626 (program): Number of intersection points of diagonals of an n-gon in general position, plus number of vertices.
- A014628 (program): Number of segments (and sides) created by diagonals of an n-gon in general position.
- A014629 (program): Number of segments created by diagonals of n-gon.
- A014632 (program): Odd pentagonal numbers.
- A014633 (program): Even pentagonal numbers.
- A014634 (program): a(n) = (2*n+1)*(4*n+1).
- A014635 (program): a(n) = 2*n*(4*n - 1).
- A014637 (program): Odd heptagonal numbers (A000566).
- A014640 (program): Even heptagonal numbers (A000566).
- A014641 (program): Odd octagonal numbers: (2n+1)*(6n+1).
- A014642 (program): Even octagonal numbers: a(n) = 4*n*(3*n-1).
- A014653 (program): Inverse of 644th cyclotomic polynomial.
- A014657 (program): Numbers m that divide 2^k + 1 for some nonnegative k.
- A014659 (program): Odd numbers that do not divide 2^k + 1 for any k >= 1.
- A014661 (program): Numbers that do not divide 2^k + 1 for any k>0.
- A014664 (program): Order of 2 modulo the n-th prime.
- A014668 (program): a(1) = 1, a(n) = Sum_{k=1..n-1} Sum_{d|k} a(d).
- A014673 (program): Smallest prime factor of greatest proper divisor of n.
- A014675 (program): The infinite Fibonacci word (start with 1, apply 1->2, 2->21, take limit).
- A014677 (program): First differences of A001468.
- A014679 (program): G.f.: (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)).
- A014681 (program): Fix 0; exchange even and odd numbers.
- A014682 (program): The Collatz or 3x+1 function: a(n) = n/2 if n is even, otherwise (3n+1)/2.
- A014683 (program): In the sequence of positive integers add 1 to each prime number.
- A014684 (program): In the sequence of positive integers subtract 1 from each prime number.
- A014685 (program): In sequence of positive integers add 1 to first prime and subtract 1 from 2nd prime; add 1 to 3rd prime and subtract 1 from 4th prime and so on.
- A014686 (program): In sequence of prime numbers add 1 to first prime, 3rd prime, fifth prime, … then subtract 1 from 2nd prime, fourth prime, sixth prime and so on.
- A014687 (program): In sequence of odd primes add 1 to first prime, 3rd prime, 5th prime, … then subtract 1 from 2nd prime, fourth prime, sixth prime and so on.
- A014688 (program): a(n) = n-th prime + n.
- A014689 (program): a(n) = prime(n)-n, the number of nonprimes less than prime(n).
- A014690 (program): a(n) = n + prime(n+1).
- A014692 (program): a(n) = prime(n) - (n-1).
- A014693 (program): In sequence of prime numbers add 1 to first number, 2 to 3rd number, 3 to 5th number, … then subtract 1 from 2nd number, 2 from 4th number, 3 from 6th number and so on.
- A014694 (program): a(n) = prime(n+1) - (-1)^n*ceiling(n/2).
- A014695 (program): Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
- A014701 (program): Number of multiplications to compute n-th power by the Chandah-sutra method.
- A014705 (program): Expansion of ((theta_2)^4 + (theta_3)^4) / eta(z/2)^4.
- A014707 (program): a(4n) = 0, a(4n+2) = 1, a(2n+1) = a(n).
- A014709 (program): The regular paper-folding (or dragon curve) sequence.
- A014710 (program): The regular paper-folding (or dragon curve) sequence.
- A014717 (program): a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
- A014718 (program): a(n) = (F(n+1)+L(n)+n)^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
- A014719 (program): Squares of elements in Pascal triangle (by row) that are not 1.
- A014720 (program): Squares of elements to right of central element in Pascal triangle (by row) that are not 1.
- A014721 (program): Squares of elements to left of the central element in Pascal triangle (by row).
- A014725 (program): Squares of odd elements in Pascal triangle that are not 1.
- A014726 (program): Squares of odd elements in Pascal triangle.
- A014727 (program): Squares of even elements in Pascal’s triangle A007318.
- A014728 (program): Squares of odd Fibonacci numbers.
- A014729 (program): Squares of even Fibonacci numbers.
- A014730 (program): Squares of odd Lucas numbers.
- A014731 (program): Squares of even Lucas numbers.
- A014732 (program): Squares of numbers in triangle of Eulerian numbers that are not 1.
- A014733 (program): Squares of even numbers in triangle of Eulerian numbers.
- A014734 (program): Squares of odd numbers in triangle of Eulerian numbers.
- A014735 (program): Squares of odd numbers in triangle of Eulerian numbers that are not 1.
- A014736 (program): Squares of odd triangular numbers.
- A014737 (program): Inverse of 728th cyclotomic polynomial.
- A014738 (program): Squares of even triangular numbers.
- A014739 (program): Expansion of (1+x^2)/(1-2*x+x^3).
- A014742 (program): Expansion of (1+x^2)/(1 - 2*x - 2*x^2 + x^3).
- A014743 (program): Expansion of (1+x)/(1-x-x^2-x^4-x^5).
- A014751 (program): Inverse of 742nd cyclotomic polynomial.
- A014760 (program): Squares of numbers in array formed from odd elements to the right of middle of rows of Pascal triangle that are not 1.
- A014761 (program): Squares of numbers in array formed from odd elements to the right of middle of rows of Pascal triangle.
- A014762 (program): Squares of numbers in array formed from even elements to the right of middle of rows of Pascal triangle.
- A014766 (program): Numbers k such that the 3k shuffle group does not accomplish a perfect shuffle.
- A014769 (program): Squares of odd pentagonal numbers.
- A014770 (program): Squares of even pentagonal numbers.
- A014771 (program): Squares of odd hexagonal numbers.
- A014772 (program): Squares of even hexagonal numbers.
- A014773 (program): Squares of odd heptagonal numbers.
- A014775 (program): Expansion of exp ( - x - (1/2)*x^2 - (1/6)*x^3).
- A014785 (program): a(n) = Sum_{0<=k<=n} ceiling(k^2/n).
- A014787 (program): Expansion of Jacobi theta constant (theta_2/2)^12.
- A014792 (program): Squares of even heptagonal numbers.
- A014793 (program): Squares of odd octagonal numbers.
- A014794 (program): Squares of even octagonal numbers.
- A014795 (program): Squares of odd tetrahedral numbers.
- A014796 (program): Squares of even tetrahedral numbers (A015220).
- A014797 (program): Squares of odd square pyramidal numbers.
- A014798 (program): Squares of even square pyramidal numbers.
- A014799 (program): Squares of odd pentagonal pyramidal numbers.
- A014800 (program): Squares of even pentagonal pyramidal numbers.
- A014801 (program): Squares of odd hexagonal pyramidal numbers.
- A014803 (program): Squares of even hexagonal pyramidal numbers.
- A014805 (program): Expansion of Jacobi theta constant (theta_2/2)^16.
- A014809 (program): Expansion of Jacobi theta constant (theta_2/2)^24.
- A014811 (program): a(n) = Sum_{k=1..n-1} ceiling(k^2/n).
- A014813 (program): a(n) = Sum_{k=0..n} ceiling(k^3/n).
- A014816 (program): a(n) = Sum_{k=1..n} ceiling(k^4/n).
- A014817 (program): a(n) = Sum_{k=1..n} floor(k^2/n).
- A014818 (program): a(n) is the sum over all floor(k^3/n), k=0 to n inclusive.
- A014819 (program): a(n) = Sum_{k=1..n} floor(k^4/n).
- A014820 (program): a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2.
- A014821 (program): Inverse of 812th cyclotomic polynomial.
- A014822 (program): Numbers k such that k divides s(k), where s(1)=1, s(j)=10*s(j-1)+j (A014824).
- A014824 (program): a(0) = 0; for n>0, a(n) = 10*a(n-1) + n.
- A014825 (program): a(n) = 4*a(n-1) + n with n > 1, a(1)=1.
- A014827 (program): a(1)=1, a(n) = 5*a(n-1) + n.
- A014829 (program): a(1)=1, a(n) = 6*a(n-1) + n.
- A014830 (program): a(1)=1; for n > 1, a(n) = 7*a(n-1) + n.
- A014831 (program): a(1)=1; for n>1, a(n) = 8*a(n-1)+n.
- A014832 (program): a(1)=1; for n>1, a(n) = 9*a(n-1)+n.
- A014833 (program): a(n) = 2^n - n(n+1)/2.
- A014835 (program): Inverse of 826th cyclotomic polynomial.
- A014836 (program): Sum modulo n of all the digits of n in every base from 2 to n-1.
- A014837 (program): Sum of all the digits of n in every base from 2 to n-1.
- A014844 (program): a(n) = 2^n - n*(n-1)/2.
- A014846 (program): 2^(n-1) - n*(n+1)/2.
- A014847 (program): Numbers k such that k-th Catalan number C(2k,k)/(k+1) is divisible by k.
- A014848 (program): n^2 - floor( n/2 ).
- A014851 (program): Numbers k that divide s(k), where s(1)=1, s(j)=4*s(j-1)+j.
- A014855 (program): Numbers k that divide s(k), where s(1)=1, s(j)=8*s(j-1)+j.
- A014863 (program): Inverse of 854th cyclotomic polynomial.
- A014866 (program): Numbers k that divide s(k), where s(1)=1, s(j)=16*s(j-1)+j.
- A014871 (program): Numbers k that divide s(k), where s(1)=1, s(j)=20*s(j-1)+j.
- A014873 (program): Numbers k that divide s(k), where s(1)=1, s(j)=22*s(j-1)+j.
- A014877 (program): Inverse of 868th cyclotomic polynomial.
- A014881 (program): a(1)=1, a(n) = 11*a(n-1)+n.
- A014882 (program): a(1) = 1, a(n) = 12*a(n-1) + n.
- A014896 (program): a(1) = 1, a(n) = 13*a(n-1) + n.
- A014897 (program): a(1)=1, a(n) = 14*a(n-1) + n.
- A014898 (program): a(1)=1, a(n) = 15*a(n-1) + n.
- A014899 (program): a(n) = (16^(n+1) - 15*n - 16)/225.
- A014900 (program): a(1)=1, a(n)=17*a(n-1)+n.
- A014901 (program): a(1)=1, a(n) = 18*a(n-1) + n.
- A014903 (program): a(1)=1, a(n) = 19*a(n-1) + n.
- A014904 (program): a(1)=1, a(n) = 20*a(n-1) + n.
- A014905 (program): a(1)=1, a(n) = 21*a(n-1) + n.
- A014907 (program): a(1)=1, a(n) = 22*a(n-1) + n.
- A014909 (program): a(1)=1, a(n) = 23*a(n-1) + n.
- A014913 (program): a(1)=1, a(n) = 24*a(n-1) + n.
- A014914 (program): a(1)=1, a(n) = 25*a(n-1) + n.
- A014915 (program): a(1)=1, a(n) = n*3^(n-1) + a(n-1).
- A014916 (program): a(1)=1, a(n) = n*4^(n-1) + a(n-1).
- A014917 (program): a(1)=1, a(n) = n*5^(n-1) + a(n-1).
- A014918 (program): a(1)=1, a(n) = n*6^(n-1) + a(n-1).
- A014920 (program): a(1)=1, a(n) = n*7^(n-1) + a(n-1).
- A014921 (program): a(1)=1, a(n) = n*8^(n-1) + a(n-1).
- A014923 (program): a(1) = 1, a(n) = n*9^(n-1) + a(n-1).
- A014925 (program): Number of zeros in numbers 1 to 111…1 (n+1 digits).
- A014926 (program): a(1)=1, a(n) = n*11^(n-1) + a(n-1).
- A014927 (program): a(1)=1, a(n) = n*12^(n-1) + a(n-1).
- A014928 (program): a(1)=1, a(n)=n*13^(n-1)+a(n-1).
- A014929 (program): a(1)=1, a(n) = n*14^(n-1) + a(n-1).
- A014930 (program): a(1)=1, a(n) = n*15^(n-1) + a(n-1).
- A014931 (program): a(1)=1, a(n) = n*16^(n-1) + a(n-1).
- A014934 (program): a(1)=1, a(n)=n*17^(n-1)+a(n-1).
- A014935 (program): a(1)=1, a(n) = n*18^(n-1) + a(n-1).
- A014936 (program): a(1)=1, a(n) = n*19^(n-1) + a(n-1).
- A014937 (program): a(1)=1, a(n)=n*20^(n-1)+a(n-1).
- A014938 (program): a(1)=1, a(n) = n*21^(n-1) + a(n-1).
- A014940 (program): a(1)=1, a(n)=n*22^(n-1)+a(n-1).
- A014941 (program): a(1)=1, a(n) = n*23^(n-1) + a(n-1).
- A014942 (program): ( 1+24^n*(23*n-1) ) / 529.
- A014943 (program): a(1)=1, a(n)=n*25^(n-1)+a(n-1).
- A014961 (program): Inverse of 952nd cyclotomic polynomial.
- A014963 (program): Exponential of Mangoldt function M(n): a(n) = 1 unless n is a prime or prime power when a(n) = that prime.
- A014964 (program): a(n) = lcm(n, 2^(n-1)).
- A014965 (program): a(n) = lcm(n, Fibonacci(n)).
- A014968 (program): Expansion of (1/theta_4 - 1)/2.
- A014969 (program): Expansion of (theta_3(q) / theta_4(q))^2 in powers of q.
- A014972 (program): Expansion of (theta_3(q) / theta_4(q) )^4 in powers of q; also of 1 / (1 - lambda(z)).
- A014973 (program): a(n) = n / gcd(n, (n-1)!).
- A014977 (program): Expansion of Molien series for automorphism group (2.Weyl(E6)) of E6 lattice.
- A014979 (program): Numbers that are both triangular and pentagonal.
- A014980 (program): a(n+1) = floor(a(n)/2) * ceiling(a(n)/2), a(0) = 5.
- A014981 (program): a(n) = c(prime(n))/prime(n), where c = Perrin sequence A001608 (starting 0,2,3,…) and prime(n) is the n-th prime.
- A014983 (program): a(n) = (1 - (-3)^n)/4.
- A014985 (program): a(n) = (1 - (-4)^n)/5.
- A014986 (program): a(n) = (1 - (-5)^n)/6.
- A014987 (program): a(n) = (1 - (-6)^n)/7.
- A014989 (program): a(n) = (1 - (-7)^n)/8.
- A014990 (program): a(n) = (1 - (-8)^n)/9.
- A014991 (program): a(n) = (1 - (-9)^n)/10.
- A014992 (program): a(n) = (1 - (-10)^n)/11.
- A014993 (program): a(n) = (1 - (-11)^n)/12.
- A014994 (program): a(n) = (1 - (-12)^n)/13.
- A015000 (program): q-integers for q=-13.
- A015001 (program): q-factorial numbers for q=3.
- A015002 (program): q-factorial numbers for q=4.
- A015003 (program): Inverse of 994th cyclotomic polynomial.
- A015004 (program): q-factorial numbers for q=5.
- A015005 (program): q-factorial numbers for q=6.
- A015006 (program): q-factorial numbers for q=7.
- A015007 (program): q-factorial numbers for q=8.
- A015008 (program): q-factorial numbers for q=9.
- A015009 (program): q-factorial numbers for q=10.
- A015011 (program): q-factorial numbers for q=11.
- A015013 (program): q-factorial numbers for q=-2.
- A015015 (program): q-factorial numbers for q=-3.
- A015017 (program): q-factorial numbers for q=-4.
- A015018 (program): q-factorial numbers for q=-5.
- A015019 (program): q-factorial numbers for q=-6.
- A015020 (program): q-factorial numbers for q=-7.
- A015022 (program): q-factorial numbers for q=-8.
- A015023 (program): q-factorial numbers for q=-9.
- A015025 (program): q-factorial numbers for q=-10.
- A015026 (program): q-factorial numbers for q=-11.
- A015027 (program): q-factorial numbers for q=-12.
- A015030 (program): q-Catalan numbers (binomial version) for q=2.
- A015045 (program): Inverse of 1036th cyclotomic polynomial.
- A015049 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^2.
- A015050 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^3.
- A015051 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^4.
- A015052 (program): a(n) is the smallest positive integer m such that m^5 is divisible by n.
- A015053 (program): Smallest positive integer for which n divides a(n)^6.
- A015073 (program): Inverse of 1064th cyclotomic polynomial.
- A015120 (program): Inverse of 1111th cyclotomic polynomial.
- A015128 (program): Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.
- A015142 (program): Inverse of 1133rd cyclotomic polynomial.
- A015152 (program): Sum of (Gaussian) q-binomial coefficients for q=-2.
- A015154 (program): Sum of (Gaussian) q-binomial coefficients for q=-3.
- A015155 (program): Sum of (Gaussian) q-binomial coefficients for q=-4.
- A015157 (program): Inverse of 1148th cyclotomic polynomial.
- A015167 (program): Sum of (Gaussian) q-binomial coefficients for q=-5.
- A015169 (program): Sum of (Gaussian) q-binomial coefficients for q=-6.
- A015170 (program): Sum of (Gaussian) q-binomial coefficients for q=-7.
- A015172 (program): Sum of (Gaussian) q-binomial coefficients for q=-8.
- A015173 (program): Sum of (Gaussian) q-binomial coefficients for q=-9.
- A015174 (program): Sum of (Gaussian) q-binomial coefficients for q=-10.
- A015176 (program): Sum of (Gaussian) q-binomial coefficients for q=-11.
- A015177 (program): Sum of (Gaussian) q-binomial coefficients for q=-12.
- A015178 (program): Sum of (Gaussian) q-binomial coefficients for q=-13.
- A015180 (program): Sum of (Gaussian) q-binomial coefficients for q=-14.
- A015181 (program): Sum of (Gaussian) q-binomial coefficients for q=-15.
- A015183 (program): Sum of (Gaussian) q-binomial coefficients for q=-16.
- A015184 (program): Sum of (Gaussian) q-binomial coefficients for q=-17.
- A015185 (program): Sum of (Gaussian) q-binomial coefficients for q=-18.
- A015186 (program): Inverse of 1177th cyclotomic polynomial.
- A015188 (program): Sum of (Gaussian) q-binomial coefficients for q=-19.
- A015189 (program): Sum of (Gaussian) q-binomial coefficients for q=-20.
- A015190 (program): Sum of (Gaussian) q-binomial coefficients for q=-21.
- A015191 (program): Sum of (Gaussian) q-binomial coefficients for q=-22.
- A015192 (program): Sum of (Gaussian) q-binomial coefficients for q=-23.
- A015193 (program): Sum of (Gaussian) q-binomial coefficients for q=-24.
- A015195 (program): Sum of Gaussian binomial coefficients for q=9.
- A015196 (program): Sum of Gaussian binomial coefficients for q=10.
- A015197 (program): Sum of Gaussian binomial coefficients for q=11.
- A015200 (program): Sum of Gaussian binomial coefficients for q=12.
- A015201 (program): Sum of Gaussian binomial coefficients for q=13.
- A015202 (program): Sum of Gaussian binomial coefficients for q=14.
- A015203 (program): Sum of Gaussian binomial coefficients for q=15.
- A015204 (program): Sum of Gaussian binomial coefficients for q=16.
- A015207 (program): Sum of Gaussian binomial coefficients for q=17.
- A015208 (program): Inverse of 1199th cyclotomic polynomial.
- A015209 (program): Sum of Gaussian binomial coefficients for q=18.
- A015210 (program): Sum of Gaussian binomial coefficients for q=19.
- A015211 (program): Sum of Gaussian binomial coefficients for q=20.
- A015212 (program): Sum of Gaussian binomial coefficients for q=21.
- A015213 (program): Inverse of 1204th cyclotomic polynomial.
- A015214 (program): Sum of Gaussian binomial coefficients for q=22.
- A015215 (program): Sum of Gaussian binomial coefficients for q=23.
- A015217 (program): Sum of Gaussian binomial coefficients for q=24.
- A015219 (program): Odd tetrahedral numbers: a(n) = (4*n+1)*(4*n+2)*(4*n+3)/6.
- A015220 (program): Even tetrahedral numbers.
- A015221 (program): Odd square pyramidal numbers.
- A015222 (program): Even square pyramidal numbers.
- A015223 (program): Odd pentagonal pyramidal numbers.
- A015224 (program): Even pentagonal pyramidal numbers.
- A015225 (program): Odd hexagonal pyramidal numbers.
- A015226 (program): Even hexagonal pyramidal numbers.
- A015234 (program): a(n) = (17 - 2*n)*n^2.
- A015237 (program): a(n) = (2*n - 1)*n^2.
- A015238 (program): a(n) = (2*n - 3)n^2.
- A015240 (program): a(n) = (2*n - 5)n^2.
- A015241 (program): Inverse of 1232nd cyclotomic polynomial.
- A015242 (program): a(n) = (2*n - 7)*n^2.
- A015243 (program): a(n) = (2*n - 9)*n^2.
- A015245 (program): a(n) = (2*n - 11)*n^2.
- A015246 (program): a(n) = (2*n - 13)*n^2.
- A015247 (program): a(n) = (2*n - 15)*n^2.
- A015249 (program): Gaussian binomial coefficient [ n,2 ] for q = -2.
- A015251 (program): Gaussian binomial coefficient [ n,2 ] for q = -3.
- A015252 (program): Inverse of 1243rd cyclotomic polynomial.
- A015253 (program): Gaussian binomial coefficient [ n,2 ] for q = -4.
- A015255 (program): Gaussian binomial coefficient [ n,2 ] for q = -5.
- A015257 (program): Gaussian binomial coefficient [ n,2 ] for q = -6.
- A015258 (program): Gaussian binomial coefficient [ n,2 ] for q = -7.
- A015259 (program): Gaussian binomial coefficient [ n,2 ] for q = -8.
- A015260 (program): Gaussian binomial coefficient [ n,2 ] for q = -9.
- A015261 (program): Gaussian binomial coefficient [ n,2 ] for q = -10.
- A015262 (program): Gaussian binomial coefficient [ n,2 ] for q = -11.
- A015264 (program): Gaussian binomial coefficient [ n,2 ] for q = -12.
- A015265 (program): Gaussian binomial coefficient [ n,2 ] for q = -13.
- A015266 (program): Gaussian binomial coefficient [ n,3 ] for q = -2.
- A015268 (program): Gaussian binomial coefficient [ n,3 ] for q = -3.
- A015271 (program): Gaussian binomial coefficient [ n,3 ] for q = -4.
- A015272 (program): Gaussian binomial coefficient [ n,3 ] for q = -5.
- A015273 (program): Gaussian binomial coefficient [ n,3 ] for q=-6.
- A015275 (program): Gaussian binomial coefficient [ n,3 ] for q = -7.
- A015276 (program): Gaussian binomial coefficient [ n,3 ] for q = -8.
- A015277 (program): Gaussian binomial coefficient [ n,3 ] for q = -9.
- A015278 (program): Gaussian binomial coefficient [ n,3 ] for q = -10.
- A015279 (program): Gaussian binomial coefficient [ n,3 ] for q = -11.
- A015281 (program): Gaussian binomial coefficient [ n,3 ] for q = -12.
- A015286 (program): Gaussian binomial coefficient [ n,3 ] for q = -13.
- A015287 (program): Gaussian binomial coefficient [ n,4 ] for q = -2.
- A015288 (program): Gaussian binomial coefficient [ n,4 ] for q = -3.
- A015289 (program): Gaussian binomial coefficient [ n,4 ] for q = -4.
- A015291 (program): Gaussian binomial coefficient [ n,4 ] for q = -5.
- A015292 (program): Gaussian binomial coefficient [ n,4 ] for q = -6.
- A015293 (program): Gaussian binomial coefficient [ n,4 ] for q = -7.
- A015294 (program): Gaussian binomial coefficient [ n,4 ] for q = -8.
- A015295 (program): Gaussian binomial coefficient [ n,4 ] for q = -9.
- A015297 (program): Inverse of 1288th cyclotomic polynomial.
- A015305 (program): Gaussian binomial coefficient [ n,5 ] for q = -2.
- A015306 (program): Gaussian binomial coefficient [ n,5 ] for q = -3.
- A015308 (program): Gaussian binomial coefficient [ n,5 ] for q = -4.
- A015309 (program): Gaussian binomial coefficient [ n,5 ] for q = -5.
- A015310 (program): Gaussian binomial coefficient [ n,5 ] for q = -6.
- A015322 (program): Inverse of 1313th cyclotomic polynomial.
- A015323 (program): Gaussian binomial coefficient [ n,6 ] for q = -2.
- A015324 (program): Gaussian binomial coefficient [ n,6 ] for q = -3.
- A015325 (program): Inverse of 1316th cyclotomic polynomial.
- A015326 (program): Gaussian binomial coefficient [ n,6 ] for q = -4.
- A015338 (program): Gaussian binomial coefficient [ n,7 ] for q = -2.
- A015340 (program): Gaussian binomial coefficient [ n,7 ] for q = -3.
- A015348 (program): Inverse of 1339th cyclotomic polynomial.
- A015356 (program): Gaussian binomial coefficient [ n,8 ] for q=-2.
- A015357 (program): Gaussian binomial coefficient [ n,8 ] for q=-3.
- A015371 (program): Gaussian binomial coefficient [ n,9 ] for q=-2.
- A015375 (program): Gaussian binomial coefficient [ n,9 ] for q=-3.
- A015400 (program): Inverse of 1391st cyclotomic polynomial.
- A015406 (program): Inverse of 1397th cyclotomic polynomial.
- A015426 (program): Inverse of 1417th cyclotomic polynomial.
- A015440 (program): Generalized Fibonacci numbers.
- A015441 (program): Generalized Fibonacci numbers.
- A015442 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1.
- A015443 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).
- A015445 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).
- A015446 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2).
- A015447 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).
- A015448 (program): a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.
- A015449 (program): Expansion of (1-4*x)/(1-5*x-x^2).
- A015450 (program): Inverse of 1441st cyclotomic polynomial.
- A015451 (program): a(n) = 6*a(n-1) + a(n-2) for n > 1, with a(0) = a(1) = 1.
- A015453 (program): Generalized Fibonacci numbers.
- A015454 (program): Generalized Fibonacci numbers.
- A015455 (program): a(n) = 9*a(n-1) + a(n-2) for n>1; a(0) = a(1) = 1.
- A015456 (program): Generalized Fibonacci numbers.
- A015457 (program): Generalized Fibonacci numbers.
- A015459 (program): q-Fibonacci numbers for q=2.
- A015460 (program): q-Fibonacci numbers for q=3.
- A015461 (program): q-Fibonacci numbers for q=4.
- A015462 (program): q-Fibonacci numbers for q=5.
- A015463 (program): q-Fibonacci numbers for q=6.
- A015464 (program): q-Fibonacci numbers for q=7.
- A015465 (program): q-Fibonacci numbers for q=8.
- A015467 (program): q-Fibonacci numbers for q=9.
- A015468 (program): q-Fibonacci numbers for q=10.
- A015469 (program): q-Fibonacci numbers for q=11.
- A015470 (program): q-Fibonacci numbers for q=12.
- A015473 (program): q-Fibonacci numbers for q=2.
- A015474 (program): q-Fibonacci numbers for q=3.
- A015475 (program): q-Fibonacci numbers for q=4.
- A015476 (program): q-Fibonacci numbers for q=5.
- A015477 (program): q-Fibonacci numbers for q=6.
- A015478 (program): Inverse of 1469th cyclotomic polynomial.
- A015479 (program): q-Fibonacci numbers for q=7.
- A015480 (program): q-Fibonacci numbers for q=8.
- A015481 (program): q-Fibonacci numbers for q=9.
- A015482 (program): q-Fibonacci numbers for q=10.
- A015484 (program): q-Fibonacci numbers for q=11.
- A015485 (program): q-Fibonacci numbers for q=12.
- A015486 (program): a(0)=1, a(1)=2, a(n) = sum_{k=0}^{k=n-1} 2^k a(k).
- A015487 (program): a(0)=1, a(1)=3, a(n) = sum_{k=0}^{k=n-1} 3^k a(k).
- A015489 (program): a(0)=1, a(1)=4, a(n) = sum_{k=0}^{k=n-1} 4^k a(k).
- A015490 (program): a(0)=1, a(1)=5, a(n) = sum_{k=0}^{k=n-1} 5^k a(k).
- A015492 (program): a(0)=1, a(1)=6, a(n) = sum_{k=0}^{k=n-1} 6^k a(k).
- A015493 (program): Inverse of 1484th cyclotomic polynomial.
- A015495 (program): a(0)=1, a(1)=7, a(n) = sum_{k=0}^{k=n-1} 7^k a(k).
- A015496 (program): a(0)=1, a(1)=8, a(n) = sum_{k=0}^{k=n-1} 8^k a(k).
- A015497 (program): a(0)=1, a(1)=9, a(n) = sum_{k=0}^{k=n-1} 9^k a(k).
- A015498 (program): a(0)=1, a(1)=10, a(n) = sum_{k=0}^{k=n-1} 10^k a(k).
- A015499 (program): a(0)=1, a(1)=11, a(n) = sum_{k=0}^{k=n-1} 11^k a(k).
- A015501 (program): a(0)=1, a(1)=12, a(n) = sum_{k=0}^{k=n-1} 12^k a(k).
- A015502 (program): a(1)=1, a(n) = Sum_{k=1..n-1} (3^k-1)/2 * a(k).
- A015503 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (4^k-1)/3 a(k).
- A015506 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (5^k-1)/4 a(k).
- A015507 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (6^k-1)/5 a(k).
- A015508 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (7^k-1)/6 a(k).
- A015509 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (8^k-1)/7 a(k).
- A015511 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (9^k-1)/8 a(k).
- A015512 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (10^k-1)/9 a(k).
- A015513 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (11^k-1)/10 a(k).
- A015515 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (12^k-1)/11 a(k).
- A015516 (program): Inverse of 1507th cyclotomic polynomial.
- A015518 (program): a(n) = 2*a(n-1) + 3*a(n-2), with a(0)=0, a(1)=1.
- A015519 (program): a(n) = 2*a(n-1) + 7*a(n-2).
- A015520 (program): a(n) = 2*a(n-1) + 11*a(n-2), a(0) = 0, a(1) = 1.
- A015521 (program): a(n) = 3*a(n-1) + 4*a(n-2), a(0) = 0, a(1) = 1.
- A015523 (program): a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.
- A015524 (program): a(n) = 3*a(n-1) + 7*a(n-2).
- A015525 (program): Expansion of x/(1-3*x-8*x^2).
- A015528 (program): a(n) = 3*a(n-1) + 10*a(n-2).
- A015529 (program): Expansion of x/(1 - 3*x - 11*x^2).
- A015530 (program): Expansion of x/(1 - 4*x - 3*x^2).
- A015531 (program): Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).
- A015532 (program): a(n) = 4*a(n-1) + 7*a(n-2).
- A015533 (program): a(n) = 4*a(n-1) + 9*a(n-2).
- A015534 (program): Expansion of x/(1 - 4*x - 11*x^2).
- A015535 (program): Expansion of x/(1 - 5*x - 2*x^2).
- A015536 (program): Expansion of x/(1-5*x-3*x^2).
- A015537 (program): Expansion of x/(1 - 5*x - 4*x^2).
- A015538 (program): Inverse of 1529th cyclotomic polynomial.
- A015540 (program): a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
- A015541 (program): Expansion of x/(1 - 5*x - 7*x^2).
- A015544 (program): Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
- A015545 (program): Expansion of x/(1 - 5*x - 9*x^2).
- A015547 (program): Expansion of x/(1 - 5*x - 11*x^2).
- A015548 (program): Expansion of x/(1 - 5*x - 12*x^2).
- A015551 (program): Expansion of x/(1 - 6*x - 5*x^2).
- A015552 (program): a(n) = 6*a(n-1) + 7*a(n-2), a(0) = 0, a(1) = 1.
- A015553 (program): Expansion of x/(1 - 6*x - 11*x^2).
- A015554 (program): a(n) = floor( (n/e)^n ).
- A015555 (program): Expansion of x/(1 - 7*x - 2*x^2).
- A015557 (program): a(n) = ceiling((n/e)^n).
- A015559 (program): Expansion of x/(1 - 7*x - 3*x^2).
- A015561 (program): Expansion of x/(1 - 7*x - 4*x^2).
- A015562 (program): Expansion of x/(1 - 7*x - 5*x^2).
- A015564 (program): Expansion of x/(1 - 7*x - 6*x^2).
- A015565 (program): a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.
- A015566 (program): Expansion of x/(1 - 7*x - 9*x^2).
- A015568 (program): Expansion of x/(1 - 7*x - 10*x^2).
- A015570 (program): Expansion of x/(1 - 7*x - 11*x^2).
- A015572 (program): Expansion of x/(1 - 7*x - 12*x^2).
- A015574 (program): Expansion of x/(1 - 8*x - 3*x^2).
- A015575 (program): Expansion of x/(1 - 8*x - 5*x^2).
- A015576 (program): Expansion of x/(1 - 8*x - 7*x^2).
- A015577 (program): a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.
- A015578 (program): Expansion of x/(1 - 8*x - 11*x^2).
- A015579 (program): Expansion of x/(1-9*x-2*x^2).
- A015580 (program): Expansion of x/(1 - 9*x - 4*x^2).
- A015581 (program): a(n) = 9*a(n-1) + 5*a(n-2).
- A015582 (program): Inverse of 1573rd cyclotomic polynomial.
- A015583 (program): a(0) = 0, a(1) = 1; for n >= 2, a(n) = 9*a(n-1) + 7*a(n-2).
- A015584 (program): Expansion of x/(1 - 9*x - 8*x^2).
- A015585 (program): a(n) = 9*a(n-1) + 10*a(n-2).
- A015587 (program): Expansion of x/(1 - 9*x - 11*x^2).
- A015588 (program): Expansion of x/(1 - 10*x - 3*x^2).
- A015589 (program): Expansion of x/(1 - 10*x - 7*x^2).
- A015591 (program): Expansion of x/(1 - 10*x - 9*x^2).
- A015592 (program): a(n) = 10*a(n-1) + 11*a(n-2).
- A015593 (program): a(n) = 11*a(n-1) + 2*a(n-2).
- A015594 (program): a(n) = 11*a(n-1) + 3*a(n-2).
- A015596 (program): a(n) = 11 a(n-1) + 4 a(n-2).
- A015597 (program): a(n) = 11 a(n-1) + 5 a(n-2).
- A015598 (program): a(n) = 11*a(n-1) + 6*a(n-2).
- A015601 (program): a(n) = 11*a(n-1) + 7*a(n-2).
- A015602 (program): a(n) = 11 a(n-1) + 8 a(n-2).
- A015603 (program): a(n) = 11*a(n-1) + 9*a(n-2).
- A015606 (program): a(n) = 11*a(n-1) + 10*a(n-2).
- A015609 (program): a(n) = 11*a(n-1) + 12*a(n-2).
- A015610 (program): a(n) = 12*a(n-1) + 5*a(n-2) for n >= 2, a(0) = 0, a(1) = 1.
- A015611 (program): a(n) = 12*a(n-1) + 7*a(n-2).
- A015612 (program): a(n) = 12*a(n-1) + 11*a(n-2).
- A015613 (program): a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).
- A015614 (program): a(n) = -1 + Sum_{i=1..n} phi(i).
- A015616 (program): Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1.
- A015618 (program): Number of triples of different integers from [ 2,n ] with no global factor.
- A015631 (program): Number of ordered triples of integers from [ 1..n ] with no global factor.
- A015633 (program): Number of ordered triples of integers from [ 2,n ] with no global factor.
- A015648 (program): Inverse of 1639th cyclotomic polynomial.
- A015660 (program): Inverse of 1651st cyclotomic polynomial.
- A015661 (program): Inverse of 1652nd cyclotomic polynomial.
- A015664 (program): Expansion of e.g.f. theta_3^(1/2).
- A015665 (program): Expansion of e.g.f. theta_3^(3/2).
- A015666 (program): Expansion of e.g.f. theta_3^(5/2).
- A015667 (program): Expansion of e.g.f. theta_3^(7/2).
- A015669 (program): Expansion of e.g.f. theta_3^(9/2).
- A015670 (program): Inverse of 1661st cyclotomic polynomial.
- A015671 (program): Expansion of e.g.f. theta_3^(11/2).
- A015672 (program): Expansion of e.g.f. theta_3^(13/2).
- A015673 (program): Expansion of e.g.f. theta_3^(15/2).
- A015675 (program): Expansion of e.g.f. theta_3^(17/2).
- A015676 (program): Expansion of e.g.f. theta_3^(19/2).
- A015677 (program): Expansion of e.g.f. theta_3^(21/2).
- A015678 (program): Expansion of e.g.f. theta_3^(23/2).
- A015679 (program): Expansion of e.g.f. theta_3^(25/2).
- A015680 (program): Expansion of e.g.f. theta_3^(-1/2).
- A015682 (program): Expansion of e.g.f. theta_3^(-3/2).
- A015683 (program): Expansion of e.g.f. theta_3^(-5/2).
- A015684 (program): Expansion of e.g.f. theta_3^(-7/2).
- A015685 (program): Expansion of e.g.f. theta_3^(-9/2).
- A015687 (program): Expansion of e.g.f. theta_3^(-11/2).
- A015690 (program): Expansion of e.g.f. theta_3^(-13/2).
- A015691 (program): Expansion of e.g.f. theta_3^(-15/2).
- A015693 (program): Expansion of e.g.f. theta_3^(-17/2).
- A015694 (program): Expansion of e.g.f. theta_3^(-19/2).
- A015695 (program): Expansion of e.g.f. theta_3^(-21/2).
- A015696 (program): Expansion of e.g.f. theta_3^(-23/2).
- A015697 (program): Expansion of e.g.f. theta_3^(-25/2).
- A015712 (program): Inverse of 1703rd cyclotomic polynomial.
- A015717 (program): Inverse of 1708th cyclotomic polynomial.
- A015726 (program): Inverse of 1717th cyclotomic polynomial.
- A015732 (program): Even numbers k such that d(k) | phi(k).
- A015733 (program): d(n) does not divide phi(n).
- A015734 (program): Odd n such that d(n) does not divide phi(n).
- A015736 (program): Inverse of 1727th cyclotomic polynomial.
- A015760 (program): Inverse of 1751st cyclotomic polynomial.
- A015777 (program): Inverse of 1768th cyclotomic polynomial.
- A015790 (program): Inverse of 1781st cyclotomic polynomial.
- A015802 (program): Inverse of 1793rd cyclotomic polynomial.
- A015816 (program): Inverse of 1807th cyclotomic polynomial.
- A015828 (program): Inverse of 1819th cyclotomic polynomial.
- A015846 (program): Inverse of 1837th cyclotomic polynomial.
- A015862 (program): Inverse of 1853rd cyclotomic polynomial.
- A015868 (program): Inverse of 1859th cyclotomic polynomial.
- A015885 (program): Inverse of 1876th cyclotomic polynomial.
- A015910 (program): a(n) = 2^n mod n.
- A015911 (program): Numbers k such that 2^k mod k is odd.
- A015912 (program): Inverse of 1903rd cyclotomic polynomial.
- A015913 (program): Numbers k such that sigma(k) + 4 = sigma(k+4).
- A015916 (program): Numbers k such that sigma(k) + 10 = sigma(k+10).
- A015919 (program): Positive integers k such that 2^k == 2 (mod k).
- A015921 (program): Positive integers n such that 2^n == 4 (mod n).
- A015928 (program): Inverse of 1919th cyclotomic polynomial.
- A015930 (program): Inverse of 1921st cyclotomic polynomial.
- A015943 (program): (2^(2n)+n) mod (2n).
- A015946 (program): Inverse of 1937th cyclotomic polynomial.
- A015966 (program): Inverse of 1957th cyclotomic polynomial.
- A015972 (program): Inverse of 1963rd cyclotomic polynomial.
- A015978 (program): Inverse of 1969th cyclotomic polynomial.
- A015993 (program): Twelve iterations of Reverse and Add are needed to reach a palindrome.
- A015995 (program): a(n) = (tau(n^3)+2)/3.
- A015996 (program): (tau(n^4) + 3)/4, where tau = A000005.
- A015997 (program): Inverse of 1988th cyclotomic polynomial.
- A015999 (program): a(n) = (tau(n^5) + 4)/5.
- A016000 (program): Inverse of 1991st cyclotomic polynomial.
- A016001 (program): a(n) = (tau(n^6)+5)/6.
- A016002 (program): a(n) = (tau(n^7)+6)/7.
- A016003 (program): a(n) = (tau(n^8)+7)/8.
- A016005 (program): a(n) = (tau(n^9)+8)/9.
- A016006 (program): a(n) = (tau(n^10)+9)/10.
- A016007 (program): a(n) = (tau(n^11)+10)/11.
- A016008 (program): a(n) = (tau(n^12)+11)/12.
- A016009 (program): a(n) = (tau(n^13)+12)/13.
- A016012 (program): a(n) = (tau(n^n)+n-1)/n.
- A016014 (program): Least k such that 2*n*k + 1 is a prime.
- A016017 (program): Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways.
- A016028 (program): Expansion of (1 - x + x^4) / (1 - x)^3.
- A016029 (program): a(1) = a(2) = 1, a(2n + 1) = 2*a(2n) and a(2n) = 2*a(2n - 1) + (-1)^n.
- A016035 (program): a(n) = Sum_{j|n, 1 < j < n} phi(j). Also a(n) = n - phi(n) - 1 for n > 1.
- A016042 (program): Inverse of 2033rd cyclotomic polynomial.
- A016043 (program): 2^(2^n) +- 1 without repeats.
- A016050 (program): Inverse of 2041st cyclotomic polynomial.
- A016051 (program): Numbers of the form 9*k+3 or 9*k+6.
- A016052 (program): a(1) = 3; for n >= 1, a(n+1) = a(n) + sum of its digits.
- A016053 (program): Inverse of 2044th cyclotomic polynomial.
- A016061 (program): a(n) = n*(n+1)*(4*n+5)/6.
- A016064 (program): Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).
- A016065 (program): a(n) = Sum_{k=0..n} k!*(k+1)!.
- A016071 (program): Description to be supplied!.
- A016075 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)).
- A016080 (program): Inverse of 2071st cyclotomic polynomial.
- A016081 (program): Add 4, then reverse digits; start with 3.
- A016082 (program): Add 4, then reverse the decimal digits; start with 10.
- A016084 (program): a(n+1) = a(n) + its digital root.
- A016090 (program): a(n) = 16^(5^n) mod 10^n: Automorphic numbers ending in digit 6, with repetitions.
- A016091 (program): Expansion of 1/((1-8x)(1-9x)(1-10x)(1-12x)).
- A016092 (program): Expansion of 1/((1-8x)(1-9x)(1-11x)(1-12x)).
- A016093 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)*(1-12*x)).
- A016094 (program): Expansion of 1/((1-9x)(1-10x)(1-11x)(1-12x)).
- A016095 (program): Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).
- A016096 (program): a(n+1) = a(n) + sum of its digits, with a(1) = 9.
- A016098 (program): Number of crossing set partitions of {1,2,…,n}.
- A016101 (program): (n! - n)/2 for even n.
- A016103 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)).
- A016105 (program): Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
- A016109 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-10x)).
- A016110 (program): Inverse of 2101st cyclotomic polynomial.
- A016111 (program): Expansion of 1/((1-11x)(1-12x)(1-13x)(1-14x)(1-15x)).
- A016116 (program): a(n) = 2^floor(n/2).
- A016123 (program): a(n) = (11^(n+1) - 1)/10.
- A016125 (program): Expansion of 1/((1-x)*(1-12*x)).
- A016127 (program): Expansion of 1/((1-2*x)*(1-5*x)).
- A016128 (program): Inverse of 2119th cyclotomic polynomial.
- A016129 (program): Expansion of 1/((1-2x)(1-6x)).
- A016130 (program): Expansion of 1/((1-2x)(1-7x)).
- A016131 (program): Expansion of 1/((1-2x)(1-8x)).
- A016132 (program): Inverse of 2123rd cyclotomic polynomial.
- A016133 (program): Expansion of 1/((1-2*x)*(1-9*x)).
- A016134 (program): Expansion of 1/((1-2x)(1-10x)).
- A016135 (program): Expansion of 1/((1-2*x)*(1-11*x)).
- A016136 (program): Expansion of 1/((1-2*x)*(1-12*x)).
- A016137 (program): Expansion of 1/((1-3x)(1-6x)).
- A016138 (program): Expansion of 1/((1-3x)(1-7x)).
- A016140 (program): Expansion of 1/((1-3x)(1-8x)).
- A016142 (program): Expansion of 1/((1-3x)(1-9x)).
- A016145 (program): Expansion of 1/((1-3x)(1-10x)).
- A016146 (program): Expansion of 1/((1-3x)(1-11x)).
- A016147 (program): Expansion of 1/((1-3x)(1-12x)).
- A016149 (program): Expansion of 1/((1-4*x)*(1-6*x)).
- A016150 (program): Expansion of 1/((1-4x)(1-7x)).
- A016152 (program): a(n) = 4^(n-1)*(2^n-1).
- A016153 (program): a(n) = (9^n-4^n)/5.
- A016156 (program): Inverse of 2147th cyclotomic polynomial.
- A016157 (program): Expansion of 1/((1-4x)(1-10x)).
- A016158 (program): Expansion of 1/((1-4*x)(1-11*x)).
- A016159 (program): Expansion of 1/((1-4x)(1-12x)).
- A016161 (program): Expansion of 1/((1-5x)(1-7x)).
- A016162 (program): Expansion of 1/((1-5x)(1-8x)).
- A016163 (program): Expansion of 1/((1-5x)(1-9x)).
- A016164 (program): Expansion of 1/((1-5x)(1-10x)).
- A016165 (program): Expansion of 1/((1-5x)(1-11x)).
- A016166 (program): Expansion of 1/((1-5x)(1-12x)).
- A016168 (program): Inverse of 2159th cyclotomic polynomial.
- A016169 (program): a(n) = 7^n - 6^n.
- A016170 (program): Expansion of 1/((1-6x)(1-8x)).
- A016172 (program): Expansion of 1/((1-6x)(1-9x)).
- A016173 (program): Expansion of 1/((1-6x)(1-10x)).
- A016174 (program): Expansion of 1/((1-6x)(1-11x)).
- A016175 (program): Expansion of 1/((1-6x)(1-12x)).
- A016176 (program): Inverse of 2167th cyclotomic polynomial.
- A016177 (program): a(n) = 8^n - 7^n.
- A016178 (program): Expansion of 1/((1-7x)(1-9x)).
- A016180 (program): Inverse of 2171st cyclotomic polynomial.
- A016181 (program): Expansion of 1/((1-7x)(1-10x)).
- A016183 (program): Expansion of 1/((1-7x)(1-11x)).
- A016184 (program): Expansion of 1/((1-7x)(1-12x)).
- A016185 (program): a(n) = 9^n - 8^n.
- A016186 (program): Expansion of 1/((1-8x)(1-10x)).
- A016187 (program): Expansion of 1/((1-8x)(1-11x)).
- A016188 (program): Expansion of 1/((1-8x)*(1-12x)).
- A016189 (program): a(n) = 10^n - 9^n.
- A016190 (program): Expansion of 1/((1-9x)(1-11x)).
- A016191 (program): Expansion of 1/((1-9x)*(1-12x)).
- A016195 (program): a(n) = 11^n - 10^n.
- A016196 (program): Expansion of 1/((1-10x)*(1-12x)).
- A016197 (program): a(n) = 12^n - 11^n.
- A016198 (program): Expansion of 1/((1-x)(1-2x)(1-5x)).
- A016200 (program): Expansion of 1/((1-x)(1-2x)(1-6x)).
- A016201 (program): Expansion of 1/((1-x)(1-2x)(1-7x)).
- A016203 (program): Expansion of 1/((1-x)(1-2x)(1-8x)).
- A016204 (program): Expansion of 1/((1-x)(1-2x)(1-9x)).
- A016205 (program): Expansion of 1/((1-x)(1-2x)(1-10x)).
- A016206 (program): Expansion of 1/((1-x)*(1-2x)*(1-11x)).
- A016207 (program): Expansion of 1/((1-x)(1-2x)(1-12x)).
- A016208 (program): Expansion of 1/((1-x)*(1-3*x)*(1-4*x)).
- A016209 (program): Expansion of 1/((1-x)(1-3x)(1-5x)).
- A016211 (program): Expansion of 1/((1-x)(1-3x)(1-6x)).
- A016212 (program): Expansion of 1/((1-x)*(1-3*x)*(1-7*x)).
- A016214 (program): Expansion of 1/((1-x)(1-3x)(1-8x)).
- A016215 (program): Expansion of 1/((1-x)(1-3x)(1-10x)).
- A016216 (program): Expansion of 1/((1-x)(1-3x)(1-11x)).
- A016217 (program): Expansion of 1/((1-x)(1-3x)(1-12x)).
- A016218 (program): Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).
- A016221 (program): Inverse of 2212th cyclotomic polynomial.
- A016222 (program): Expansion of 1/((1-x)(1-4x)(1-6x)).
- A016223 (program): Expansion of 1/((1-x)(1-4x)(1-7x)).
- A016224 (program): Expansion of 1/((1-x)(1-4x)(1-8x)).
- A016225 (program): Expansion of 1/((1-x)(1-4x)(1-10x)).
- A016226 (program): Expansion of 1/((1-x)(1-4x)(1-11x)).
- A016227 (program): Expansion of 1/((1-x)(1-4x)(1-12x)).
- A016228 (program): Expansion of 1/((1-x)*(1-5*x)(1-6*x)).
- A016230 (program): Expansion of 1/((1-x)(1-5x)(1-7x)).
- A016231 (program): Inverse of 2222nd cyclotomic polynomial.
- A016233 (program): Expansion of 1/((1-x)(1-5x)(1-8x)).
- A016234 (program): Expansion of 1/((1-x)(1-5x)(1-9x)).
- A016236 (program): Inverse of 2227th cyclotomic polynomial.
- A016237 (program): Expansion of 1/((1-x)(1-5x)(1-10x)).
- A016238 (program): Expansion of 1/((1-x)*(1-5*x)*(1-11*x)).
- A016239 (program): Expansion of 1/((1-x)*(1-5*x)*(1-12*x)).
- A016241 (program): Expansion of 1/((1-x)*(1-6*x)*(1-7*x)).
- A016243 (program): Expansion of 1/((1-x)*(1-6*x)*(1-8*x)).
- A016244 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)).
- A016246 (program): Expansion of 1/((1-x)(1-6x)(1-10x)).
- A016247 (program): Expansion of 1/((1-x)(1-6x)(1-11x)).
- A016248 (program): Expansion of 1/((1-x)(1-6x)(1-12x)).
- A016249 (program): Expansion of 1/((1-x)*(1-7*x)*(1-8*x)).
- A016250 (program): Expansion of 1/((1-x)(1-7x)(1-9x)).
- A016252 (program): Expansion of 1/((1-x)*(1-7x)*(1-10x)).
- A016254 (program): Expansion of 1/((1-x)(1-7x)(1-11x)).
- A016255 (program): Expansion of 1/((1-x)(1-7x)(1-12x)).
- A016256 (program): Expansion of 1/((1-x)*(1-8*x)*(1-9*x)).
- A016257 (program): Expansion of 1/((1-x)(1-8x)(1-10x)).
- A016258 (program): Inverse of 2249th cyclotomic polynomial.
- A016259 (program): Expansion of 1/((1-x)(1-8x)(1-11x)).
- A016260 (program): Expansion of 1/((1-x)(1-8x)(1-12x)).
- A016261 (program): Expansion of 1/((1-x)*(1-9*x)*(1-10*x)).
- A016262 (program): Expansion of 1/((1-x)(1-9x)(1-11x)).
- A016263 (program): Expansion of 1/((1-x)(1-9x)(1-12x)).
- A016265 (program): Expansion of 1/((1-x)*(1-10x)*(1-11x)).
- A016267 (program): Expansion of 1/((1-x)(1-10x)(1-12x)).
- A016268 (program): Expansion of 1/((1-x)(1-11x)(1-12x)).
- A016269 (program): Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
- A016273 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)).
- A016275 (program): Inverse of 2266th cyclotomic polynomial.
- A016276 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)).
- A016277 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)).
- A016278 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)).
- A016279 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)).
- A016280 (program): Expansion of 1/((1-2x)(1-3x)(1-11x)).
- A016281 (program): Expansion of 1/((1-2x)(1-3x)(1-12x)).
- A016282 (program): Expansion of 1/((1-2*x)*(1-4*x)*(1-5*x)).
- A016283 (program): a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).
- A016285 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)).
- A016290 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)).
- A016291 (program): Expansion of 1/((1-2x)*(1-4x)*(1-9x)).
- A016292 (program): Expansion of 1/((1-2x)*(1-4x)*(1-10x)).
- A016293 (program): Expansion of 1/((1-2x)(1-4x)(1-11x)).
- A016294 (program): Expansion of 1/((1-2x)(1-4x)(1-12x)).
- A016295 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)).
- A016296 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)).
- A016297 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)).
- A016298 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)).
- A016299 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-10*x)).
- A016301 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-11*x)).
- A016302 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-12*x)).
- A016304 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)).
- A016305 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)).
- A016306 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-9*x)).
- A016307 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-10*x)).
- A016308 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-11*x)).
- A016309 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-12*x)).
- A016311 (program): Expansion of 1/((1-2*x)*(1-7*x)*(1-8*x)).
- A016312 (program): Expansion of 1/((1-2x)*(1-7x)*(1-9x)).
- A016313 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)).
- A016314 (program): Expansion of 1/((1-2x)*(1-7x)*(1-11x)).
- A016315 (program): Expansion of 1/((1-2x)*(1-7x)*(1-12x)).
- A016316 (program): Expansion of 1/((1-2x)*(1-8x)*(1-9x)).
- A016317 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)).
- A016318 (program): Expansion of 1/((1-2x)(1-8x)(1-11x)).
- A016320 (program): Expansion of 1/((1-2x)(1-8x)(1-12x)).
- A016321 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)).
- A016322 (program): Expansion of 1/((1-2x)(1-9x)(1-11x)).
- A016324 (program): Expansion of 1/((1-2x)(1-9x)(1-12x)).
- A016325 (program): Expansion of 1/((1-2x)(1-10x)(1-11x)).
- A016326 (program): Expansion of 1/((1-2x)(1-10x)(1-12x)).
- A016328 (program): 120th cyclotomic polynomial.
- A016329 (program): 126th cyclotomic polynomial.
- A016330 (program): 130th cyclotomic polynomial.
- A016331 (program): 132nd cyclotomic polynomial.
- A016332 (program): 133rd cyclotomic polynomial.
- A016333 (program): 138th cyclotomic polynomial.
- A016334 (program): 140th cyclotomic polynomial.
- A016335 (program): 143rd cyclotomic polynomial.
- A016336 (program): 145th cyclotomic polynomial.
- A016337 (program): 150th cyclotomic polynomial.
- A016338 (program): 154th cyclotomic polynomial.
- A016339 (program): 155th cyclotomic polynomial.
- A016340 (program): 156th cyclotomic polynomial.
- A016341 (program): 161st cyclotomic polynomial.
- A016343 (program): 168th cyclotomic polynomial.
- A016344 (program): 170th cyclotomic polynomial.
- A016345 (program): 174th cyclotomic polynomial.
- A016346 (program): 175th cyclotomic polynomial.
- A016347 (program): 180th cyclotomic polynomial.
- A016349 (program): 185th cyclotomic polynomial.
- A016350 (program): 186th cyclotomic polynomial.
- A016351 (program): 187th cyclotomic polynomial.
- A016352 (program): 190th cyclotomic polynomial.
- A016354 (program): 198th cyclotomic polynomial.
- A016355 (program): 203rd cyclotomic polynomial.
- A016356 (program): 209th cyclotomic polynomial.
- A016358 (program): 217th cyclotomic polynomial.
- A016360 (program): 221st cyclotomic polynomial.
- A016361 (program): 230th cyclotomic polynomial.
- A016363 (program): 238th cyclotomic polynomial.
- A016364 (program): 247th cyclotomic polynomial.
- A016365 (program): 253rd cyclotomic polynomial.
- A016367 (program): 259th cyclotomic polynomial.
- A016368 (program): 260th cyclotomic polynomial.
- A016369 (program): 266th cyclotomic polynomial.
- A016371 (program): 280th cyclotomic polynomial.
- A016373 (program): 286th cyclotomic polynomial.
- A016374 (program): 287th cyclotomic polynomial.
- A016375 (program): 290th cyclotomic polynomial.
- A016376 (program): 299th cyclotomic polynomial.
- A016377 (program): 301st cyclotomic polynomial.
- A016378 (program): 308th cyclotomic polynomial.
- A016379 (program): 310th cyclotomic polynomial.
- A016381 (program): 319th cyclotomic polynomial.
- A016382 (program): 322nd cyclotomic polynomial.
- A016383 (program): 323rd cyclotomic polynomial.
- A016384 (program): 329th cyclotomic polynomial.
- A016386 (program): 340th cyclotomic polynomial.
- A016387 (program): 341st cyclotomic polynomial.
- A016389 (program): 350th cyclotomic polynomial.
- A016392 (program): 370th cyclotomic polynomial.
- A016393 (program): 371st cyclotomic polynomial.
- A016394 (program): 374th cyclotomic polynomial.
- A016395 (program): 377th cyclotomic polynomial.
- A016396 (program): 380th cyclotomic polynomial.
- A016399 (program): 391st cyclotomic polynomial.
- A016401 (program): 403rd cyclotomic polynomial.
- A016402 (program): 406th cyclotomic polynomial.
- A016403 (program): 407th cyclotomic polynomial.
- A016404 (program): 413th cyclotomic polynomial.
- A016405 (program): 418th cyclotomic polynomial.
- A016407 (program): 427th cyclotomic polynomial.
- A016409 (program): 434th cyclotomic polynomial.
- A016411 (program): 437th cyclotomic polynomial.
- A016412 (program): 442nd cyclotomic polynomial.
- A016413 (program): 451st cyclotomic polynomial.
- A016418 (program): 473rd cyclotomic polynomial.
- A016419 (program): 476th cyclotomic polynomial.
- A016420 (program): 481st cyclotomic polynomial.
- A016422 (program): 493rd cyclotomic polynomial.
- A016423 (program): 494th cyclotomic polynomial.
- A016425 (program): 497th cyclotomic polynomial.
- A016426 (program): 506th cyclotomic polynomial.
- A016578 (program): Decimal expansion of log(3/2).
- A016580 (program): Decimal expansion of log(7/2).
- A016627 (program): Decimal expansion of log(4).
- A016628 (program): Decimal expansion of log(5).
- A016631 (program): Decimal expansion of log(8).
- A016632 (program): Decimal expansion of log(9).
- A016633 (program): Expansion of 1/((1-2x)(1-11x)(1-12x)).
- A016639 (program): Decimal expansion of log(16).
- A016648 (program): Decimal expansion of log(25).
- A016650 (program): Decimal expansion of log(27).
- A016655 (program): Decimal expansion of log(32) = 5*log(2).
- A016687 (program): Decimal expansion of log(64).
- A016704 (program): Decimal expansion of log(81).
- A016724 (program): Expansion of (2-2*x-x^2)/((1-2*x^2)*(1-x)^2).
- A016725 (program): Number of integer solutions to x^2+y^2+z^2 = n^2, allowing zeros and distinguishing signs and order.
- A016729 (program): Highest minimal Hamming distance of any Type 4^H+ Hermitian additive self-dual code over GF(4) of length n.
- A016742 (program): Even squares: a(n) = (2*n)^2.
- A016743 (program): Even cubes: a(n) = (2*n)^3.
- A016744 (program): a(n) = (2*n)^4.
- A016745 (program): a(n) = (2*n)^5.
- A016746 (program): a(n) = (2*n)^6.
- A016747 (program): a(n) = (2*n)^7.
- A016748 (program): a(n) = (2*n)^8.
- A016749 (program): a(n) = (2*n)^9.
- A016750 (program): a(n) = (2*n)^10.
- A016751 (program): a(n) = (2*n)^11.
- A016752 (program): a(n) = (2*n)^12.
- A016753 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).
- A016754 (program): Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.
- A016755 (program): Odd cubes: a(n) = (2*n + 1)^3.
- A016756 (program): a(n) = (2*n+1)^4.
- A016757 (program): a(n) = (2*n+1)^5.
- A016758 (program): a(n) = (2*n+1)^6.
- A016759 (program): a(n) = (2*n + 1)^7.
- A016760 (program): a(n) = (2*n+1)^8.
- A016761 (program): a(n) = (2*n+1)^9.
- A016762 (program): a(n) = (2*n + 1)^10.
- A016763 (program): a(n) = (2*n+1)^11.
- A016764 (program): a(n) = (2*n+1)^12.
- A016765 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-6*x)).
- A016766 (program): a(n) = (3*n)^2.
- A016767 (program): a(n) = (3*n)^3.
- A016768 (program): (3*n)^4.
- A016769 (program): a(n) = (3*n)^5.
- A016770 (program): a(n) = (3*n)^6.
- A016771 (program): a(n) = (3*n)^7.
- A016772 (program): a(n) = (3*n)^8.
- A016773 (program): a(n) = (3*n)^9.
- A016774 (program): a(n) = (3*n)^10.
- A016775 (program): (3*n)^11.
- A016776 (program): a(n) = (3*n)^12.
- A016777 (program): a(n) = 3*n + 1.
- A016778 (program): a(n) = (3*n+1)^2.
- A016779 (program): a(n) = (3*n + 1)^3.
- A016780 (program): a(n) = (3*n+1)^4.
- A016781 (program): a(n) = (3*n+1)^5.
- A016782 (program): a(n) = (3*n+1)^6.
- A016783 (program): a(n) = (3*n+1)^7.
- A016784 (program): a(n) = (3*n+1)^8.
- A016785 (program): a(n) = (3*n + 1)^9.
- A016786 (program): a(n) = (3*n+1)^10.
- A016787 (program): a(n) = (3*n + 1)^11.
- A016788 (program): a(n) = (3*n+1)^12.
- A016789 (program): a(n) = 3*n + 2.
- A016790 (program): a(n) = (3n+2)^2.
- A016791 (program): a(n) = (3*n + 2)^3.
- A016792 (program): a(n) = (3*n+2)^4.
- A016793 (program): a(n) = (3*n + 2)^5.
- A016794 (program): a(n) = (3*n + 2)^6.
- A016795 (program): a(n) = (3n+2)^7.
- A016796 (program): a(n) = (3*n + 2)^8.
- A016797 (program): a(n) = (3*n + 2)^9.
- A016798 (program): a(n) = (3*n + 2)^10.
- A016799 (program): a(n) = (3*n + 2)^11.
- A016800 (program): a(n) = (3*n + 2)^12.
- A016801 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)).
- A016802 (program): a(n) = (4*n)^2.
- A016803 (program): (4n)^3.
- A016804 (program): a(n) = (4*n)^4.
- A016805 (program): (4n)^5.
- A016806 (program): a(n) = (4n)^6.
- A016807 (program): a(n) = (4*n)^7.
- A016808 (program): a(n) = (4n)^8.
- A016809 (program): (4n)^9.
- A016810 (program): (4n)^10.
- A016811 (program): (4n)^11.
- A016812 (program): (4n)^12.
- A016813 (program): a(n) = 4*n + 1.
- A016814 (program): a(n) = (4n+1)^2.
- A016815 (program): (4n+1)^3.
- A016816 (program): a(n) = (4n+1)^4.
- A016817 (program): a(n) = (4n+1)^5.
- A016818 (program): (4n+1)^6.
- A016819 (program): a(n) = (4n+1)^7.
- A016820 (program): a(n) = (4*n + 1)^8.
- A016821 (program): a(n) = (4n+1)^9.
- A016822 (program): a(n) = (4n+1)^10.
- A016823 (program): a(n) = (4n+1)^11.
- A016824 (program): (4n+1)^12.
- A016825 (program): Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.
- A016826 (program): a(n) = (4n + 2)^2.
- A016827 (program): a(n) = (4n+2)^3.
- A016828 (program): a(n) = (4*n+2)^4.
- A016829 (program): (4n+2)^5.
- A016830 (program): a(n) = (4*n+2)^6.
- A016831 (program): (4n+2)^7.
- A016832 (program): a(n) = (4*n + 2)^8.
- A016833 (program): (4n+2)^9.
- A016834 (program): (4n+2)^10.
- A016835 (program): (4n+2)^11.
- A016836 (program): (4n+2)^12.
- A016838 (program): a(n) = (4n + 3)^2.
- A016839 (program): a(n) = (4*n+3)^3.
- A016840 (program): (4n+3)^4.
- A016841 (program): (4n+3)^5.
- A016842 (program): (4n+3)^6.
- A016843 (program): (4n+3)^7.
- A016844 (program): (4n+3)^8.
- A016845 (program): (4n+3)^9.
- A016846 (program): a(n) = (4*n + 3)^10.
- A016847 (program): (4n+3)^11.
- A016848 (program): a(n) = (4*n+3)^12.
- A016849 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)).
- A016850 (program): a(n) = (5*n)^2.
- A016851 (program): a(n) = (5*n)^3.
- A016852 (program): (5n)^4.
- A016853 (program): a(n) = (5*n)^5.
- A016854 (program): a(n) = (5*n)^6.
- A016855 (program): a(n) = (5*n)^7.
- A016856 (program): a(n) = (5*n)^8.
- A016857 (program): a(n) = (5n)^9.
- A016858 (program): (5n)^10.
- A016859 (program): (5n)^11.
- A016860 (program): (5n)^12.
- A016861 (program): a(n) = 5*n + 1.
- A016862 (program): a(n) = (5*n + 1)^2.
- A016863 (program): a(n) = (5*n + 1)^3.
- A016864 (program): a(n) = (5*n + 1)^4.
- A016865 (program): (5n+1)^5.
- A016866 (program): (5n+1)^6.
- A016867 (program): (5n+1)^7.
- A016868 (program): (5n+1)^8.
- A016869 (program): (5n+1)^9.
- A016870 (program): (5n+1)^10.
- A016871 (program): (5n+1)^11.
- A016872 (program): (5n+1)^12.
- A016873 (program): a(n) = 5*n + 2.
- A016874 (program): a(n) = (5*n + 2)^2.
- A016875 (program): (5n+2)^3.
- A016876 (program): (5n+2)^4.
- A016877 (program): a(n) = (5n+2)^5.
- A016878 (program): (5n+2)^6.
- A016879 (program): (5n+2)^7.
- A016880 (program): a(n) = (5*n+2)^8.
- A016881 (program): (5n+2)^9.
- A016882 (program): (5n+2)^10.
- A016883 (program): (5n+2)^11.
- A016884 (program): (5n+2)^12.
- A016885 (program): a(n) = 5*n + 3.
- A016886 (program): a(n) = (5*n + 3)^2.
- A016887 (program): a(n) = (5*n+3)^3.
- A016888 (program): (5n+3)^4.
- A016889 (program): (5n+3)^5.
- A016890 (program): (5n+3)^6.
- A016891 (program): (5n+3)^7.
- A016892 (program): (5n+3)^8.
- A016893 (program): (5n+3)^9.
- A016894 (program): (5n+3)^10.
- A016895 (program): (5n+3)^11.
- A016896 (program): a(n) = (5*n + 3)^12.
- A016897 (program): a(n) = 5n + 4.
- A016898 (program): a(n) = (5*n + 4)^2.
- A016899 (program): a(n) = (5n + 4)^3.
- A016900 (program): a(n) = (5*n + 4)^4.
- A016901 (program): a(n) = (5*n + 4)^5.
- A016902 (program): a(n) = (5*n + 4)^6.
- A016903 (program): a(n) = (5*n + 4)^7.
- A016904 (program): a(n) = (5*n + 4)^8.
- A016905 (program): a(n) = (5*n + 4)^9.
- A016906 (program): a(n) = (5*n + 4)^10.
- A016907 (program): (5n+4)^11.
- A016908 (program): a(n) = (5*n + 4)^12.
- A016909 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)).
- A016910 (program): a(n) = (6*n)^2.
- A016911 (program): a(n) = (6*n)^3.
- A016912 (program): (6n)^4.
- A016913 (program): a(n) = (6*n)^5.
- A016914 (program): a(n) = (6*n)^6.
- A016915 (program): a(n) = (6*n)^7.
- A016916 (program): a(n) = (6n)^8.
- A016917 (program): a(n) = (6*n)^9.
- A016918 (program): a(n) = (6*n)^10.
- A016919 (program): a(n) = (6*n)^11.
- A016920 (program): a(n) = (6*n)^12.
- A016921 (program): a(n) = 6*n + 1.
- A016922 (program): a(n) = (6*n+1)^2.
- A016923 (program): a(n) = (6*n + 1)^3.
- A016924 (program): a(n) = (6*n + 1)^4.
- A016925 (program): a(n) = (6*n + 1)^5.
- A016926 (program): a(n) = (6*n + 1)^6.
- A016927 (program): a(n) = (6*n + 1)^7.
- A016928 (program): a(n) = (6*n + 1)^8.
- A016929 (program): a(n) = (6*n + 1)^9.
- A016930 (program): a(n) = (6*n + 1)^10.
- A016931 (program): a(n) = (6*n + 1)^11.
- A016932 (program): a(n) = (6*n + 1)^12.
- A016933 (program): a(n) = 6n + 2.
- A016934 (program): a(n) = (6*n + 2)^2.
- A016935 (program): a(n) = (6*n + 2)^3.
- A016936 (program): a(n) = (6*n + 2)^4.
- A016937 (program): a(n) = (6*n + 2)^5.
- A016938 (program): a(n) = (6*n + 2)^6.
- A016939 (program): a(n) = (6n+2)^7.
- A016940 (program): a(n) = (6*n + 2)^8.
- A016941 (program): a(n) = (6*n + 2)^9.
- A016942 (program): a(n) = (6*n + 2)^10.
- A016943 (program): a(n) = (6*n + 2)^11.
- A016944 (program): a(n) = (6*n + 2)^12.
- A016945 (program): a(n) = 6*n+3.
- A016946 (program): a(n) = (6*n+3)^2.
- A016947 (program): a(n) = (6*n + 3)^3.
- A016948 (program): a(n) = (6*n + 3)^4.
- A016949 (program): a(n) = (6*n + 3)^5.
- A016950 (program): a(n) = (6*n + 3)^6.
- A016951 (program): a(n) = (6*n + 3)^7.
- A016952 (program): a(n) = (6*n + 3)^8.
- A016953 (program): a(n) = (6*n + 3)^9.
- A016954 (program): a(n) = (6n+3)^10.
- A016955 (program): a(n) = (6*n + 3)^11.
- A016956 (program): a(n) = (6*n + 3)^12.
- A016957 (program): a(n) = 6*n + 4.
- A016958 (program): a(n) = (6n + 4)^2.
- A016959 (program): a(n) = (6*n + 4)^3.
- A016960 (program): a(n) = (6*n + 4)^4.
- A016961 (program): a(n) = (6*n + 4)^5.
- A016962 (program): a(n) = (6*n + 4)^6.
- A016963 (program): a(n) = (6*n + 4)^7.
- A016964 (program): a(n) = (6*n + 4)^8.
- A016965 (program): a(n) = (6*n + 4)^9.
- A016966 (program): a(n) = (6*n + 4)^10.
- A016967 (program): a(n) = (6*n + 4)^11.
- A016968 (program): a(n) = (6*n + 4)^12.
- A016969 (program): a(n) = 6*n + 5.
- A016970 (program): a(n) = (6*n + 5)^2.
- A016971 (program): a(n) = (6*n + 5)^3.
- A016972 (program): a(n) = (6*n + 5)^4.
- A016973 (program): a(n) = (6*n + 5)^5.
- A016974 (program): a(n) = (6*n + 5)^6.
- A016975 (program): a(n) = (6*n + 5)^7.
- A016976 (program): a(n) = (6*n + 5)^8.
- A016977 (program): a(n) = (6*n + 5)^9.
- A016978 (program): a(n) = (6*n + 5)^10.
- A016979 (program): a(n) = (6*n + 5)^11.
- A016980 (program): a(n) = (6*n + 5)^12.
- A016981 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)).
- A016982 (program): a(n) = (7*n)^2.
- A016983 (program): a(n) = (7*n)^3.
- A016984 (program): a(n) = (7*n)^4.
- A016985 (program): a(n) = (7n)^5.
- A016986 (program): a(n) = (7*n)^6.
- A016987 (program): a(n) = (7*n)^7.
- A016988 (program): a(n) = (7*n)^8.
- A016989 (program): a(n) = (7*n)^9.
- A016990 (program): a(n) = (7*n)^10.
- A016991 (program): a(n) = (7*n)^11.
- A016992 (program): a(n) = (7*n)^12.
- A016993 (program): a(n) = 7*n + 1.
- A016994 (program): (7*n+1)^2.
- A016995 (program): a(n) = (7*n + 1)^3.
- A016996 (program): a(n) = (7*n + 1)^4.
- A016997 (program): a(n) = (7*n + 1)^5.
- A016998 (program): a(n) = (7*n + 1)^6.
- A016999 (program): a(n) = (7*n + 1)^7.
- A017000 (program): a(n) = (7*n + 1)^8.
- A017001 (program): a(n) = (7*n + 1)^9.
- A017002 (program): a(n) = (7*n + 1)^10.
- A017003 (program): a(n) = (7*n + 1)^11.
- A017004 (program): a(n) = (7*n + 1)^12.
- A017005 (program): a(n) = 7n + 2.
- A017006 (program): a(n) = (7*n+2)^2.
- A017007 (program): a(n) = (7*n + 2)^3.
- A017008 (program): a(n) = (7*n + 2)^4.
- A017009 (program): a(n) = (7*n + 2)^5.
- A017010 (program): a(n) = (7*n+2)^6.
- A017011 (program): a(n) = (7*n + 2)^7.
- A017012 (program): a(n) = (7*n + 2)^8.
- A017013 (program): a(n) = (7*n + 2)^9.
- A017014 (program): a(n) = (7*n + 2)^10.
- A017015 (program): a(n) = (7*n + 2)^11.
- A017016 (program): a(n) = (7*n + 2)^12.
- A017017 (program): a(n) = 7n+3.
- A017018 (program): a(n) = (7*n + 3)^2.
- A017019 (program): a(n) = (7*n + 3)^3.
- A017020 (program): a(n) = (7*n + 3)^4.
- A017021 (program): a(n) = (7*n + 3)^5.
- A017022 (program): a(n) = (7*n + 3)^6.
- A017023 (program): a(n) = (7*n + 3)^7.
- A017024 (program): a(n) = (7*n + 3)^8.
- A017025 (program): a(n) = (7*n + 3)^9.
- A017026 (program): a(n) = (7*n + 3)^10.
- A017027 (program): a(n) = (7*n + 3)^11.
- A017028 (program): a(n) = (7*n + 3)^12.
- A017029 (program): a(n) = 7*n + 4.
- A017030 (program): a(n) = (7*n + 4)^2.
- A017031 (program): a(n) = (7*n + 4)^3.
- A017032 (program): a(n) = (7*n + 4)^4.
- A017033 (program): a(n) = (7*n + 4)^5.
- A017034 (program): a(n) = (7*n + 4)^6.
- A017035 (program): a(n) = (7*n + 4)^7.
- A017036 (program): (7*n+4)^8.
- A017037 (program): a(n) = (7*n + 4)^9.
- A017038 (program): a(n) = (7*n + 4)^10.
- A017039 (program): a(n) = (7*n + 4)^11.
- A017040 (program): a(n) = (7*n + 4)^12.
- A017041 (program): a(n) = 7*n + 5.
- A017042 (program): a(n) = (7*n + 5)^2.
- A017043 (program): a(n) = (7*n + 5)^3.
- A017044 (program): a(n) = (7*n + 5)^4.
- A017045 (program): a(n) = (7*n + 5)^5.
- A017046 (program): a(n) = (7*n + 5)^6.
- A017047 (program): a(n) = (7*n + 5)^7.
- A017048 (program): a(n) = (7*n + 5)^8.
- A017049 (program): a(n) = (7*n + 5)^9.
- A017050 (program): a(n) = (7*n + 5)^10.
- A017051 (program): a(n) = (7*n + 5)^11.
- A017052 (program): a(n) = (7*n + 5)^12.
- A017053 (program): a(n) = 7*n + 6.
- A017054 (program): a(n) = (7*n + 6)^2.
- A017055 (program): a(n) = (7*n + 6)^3.
- A017056 (program): a(n) = (7*n + 6)^4.
- A017057 (program): a(n) = (7*n + 6)^5.
- A017058 (program): a(n) = (7*n + 6)^6.
- A017059 (program): a(n) = (7*n + 6)^7.
- A017060 (program): a(n) = (7*n + 6)^8.
- A017061 (program): a(n) = (7*n + 6)^9.
- A017062 (program): a(n) = (7*n + 6)^10.
- A017063 (program): a(n) = (7*n + 6)^11.
- A017064 (program): a(n) = (7*n+6)^12.
- A017065 (program): Expansion of 1/((1-3x)(1-4x)(1-11x)).
- A017066 (program): a(n) = (8*n)^2.
- A017067 (program): a(n) = (8*n)^3.
- A017068 (program): a(n) = (8*n)^4.
- A017069 (program): a(n) = (8*n)^5.
- A017070 (program): a(n) = (8*n)^6.
- A017071 (program): a(n) = (8*n)^7.
- A017072 (program): a(n) = (8*n)^8.
- A017073 (program): a(n) = (8*n)^9.
- A017074 (program): a(n) = (8*n)^10.
- A017075 (program): a(n) = (8*n)^11.
- A017076 (program): a(n) = (8*n)^12.
- A017077 (program): a(n) = 8*n + 1.
- A017078 (program): a(n) = (8*n + 1)^2.
- A017079 (program): a(n) = (8*n + 1)^3.
- A017080 (program): a(n) = (8*n + 1)^4.
- A017081 (program): a(n) = (8*n + 1)^5.
- A017082 (program): a(n) = (8*n + 1)^6.
- A017083 (program): a(n) = (8*n + 1)^7.
- A017084 (program): a(n) = (8*n + 1)^8.
- A017085 (program): a(n) = (8*n + 1)^9.
- A017086 (program): a(n) = (8*n + 1)^10.
- A017087 (program): a(n) = (8*n + 1)^11.
- A017088 (program): a(n) = (8*n + 1)^12.
- A017089 (program): a(n) = 8*n+2.
- A017090 (program): a(n) = (8*n + 2)^2.
- A017091 (program): a(n) = (8*n + 2)^3.
- A017092 (program): a(n) = (8*n + 2)^4.
- A017093 (program): a(n) = (8*n + 2)^5.
- A017094 (program): a(n) = (8*n + 2)^6.
- A017095 (program): a(n) = (8*n + 2)^7.
- A017096 (program): a(n) = (8*n + 2)^8.
- A017097 (program): a(n) = (8*n + 2)^9.
- A017098 (program): a(n) = (8*n + 2)^10.
- A017099 (program): a(n) = (8*n + 2)^11.
- A017100 (program): a(n) = (8*n + 2)^12.
- A017101 (program): a(n) = 8n + 3.
- A017102 (program): a(n) = (8n + 3)^2.
- A017103 (program): a(n) = (8*n+3)^3.
- A017104 (program): a(n) = (8*n+3)^4.
- A017105 (program): a(n) = (8*n+3)^5.
- A017106 (program): a(n) = (8*n+3)^6.
- A017107 (program): a(n) = (8*n+3)^7.
- A017108 (program): a(n) = (8*n+3)^8.
- A017109 (program): a(n) = (8*n+3)^9.
- A017110 (program): a(n) = (8*n+3)^10.
- A017111 (program): a(n) = (8*n+3)^11.
- A017112 (program): a(n) = (8*n+3)^12.
- A017113 (program): a(n) = 8*n + 4.
- A017114 (program): a(n) = (8*n + 4)^2.
- A017115 (program): a(n) = (8*n + 4)^3.
- A017116 (program): a(n) = (8*n + 4)^4.
- A017117 (program): a(n) = (8*n + 4)^5.
- A017118 (program): a(n) = (8*n + 4)^6.
- A017119 (program): a(n) = (8*n + 4)^7 = 4^7*(2*n + 1)^7.
- A017120 (program): a(n) = (8*n + 4)^8.
- A017121 (program): a(n) = (8*n + 4)^9.
- A017122 (program): a(n) = (8*n + 4)^10.
- A017123 (program): a(n) = (8*n + 4)^11.
- A017124 (program): a(n) = (8*n + 4)^12.
- A017125 (program): Table read by antidiagonals of Fibonacci-type sequences.
- A017126 (program): a(n) = (8*n + 5)^2.
- A017127 (program): a(n) = (8*n + 5)^3.
- A017128 (program): a(n) = (8*n + 5)^4.
- A017129 (program): a(n) = (8*n + 5)^5.
- A017130 (program): a(n) = (8*n + 5)^6.
- A017131 (program): a(n) = (8*n + 5)^7.
- A017132 (program): a(n) = (8*n + 5)^8.
- A017133 (program): a(n) = (8*n + 5)^9.
- A017134 (program): a(n) = (8*n + 5)^10.
- A017135 (program): a(n) = (8*n + 5)^11.
- A017136 (program): a(n) = (8*n + 5)^12.
- A017137 (program): a(n) = 8*n+6.
- A017138 (program): a(n) = (8*n+6)^2.
- A017139 (program): a(n) = (8*n + 6)^3.
- A017140 (program): a(n) = (8*n+6)^4.
- A017141 (program): a(n) = (8*n+6)^5.
- A017142 (program): a(n) = (8*n+6)^6.
- A017143 (program): a(n) = (8*n+6)^7.
- A017144 (program): a(n) = (8*n + 6)^8.
- A017145 (program): a(n) = (8*n+6)^9.
- A017146 (program): a(n) = (8*n+6)^10.
- A017147 (program): a(n) = (8*n+6)^11.
- A017148 (program): a(n) = (8*n+6)^12.
- A017150 (program): a(n) = (8*n + 7)^2.
- A017151 (program): a(n) = (8*n + 7)^3.
- A017152 (program): a(n) = (8*n + 7)^4.
- A017153 (program): a(n) = (8*n + 7)^5.
- A017154 (program): a(n) = (8*n + 7)^6.
- A017155 (program): a(n) = (8*n + 7)^7.
- A017156 (program): a(n) = (8*n + 7)^8.
- A017157 (program): a(n) = (8*n + 7)^9.
- A017158 (program): a(n) = (8*n + 7)^10.
- A017159 (program): a(n) = (8*n + 7)^11.
- A017160 (program): a(n) = (8*n + 7)^12.
- A017161 (program): Expansion of 1/((1-3x)(1-4x)(1-12x)).
- A017162 (program): a(n) = (9*n)^2.
- A017163 (program): a(n) = (9*n)^3.
- A017164 (program): a(n) = (9*n)^4.
- A017165 (program): a(n) = (9*n)^5.
- A017166 (program): a(n) = (9*n)^6.
- A017167 (program): a(n) = (9*n)^7.
- A017168 (program): a(n) = (9*n)^8.
- A017169 (program): a(n) = (9*n)^9.
- A017170 (program): a(n) = (9*n)^10.
- A017171 (program): a(n) = (9*n)^11.
- A017172 (program): (9*n)^12.
- A017173 (program): a(n) = 9*n + 1.
- A017174 (program): a(n) = (9*n + 1)^2.
- A017175 (program): a(n) = (9*n + 1)^3.
- A017176 (program): (9n+1)^4.
- A017177 (program): (9n+1)^5.
- A017178 (program): (9n+1)^6.
- A017179 (program): (9n+1)^7.
- A017180 (program): (9n+1)^8.
- A017181 (program): (9n+1)^9.
- A017182 (program): (9n+1)^10.
- A017183 (program): (9n+1)^11.
- A017184 (program): (9n+1)^12.
- A017185 (program): 9*n+2.
- A017186 (program): a(n) = (9*n + 2)^2.
- A017187 (program): a(n) = (9*n + 2)^3.
- A017188 (program): a(n) = (9*n + 2)^4.
- A017189 (program): a(n) = (9*n + 2)^5.
- A017190 (program): a(n) = (9*n + 2)^6.
- A017191 (program): a(n) = (9*n + 2)^7.
- A017192 (program): a(n) = (9*n + 2)^8.
- A017193 (program): a(n) = (9*n + 2)^9.
- A017194 (program): a(n) = (9*n + 2)^10.
- A017195 (program): a(n) = (9*n + 2)^11.
- A017196 (program): a(n) = (9*n + 2)^12.
- A017197 (program): a(n) = 9*n + 3.
- A017198 (program): a(n) = (9*n + 3)^2.
- A017199 (program): a(n) = (9*n + 3)^3.
- A017200 (program): a(n) = (9*n+3)^4.
- A017201 (program): a(n) = (9*n + 3)^5.
- A017202 (program): a(n) = (9*n + 3)^6.
- A017203 (program): a(n) = (9*n + 3)^7.
- A017204 (program): a(n) = (9*n + 3)^8.
- A017205 (program): a(n) = (9*n + 3)^9.
- A017206 (program): a(n) = (9*n + 3)^10.
- A017207 (program): a(n) = (9*n + 3)^11.
- A017208 (program): a(n) = (9*n + 3)^12.
- A017209 (program): a(n) = 9*n+4.
- A017210 (program): a(n) = (9*n + 4)^2.
- A017211 (program): a(n) = (9*n + 4)^3.
- A017212 (program): a(n) = (9*n + 4)^4.
- A017213 (program): a(n) = (9*n + 4)^5.
- A017214 (program): a(n) = (9*n + 4)^6.
- A017215 (program): a(n) = (9*n + 4)^7.
- A017216 (program): a(n) = (9*n + 4)^8.
- A017217 (program): a(n) = (9*n + 4)^9.
- A017218 (program): a(n) = (9*n + 4)^10.
- A017219 (program): a(n) = (9*n + 4)^11.
- A017220 (program): a(n) = (9*n + 4)^12.
- A017221 (program): a(n) = 9*n + 5.
- A017222 (program): a(n) = (9*n + 5)^2.
- A017223 (program): a(n) = (9*n+5)^3.
- A017224 (program): a(n) = (9*n + 5)^4.
- A017225 (program): a(n) = (9*n + 5)^5.
- A017226 (program): a(n) = (9*n + 5)^6.
- A017227 (program): a(n) = (9*n + 5)^7.
- A017228 (program): a(n) = (9*n + 5)^8.
- A017229 (program): a(n) = (9*n + 5)^9.
- A017230 (program): a(n) = (9*n + 5)^10.
- A017231 (program): a(n) = (9*n + 5)^11.
- A017232 (program): a(n) = (9*n + 5)^12.
- A017233 (program): a(n) = 9*n + 6.
- A017234 (program): a(n) = (9*n + 6)^2.
- A017235 (program): a(n) = (9*n + 6)^3.
- A017236 (program): a(n) = (9*n + 6)^4.
- A017237 (program): a(n) = (9*n + 6)^5.
- A017238 (program): a(n) = (9*n + 6)^6.
- A017239 (program): a(n) = (9*n + 6)^7.
- A017240 (program): a(n) = (9*n + 6)^8.
- A017241 (program): a(n) = (9*n + 6)^9.
- A017242 (program): a(n) = (9*n + 6)^10.
- A017243 (program): a(n) = (9*n + 6)^11.
- A017244 (program): a(n) = (9*n + 6)^12.
- A017245 (program): a(n) = 9*n + 7.
- A017246 (program): a(n) = (9*n + 7)^2.
- A017247 (program): a(n) = (9*n + 7)^3.
- A017248 (program): a(n) = (9*n + 7)^4.
- A017249 (program): a(n) = (9*n + 7)^5.
- A017250 (program): a(n) = (9*n + 7)^6.
- A017251 (program): a(n) = (9*n+7)^7.
- A017252 (program): a(n) = (9*n + 7)^8.
- A017253 (program): a(n) = (9*n + 7)^9.
- A017254 (program): a(n) = (9*n + 7)^10.
- A017255 (program): a(n) = (9*n + 7)^11.
- A017256 (program): a(n) = (9*n + 7)^12.
- A017257 (program): a(n) = 9n+8.
- A017258 (program): a(n) = (9*n + 8)^2.
- A017259 (program): a(n) = (9*n + 8)^3.
- A017260 (program): a(n) = (9*n + 8)^4.
- A017261 (program): a(n) = (9*n + 8)^5.
- A017262 (program): a(n) = (9*n + 8)^6.
- A017263 (program): a(n) = (9*n + 8)^7.
- A017264 (program): a(n) = (9*n + 8)^8.
- A017265 (program): a(n) = (9*n + 8)^9.
- A017266 (program): a(n) = (9*n + 8)^10.
- A017267 (program): a(n) = (9*n + 8)^11.
- A017268 (program): a(n) = (9*n + 8)^12.
- A017269 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)).
- A017270 (program): a(n) = (10*n)^2.
- A017271 (program): a(n) = (10*n)^3.
- A017272 (program): a(n) = (10*n)^4.
- A017273 (program): a(n) = (10*n)^5.
- A017274 (program): a(n) = (10*n)^6.
- A017275 (program): a(n) = (10*n)^7.
- A017276 (program): a(n) = (10*n)^8.
- A017277 (program): a(n) = (10*n)^9.
- A017278 (program): a(n) = (10*n)^10.
- A017279 (program): a(n) = (10*n)^11.
- A017280 (program): a(n) = (10*n)^12.
- A017281 (program): a(n) = 10*n + 1.
- A017282 (program): a(n) = (10*n + 1)^2.
- A017283 (program): a(n) = (10*n + 1)^3.
- A017284 (program): a(n) = (10*n + 1)^4.
- A017285 (program): a(n) = (10*n + 1)^5.
- A017286 (program): a(n) = (10*n + 1)^6.
- A017287 (program): a(n) = (10*n + 1)^7.
- A017288 (program): a(n) = (10*n + 1)^8.
- A017289 (program): a(n) = (10*n + 1)^9.
- A017290 (program): a(n) = (10*n + 1)^10.
- A017291 (program): a(n) = (10*n + 1)^11.
- A017292 (program): a(n) = (10*n + 1)^12.
- A017293 (program): a(n) = 10n+2.
- A017294 (program): a(n) = (10*n+2)^2.
- A017295 (program): (10*n+2)^3.
- A017296 (program): a(n) = (10*n + 2)^4.
- A017297 (program): a(n) = (10*n + 2)^5.
- A017298 (program): a(n) = (10*n + 2)^6.
- A017299 (program): a(n) = (10*n + 2)^7.
- A017300 (program): a(n) = (10*n + 2)^8.
- A017301 (program): a(n) = (10*n + 2)^9.
- A017302 (program): a(n) = (10*n + 2)^10.
- A017303 (program): a(n) = (10*n + 2)^11.
- A017304 (program): a(n) = (10*n + 2)^12.
- A017305 (program): a(n) = 10n + 3.
- A017306 (program): a(n) = (10*n + 3)^2.
- A017307 (program): a(n) = (10*n + 3)^3.
- A017308 (program): a(n) = (10*n + 3)^4.
- A017309 (program): a(n) = (10*n + 3)^5.
- A017310 (program): a(n) = (10*n + 3)^6.
- A017311 (program): a(n) = (10*n + 3)^7.
- A017312 (program): a(n) = (10*n + 3)^8.
- A017313 (program): a(n) = (10*n + 3)^9.
- A017314 (program): a(n) = (10*n + 3)^10.
- A017315 (program): a(n) = (10*n + 3)^11.
- A017316 (program): a(n) = (10*n + 3)^12.
- A017317 (program): a(n) = 10n + 4.
- A017318 (program): a(n) = (10*n + 4)^2.
- A017319 (program): a(n) = (10*n + 4)^3.
- A017320 (program): a(n) = (10*n + 4)^4.
- A017321 (program): a(n) = (10*n + 4)^5.
- A017322 (program): a(n) = (10*n + 4)^6.
- A017323 (program): a(n) = (10*n + 4)^7.
- A017324 (program): a(n) = (10*n + 4)^8.
- A017325 (program): a(n) = (10*n + 4)^9.
- A017326 (program): a(n) = (10*n + 4)^10.
- A017327 (program): a(n) = (10*n + 4)^11.
- A017328 (program): a(n) = (10*n + 4)^12.
- A017329 (program): a(n) = 10*n + 5.
- A017330 (program): a(n) = (10*n + 5)^2.
- A017331 (program): a(n) = (10*n + 5)^3.
- A017332 (program): a(n) = (10*n + 5)^4.
- A017333 (program): a(n) = (10*n + 5)^5.
- A017334 (program): a(n) = (10*n + 5)^6.
- A017335 (program): a(n) = (10*n + 5)^7.
- A017336 (program): a(n) = (10*n + 5)^8.
- A017337 (program): a(n) = (10*n + 5)^9.
- A017338 (program): a(n) = (10*n + 5)^10.
- A017339 (program): a(n) = (10*n + 5)^11.
- A017340 (program): a(n) = (10*n + 5)^12.
- A017341 (program): a(n) = 10*n + 6.
- A017342 (program): a(n) = (10*n + 6)^2.
- A017343 (program): a(n) = (10*n + 6)^3.
- A017344 (program): a(n) = (10*n + 6)^4.
- A017345 (program): a(n) = (10*n + 6)^5.
- A017346 (program): a(n) = (10*n + 6)^6.
- A017347 (program): a(n) = (10*n + 6)^7.
- A017348 (program): a(n) = (10*n + 6)^8.
- A017349 (program): a(n) = (10*n + 6)^9.
- A017350 (program): a(n) = (10*n + 6)^10.
- A017351 (program): a(n) = (10*n + 6)^11.
- A017352 (program): (10*n+6)^12.
- A017353 (program): a(n) = 10n + 7.
- A017354 (program): a(n) = (10*n + 7)^2.
- A017355 (program): a(n) = (10*n + 7)^3.
- A017356 (program): a(n) = (10*n+7)^4.
- A017357 (program): a(n) = (10*n + 7)^5.
- A017358 (program): a(n) = (10*n + 7)^6.
- A017359 (program): a(n) = (10*n + 7)^7.
- A017360 (program): a(n) = (10*n + 7)^8.
- A017361 (program): a(n) = (10*n + 7)^9.
- A017362 (program): a(n) = (10*n + 7)^10.
- A017363 (program): a(n) = (10*n + 7)^11.
- A017364 (program): a(n) = (10*n + 7)^12.
- A017365 (program): a(n) = 10n + 8.
- A017366 (program): a(n) = (10*n+8)^2.
- A017367 (program): a(n) = (10*n + 8)^3.
- A017368 (program): a(n) = (10*n + 8)^4.
- A017369 (program): a(n) = (10*n + 8)^5.
- A017370 (program): a(n) = (10*n + 8)^6.
- A017371 (program): a(n) = (10*n + 8)^7.
- A017372 (program): (10*n+8)^8.
- A017373 (program): a(n) = (10*n + 8)^9.
- A017374 (program): a(n) = (10*n + 8)^10.
- A017375 (program): a(n) = (10*n + 8)^11.
- A017376 (program): a(n) = (10*n + 8)^12.
- A017377 (program): a(n) = 10*n + 9.
- A017378 (program): a(n) = (10*n + 9)^2.
- A017379 (program): a(n) = (10*n + 9)^3.
- A017380 (program): a(n) = (10*n + 9)^4.
- A017381 (program): a(n) = (10*n + 9)^5.
- A017382 (program): a(n) = (10*n + 9)^6.
- A017383 (program): (10*n+9)^7.
- A017384 (program): a(n) = (10*n + 9)^8.
- A017385 (program): a(n) = (10*n + 9)^9.
- A017386 (program): a(n) = (10*n + 9)^10.
- A017387 (program): a(n) = (10*n + 9)^11.
- A017388 (program): a(n) = (10*n + 9)^12.
- A017389 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)).
- A017390 (program): a(n) = (11*n)^2.
- A017391 (program): a(n) = (11*n)^3.
- A017392 (program): a(n) = (11*n)^4.
- A017393 (program): a(n) = (11*n)^5.
- A017394 (program): a(n) = (11*n)^6.
- A017395 (program): a(n) = (11*n)^7.
- A017396 (program): a(n) = (11*n)^8.
- A017397 (program): a(n) = (11*n)^9.
- A017398 (program): a(n) = (11*n)^10.
- A017399 (program): a(n) = (11*n)^11.
- A017400 (program): a(n) = (11*n)^12.
- A017401 (program): a(n) = 11n + 1.
- A017402 (program): (11n+1)^2.
- A017403 (program): (11n+1)^3.
- A017404 (program): (11n+1)^4.
- A017405 (program): (11n+1)^5.
- A017406 (program): a(n) = (11n+1)^6.
- A017407 (program): (11n+1)^7.
- A017408 (program): (11n+1)^8.
- A017409 (program): a(n) = (11n+1)^9.
- A017410 (program): (11n+1)^10.
- A017411 (program): (11n+1)^11.
- A017412 (program): (11n+1)^12.
- A017413 (program): a(n) = 11*n + 2.
- A017414 (program): (11n+2)^2.
- A017415 (program): a(n) = (11*n+2)^3.
- A017416 (program): (11n+2)^4.
- A017417 (program): a(n) = (11*n+2)^5.
- A017418 (program): (11n+2)^6.
- A017419 (program): a(n) = (11*n+2)^7.
- A017420 (program): (11n+2)^8.
- A017421 (program): (11n+2)^9.
- A017422 (program): (11n+2)^10.
- A017423 (program): (11n+2)^11.
- A017424 (program): (11n+2)^12.
- A017425 (program): a(n) = 11*n + 3.
- A017426 (program): (11n+3)^2.
- A017427 (program): (11n+3)^3.
- A017428 (program): (11n+3)^4.
- A017429 (program): a(n) = (11*n+3)^5.
- A017430 (program): (11n+3)^6.
- A017431 (program): (11n+3)^7.
- A017432 (program): a(n) = (11*n + 3)^8.
- A017433 (program): (11n+3)^9.
- A017434 (program): (11n+3)^10.
- A017435 (program): (11n+3)^11.
- A017436 (program): (11n+3)^12.
- A017437 (program): a(n) = 11*n + 4.
- A017438 (program): a(n) = (11*n + 4)^2.
- A017439 (program): a(n) = (11*n + 4)^3.
- A017440 (program): a(n) = (11*n + 4)^4.
- A017441 (program): a(n) = (11*n + 4)^5.
- A017442 (program): a(n) = (11*n + 4)^6.
- A017443 (program): a(n) = (11*n + 4)^7.
- A017444 (program): a(n) = (11*n + 4)^8.
- A017445 (program): a(n) = (11*n + 4)^9.
- A017446 (program): a(n) = (11*n + 4)^10.
- A017447 (program): a(n) = (11*n + 4)^11.
- A017448 (program): a(n) = (11*n + 4)^12.
- A017449 (program): a(n) = 11*n + 5.
- A017450 (program): a(n) = (11*n + 5)^2.
- A017451 (program): a(n) = (11*n + 5)^3.
- A017452 (program): a(n) = (11*n + 5)^4.
- A017453 (program): a(n) = (11*n + 5)^5.
- A017454 (program): a(n) = (11*n + 5)^6.
- A017455 (program): a(n) = (11*n + 5)^7.
- A017456 (program): a(n) = (11*n + 5)^8.
- A017457 (program): a(n) = (11*n + 5)^9.
- A017458 (program): a(n) = (11*n + 5)^10.
- A017459 (program): a(n) = (11*n + 5)^11.
- A017460 (program): a(n) = (11*n + 5)^12.
- A017461 (program): a(n) = 11*n + 6.
- A017462 (program): a(n) = (11*n + 6)^2.
- A017463 (program): a(n) = (11*n + 6)^3.
- A017464 (program): a(n) = (11*n + 6)^4.
- A017465 (program): a(n) = (11*n + 6)^5.
- A017466 (program): a(n) = (11*n + 6)^6.
- A017467 (program): a(n) = (11*n + 6)^7.
- A017468 (program): a(n) = (11*n + 6)^8.
- A017469 (program): a(n) = (11*n + 6)^9.
- A017470 (program): a(n) = (11*n + 6)^10.
- A017471 (program): a(n) = (11*n + 6)^11.
- A017472 (program): a(n) = (11*n + 6)^12.
- A017473 (program): a(n) = 11*n + 7.
- A017474 (program): a(n) = (11*n + 7)^2.
- A017475 (program): a(n) = (11*n + 7)^3.
- A017476 (program): a(n) = (11*n + 7)^4.
- A017477 (program): a(n) = (11*n + 7)^5.
- A017478 (program): a(n) = (11*n + 7)^6.
- A017479 (program): a(n) = (11*n + 7)^7.
- A017480 (program): a(n) = (11*n + 7)^8.
- A017481 (program): a(n) = (11*n + 7)^9.
- A017482 (program): a(n) = (11*n + 7)^10.
- A017483 (program): a(n) = (11*n + 7)^11.
- A017484 (program): a(n) = (11*n + 7)^12.
- A017485 (program): a(n) = 11*n + 8.
- A017486 (program): a(n) = (11*n + 8)^2.
- A017487 (program): a(n) = (11*n + 8)^3.
- A017488 (program): a(n) = (11*n + 8)^4.
- A017489 (program): a(n) = (11*n + 8)^5.
- A017490 (program): a(n) = (11*n + 8)^6.
- A017491 (program): a(n) = (11*n + 8)^7.
- A017492 (program): a(n) = (11*n + 8)^8.
- A017493 (program): a(n) = (11*n + 8)^9.
- A017494 (program): a(n) = (11*n + 8)^10.
- A017495 (program): a(n) = (11*n + 8)^11.
- A017496 (program): a(n) = (11*n + 8)^12.
- A017497 (program): a(n) = 11*n + 9.
- A017498 (program): a(n) = (11*n + 9)^2.
- A017499 (program): a(n) = (11*n + 9)^3.
- A017500 (program): a(n) = (11*n + 9)^4.
- A017501 (program): a(n) = (11*n + 9)^5.
- A017502 (program): a(n) = (11*n + 9)^6.
- A017503 (program): a(n) = (11*n + 9)^7.
- A017504 (program): a(n) = (11*n + 9)^8.
- A017505 (program): a(n) = (11*n + 9)^9.
- A017506 (program): a(n) = (11*n + 9)^10.
- A017507 (program): a(n) = (11*n + 9)^11.
- A017508 (program): a(n) = (11*n + 9)^12.
- A017509 (program): a(n) = 11*n + 10.
- A017510 (program): a(n) = (11*n + 10)^2.
- A017511 (program): a(n) = (11*n + 10)^3.
- A017512 (program): a(n) = (11*n + 10)^4.
- A017513 (program): a(n) = (11*n + 10)^5.
- A017514 (program): a(n) = (11*n + 10)^6.
- A017515 (program): a(n) = (11*n + 10)^7.
- A017516 (program): a(n) = (11*n + 10)^8.
- A017517 (program): a(n) = (11*n + 10)^9.
- A017518 (program): a(n) = (11*n + 10)^10.
- A017519 (program): a(n) = (11*n + 10)^11.
- A017520 (program): a(n) = (11*n + 10)^12.
- A017521 (program): Expansion of 1/((1-3*x)*(1-5*x)*(1-8*x)).
- A017522 (program): a(n) = (12*n)^2.
- A017523 (program): a(n) = (12*n)^3.
- A017524 (program): (12n)^4.
- A017525 (program): (12n)^5.
- A017526 (program): a(n) = (12*n)^6.
- A017527 (program): a(n) = (12n)^7.
- A017528 (program): (12n)^8.
- A017529 (program): (12n)^9.
- A017530 (program): (12n)^10.
- A017531 (program): (12n)^11.
- A017532 (program): a(n) = (12*n)^12.
- A017533 (program): a(n) = 12*n + 1.
- A017534 (program): (12n+1)^2.
- A017535 (program): a(n) = (12*n+1)^3.
- A017536 (program): (12n+1)^4.
- A017537 (program): (12n+1)^5.
- A017538 (program): (12n+1)^6.
- A017539 (program): (12n+1)^7.
- A017540 (program): a(n) = (12*n + 1)^8.
- A017541 (program): (12n+1)^9.
- A017542 (program): (12n+1)^10.
- A017543 (program): a(n) = (12*n + 1)^11.
- A017544 (program): (12n+1)^12.
- A017545 (program): a(n) = 12*n + 2.
- A017546 (program): (12n+2)^2.
- A017547 (program): a(n) = (12n + 2)^3.
- A017548 (program): (12n+2)^4.
- A017549 (program): (12n+2)^5.
- A017550 (program): (12n+2)^6.
- A017551 (program): a(n) = (12*n + 2)^7.
- A017552 (program): (12n+2)^8.
- A017553 (program): (12n+2)^9.
- A017554 (program): (12n+2)^10.
- A017555 (program): (12n+2)^11.
- A017556 (program): (12n+2)^12.
- A017557 (program): a(n) = 12*n + 3.
- A017558 (program): a(n) = (12*n + 3)^2.
- A017559 (program): (12n+3)^3.
- A017560 (program): a(n) = (12*n + 3)^4.
- A017561 (program): (12n+3)^5.
- A017562 (program): (12n+3)^6.
- A017563 (program): (12n+3)^7.
- A017564 (program): (12n+3)^8.
- A017565 (program): (12n+3)^9.
- A017566 (program): a(n) = (12*n+3)^10.
- A017567 (program): (12n+3)^11.
- A017568 (program): (12n+3)^12.
- A017569 (program): a(n) = 12*n + 4.
- A017570 (program): a(n) = (12*n + 4)^2.
- A017571 (program): (12n+4)^3.
- A017572 (program): (12n+4)^4.
- A017573 (program): (12n+4)^5.
- A017574 (program): (12n+4)^6.
- A017575 (program): (12n+4)^7.
- A017576 (program): (12n+4)^8.
- A017577 (program): (12n+4)^9.
- A017578 (program): (12n+4)^10.
- A017579 (program): (12n+4)^11.
- A017580 (program): (12n+4)^12.
- A017581 (program): a(n) = 12*n + 5.
- A017582 (program): a(n) = (12n + 5)^2.
- A017583 (program): (12n+5)^3.
- A017584 (program): (12n+5)^4.
- A017585 (program): (12n+5)^5.
- A017586 (program): (12n+5)^6.
- A017587 (program): (12n+5)^7.
- A017588 (program): (12n+5)^8.
- A017589 (program): (12n+5)^9.
- A017590 (program): a(n) = (12*n+5)^10.
- A017591 (program): (12n+5)^11.
- A017592 (program): (12n+5)^12.
- A017593 (program): a(n) = 12*n + 6.
- A017594 (program): a(n) = (12*n + 6)^2.
- A017595 (program): a(n) = (12n+6)^3.
- A017596 (program): a(n) = (12*n+6)^4.
- A017597 (program): (12n+6)^5.
- A017598 (program): (12n+6)^6.
- A017599 (program): (12n+6)^7.
- A017600 (program): (12n+6)^8.
- A017601 (program): (12n+6)^9.
- A017602 (program): (12n+6)^10.
- A017603 (program): (12n+6)^11.
- A017604 (program): a(n) = (12n+6)^12.
- A017605 (program): a(n) = 12*n + 7.
- A017606 (program): a(n) = (12*n + 7)^2.
- A017607 (program): (12n+7)^3.
- A017608 (program): (12n+7)^4.
- A017609 (program): (12n+7)^5.
- A017610 (program): (12n+7)^6.
- A017611 (program): (12n+7)^7.
- A017612 (program): (12n+7)^8.
- A017613 (program): (12n+7)^9.
- A017614 (program): (12n+7)^10.
- A017615 (program): a(n) = (12*n+7)^11.
- A017616 (program): (12n+7)^12.
- A017617 (program): a(n) = 12*n + 8.
- A017618 (program): (12n+8)^2.
- A017619 (program): a(n) = (12*n + 8)^3.
- A017620 (program): (12n+8)^4.
- A017621 (program): (12n+8)^5.
- A017622 (program): a(n) = (12*n+8)^6.
- A017623 (program): a(n) = (12*n + 8)^7.
- A017624 (program): (12n+8)^8.
- A017625 (program): (12n+8)^9.
- A017626 (program): (12n+8)^10.
- A017627 (program): a(n) = (12*n+8)^11.
- A017628 (program): (12n+8)^12.
- A017629 (program): a(n) = 12*n + 9.
- A017630 (program): (12n+9)^2.
- A017631 (program): a(n) = (12*n+9)^3.
- A017632 (program): a(n) = (12*n+9)^4.
- A017633 (program): (12n+9)^5.
- A017634 (program): (12n+9)^6.
- A017635 (program): a(n) = (12*n+9)^7.
- A017636 (program): (12n+9)^8.
- A017637 (program): (12n+9)^9.
- A017638 (program): a(n) = (12n+9)^10.
- A017639 (program): (12n+9)^11.
- A017640 (program): (12n+9)^12.
- A017641 (program): a(n) = 12n + 10.
- A017642 (program): a(n) = (12*n+10)^2.
- A017643 (program): a(n) = (12n+10)^3.
- A017644 (program): (12n+10)^4.
- A017645 (program): (12n+10)^5.
- A017646 (program): (12n+10)^6.
- A017647 (program): (12n+10)^7.
- A017648 (program): (12n+10)^8.
- A017649 (program): (12n+10)^9.
- A017650 (program): a(n) = (12n+10)^10.
- A017651 (program): (12n+10)^11.
- A017652 (program): (12n+10)^12.
- A017653 (program): a(n) = 12*n + 11.
- A017654 (program): (12n+11)^2.
- A017655 (program): (12n+11)^3.
- A017656 (program): (12n+11)^4.
- A017657 (program): a(n) = (12*n + 11)^5.
- A017658 (program): (12n+11)^6.
- A017659 (program): a(n) = (12n+11)^7.
- A017660 (program): (12n+11)^8.
- A017661 (program): (12n+11)^9.
- A017662 (program): (12n+11)^10.
- A017663 (program): a(n) = (12*n + 11)^11.
- A017664 (program): (12n+11)^12.
- A017665 (program): Numerator of sum of reciprocals of divisors of n.
- A017666 (program): Denominator of sum of reciprocals of divisors of n.
- A017667 (program): Numerator of sum of -2nd powers of divisors of n.
- A017668 (program): Denominator of sum of -2nd powers of divisors of n.
- A017669 (program): Numerator of sum of -3rd powers of divisors of n.
- A017670 (program): Denominator of sum of -3rd powers of divisors of n.
- A017671 (program): Numerator of sum of -4th powers of divisors of n.
- A017672 (program): Denominator of sum of -4th powers of divisors of n.
- A017674 (program): Denominator of sum of -5th powers of divisors of n.
- A017675 (program): Numerator of sum of -6th powers of divisors of n.
- A017676 (program): Denominator of sum of -6th powers of divisors of n.
- A017677 (program): Numerator of sum of -7th powers of divisors of n.
- A017678 (program): Denominator of sum of -7th powers of divisors of n.
- A017679 (program): Numerator of sum of -8th powers of divisors of n.
- A017680 (program): Denominator of sum of -8th powers of divisors of n.
- A017681 (program): Numerator of sum of -9th powers of divisors of n.
- A017682 (program): Denominator of sum of -9th powers of divisors of n.
- A017683 (program): Numerator of sum of -10th powers of divisors of n.
- A017684 (program): Denominator of sum of -10th powers of divisors of n.
- A017685 (program): Numerator of sum of -11th powers of divisors of n.
- A017686 (program): Denominator of sum of -11th powers of divisors of n.
- A017687 (program): Numerator of sum of -12th powers of divisors of n.
- A017688 (program): Denominator of sum of -12th powers of divisors of n.
- A017689 (program): Numerator of sum of -13th powers of divisors of n.
- A017690 (program): Denominator of sum of -13th powers of divisors of n.
- A017691 (program): Numerator of sum of -14th powers of divisors of n.
- A017692 (program): Denominator of sum of -14th powers of divisors of n.
- A017693 (program): Numerator of sum of -15th powers of divisors of n.
- A017694 (program): Denominator of sum of -15th powers of divisors of n.
- A017695 (program): Numerator of sum of -16th powers of divisors of n.
- A017696 (program): Denominator of sum of -16th powers of divisors of n.
- A017697 (program): Numerator of sum of -17th powers of divisors of n.
- A017698 (program): Denominator of sum of -17th powers of divisors of n.
- A017699 (program): Numerator of sum of -18th powers of divisors of n.
- A017700 (program): Denominator of sum of -18th powers of divisors of n.
- A017701 (program): Numerator of sum of -19th powers of divisors of n.
- A017702 (program): Denominator of sum of -19th powers of divisors of n.
- A017703 (program): Numerator of sum of -20th powers of divisors of n.
- A017704 (program): Denominator of sum of -20th powers of divisors of n.
- A017705 (program): Numerator of sum of -21st powers of divisors of n.
- A017706 (program): Denominator of sum of -21st powers of divisors of n.
- A017707 (program): Numerator of sum of -22nd powers of divisors of n.
- A017708 (program): Denominator of sum of -22nd powers of divisors of n.
- A017709 (program): Numerator of sum of -23rd powers of divisors of n.
- A017710 (program): Denominator of sum of -23rd powers of divisors of n.
- A017711 (program): Numerator of sum of -24th powers of divisors of n.
- A017712 (program): Denominator of sum of -24th powers of divisors of n.
- A017713 (program): Binomial coefficients C(n,49).
- A017714 (program): Binomial coefficients C(n,50).
- A017715 (program): Binomial coefficients C(n,51).
- A017716 (program): Binomial coefficients C(n,52).
- A017717 (program): Binomial coefficients C(n,53).
- A017718 (program): Binomial coefficients C(n,54).
- A017719 (program): Binomial coefficients C(n,55).
- A017720 (program): Binomial coefficients C(n,56).
- A017721 (program): Binomial coefficients C(n,57).
- A017722 (program): Binomial coefficients C(n,58).
- A017723 (program): Binomial coefficients C(n,59).
- A017724 (program): Binomial coefficients C(n,60).
- A017725 (program): Binomial coefficients C(n,61).
- A017726 (program): Binomial coefficients C(n,62).
- A017727 (program): Binomial coefficients C(n,63).
- A017728 (program): Binomial coefficients C(n,64).
- A017729 (program): Binomial coefficients C(n,65).
- A017730 (program): Binomial coefficients C(n,66).
- A017731 (program): Binomial coefficients C(n,67).
- A017732 (program): Binomial coefficients C(n,68).
- A017733 (program): Binomial coefficients C(n,69).
- A017734 (program): Binomial coefficients C(n,70).
- A017735 (program): Binomial coefficients C(n,71).
- A017736 (program): Binomial coefficients C(n,72).
- A017737 (program): Binomial coefficients C(n,73).
- A017738 (program): Binomial coefficients C(n,74).
- A017739 (program): Binomial coefficients C(n,75).
- A017740 (program): Binomial coefficients C(n,76).
- A017741 (program): Binomial coefficients C(n,77).
- A017742 (program): Binomial coefficients C(n,78).
- A017743 (program): Binomial coefficients C(n,79).
- A017744 (program): Binomial coefficients C(n,80).
- A017745 (program): Binomial coefficients C(n,81).
- A017746 (program): Binomial coefficients C(n,82).
- A017747 (program): Binomial coefficients C(n,83).
- A017748 (program): Binomial coefficients C(n,84).
- A017749 (program): Binomial coefficients C(n,85).
- A017750 (program): Binomial coefficients C(n,86).
- A017751 (program): Binomial coefficients C(n,87).
- A017752 (program): Binomial coefficients C(n,88).
- A017753 (program): Binomial coefficients C(n,89).
- A017754 (program): Binomial coefficients C(n,90).
- A017755 (program): Binomial coefficients C(n,91).
- A017756 (program): Binomial coefficients C(n,92).
- A017757 (program): Binomial coefficients C(n,93).
- A017758 (program): Binomial coefficients C(n,94).
- A017759 (program): Binomial coefficients C(n,95).
- A017760 (program): Binomial coefficients C(n,96).
- A017761 (program): Binomial coefficients C(n,97).
- A017762 (program): Binomial coefficients C(n,98).
- A017763 (program): a(n) = binomial coefficient C(n,99).
- A017764 (program): a(n) = binomial coefficient C(n,100).
- A017765 (program): Binomial coefficients C(49,n).
- A017766 (program): Binomial coefficients C(50,n).
- A017767 (program): Binomial coefficients C(51,n).
- A017768 (program): Binomial coefficients C(52,n).
- A017769 (program): Binomial coefficients C(53,n).
- A017770 (program): Binomial coefficients C(54,n).
- A017771 (program): Binomial coefficients C(55,n).
- A017772 (program): Binomial coefficients C(56,n).
- A017773 (program): Binomial coefficients C(57,n).
- A017774 (program): Binomial coefficients C(58,n).
- A017775 (program): Binomial coefficients C(59,n).
- A017776 (program): Binomial coefficients C(60,n).
- A017777 (program): Binomial coefficients C(61,n).
- A017778 (program): Binomial coefficients C(62,n).
- A017779 (program): Binomial coefficients C(63,n).
- A017780 (program): Binomial coefficients C(64,n).
- A017781 (program): Binomial coefficients C(65,n).
- A017782 (program): Binomial coefficients C(66,n).
- A017783 (program): Binomial coefficients C(67,n).
- A017784 (program): Binomial coefficients C(68,n).
- A017785 (program): Binomial coefficients C(69,n).
- A017786 (program): Binomial coefficients C(70,n).
- A017787 (program): Binomial coefficients C(71,n).
- A017788 (program): Binomial coefficients C(72,n).
- A017789 (program): Binomial coefficients C(73,n).
- A017790 (program): Binomial coefficients C(74,n).
- A017791 (program): Binomial coefficients C(75,n).
- A017792 (program): Binomial coefficients C(76,n).
- A017793 (program): Binomial coefficients C(77, n).
- A017794 (program): Binomial coefficients C(78,n).
- A017795 (program): Binomial coefficients C(79,n).
- A017796 (program): Binomial coefficients C(80,n).
- A017797 (program): Binomial coefficients C(81,n).
- A017798 (program): Binomial coefficients C(82,n).
- A017799 (program): Binomial coefficients C(83,n).
- A017800 (program): Binomial coefficients C(84,n).
- A017801 (program): Binomial coefficients C(85,n).
- A017802 (program): Binomial coefficients C(86,n).
- A017803 (program): Binomial coefficients C(87,n).
- A017804 (program): Binomial coefficients C(88,n).
- A017805 (program): Binomial coefficients C(89,n).
- A017806 (program): Binomial coefficients C(90,n).
- A017807 (program): Binomial coefficients C(91,n).
- A017808 (program): Binomial coefficients C(92,n).
- A017809 (program): Binomial coefficients C(93,n).
- A017810 (program): Binomial coefficients C(94,n).
- A017811 (program): Binomial coefficients C(95,n).
- A017812 (program): Binomial coefficients C(96,n).
- A017813 (program): Binomial coefficients C(97,n).
- A017814 (program): Binomial coefficients C(98,n).
- A017815 (program): Binomial coefficients C(99,n).
- A017816 (program): Binomial coefficients C(100,n).
- A017817 (program): a(n) = a(n-3) + a(n-4), with a(0)=1, a(1)=a(2)=0, a(3)=1.
- A017818 (program): Expansion of 1/(1-x^3-x^4-x^5).
- A017819 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6).
- A017820 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7).
- A017821 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8).
- A017822 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
- A017823 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
- A017824 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
- A017825 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
- A017826 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
- A017827 (program): a(n) = a(n-4) + a(n-5), with a(0)=1, a(1)=a(2)=a(3)=0, a(4)=1.
- A017828 (program): Expansion of 1/(1-x^4-x^5-x^6).
- A017829 (program): Expansion of 1/(1 - x^4 - x^5 - x^6 - x^7).
- A017830 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8).
- A017831 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9).
- A017832 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
- A017833 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
- A017834 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
- A017835 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
- A017836 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
- A017837 (program): Expansion of 1/(1-x^5-x^6).
- A017838 (program): Expansion of 1/(1-x^5-x^6-x^7).
- A017839 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8).
- A017840 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9).
- A017841 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10).
- A017842 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
- A017843 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
- A017844 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
- A017845 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
- A017846 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
- A017847 (program): Expansion of 1/(1-x^6-x^7).
- A017848 (program): Expansion of 1/(1-x^6-x^7-x^8).
- A017849 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9).
- A017850 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10).
- A017851 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11).
- A017852 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
- A017853 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
- A017854 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
- A017855 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
- A017856 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
- A017857 (program): Expansion of 1/(1 - x^7 - x^8).
- A017858 (program): Expansion of 1/(1-x^7-x^8-x^9).
- A017859 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10).
- A017860 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11).
- A017861 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12).
- A017862 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
- A017863 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
- A017864 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
- A017865 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
- A017866 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
- A017867 (program): Expansion of 1/(1-x^8-x^9).
- A017868 (program): Expansion of 1/(1-x^8-x^9-x^10).
- A017869 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11).
- A017870 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12).
- A017871 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13).
- A017872 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
- A017873 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
- A017874 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
- A017875 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
- A017876 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
- A017877 (program): Expansion of 1/(1 - x^9 - x^10).
- A017878 (program): Expansion of 1/(1-x^9-x^10-x^11).
- A017879 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12).
- A017880 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13).
- A017881 (program): Expansion of 1/(1 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14).
- A017882 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
- A017883 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
- A017884 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
- A017885 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
- A017886 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).
- A017887 (program): Expansion of 1/(1 - x^10 - x^11).
- A017888 (program): Expansion of 1/(1 - x^10 - x^11 - x^12).
- A017889 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13).
- A017890 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14).
- A017891 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15).
- A017893 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
- A017894 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
- A017896 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20).
- A017897 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)).
- A017898 (program): Expansion of (1-x)/(1-x-x^4).
- A017899 (program): Expansion of 1/(1 -x^5 -x^6 -x^7 - …).
- A017900 (program): Expansion of 1/(1 -x^6 -x^7 -x^8 - …).
- A017901 (program): Expansion of 1/(1 - x^7 - x^8 - …).
- A017902 (program): Expansion of 1/(1 - x^8 - x^9 - …).
- A017903 (program): Expansion of 1/(1 - x^9 - x^10 - …).
- A017904 (program): Expansion of 1/(1 - x^10 - x^11 - …).
- A017905 (program): Expansion of 1/(1 - x^11 - x^12 - …).
- A017906 (program): Expansion of 1/(1 - x^12 - x^13 - …).
- A017907 (program): Expansion of 1/(1 - x^13 - x^14 - …).
- A017908 (program): Expansion of 1/(1 - x^14 - x^15 - …).
- A017909 (program): Expansion of 1/(1 - x^15 - x^16 - …).
- A017910 (program): Powers of sqrt(2) rounded down.
- A017911 (program): Powers of sqrt(2) rounded to nearest integer.
- A017912 (program): Powers of sqrt(2) rounded up.
- A017913 (program): Powers of sqrt(3) rounded down.
- A017914 (program): Powers of sqrt(3) rounded to nearest integer.
- A017915 (program): Powers of sqrt(3) rounded up.
- A017916 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)).
- A017917 (program): Expansion of 1/((1-3x)(1-5x)(1-11x)).
- A017918 (program): Expansion of 1/((1-3x)(1-5x)(1-12x)).
- A017919 (program): Powers of sqrt(5) rounded down.
- A017920 (program): Powers of sqrt(5) rounded to nearest integer.
- A017921 (program): Powers of sqrt(5) rounded up.
- A017922 (program): Powers of sqrt(6) rounded down.
- A017923 (program): Powers of sqrt(6) rounded to nearest integer.
- A017924 (program): Powers of sqrt(6) rounded up.
- A017925 (program): Powers of sqrt(7) rounded down.
- A017926 (program): Powers of sqrt(7) rounded to nearest integer.
- A017927 (program): Powers of sqrt(7) rounded up.
- A017928 (program): Powers of sqrt(8) rounded down.
- A017929 (program): Powers of sqrt(8) rounded to nearest integer.
- A017930 (program): Powers of sqrt(8) rounded up.
- A017931 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)).
- A017932 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)).
- A017933 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)).
- A017934 (program): Powers of sqrt(10) rounded down.
- A017935 (program): Powers of sqrt(10) rounded to nearest integer.
- A017936 (program): Smallest number whose square has n digits.
- A017937 (program): Powers of sqrt(11) rounded down.
- A017938 (program): Powers of sqrt(11) rounded to nearest integer.
- A017939 (program): Powers of sqrt(11) rounded up.
- A017940 (program): Powers of sqrt(12) rounded down.
- A017941 (program): Powers of sqrt(12) rounded to nearest integer.
- A017942 (program): Powers of sqrt(12) rounded up.
- A017943 (program): Powers of sqrt(13) rounded down.
- A017944 (program): Powers of sqrt(13) rounded to nearest integer.
- A017945 (program): Powers of sqrt(13) rounded up.
- A017946 (program): Powers of sqrt(14) rounded down.
- A017947 (program): Powers of sqrt(14) rounded to nearest integer.
- A017948 (program): Powers of sqrt(14) rounded up.
- A017949 (program): Powers of sqrt(15) rounded down.
- A017950 (program): Powers of sqrt(15) rounded to nearest integer.
- A017951 (program): Powers of sqrt(15) rounded up.
- A017952 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)).
- A017953 (program): Expansion of 1/((1-3x)(1-6x)(1-11x)).
- A017954 (program): Expansion of 1/((1-3x)(1-6x)(1-12x)).
- A017955 (program): Powers of sqrt(17) rounded down.
- A017956 (program): Powers of sqrt(17) rounded to nearest integer.
- A017957 (program): Powers of sqrt(17) rounded up.
- A017958 (program): Powers of sqrt(18) rounded down.
- A017959 (program): Powers of sqrt(18) rounded to nearest integer.
- A017960 (program): Powers of sqrt(18) rounded up.
- A017961 (program): Powers of sqrt(19) rounded down.
- A017962 (program): Powers of sqrt(19) rounded to nearest integer.
- A017963 (program): Powers of sqrt(19) rounded up.
- A017964 (program): Powers of sqrt(20) rounded down.
- A017965 (program): Powers of sqrt(20) rounded to nearest integer.
- A017966 (program): Powers of sqrt(20) rounded up.
- A017967 (program): Powers of sqrt(21) rounded down.
- A017968 (program): Powers of sqrt(21) rounded to nearest integer.
- A017969 (program): Powers of sqrt(21) rounded up.
- A017970 (program): Powers of sqrt(22) rounded down.
- A017971 (program): Powers of sqrt(22) rounded to nearest integer.
- A017972 (program): Powers of sqrt(22) rounded up.
- A017973 (program): Powers of sqrt(23) rounded down.
- A017974 (program): Powers of sqrt(23) rounded to nearest integer.
- A017975 (program): Powers of sqrt(23) rounded up.
- A017976 (program): Powers of sqrt(24) rounded down.
- A017977 (program): Powers of sqrt(24) rounded to nearest integer.
- A017978 (program): Powers of sqrt(24) rounded up.
- A017979 (program): Powers of cube root of 2 rounded down.
- A017980 (program): Powers of cube root of 2 rounded to nearest integer.
- A017981 (program): Powers of cube root of 2 rounded up.
- A017982 (program): Powers of cube root of 3 rounded down.
- A017983 (program): Powers of cube root of 3 rounded to nearest integer.
- A017984 (program): Powers of cube root of 3 rounded up.
- A017985 (program): Powers of cube root of 4 rounded down.
- A017986 (program): Powers of cube root of 4 rounded to nearest integer.
- A017987 (program): Powers of cube root of 4 rounded up.
- A017988 (program): Powers of cube root of 5 rounded down.
- A017989 (program): Powers of cube root of 5 rounded to nearest integer.
- A017990 (program): Powers of cube root of 5 rounded up.
- A017991 (program): Powers of cube root of 6 rounded down.
- A017992 (program): Powers of cube root of 6 rounded to nearest integer.
- A017993 (program): Powers of cube root of 6 rounded up.
- A017994 (program): Powers of cube root of 7 rounded down.
- A017995 (program): Powers of cube root of 7 rounded to nearest integer.
- A017996 (program): Powers of cube root of 7 rounded up.
- A017997 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)).
- A017998 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)).
- A017999 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)).
- A018000 (program): Powers of cube root of 9 rounded down.
- A018001 (program): Powers of cube root of 9 rounded to nearest integer.
- A018002 (program): Powers of cube root of 9 rounded up.
- A018003 (program): Powers of cube root of 10 rounded down.
- A018004 (program): Powers of cube root of 10 rounded to nearest integer.
- A018005 (program): Smallest number whose cube has n digits.
- A018006 (program): Powers of cube root of 11 rounded down.
- A018007 (program): Powers of cube root of 11 rounded to nearest integer.
- A018008 (program): Powers of cube root of 11 rounded up.
- A018009 (program): Powers of cube root of 12 rounded down.
- A018010 (program): Powers of cube root of 12 rounded to nearest integer.
- A018011 (program): Powers of cube root of 12 rounded up.
- A018012 (program): Powers of cube root of 13 rounded down.
- A018013 (program): Powers of cube root of 13 rounded to nearest integer.
- A018014 (program): Powers of cube root of 13 rounded up.
- A018015 (program): Powers of cube root of 14 rounded down.
- A018016 (program): Powers of cube root of 14 rounded to nearest integer.
- A018017 (program): Powers of cube root of 14 rounded up.
- A018018 (program): Powers of cube root of 15 rounded down.
- A018020 (program): Powers of cube root of 15 rounded up.
- A018021 (program): Powers of cube root of 16 rounded down.
- A018022 (program): Powers of cube root of 16 rounded to nearest integer.
- A018023 (program): Powers of cube root of 16 rounded up.
- A018024 (program): Powers of cube root of 17 rounded down.
- A018025 (program): Powers of cube root of 17 rounded to nearest integer.
- A018026 (program): Powers of cube root of 17 rounded up.
- A018027 (program): Powers of cube root of 18 rounded down.
- A018028 (program): Powers of cube root of 18 rounded to nearest integer.
- A018029 (program): Powers of cube root of 18 rounded up.
- A018030 (program): Powers of cube root of 19 rounded down.
- A018031 (program): Powers of cube root of 19 rounded to nearest integer.
- A018032 (program): Powers of cube root of 19 rounded up.
- A018033 (program): Powers of cube root of 20 rounded down.
- A018034 (program): Powers of cube root of 20 rounded to nearest integer.
- A018035 (program): Powers of cube root of 20 rounded up.
- A018036 (program): Powers of cube root of 21 rounded down.
- A018037 (program): Powers of cube root of 21 rounded to nearest integer.
- A018038 (program): Powers of cube root of 21 rounded up.
- A018039 (program): Powers of cube root of 22 rounded down.
- A018040 (program): Powers of cube root of 22 rounded to nearest integer.
- A018041 (program): Powers of cube root of 22 rounded up.
- A018042 (program): Powers of cube root of 23 rounded down.
- A018043 (program): Powers of cube root of 23 rounded to nearest integer.
- A018044 (program): Powers of cube root of 23 rounded up.
- A018045 (program): Powers of cube root of 24 rounded down.
- A018046 (program): Powers of cube root of 24 rounded to nearest integer.
- A018047 (program): Powers of cube root of 24 rounded up.
- A018048 (program): Powers of fourth root of 2 rounded down.
- A018049 (program): Powers of fourth root of 2 rounded to nearest integer.
- A018050 (program): Powers of fourth root of 2 rounded up.
- A018051 (program): Powers of fourth root of 3 rounded down.
- A018052 (program): Powers of fourth root of 3 rounded to nearest integer.
- A018053 (program): Powers of fourth root of 3 rounded up.
- A018054 (program): Expansion of 1/((1-3*x)*(1-7*x)*(1-11*x)).
- A018055 (program): Expansion of 1/((1-3*x)*(1-7*x)*(1-12*x)).
- A018056 (program): Expansion of 1/((1-3*x)*(1-8*x)*(1-9*x)).
- A018057 (program): Powers of fourth root of 5 rounded down.
- A018058 (program): Powers of fourth root of 5 rounded to nearest integer.
- A018059 (program): Powers of fourth root of 5 rounded up.
- A018060 (program): Powers of fourth root of 6 rounded down.
- A018061 (program): Powers of fourth root of 6 rounded to nearest integer.
- A018062 (program): Powers of fourth root of 6 rounded up.
- A018063 (program): Powers of fourth root of 7 rounded down.
- A018064 (program): Powers of fourth root of 7 rounded to nearest integer.
- A018065 (program): Powers of fourth root of 7 rounded up.
- A018066 (program): Powers of fourth root of 8 rounded down.
- A018067 (program): Powers of fourth root of 8 rounded to nearest integer.
- A018068 (program): Powers of fourth root of 8 rounded up.
- A018069 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)).
- A018070 (program): Expansion of 1/((1-3x)(1-8x)(1-11x)).
- A018071 (program): Expansion of 1/((1-3x)(1-8x)(1-12x)).
- A018072 (program): Powers of fourth root of 10 rounded down.
- A018073 (program): Powers of fourth root of 10 rounded to nearest integer.
- A018074 (program): Powers of fourth root of 10 rounded up.
- A018075 (program): Powers of fourth root of 11 rounded down.
- A018076 (program): Powers of fourth root of 11 rounded to nearest integer.
- A018077 (program): Powers of fourth root of 11 rounded up.
- A018078 (program): Powers of fourth root of 12 rounded down.
- A018079 (program): Powers of fourth root of 12 rounded to nearest integer.
- A018080 (program): Powers of fourth root of 12 rounded up.
- A018081 (program): Powers of fourth root of 13 rounded down.
- A018082 (program): Powers of fourth root of 13 rounded to nearest integer.
- A018083 (program): Powers of fourth root of 13 rounded up.
- A018084 (program): Powers of fourth root of 14 rounded down.
- A018085 (program): Powers of fourth root of 14 rounded to nearest integer.
- A018086 (program): Powers of fourth root of 14 rounded up.
- A018087 (program): Powers of fourth root of 15 rounded down.
- A018088 (program): Powers of fourth root of 15 rounded to nearest integer.
- A018089 (program): Powers of fourth root of 15 rounded up.
- A018090 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)).
- A018091 (program): Expansion of 1/((1-3x)(1-9x)(1-11x)).
- A018092 (program): Expansion of 1/((1-3*x)*(1-9*x)*(1-12*x)).
- A018093 (program): Powers of fourth root of 17 rounded down.
- A018094 (program): Powers of fourth root of 17 rounded to nearest integer.
- A018095 (program): Powers of fourth root of 17 rounded up.
- A018096 (program): Powers of fourth root of 18 rounded down.
- A018097 (program): Powers of fourth root of 18 rounded to nearest integer.
- A018098 (program): Powers of fourth root of 18 rounded up.
- A018099 (program): Powers of fourth root of 19 rounded down.
- A018100 (program): Powers of fourth root of 19 rounded to nearest integer.
- A018101 (program): Powers of fourth root of 19 rounded up.
- A018102 (program): Powers of fourth root of 20 rounded down.
- A018103 (program): Powers of fourth root of 20 rounded to nearest integer.
- A018104 (program): Powers of fourth root of 20 rounded up.
- A018105 (program): Powers of fourth root of 21 rounded down.
- A018106 (program): Powers of fourth root of 21 rounded to nearest integer.
- A018107 (program): Powers of fourth root of 21 rounded up.
- A018108 (program): Powers of fourth root of 22 rounded down.
- A018109 (program): Powers of fourth root of 22 rounded to nearest integer.
- A018110 (program): Powers of fourth root of 22 rounded up.
- A018111 (program): Powers of fourth root of 23 rounded down.
- A018112 (program): Powers of fourth root of 23 rounded to nearest integer.
- A018113 (program): Powers of fourth root of 23 rounded up.
- A018114 (program): Powers of fourth root of 24 rounded down.
- A018115 (program): Powers of fourth root of 24 rounded to nearest integer.
- A018116 (program): Powers of fourth root of 24 rounded up.
- A018186 (program): a(n+2) = 3*a(n) - a(n-2) with a(0) = 1, a(1) = 3, a(2) = 6.
- A018191 (program): a(n) = Sum_{k=0..n} binomial(n, k) * k! / floor(k/2)!.
- A018194 (program): Number of steps for S(S(..S(n)..)) to converge, where S is the Kempner function A002034.
- A018206 (program): Expansion of 1/((1-3x)(1-10x)(1-11x)).
- A018207 (program): Expansion of 1/((1-3x)(1-10x)(1-12x)).
- A018208 (program): Expansion of 1/((1-3x)(1-11x)(1-12x)).
- A018209 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)).
- A018210 (program): Alkane (or paraffin) numbers l(9,n).
- A018211 (program): Alkane (or paraffin) numbers l(10,n).
- A018212 (program): Alkane (or paraffin) numbers l(11,n).
- A018213 (program): Alkane (or paraffin) numbers l(12,n).
- A018214 (program): Alkane (or paraffin) numbers l(13,n).
- A018215 (program): a(n) = n*4^n.
- A018217 (program): Sum(C(j)*(n-j)*4^(n-j),j=0..n-1), C = Catalan numbers.
- A018218 (program): Sum(C(j)*(n-j)*4^(n-j-1),j=0..n-1), C = Catalan numbers.
- A018224 (program): a(n) = binomial(n, floor(n/2))^2 = A001405(n)^2.
- A018227 (program): Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable.
- A018240 (program): Number of rational knots (or two-bridge knots) with n crossings (up to mirroring).
- A018244 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=3.
- A018245 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=4.
- A018246 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=5.
- A018247 (program): The 10-adic integer x = …8212890625 satisfying x^2 = x.
- A018248 (program): The 10-adic integer x = …1787109376 satisfies x^2 = x.
- A018250 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)).
- A018252 (program): The nonprime numbers: 1 together with the composite numbers, A002808.
- A018261 (program): Divisors of 48.
- A018266 (program): Divisors of 60.
- A018271 (program): Divisors of 72.
- A018275 (program): Divisors of 80.
- A018276 (program): Divisors of 84.
- A018278 (program): Divisors of 90.
- A018280 (program): Divisors of 96.
- A018287 (program): Divisors of 108.
- A018289 (program): Divisors of 112.
- A018293 (program): Divisors of 120.
- A018295 (program): Divisors of 126.
- A018297 (program): Divisors of 132.
- A018301 (program): Divisors of 140.
- A018302 (program): Divisors of 144.
- A018305 (program): Divisors of 150.
- A018309 (program): Divisors of 156.
- A018310 (program): Divisors of 160.
- A018311 (program): Divisors of 162.
- A018314 (program): Divisors of 168.
- A018320 (program): Divisors of 176.
- A018321 (program): Divisors of 180.
- A018328 (program): Divisors of 192.
- A018331 (program): Divisors of 198.
- A018332 (program): Divisors of 200.
- A018333 (program): Divisors of 204.
- A018335 (program): Divisors of 208.
- A018336 (program): Divisors of 210.
- A018338 (program): Divisors of 216.
- A018339 (program): Divisors of 220.
- A018341 (program): Divisors of 224.
- A018343 (program): Divisors of 228.
- A018347 (program): Divisors of 234.
- A018350 (program): Divisors of 240.
- A018357 (program): Divisors of 252.
- A018360 (program): Divisors of 260.
- A018362 (program): Divisors of 264.
- A018365 (program): Divisors of 270.
- A018366 (program): Divisors of 272.
- A018369 (program): Divisors of 276.
- A018371 (program): Divisors of 280.
- A018376 (program): Divisors of 288.
- A018379 (program): Divisors of 294.
- A018382 (program): Divisors of 300.
- A018383 (program): Divisors of 304.
- A018384 (program): Divisors of 306.
- A018385 (program): Divisors of 308.
- A018387 (program): Divisors of 312.
- A018388 (program): Divisors of 315.
- A018391 (program): Divisors of 320.
- A018393 (program): Divisors of 324.
- A018396 (program): Divisors of 330.
- A018399 (program): Divisors of 336.
- A018401 (program): Divisors of 340.
- A018402 (program): Divisors of 342.
- A018405 (program): Divisors of 348.
- A018406 (program): Divisors of 350.
- A018408 (program): Divisors of 352.
- A018412 (program): Divisors of 360.
- A018414 (program): Divisors of 364.
- A018416 (program): Divisors of 368.
- A018419 (program): Divisors of 372.
- A018423 (program): Divisors of 378.
- A018424 (program): Divisors of 380.
- A018425 (program): Divisors of 384.
- A018429 (program): Divisors of 390.
- A018430 (program): Divisors of 392.
- A018431 (program): Divisors of 396.
- A018433 (program): Divisors of 400.
- A018436 (program): Divisors of 405.
- A018438 (program): Divisors of 408.
- A018441 (program): Divisors of 414.
- A018442 (program): Divisors of 416.
- A018444 (program): Divisors of 420.
- A018452 (program): Divisors of 432.
- A018457 (program): Divisors of 440.
- A018460 (program): Divisors of 444.
- A018461 (program): Divisors of 448.
- A018462 (program): Divisors of 450.
- A018465 (program): Divisors of 456.
- A018467 (program): Divisors of 460.
- A018468 (program): Divisors of 462.
- A018469 (program): Divisors of 464.
- A018471 (program): Divisors of 468.
- A018476 (program): Divisors of 476.
- A018478 (program): Divisors of 480.
- A018481 (program): Divisors of 486.
- A018483 (program): Divisors of 490.
- A018484 (program): Divisors of 492.
- A018486 (program): Divisors of 495.
- A018487 (program): Divisors of 496.
- A018489 (program): Divisors of 500.
- A018490 (program): Divisors of 504.
- A018494 (program): Divisors of 510.
- A018496 (program): Divisors of 516.
- A018498 (program): Divisors of 520.
- A018499 (program): Divisors of 522.
- A018501 (program): Divisors of 525.
- A018502 (program): Divisors of 528.
- A018505 (program): Divisors of 532.
- A018509 (program): Divisors of 540.
- A018510 (program): Divisors of 544.
- A018511 (program): Divisors of 546.
- A018514 (program): Divisors of 550.
- A018515 (program): Divisors of 552.
- A018518 (program): Divisors of 558.
- A018519 (program): Divisors of 560.
- A018521 (program): Divisors of 564.
- A018522 (program): Divisors of 567.
- A018524 (program): Divisors of 570.
- A018525 (program): Divisors of 572.
- A018528 (program): Divisors of 576.
- A018530 (program): Divisors of 580.
- A018533 (program): Divisors of 585.
- A018534 (program): Divisors of 588.
- A018536 (program): Divisors of 592.
- A018537 (program): Divisors of 594.
- A018541 (program): Divisors of 600.
- A018547 (program): Divisors of 608.
- A018550 (program): Divisors of 612.
- A018552 (program): Divisors of 616.
- A018554 (program): Divisors of 620.
- A018556 (program): Divisors of 624.
- A018559 (program): Divisors of 630.
- A018561 (program): Divisors of 636.
- A018565 (program): Divisors of 640.
- A018567 (program): Divisors of 644.
- A018570 (program): Divisors of 648.
- A018571 (program): Divisors of 650.
- A018575 (program): Divisors of 656.
- A018578 (program): Divisors of 660.
- A018582 (program): Divisors of 666.
- A018585 (program): Divisors of 672.
- A018586 (program): Divisors of 675.
- A018589 (program): Divisors of 680.
- A018591 (program): Divisors of 684.
- A018593 (program): Divisors of 688.
- A018594 (program): Divisors of 690.
- A018596 (program): Divisors of 693.
- A018597 (program): Divisors of 696.
- A018598 (program): Divisors of 700.
- A018599 (program): Divisors of 702.
- A018600 (program): Divisors of 704.
- A018602 (program): Divisors of 708.
- A018606 (program): Divisors of 714.
- A018609 (program): Divisors of 720.
- A018613 (program): Divisors of 726.
- A018614 (program): Divisors of 728.
- A018616 (program): Divisors of 732.
- A018617 (program): Divisors of 735.
- A018618 (program): Divisors of 736.
- A018619 (program): Divisors of 738.
- A018620 (program): Divisors of 740.
- A018623 (program): Divisors of 744.
- A018625 (program): Divisors of 748.
- A018626 (program): Divisors of 750.
- A018627 (program): Divisors of 752.
- A018629 (program): Divisors of 756.
- A018631 (program): Divisors of 760.
- A018634 (program): Divisors of 765.
- A018635 (program): Divisors of 768.
- A018636 (program): Divisors of 770.
- A018638 (program): Divisors of 774.
- A018642 (program): Divisors of 780.
- A018645 (program): Divisors of 784.
- A018649 (program): Divisors of 792.
- A018652 (program): Divisors of 798.
- A018653 (program): Divisors of 800.
- A018655 (program): Divisors of 804.
- A018659 (program): Divisors of 810.
- A018660 (program): Divisors of 812.
- A018662 (program): Divisors of 816.
- A018663 (program): Divisors of 819.
- A018664 (program): Divisors of 820.
- A018667 (program): Divisors of 825.
- A018669 (program): Divisors of 828.
- A018671 (program): Divisors of 832.
- A018674 (program): Divisors of 836.
- A018676 (program): Divisors of 840.
- A018679 (program): Divisors of 846.
- A018681 (program): Divisors of 848.
- A018682 (program): Divisors of 850.
- A018683 (program): Divisors of 852.
- A018685 (program): Divisors of 855.
- A018687 (program): Divisors of 858.
- A018688 (program): Divisors of 860.
- A018690 (program): Divisors of 864.
- A018692 (program): Divisors of 868.
- A018693 (program): Divisors of 870.
- A018698 (program): Divisors of 876.
- A018699 (program): Divisors of 880.
- A018700 (program): Divisors of 882.
- A018701 (program): Divisors of 884.
- A018703 (program): Divisors of 888.
- A018705 (program): Divisors of 891.
- A018708 (program): Divisors of 896.
- A018710 (program): Divisors of 900.
- A018717 (program): Divisors of 910.
- A018718 (program): Divisors of 912.
- A018721 (program): Divisors of 918.
- A018722 (program): Divisors of 920.
- A018723 (program): Divisors of 924.
- A018726 (program): Divisors of 928.
- A018727 (program): Divisors of 930.
- A018731 (program): Divisors of 936.
- A018733 (program): Divisors of 940.
- A018735 (program): Divisors of 944.
- A018736 (program): Divisors of 945.
- A018738 (program): Divisors of 948.
- A018739 (program): Divisors of 950.
- A018740 (program): Divisors of 952.
- A018741 (program): Divisors of 954.
- A018744 (program): Divisors of 960.
- A018748 (program): Divisors of 966.
- A018749 (program): Divisors of 968.
- A018752 (program): Divisors of 972.
- A018753 (program): Divisors of 975.
- A018754 (program): Divisors of 976.
- A018756 (program): Divisors of 980.
- A018758 (program): Divisors of 984.
- A018761 (program): Divisors of 988.
- A018762 (program): Divisors of 990.
- A018763 (program): Divisors of 992.
- A018765 (program): Divisors of 996.
- A018767 (program): Divisors of 1000.
- A018772 (program): Divisors of 1008.
- A018774 (program): Divisors of 1012.
- A018775 (program): Divisors of 1014.
- A018779 (program): Divisors of 1020.
- A018804 (program): Pillai’s arithmetical function: Sum_{k=1..n} gcd(k, n).
- A018805 (program): Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y)=1}.
- A018806 (program): Sum of gcd(x, y) for 1 <= x, y <= n.
- A018819 (program): Binary partition function: number of partitions of n into powers of 2.
- A018824 (program): n is the sum of k nonzero squares for all 5 <= k <= n-14 (contains all integers >= 19 except 33).
- A018825 (program): Numbers that are not the sum of 2 nonzero squares.
- A018836 (program): Number of squares on infinite chessboard at <= n knight’s moves from a fixed square.
- A018837 (program): Number of steps for knight to reach (n,0) on infinite chessboard.
- A018838 (program): Minimum number of steps for a knight to reach (n,n) on an infinite chessboard.
- A018842 (program): Number of squares on infinite chessboard at n knight’s moves from center.
- A018886 (program): Waring’s problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers.
- A018892 (program): Number of ways to write 1/n as a sum of exactly 2 unit fractions.
- A018900 (program): Sums of two distinct powers of 2.
- A018902 (program): a(n+2) = 5*a(n+1) - 3*a(n).
- A018903 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,5).
- A018904 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,6).
- A018906 (program): Define the Shallit sequence S(a_0,a_1) by a_{n+2} is the least integer > a_{n+1}^2/a_n for n >= 0. This is S(2,6).
- A018907 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1} > a_{n+1}/a_n for n >= 0. This is S(2,7).
- A018908 (program): Define sequence S(a_0,a_1) by a_{n+2} is least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,4).
- A018909 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,6).
- A018910 (program): Pisot sequence L(4,5).
- A018911 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)).
- A018912 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)).
- A018913 (program): a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.
- A018914 (program): Pisot sequence T(2,5), a(n) = floor(a(n-1)^2/a(n-2)).
- A018915 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(2,6).
- A018916 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,8).
- A018917 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,5).
- A018918 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,6).
- A018919 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,9).
- A018920 (program): Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)).
- A018921 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).
- A018922 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,16).
- A018923 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(16,32).
- A018927 (program): For each permutation p of {1,2,…,n} define maxjump(p) = max(p(i) - i); a(n) is sum of maxjumps of all p.
- A018932 (program): The number of permutations of n cards in which 4 will be the next hit after 2.
- A018934 (program): From the game of Mousetrap.
- A019040 (program): Expansion of 1/((1-4x)(1-5x)(1-11x)).
- A019041 (program): Expansion of 1/((1-4x)(1-5x)(1-12x)).
- A019274 (program): Number of recursive calls needed to compute the n-th Fibonacci number F(n), starting with F(1) = F(2) = 1.
- A019298 (program): Number of balls in pyramid with base either a regular hexagon or a hexagon with alternate sides differing by 1 (balls in hexagonal pyramid of height n taken from hexagonal close-packing).
- A019299 (program): First n elements of Thue-Morse sequence A010059 read as a binary number.
- A019300 (program): First n elements of Thue-Morse sequence A010060 read as a binary number.
- A019301 (program): Binomial transform of Thue-Morse sequence A010059.
- A019302 (program): Binomial transform of Thue-Morse sequence A010060.
- A019303 (program): “Pascal sweep” for k=2: draw a horizontal line through the 1 at C(k,0) in Pascal’s triangle; rotate this line and record the sum of the numbers on it (excluding the initial 1).
- A019308 (program): Number of “bifix-free” words of length n over a three-letter alphabet.
- A019309 (program): Number of “bifix-free” words of length n over a four-letter alphabet.
- A019310 (program): Number of words of length n (n >= 1) over a two-letter alphabet having a minimal period of size n-1.
- A019316 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)).
- A019320 (program): Cyclotomic polynomials at x=2.
- A019332 (program): Lengths of quantum cellular automata that cycle through all possible values of the QCA vector.
- A019333 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)).
- A019338 (program): Primes with primitive root 8.
- A019425 (program): Continued fraction for tan(1/2).
- A019426 (program): Continued fraction for tan(1/3).
- A019427 (program): Continued fraction for tan(1/4).
- A019428 (program): Continued fraction for tan(1/5).
- A019429 (program): Continued fraction for tan(1/6).
- A019430 (program): Continued fraction for tan(1/7).
- A019431 (program): Continued fraction for tan(1/8).
- A019432 (program): Continued fraction for tan(1/9).
- A019433 (program): Continued fraction for tan(1/10).
- A019438 (program): Squarefree orders of elements of Mathieu group M_23.
- A019439 (program): Number of ways of tiling a 2 X n rectangle with dominoes and trominoes.
- A019442 (program): Numbers n such that a Hadamard matrix of order n exists.
- A019443 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)).
- A019444 (program): a_1, a_2, …, is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.
- A019445 (program): Form a permutation of the positive integers, p_1, p_2, …, such that the average of each initial segment is an integer, using the greedy algorithm to define p_n; sequence gives p_1+..+p_n.
- A019446 (program): a(n) = ceiling(n/tau), where tau = (1+sqrt(5))/2.
- A019450 (program): Conjectured formula for irreducible 5-fold Euler sums of weight 2n+13.
- A019460 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.
- A019461 (program): Add 1, multiply by 1, add 2, multiply by 2, etc.; start with 0.
- A019462 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 3.
- A019463 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 1.
- A019464 (program): Multiply by 1, add 1, multiply by 2, add 2, etc., start with 1.
- A019465 (program): Multiply by 1, add 1, multiply by 2, add 2, etc., start with 2.
- A019466 (program): Multiply by 1, add 1, multiply by 2, add 2, etc.; start with 3.
- A019467 (program): (n-2)nd Catalan number is congruent to n/3 mod n.
- A019468 (program): (n-2)-th Catalan number is congruent to 2n/3 mod n.
- A019469 (program): Numbers k such that k does not divide binomial(2*k-4, k-2).
- A019470 (program): Numbers k that divide binomial(2*k-4, k-2).
- A019472 (program): Weak preference orderings of n alternatives, i.e., orderings that have indifference between at least two alternatives.
- A019475 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(2,10).
- A019476 (program): a(n) = 5*a(n-1) + a(n-2) - 2*a(n-3).
- A019477 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(3,15) (agrees with A019478 only for n <= 23).
- A019478 (program): a(n) = 5*a(n-1) + a(n-2) - 3*a(n-3).
- A019479 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(4,8).
- A019480 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,12) (agrees with A019481 for n <= 19 only).
- A019481 (program): a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3) (agrees with A019480 for n <= 19 only).
- A019482 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,28).
- A019483 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)).
- A019484 (program): Expansion of (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4).
- A019485 (program): a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3).
- A019487 (program): a(n) = 3*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4).
- A019488 (program): Expansion of 1/((1-4*x)*(1-6*x)*(1-11*x)).
- A019489 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(3,7).
- A019490 (program): Expansion of 1/((1-4*x)*(1-6*x)*(1-12*x)).
- A019492 (program): Pisot sequence T(4,9), a(n) = floor(a(n-1)^2/a(n-2)).
- A019494 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,10).
- A019495 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,11).
- A019496 (program): a(n) = 3*a(n-1) - 3*a(n-3) + 2*a(n-4), with a(0)=4, a(1)=11.
- A019497 (program): Number of ternary search trees on n keys.
- A019510 (program): a(n) = gcd( binomial(n+3, n) + binomial(n+4, n+1), binomial(n+5, n+2) ).
- A019512 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)).
- A019514 (program): a(n) = (n!)^3 + 1.
- A019515 (program): a(n) = 1 + 0!*1!*2!*…*n!.
- A019519 (program): Concatenate odd numbers.
- A019520 (program): a(n) is the concatenation of the first n positive even numbers.
- A019521 (program): Concatenate squares.
- A019522 (program): Concatenate cubes.
- A019523 (program): Concatenation of Fibonacci(1) through Fibonacci(n).
- A019524 (program): Duplicate terms of A007908.
- A019525 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
- A019526 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
- A019527 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
- A019530 (program): Smallest number m such that m^m is divisible by n.
- A019536 (program): Number of length n necklaces with integer entries that cover an initial interval of positive integers.
- A019538 (program): Triangle of numbers T(n,k) = k!*Stirling2(n,k) read by rows (n >= 1, 1 <= k <= n).
- A019545 (program): Cubes whose digits are cubes.
- A019546 (program): Primes whose digits are primes.
- A019550 (program): a(n) is the concatenation of n and 2n.
- A019551 (program): a(n) is the concatenation of n and 3n.
- A019552 (program): a(n) is the concatenation of n and 4n.
- A019553 (program): a(n) is the concatenation of n and 5n.
- A019554 (program): Smallest number whose square is divisible by n.
- A019555 (program): Smallest number whose cube is divisible by n.
- A019557 (program): Coordination sequence for G_2 lattice.
- A019558 (program): Coordination sequence for F_4 lattice.
- A019559 (program): Distance between vowels when alphabet is written around a daisy wheel.
- A019560 (program): Coordination sequence for C_4 lattice.
- A019561 (program): Coordination sequence for C_5 lattice.
- A019562 (program): Coordination sequence for C_6 lattice.
- A019563 (program): Coordination sequence for C_7 lattice.
- A019564 (program): Coordination sequence for C_8 lattice.
- A019565 (program): The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.
- A019566 (program): The differences 1-1, 21-12, 321-123, …, 10987654321-12345678910, 1110987654321-1234567891011, etc.
- A019567 (program): Order of the Mongean shuffle permutation of 2n cards: a(n) is least number m for which either 2^m + 1 or 2^m - 1 is divisible by 4n + 1.
- A019577 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1<=k<=n; sequence gives f(n,2)/n.
- A019579 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1 <= k <= n; sequence gives f(n,n-2)/n.
- A019581 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1<=k<=n; sequence gives f(n,2).
- A019582 (program): a(n) = n*(n-1)^3/2.
- A019583 (program): a(n) = n*(n-1)^4/2.
- A019584 (program): a(n) = n^2*(n-1)^3/4.
- A019586 (program): Vertical para-Fibonacci sequence: takes value i on later (i.e., b_j, j >= 2) terms of i-th Fibonacci sequence defined by b_0 = i, b_1 = [ tau(i+1) ].
- A019587 (program): The left budding sequence: # of i such that 0<i<=n and 0 < {tau*i} <= {tau*n}, where {} is fractional part.
- A019588 (program): The right budding sequence: # of i such that 0<i<=n and {tau*n} <= {tau*i} < 1, where {} is fractional part.
- A019590 (program): Fermat’s Last Theorem: a(n) = 1 if x^n + y^n = z^n has a nontrivial solution in integers, otherwise a(n) = 0.
- A019613 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-9*x)).
- A019618 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-10*x)).
- A019623 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-11*x)).
- A019628 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-12*x)).
- A019664 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)).
- A019669 (program): Decimal expansion of Pi/2.
- A019670 (program): Decimal expansion of Pi/3.
- A019671 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)).
- A019672 (program): Expansion of 1/((1-4x)(1-8x)(1-11x)).
- A019673 (program): Decimal expansion of Pi/6.
- A019674 (program): Decimal expansion of Pi/7.
- A019675 (program): Decimal expansion of Pi/8.
- A019676 (program): Decimal expansion of Pi/9.
- A019677 (program): Expansion of 1/((1-4x)(1-8x)(1-12x)).
- A019678 (program): Decimal expansion of Pi/11.
- A019679 (program): Decimal expansion of Pi/12.
- A019680 (program): Decimal expansion of Pi/13.
- A019681 (program): Decimal expansion of Pi/14.
- A019682 (program): Expansion of 1/((1-4x)(1-9x)(1-10x)).
- A019683 (program): Decimal expansion of Pi/16.
- A019684 (program): Decimal expansion of Pi/17.
- A019685 (program): Decimal expansion of Pi/180.
- A019686 (program): Decimal expansion of Pi/19.
- A019687 (program): Expansion of 1/((1-4x)(1-9x)(1-11x)).
- A019688 (program): Decimal expansion of Pi/21.
- A019689 (program): Decimal expansion of Pi/22.
- A019690 (program): Decimal expansion of Pi/23.
- A019691 (program): Decimal expansion of Pi/24.
- A019692 (program): Decimal expansion of 2*Pi.
- A019693 (program): Decimal expansion of 2*Pi/3.
- A019694 (program): Decimal expansion of 2*Pi/5.
- A019695 (program): Decimal expansion of 2*Pi/7.
- A019696 (program): Decimal expansion of 2*Pi/9.
- A019697 (program): Decimal expansion of 2*Pi/11.
- A019698 (program): Decimal expansion of 2*Pi/13.
- A019699 (program): Decimal expansion of 2*Pi/15 = (4*Pi/3)/10.
- A019700 (program): Decimal expansion of 2*Pi/17.
- A019701 (program): Decimal expansion of 2*Pi/19.
- A019702 (program): Decimal expansion of 2*Pi/21.
- A019703 (program): Decimal expansion of 2*Pi/23.
- A019704 (program): Decimal expansion of sqrt(Pi)/2.
- A019705 (program): Decimal expansion of sqrt(Pi)/3.
- A019706 (program): Decimal expansion of sqrt(Pi)/4.
- A019707 (program): Decimal expansion of sqrt(Pi)/5.
- A019708 (program): Decimal expansion of sqrt(Pi)/6.
- A019709 (program): Decimal expansion of sqrt(Pi)/7.
- A019710 (program): Decimal expansion of sqrt(Pi)/8.
- A019711 (program): Decimal expansion of sqrt(Pi)/9.
- A019713 (program): Decimal expansion of sqrt(Pi)/11.
- A019714 (program): Decimal expansion of sqrt(Pi)/12.
- A019715 (program): Decimal expansion of sqrt(Pi)/13.
- A019716 (program): Decimal expansion of sqrt(Pi)/14.
- A019717 (program): Decimal expansion of sqrt(Pi)/15.
- A019718 (program): Decimal expansion of sqrt(Pi)/16.
- A019719 (program): Decimal expansion of sqrt(Pi)/17.
- A019720 (program): Decimal expansion of sqrt(Pi)/18.
- A019721 (program): Decimal expansion of sqrt(Pi)/19.
- A019722 (program): Expansion of 1/((1-4x)(1-9x)(1-12x)).
- A019723 (program): Decimal expansion of sqrt(Pi)/21.
- A019724 (program): Decimal expansion of sqrt(Pi)/22.
- A019725 (program): Decimal expansion of sqrt(Pi)/23.
- A019726 (program): Decimal expansion of sqrt(Pi)/24.
- A019727 (program): Decimal expansion of sqrt(2*Pi).
- A019728 (program): Decimal expansion of sqrt(2*Pi)/3.
- A019729 (program): Decimal expansion of sqrt(2*Pi)/5.
- A019730 (program): Decimal expansion of sqrt(2*Pi)/7.
- A019731 (program): Decimal expansion of sqrt(2*Pi)/9.
- A019732 (program): Decimal expansion of sqrt(2*Pi)/11.
- A019733 (program): Decimal expansion of sqrt(2*Pi)/13.
- A019734 (program): Decimal expansion of sqrt(2*Pi)/15.
- A019735 (program): Decimal expansion of sqrt(2*Pi)/17.
- A019736 (program): Decimal expansion of sqrt(2*Pi)/19.
- A019737 (program): Decimal expansion of sqrt(2*Pi)/21.
- A019738 (program): Decimal expansion of sqrt(2*Pi)/23.
- A019739 (program): Decimal expansion of e/2.
- A019740 (program): Decimal expansion of e/3.
- A019741 (program): Decimal expansion of e/4.
- A019742 (program): Expansion of 1/((1-4x)(1-10x)(1-11x)).
- A019743 (program): Decimal expansion of e/6.
- A019744 (program): Decimal expansion of e/7.
- A019745 (program): Decimal expansion of e/8.
- A019746 (program): Decimal expansion of e/9.
- A019747 (program): Expansion of 1/((1-4x)(1-10x)(1-12x)).
- A019748 (program): Decimal expansion of e/11.
- A019749 (program): Decimal expansion of e/12.
- A019750 (program): Decimal expansion of e/13.
- A019751 (program): Decimal expansion of e/14.
- A019752 (program): G.f.: 1/((1-4x)(1-11x)(1-12x)).
- A019753 (program): Decimal expansion of e/16.
- A019754 (program): Decimal expansion of e/17.
- A019755 (program): Decimal expansion of e/18.
- A019756 (program): Decimal expansion of e/19.
- A019757 (program): Expansion of 1/((1-5*x)(1-6*x)(1-7*x)).
- A019758 (program): Decimal expansion of e/21.
- A019759 (program): Decimal expansion of e/22.
- A019760 (program): Decimal expansion of e/23.
- A019761 (program): Decimal expansion of e/24.
- A019762 (program): Decimal expansion of 2*e.
- A019763 (program): Decimal expansion of 2*e/3.
- A019764 (program): Decimal expansion of 2*e/5 (or 4*e).
- A019765 (program): Decimal expansion of 2*e/7.
- A019766 (program): Decimal expansion of 2*e/9.
- A019767 (program): Decimal expansion of 2*e/11.
- A019768 (program): Decimal expansion of 2*e/13.
- A019769 (program): Decimal expansion of 2*e/15.
- A019770 (program): Decimal expansion of 2*e/17.
- A019771 (program): Decimal expansion of 2*e/19.
- A019772 (program): Decimal expansion of 2*e/21.
- A019773 (program): Decimal expansion of 2*e/23.
- A019774 (program): Decimal expansion of sqrt(e).
- A019775 (program): Decimal expansion of sqrt(e)/2.
- A019776 (program): Decimal expansion of sqrt(e)/3.
- A019777 (program): Decimal expansion of sqrt(e)/4.
- A019778 (program): Decimal expansion of sqrt(e)/5.
- A019779 (program): Decimal expansion of sqrt(e)/6.
- A019780 (program): Decimal expansion of sqrt(e)/7.
- A019781 (program): Decimal expansion of sqrt(e)/8.
- A019782 (program): Decimal expansion of sqrt(e)/9.
- A019783 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)).
- A019784 (program): Decimal expansion of sqrt(e)/11.
- A019785 (program): Decimal expansion of sqrt(e)/12.
- A019786 (program): Decimal expansion of sqrt(e)/13.
- A019787 (program): Decimal expansion of sqrt(e)/14.
- A019788 (program): Decimal expansion of sqrt(e)/15.
- A019789 (program): Decimal expansion of sqrt(e)/16.
- A019790 (program): Decimal expansion of sqrt(e)/17.
- A019791 (program): Decimal expansion of sqrt(e)/18.
- A019792 (program): Decimal expansion of sqrt(e)/19.
- A019793 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)).
- A019794 (program): Decimal expansion of sqrt(e)/21.
- A019795 (program): Decimal expansion of sqrt(e)/22.
- A019796 (program): Decimal expansion of sqrt(e)/23.
- A019797 (program): Decimal expansion of sqrt(e)/24.
- A019798 (program): Decimal expansion of sqrt(2*e).
- A019799 (program): Decimal expansion of sqrt(2*e)/3.
- A019800 (program): Decimal expansion of sqrt(2*e)/5.
- A019801 (program): Decimal expansion of sqrt(2*e)/7.
- A019802 (program): Decimal expansion of sqrt(2*e)/9.
- A019803 (program): Decimal expansion of sqrt(2*e)/11.
- A019804 (program): Decimal expansion of sqrt(2*e)/13.
- A019805 (program): Decimal expansion of sqrt(2*e)/15.
- A019806 (program): Decimal expansion of sqrt(2*e)/17.
- A019807 (program): Decimal expansion of sqrt(2*e)/19.
- A019808 (program): Decimal expansion of sqrt(2*e)/21.
- A019809 (program): Decimal expansion of sqrt(2*e)/23.
- A019815 (program): Decimal expansion of sine of 6 degrees.
- A019819 (program): Decimal expansion of sine of 10 degrees.
- A019824 (program): Decimal expansion of sine of 15 degrees.
- A019827 (program): Decimal expansion of sin(Pi/10) (angle of 18 degrees).
- A019839 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)).
- A019845 (program): Decimal expansion of sine of 36 degrees.
- A019851 (program): Decimal expansion of sine of 42 degrees.
- A019854 (program): Expansion of 1/((1-5x)(1-6x)(1-11x)).
- A019859 (program): Decimal expansion of sine of 50 degrees.
- A019863 (program): Decimal expansion of sin(3*Pi/10) (sine of 54 degrees).
- A019869 (program): Expansion of 1/((1-5*x)*(1-6*x)*(1-12*x)).
- A019875 (program): Decimal expansion of sine of 66 degrees.
- A019879 (program): Decimal expansion of sine of 70 degrees.
- A019881 (program): Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).
- A019884 (program): Decimal expansion of sine of 75 degrees.
- A019887 (program): Decimal expansion of sine of 78 degrees.
- A019907 (program): Decimal expansion of tangent of 9 degrees.
- A019913 (program): Decimal expansion of tangent of 15 degrees.
- A019916 (program): Decimal expansion of tan(Pi/10) (angle of 18 degrees).
- A019925 (program): Decimal expansion of tangent of 27 degrees.
- A019928 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)).
- A019934 (program): Decimal expansion of tangent of 36 degrees.
- A019943 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-9*x)).
- A019952 (program): Decimal expansion of tangent of 54 degrees.
- A019958 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-10*x)).
- A019961 (program): Decimal expansion of tangent of 63 degrees.
- A019970 (program): Decimal expansion of tangent of 72 degrees.
- A019973 (program): Decimal expansion of tangent of 75 degrees.
- A019979 (program): Decimal expansion of tangent of 81 degrees.
- A019989 (program): Indices n such that A307672(2*n) = 0.
- A019990 (program): Indices n such that A307672(2*n) = 2.
- A019991 (program): Indices n such that A307672(2*n) = 4.
- A019992 (program): a(n) = 4*a(n-1) + a(n-2) - a(n-3) - a(n-5).
- A019999 (program): Number of similarity classes of descendants created by bisection refinement from an initial n-simplex.
- A020000 (program): Expansion of 1/((1-5x)(1-7x)(1-11x)).
- A020001 (program): Nearest integer to Gamma(n + 11/12)/Gamma(11/12).
- A020002 (program): Nearest integer to Gamma(n + 7/12)/Gamma(7/12).
- A020003 (program): Nearest integer to Gamma(n + 5/12)/Gamma(5/12).
- A020004 (program): Nearest integer to Gamma(n + 1/12)/Gamma(1/12).
- A020005 (program): Nearest integer to Gamma(n + 10/11)/Gamma(10/11).
- A020006 (program): Nearest integer to Gamma(n + 9/11)/Gamma(9/11).
- A020007 (program): Nearest integer to Gamma(n + 8/11)/Gamma(8/11).
- A020008 (program): Nearest integer to Gamma(n + 7/11)/Gamma(7/11).
- A020009 (program): Nearest integer to Gamma(n + 6/11)/Gamma(6/11).
- A020010 (program): Nearest integer to Gamma(n + 5/11)/Gamma(5/11).
- A020011 (program): Nearest integer to Gamma(n + 4/11)/Gamma(4/11).
- A020012 (program): Nearest integer to Gamma(n + 3/11)/Gamma(3/11).
- A020013 (program): Nearest integer to Gamma(n + 2/11)/Gamma(2/11).
- A020014 (program): Nearest integer to Gamma(n + 1/11)/Gamma(1/11).
- A020015 (program): Nearest integer to Gamma(n + 9/10)/Gamma(9/10).
- A020016 (program): Nearest integer to Gamma(n + 7/10)/Gamma(7/10).
- A020017 (program): Nearest integer to Gamma(n + 3/10)/Gamma(3/10).
- A020018 (program): Nearest integer to Gamma(n + 1/10)/Gamma(1/10).
- A020019 (program): Nearest integer to Gamma(n + 8/9)/Gamma(8/9).
- A020020 (program): Nearest integer to Gamma(n + 7/9)/Gamma(7/9).
- A020021 (program): Nearest integer to Gamma(n + 5/9)/Gamma(5/9).
- A020022 (program): Nearest integer to Gamma(n + 4/9)/Gamma(4/9).
- A020023 (program): Nearest integer to Gamma(n + 2/9)/Gamma(2/9).
- A020024 (program): Nearest integer to Gamma(n + 1/9)/Gamma(1/9).
- A020025 (program): Nearest integer to Gamma(n + 7/8)/Gamma(7/8).
- A020026 (program): Nearest integer to Gamma(n + 5/8)/Gamma(5/8).
- A020027 (program): Nearest integer to Gamma(n + 3/8)/Gamma(3/8).
- A020028 (program): Nearest integer to Gamma(n + 1/8)/Gamma(1/8).
- A020029 (program): Nearest integer to Gamma(n + 6/7)/Gamma(6/7).
- A020030 (program): Nearest integer to Gamma(n + 5/7)/Gamma(5/7).
- A020031 (program): Nearest integer to Gamma(n + 4/7)/Gamma(4/7).
- A020032 (program): Nearest integer to Gamma(n + 3/7)/Gamma(3/7).
- A020033 (program): Nearest integer to Gamma(n + 2/7)/Gamma(2/7).
- A020034 (program): Nearest integer to Gamma(n + 1/7)/Gamma(1/7).
- A020035 (program): Nearest integer to Gamma(n + 5/6)/Gamma(5/6).
- A020036 (program): Nearest integer to Gamma(n + 1/6)/Gamma(1/6).
- A020037 (program): Nearest integer to Gamma(n + 4/5)/Gamma(4/5).
- A020038 (program): Nearest integer to Gamma(n + 3/5)/Gamma(3/5).
- A020039 (program): Nearest integer to Gamma(n + 2/5)/Gamma(2/5).
- A020040 (program): a(n) = round( Gamma(n+1/5)/Gamma(1/5) ).
- A020041 (program): a(n) = round( Gamma(n+3/4)/Gamma(3/4) ).
- A020042 (program): a(n) = round( Gamma(n+1/4)/Gamma(1/4) ).
- A020043 (program): a(n) = round(Gamma(n+2/3)/Gamma(2/3)).
- A020044 (program): a(n) = round(Gamma(n+1/3)/Gamma(1/3)).
- A020045 (program): Nearest integer to Gamma(n + 1/2)/Gamma(1/2).
- A020046 (program): a(n) = floor(Gamma(n+11/12)/Gamma(11/12)).
- A020047 (program): a(n) = floor(Gamma(n+7/12)/Gamma(7/12)).
- A020048 (program): a(n) = floor(Gamma(n+5/12)/Gamma(5/12)).
- A020049 (program): a(n) = floor(Gamma(n+1/12)/Gamma(1/12)).
- A020050 (program): a(n) = floor(Gamma(n+10/11)/Gamma(10/11)).
- A020051 (program): a(n) = floor(Gamma(n+9/11)/Gamma(9/11)).
- A020052 (program): a(n) = floor(Gamma(n + 8/11)/Gamma(8/11)).
- A020053 (program): a(n) = floor(Gamma(n + 7/11)/Gamma(7/11)).
- A020054 (program): a(n) = floor(Gamma(n+6/11)/Gamma(6/11)).
- A020055 (program): a(n) = floor(Gamma(n+5/11)/Gamma(5/11)).
- A020056 (program): a(n) = floor(Gamma(n+4/11)/Gamma(4/11)).
- A020057 (program): a(n) = floor(Gamma(n+3/11)/Gamma(3/11)).
- A020058 (program): a(n) = floor(Gamma(n+2/11)/Gamma(2/11)).
- A020059 (program): a(n) = floor(Gamma(n+1/11) / Gamma(1/11)).
- A020060 (program): a(n) = floor( Gamma(n+9/10)/Gamma(9/10) ).
- A020061 (program): Integer part of GAMMA(n+7/10)/GAMMA(7/10).
- A020062 (program): Integer part of Gamma(n+3/10)/Gamma(3/10).
- A020063 (program): Integer part of Gamma(n+1/10)/Gamma(1/10).
- A020064 (program): Integer part of Gamma(n+8/9)/Gamma(8/9).
- A020065 (program): Integer part of Gamma(n+7/9)/Gamma(7/9).
- A020066 (program): Integer part of Gamma(n+5/9)/Gamma(5/9).
- A020067 (program): Integer part of Gamma(n+4/9)/Gamma(4/9).
- A020068 (program): a(n) = floor( Gamma(n+2/9) / Gamma(2/9) ).
- A020069 (program): Integer part of Gamma(n+1/9)/Gamma(1/9).
- A020070 (program): a(n) = floor( Gamma(n+7/8)/Gamma(7/8) ).
- A020071 (program): a(n) = floor( Gamma(n+5/8)/Gamma(5/8) ).
- A020072 (program): a(n) = floor( Gamma(n+3/8)/Gamma(3/8) ).
- A020073 (program): a(n) = floor( Gamma(n+1/8)/Gamma(1/8) ).
- A020074 (program): a(n) = floor( Gamma(n+6/7)/Gamma(6/7) ).
- A020075 (program): a(n) = floor( Gamma(n+5/7)/Gamma(5/7) ).
- A020076 (program): a(n) = floor( Gamma(n+4/7)/Gamma(4/7) ).
- A020077 (program): a(n) = floor( Gamma(n+3/7)/Gamma(3/7) ).
- A020078 (program): a(n) = floor( Gamma(n+2/7)/Gamma(2/7) ).
- A020079 (program): a(n) = floor( Gamma(n+1/7)/Gamma(1/7) ).
- A020080 (program): a(n) = floor( Gamma(n + 5/6)/Gamma(5/6) ).
- A020081 (program): a(n) = floor( Gamma(n + 1/6)/Gamma(1/6) ).
- A020082 (program): a(n) = floor( Gamma(n + 4/5)/Gamma(4/5) ).
- A020083 (program): a(n) = floor( Gamma(n + 3/5)/Gamma(3/5) ).
- A020084 (program): a(n) = floor( Gamma(n + 2/5)/Gamma(2/5) ).
- A020085 (program): a(n) = floor( Gamma(n + 1/5)/Gamma(1/5) ).
- A020086 (program): a(n) = floor( Gamma(n + 3/4)/Gamma(3/4) ).
- A020087 (program): a(n) = floor( Gamma(n + 1/4)/Gamma(1/4) ).
- A020088 (program): a(n) = floor(Gamma(n + 2/3)/Gamma(2/3)).
- A020089 (program): Integer part of Gamma(n + 1/3)/Gamma(1/3).
- A020090 (program): Integer part of Gamma(n+1/2)/Gamma(1/2).
- A020091 (program): Ceiling of Gamma(n + 11/12)/Gamma(11/12).
- A020092 (program): Ceiling of GAMMA(n+7/12)/GAMMA(7/12).
- A020093 (program): Ceiling of GAMMA(n+5/12)/GAMMA(5/12).
- A020094 (program): Ceiling of GAMMA(n+1/12)/GAMMA(1/12).
- A020095 (program): Ceiling of GAMMA(n+10/11)/GAMMA(10/11).
- A020096 (program): Ceiling of Gamma(n + 9/11)/Gamma(9/11).
- A020097 (program): Ceiling of GAMMA(n+8/11)/GAMMA(8/11).
- A020098 (program): Ceiling of GAMMA(n+7/11)/GAMMA(7/11).
- A020099 (program): Ceiling of GAMMA(n+6/11)/GAMMA(6/11).
- A020100 (program): Ceiling of Gamma(n + 5/11)/Gamma(5/11).
- A020101 (program): Ceiling of GAMMA(n+4/11)/GAMMA(4/11).
- A020102 (program): Ceiling of GAMMA(n+3/11)/GAMMA(3/11).
- A020103 (program): Ceiling of GAMMA(n+2/11)/GAMMA(2/11).
- A020104 (program): Ceiling of GAMMA(n+1/11)/GAMMA(1/11).
- A020105 (program): Ceiling of GAMMA(n+9/10)/GAMMA(9/10).
- A020106 (program): Ceiling of GAMMA(n+7/10)/GAMMA(7/10).
- A020107 (program): Ceiling of GAMMA(n+3/10)/GAMMA(3/10).
- A020108 (program): Ceiling of GAMMA(n+1/10)/GAMMA(1/10).
- A020109 (program): Ceiling of GAMMA(n+8/9)/GAMMA(8/9).
- A020110 (program): Ceiling of Gamma(n + 7/9)/Gamma(7/9).
- A020111 (program): Ceiling of GAMMA(n+5/9)/GAMMA(5/9).
- A020112 (program): Ceiling of GAMMA(n+4/9)/GAMMA(4/9).
- A020113 (program): a(n) = ceiling of Gamma(n + 2/9)/Gamma(2/9).
- A020114 (program): Ceiling of GAMMA(n+1/9)/GAMMA(1/9).
- A020115 (program): Ceiling of GAMMA(n+7/8)/GAMMA(7/8).
- A020116 (program): Ceiling of GAMMA(n+5/8)/GAMMA(5/8).
- A020117 (program): Ceiling of GAMMA(n+3/8)/GAMMA(3/8).
- A020118 (program): Ceiling of GAMMA(n+1/8)/GAMMA(1/8).
- A020119 (program): Ceiling of GAMMA(n+6/7)/GAMMA(6/7).
- A020120 (program): Ceiling of GAMMA(n+5/7)/GAMMA(5/7).
- A020121 (program): Ceiling of GAMMA(n+4/7)/GAMMA(4/7).
- A020122 (program): Ceiling of GAMMA(n+3/7)/GAMMA(3/7).
- A020123 (program): Ceiling of Gamma(n+2/7)/Gamma(2/7).
- A020124 (program): Ceiling of GAMMA(n+1/7)/GAMMA(1/7).
- A020125 (program): Ceiling of GAMMA(n+5/6)/GAMMA(5/6).
- A020126 (program): Ceiling of GAMMA(n+1/6)/GAMMA(1/6).
- A020127 (program): Ceiling of GAMMA(n+4/5)/GAMMA(4/5).
- A020128 (program): Ceiling of GAMMA(n+3/5)/GAMMA(3/5).
- A020129 (program): Ceiling of GAMMA(n+2/5)/GAMMA(2/5).
- A020130 (program): Ceiling of GAMMA(n+1/5)/GAMMA(1/5).
- A020131 (program): Ceiling of GAMMA(n+3/4)/GAMMA(3/4).
- A020132 (program): Ceiling of GAMMA(n+1/4)/GAMMA(1/4).
- A020133 (program): Ceiling of GAMMA(n+2/3)/GAMMA(2/3).
- A020134 (program): Ceiling of Gamma(n + 1/3)/Gamma(1/3).
- A020135 (program): Ceiling of Gamma(n+1/2)/Gamma(1/2).
- A020330 (program): Numbers whose base-2 representation is the juxtaposition of two identical strings.
- A020331 (program): Numbers whose base-3 representation is the juxtaposition of two identical strings.
- A020332 (program): Numbers whose base-4 representation is the juxtaposition of two identical strings.
- A020333 (program): Numbers whose base-5 representation is the juxtaposition of two identical strings.
- A020334 (program): Numbers whose base-6 representation is the juxtaposition of two identical strings.
- A020335 (program): Numbers whose base-7 representation is the juxtaposition of two identical strings.
- A020336 (program): Numbers whose base-8 representation is the juxtaposition of two identical strings.
- A020337 (program): Numbers whose base-9 representation is the juxtaposition of two identical strings.
- A020338 (program): Doublets: base-10 representation is the juxtaposition of two identical strings.
- A020341 (program): Expansion of 1/((1-5x)(1-7x)(1-12x)).
- A020343 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)).
- A020346 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)).
- A020447 (program): Expansion of 1/((1-5x)(1-8x)(1-11x)).
- A020448 (program): Expansion of 1/((1-5x)(1-8x)(1-12x)).
- A020449 (program): Primes whose greatest digit is 1.
- A020451 (program): Primes that contain digits 1 and 3 only.
- A020452 (program): Primes that contain digits 1 and 4 only.
- A020453 (program): Primes that contain digits 1 and 5 only.
- A020454 (program): Primes that contain digits 1 and 6 only.
- A020455 (program): Primes that contain digits 1 and 7 only.
- A020456 (program): Primes that contain digits 1 and 8 only.
- A020457 (program): Primes that contain digits 1 and 9 only.
- A020458 (program): Primes that contain digits 2 and 3 only.
- A020459 (program): Primes that contain digits 2 and 7 only.
- A020461 (program): Primes that contain digits 3 and 4 only.
- A020462 (program): Primes that contain digits 3 and 5 only.
- A020463 (program): Primes that contain digits 3 and 7 only.
- A020467 (program): Primes that contain digits 5 and 7 only.
- A020471 (program): Primes that contain digits 7 and 9 only.
- A020478 (program): Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
- A020479 (program): Number of noninvertible 2 X 2 matrices over Z/nZ (determinant is a divisor of 0).
- A020481 (program): Least p with p, q both prime, p+q = 2n.
- A020482 (program): Greatest p with p, q both prime, p+q = 2n.
- A020486 (program): Average of squares of divisors is an integer: sigma_0(n) divides sigma_2(n).
- A020490 (program): Numbers k such that phi(k) <= sigma_0(k).
- A020491 (program): Numbers k such that sigma_0(k) divides phi(k).
- A020494 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)).
- A020499 (program): Expansion of 1/((1-5x)(1-9x)(1-11x)).
- A020500 (program): Cyclotomic polynomials at x=1.
- A020514 (program): a(n) = 1^n + 2^n + 4^n + 8^n + 16^n.
- A020515 (program): a(n) = 4^n - 2^n + 1.
- A020516 (program): Sum of n-th powers of divisors of 64.
- A020517 (program): 9th cyclotomic polynomial evaluated at powers of 2.
- A020518 (program): 10th cyclotomic polynomial evaluated at powers of 2.
- A020519 (program): 11th cyclotomic polynomial evaluated at powers of 2.
- A020520 (program): 12th cyclotomic polynomial evaluated at powers of 2.
- A020521 (program): 13th cyclotomic polynomial evaluated at powers of 2.
- A020522 (program): a(n) = 4^n - 2^n.
- A020523 (program): a(n) = 3rd Euler polynomial evaluated at 2^n and multiplied by 4.
- A020524 (program): a(n) = 4th Euler polynomial evaluated at 2^n.
- A020525 (program): a(n) = 5th Euler polynomial evaluated at 2^n and multiplied by 2.
- A020526 (program): a(n) = 6th Euler polynomial evaluated at 2^n.
- A020527 (program): 2nd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
- A020528 (program): 3rd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
- A020529 (program): 4th Bernoulli polynomial evaluated at powers of 2 (multiplied by 30).
- A020530 (program): a(n) = 8^n + 2^(n+1).
- A020531 (program): a(n) = 5th Fibonacci polynomial evaluated at 2^n.
- A020532 (program): a(n) = 6th Fibonacci polynomial evaluated at 2^n.
- A020533 (program): a(n) = 7th Fibonacci polynomial evaluated at 2^n.
- A020534 (program): a(n) = 8th Fibonacci polynomial evaluated at 2^n.
- A020535 (program): a(n) = 9th Fibonacci polynomial evaluated at 2^n.
- A020536 (program): a(n) = 10th Fibonacci polynomial evaluated at 2^n.
- A020537 (program): a(n) = 4*8^n - 3*2^n.
- A020538 (program): a(n) = 4th Chebyshev polynomial (first kind) evaluated at 2^n.
- A020539 (program): a(n) = 5th Chebyshev polynomial (first kind) evaluated at 2^n.
- A020540 (program): a(n) = 8^(n+1) - 2^(n+2).
- A020541 (program): a(n) = 4th Chebyshev polynomial (second kind) evaluated at 2^n.
- A020542 (program): a(n) = 5th Chebyshev polynomial (second kind) evaluated at 2^n.
- A020543 (program): a(0) = 1, a(1) = 1, a(n+1) = (n+1)*a(n) + n.
- A020544 (program): Second Bernoulli polynomial evaluated at x=n! (multiplied by 6).
- A020545 (program): 3rd Bernoulli polynomial evaluated at x=n!.
- A020547 (program): 2nd Euler polynomial evaluated at x=n!.
- A020548 (program): 3rd Euler polynomial evaluated at x=n! (multiplied by 4).
- A020549 (program): a(n) = (n!)^2 + 1.
- A020550 (program): 4th Fibonacci polynomial evaluated at x=n!.
- A020551 (program): 5th Fibonacci polynomial evaluated at x = n!.
- A020552 (program): 6th Fibonacci polynomial evaluated at x=n!.
- A020553 (program): 7th Fibonacci polynomial evaluated at x=n!.
- A020556 (program): Number of oriented multigraphs on n labeled arcs (without loops).
- A020557 (program): Number of oriented multigraphs on n labeled arcs (with loops).
- A020566 (program): Expansion of 1/((1-5x)(1-9x)(1-12x)).
- A020567 (program): Expansion of 1/((1-5x)(1-10x)(1-11x)).
- A020568 (program): G.f.: 1/((1-5x)(1-10x)(1-12x)).
- A020569 (program): Expansion of 1/((1-5x)(1-11x)(1-12x)).
- A020570 (program): Expansion of 1/((1-6*x)*(1-7*x)*(1-8*x)).
- A020571 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)).
- A020572 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)).
- A020573 (program): Expansion of 1/((1-6x)(1-7x)(1-11x)).
- A020577 (program): Expansion of 1/((1-6x)(1-7x)(1-12x)).
- A020579 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)).
- A020584 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)).
- A020593 (program): Expansion of 1/((1-6x)(1-8x)(1-11x)).
- A020594 (program): Expansion of 1/((1-6x)(1-8x)(1-12x)).
- A020595 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)).
- A020606 (program): Expansion of 1/((1-6x)(1-9x)(1-11x)).
- A020616 (program): Smallest nonempty set S containing prime divisors of 8k+2 for each k in S.
- A020639 (program): Lpf(n): least prime dividing n (when n > 1); a(1) = 1. Or, smallest prime factor of n, or smallest prime divisor of n.
- A020642 (program): n-th composite is sum of first k composites for some k.
- A020645 (program): Least positive integer k for which 4^n divides k!.
- A020646 (program): Least positive integer k for which 7^n divides k!.
- A020647 (program): Least positive integer k for which 8^n divides k!.
- A020648 (program): Least positive integer k for which 9^n divides k!.
- A020650 (program): Numerators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)).
- A020651 (program): Denominators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)).
- A020652 (program): Numerators in canonical bijection from positive integers to positive rationals.
- A020653 (program): Denominators in a certain bijection from positive integers to positive rationals.
- A020654 (program): Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.
- A020655 (program): Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 5.
- A020657 (program): Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.
- A020658 (program): Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.
- A020668 (program): Numbers of the form x^2 + 4*y^2.
- A020669 (program): Numbers of form x^2 + 5 y^2.
- A020670 (program): Numbers of form x^2 + 7y^2.
- A020671 (program): Numbers of form x^2 + 8 y^2.
- A020672 (program): Numbers of form x^2 + 9 y^2.
- A020673 (program): Numbers of form x^2 + 10 y^2.
- A020674 (program): Numbers of the form 2*x^2 + 5*y^2.
- A020675 (program): Numbers of form 2 x^2 + 7 y^2.
- A020677 (program): Numbers of form 3*x^2 + 4*y^2.
- A020678 (program): Numbers of form 3 x^2 + 5 y^2.
- A020695 (program): Pisot sequence E(2,3).
- A020696 (program): Let a,b,c,…k be all divisors of n; a(n) = (a+1)*(b+1)*…*(k+1).
- A020698 (program): a(n) = 5*a(n-1) - 2*a(n-2), with a(0)=2, a(1)=9.
- A020699 (program): Expansion of (1-3*x)/(1-5*x).
- A020701 (program): Pisot sequences E(3,5), P(3,5).
- A020702 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).
- A020703 (program): Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,3,5,7,…
- A020704 (program): Pisot sequences E(3,10), P(3,10).
- A020705 (program): n+4
- A020706 (program): Pisot sequences L(4,6), E(4,6).
- A020707 (program): Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).
- A020708 (program): Pisot sequences E(4,9), P(4,9).
- A020709 (program): Pisot sequence E(4,10).
- A020710 (program): n+5.
- A020711 (program): Pisot sequences E(5,7), P(5,7).
- A020712 (program): Pisot sequences E(5,8), P(5,8).
- A020713 (program): Pisot sequences E(5,9), P(5,9).
- A020714 (program): a(n) = 5 * 2^n.
- A020715 (program): n+6.
- A020716 (program): Pisot sequences E(6,8), P(6,8).
- A020717 (program): Pisot sequences L(6,9), E(6,9).
- A020718 (program): Pisot sequences E(6,10), P(6,10).
- A020719 (program): a(n) = n+7.
- A020720 (program): Pisot sequences E(7,9), P(7,9).
- A020721 (program): Pisot sequences E(7,10), P(7,10).
- A020722 (program): a(n) = n + 8.
- A020723 (program): n+9.
- A020724 (program): G.f.: 1/((1-6*x)*(1-9*x)*(1-12*x)).
- A020725 (program): Integers >= 2. a(n) = n+1.
- A020726 (program): Expansion of 1/((1-6*x)*(1-10*x)*(1-11*x)).
- A020727 (program): Pisot sequence P(2,7): a(0)=2, a(1)=7, thereafter a(n+1) is the nearest integer to a(n)^2/a(n-1).
- A020728 (program): Pisot sequence T(2,9), a(n) = floor(a(n-1)^2/a(n-2)).
- A020729 (program): Pisot sequences E(2,10), L(2,10), P(2,10), T(2,10).
- A020730 (program): Pisot sequences L(3,7) or S(3,7).
- A020732 (program): Pisot sequence T(4,7).
- A020734 (program): Pisot sequence L(4,10).
- A020735 (program): Odd numbers >= 5.
- A020736 (program): Pisot sequence L(5,8).
- A020737 (program): Pisot sequence L(5,9).
- A020739 (program): 2n + 6.
- A020741 (program): Pisot sequence T(6,10), a(n) = floor(a(n-1)^2/a(n-2)).
- A020742 (program): Pisot sequence T(7,9).
- A020743 (program): Pisot sequence L(7,10).
- A020744 (program): Pisot sequences P(8,10), T(8,10).
- A020745 (program): Pisot sequence T(3,5).
- A020746 (program): Pisot sequence T(3,7), a(n) = floor(a(n-1)^2/a(n-2)).
- A020747 (program): Pisot sequence T(4,6), a(n) = floor(a(n-1)^2/a(n-2)).
- A020748 (program): Pisot sequence T(4,10), a(n) = floor(a(n-1)^2/a(n-2)).
- A020749 (program): Pisot sequence T(5,8), a(n) = floor(a(n-1)^2/a(n-2)).
- A020750 (program): Pisot sequence T(5,9), a(n) = floor(a(n-1)^2/a(n-2)).
- A020751 (program): Pisot sequence T(6,9), a(n) = floor(a(n-1)^2/a(n-2)).
- A020752 (program): Pisot sequence T(7,10), a(n) = floor(a(n-1)^2/a(n-2)).
- A020753 (program): Sizes of successive increasing gaps between squarefree numbers.
- A020756 (program): Numbers that are the sum of two triangular numbers.
- A020757 (program): Numbers that are not the sum of two triangular numbers.
- A020758 (program): Expansion of 1/((1-6x)(1-10x)(1-12x)).
- A020760 (program): Decimal expansion of 1/sqrt(3).
- A020761 (program): Decimal expansion of 1/2.
- A020762 (program): Decimal expansion of 1/sqrt(5).
- A020763 (program): Decimal expansion of 1/sqrt(6).
- A020764 (program): Decimal expansion of 1/sqrt(7).
- A020765 (program): Decimal expansion of 1/sqrt(8).
- A020766 (program): Expansion of 1/((1-6x)(1-11x)(1-12x)).
- A020767 (program): Product_{k=1..n} b(k), where b(k) = binary expansion of k (A007088) but read as if it were a decimal number.
- A020768 (program): Decimal expansion of 1/sqrt(11).
- A020769 (program): Decimal expansion of 1/sqrt(12) = 1/(2*sqrt(3)).
- A020770 (program): Decimal expansion of 1/sqrt(13).
- A020771 (program): Decimal expansion of 1/sqrt(14).
- A020772 (program): Decimal expansion of 1/sqrt(15).
- A020773 (program): Decimal expansion of 1/4.
- A020774 (program): Decimal expansion of 1/sqrt(17).
- A020775 (program): Decimal expansion of 1/sqrt(18).
- A020776 (program): Decimal expansion of 1/sqrt(19).
- A020778 (program): Decimal expansion of 1/sqrt(21).
- A020779 (program): Decimal expansion of 1/sqrt(22).
- A020780 (program): Decimal expansion of 1/sqrt(23).
- A020781 (program): Decimal expansion of 1/sqrt(24).
- A020782 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)).
- A020783 (program): Decimal expansion of 1/sqrt(26).
- A020784 (program): Decimal expansion of 1/sqrt(27).
- A020785 (program): Decimal expansion of 1/sqrt(28).
- A020786 (program): Decimal expansion of 1/sqrt(29).
- A020787 (program): Decimal expansion of 1/sqrt(30).
- A020788 (program): Decimal expansion of 1/sqrt(31).
- A020789 (program): Decimal expansion of 1/sqrt(32).
- A020790 (program): Decimal expansion of 1/sqrt(33).
- A020791 (program): Decimal expansion of 1/sqrt(34).
- A020792 (program): Decimal expansion of 1/sqrt(35).
- A020793 (program): Decimal expansion of 1/6.
- A020794 (program): Decimal expansion of 1/sqrt(37).
- A020795 (program): Decimal expansion of 1/sqrt(38).
- A020796 (program): Decimal expansion of 1/sqrt(39).
- A020797 (program): Decimal expansion of 1/sqrt(40).
- A020798 (program): Decimal expansion of 1/sqrt(41).
- A020799 (program): Decimal expansion of 1/sqrt(42).
- A020800 (program): Decimal expansion of 1/sqrt(43).
- A020801 (program): Decimal expansion of 1/sqrt(44).
- A020802 (program): Decimal expansion of 1/sqrt(45).
- A020803 (program): Decimal expansion of 1/sqrt(46).
- A020804 (program): Decimal expansion of 1/sqrt(47).
- A020805 (program): Decimal expansion of 1/sqrt(48).
- A020806 (program): Decimal expansion of 1/7.
- A020807 (program): Decimal expansion of 1/sqrt(50).
- A020808 (program): Decimal expansion of 1/sqrt(51).
- A020809 (program): Decimal expansion of 1/sqrt(52).
- A020810 (program): Decimal expansion of 1/sqrt(53).
- A020811 (program): Decimal expansion of 1/sqrt(54).
- A020812 (program): Decimal expansion of 1/sqrt(55).
- A020813 (program): Decimal expansion of 1/sqrt(56).
- A020814 (program): Decimal expansion of 1/sqrt(57).
- A020815 (program): Decimal expansion of 1/sqrt(58).
- A020816 (program): Decimal expansion of 1/sqrt(59).
- A020817 (program): Decimal expansion of 1/sqrt(60).
- A020818 (program): Decimal expansion of 1/sqrt(61).
- A020819 (program): Decimal expansion of 1/sqrt(62).
- A020820 (program): Decimal expansion of 1/sqrt(63).
- A020821 (program): Decimal expansion of 1/8.
- A020822 (program): Decimal expansion of 1/sqrt(65).
- A020823 (program): Decimal expansion of 1/sqrt(66).
- A020824 (program): Decimal expansion of 1/sqrt(67).
- A020825 (program): Decimal expansion of 1/sqrt(68).
- A020826 (program): Decimal expansion of 1/sqrt(69).
- A020827 (program): Decimal expansion of 1/sqrt(70).
- A020828 (program): Decimal expansion of 1/sqrt(71).
- A020829 (program): Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.
- A020830 (program): Decimal expansion of 1/sqrt(73).
- A020831 (program): Decimal expansion of 1/sqrt(74).
- A020832 (program): Decimal expansion of 1/sqrt(75).
- A020833 (program): Decimal expansion of 1/sqrt(76).
- A020834 (program): Decimal expansion of 1/sqrt(77).
- A020835 (program): Decimal expansion of 1/sqrt(78).
- A020836 (program): Decimal expansion of 1/sqrt(79).
- A020837 (program): Decimal expansion of 1/sqrt(80) = sqrt(5)/20.
- A020838 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)).
- A020839 (program): Decimal expansion of 1/sqrt(82).
- A020840 (program): Decimal expansion of 1/sqrt(83).
- A020841 (program): Decimal expansion of 1/sqrt(84).
- A020842 (program): Decimal expansion of 1/sqrt(85).
- A020843 (program): Decimal expansion of 1/sqrt(86).
- A020844 (program): Decimal expansion of 1/sqrt(87).
- A020845 (program): Decimal expansion of 1/sqrt(88).
- A020846 (program): Decimal expansion of 1/sqrt(89).
- A020847 (program): Decimal expansion of 1/sqrt(90) = sqrt(10)/30.
- A020848 (program): Decimal expansion of 1/sqrt(91).
- A020849 (program): Decimal expansion of 1/sqrt(92).
- A020850 (program): Decimal expansion of 1/sqrt(93).
- A020851 (program): Decimal expansion of 1/sqrt(94).
- A020852 (program): Decimal expansion of 1/sqrt(95).
- A020853 (program): Decimal expansion of 1/sqrt(96).
- A020854 (program): Decimal expansion of 1/sqrt(97).
- A020855 (program): Decimal expansion of 1/sqrt(98).
- A020856 (program): Decimal expansion of 1/sqrt(99).
- A020866 (program): Number of strong edge-subgraphs in Moebius ladder M_n.
- A020870 (program): Number of strong single-component edge-subgraphs in Moebius ladder M_n.
- A020871 (program): Number of spanning trees in a Moebius ladder M_n with 2n vertices.
- A020873 (program): a(n) is number of cycles in Moebius ladder M_n.
- A020874 (program): Number of paths in Moebius ladder M_n.
- A020875 (program): Number of (undirected) Hamiltonian paths in n-Moebius ladder.
- A020876 (program): a(n) = ((5+sqrt(5))/2)^n + ((5-sqrt(5))/2)^n.
- A020877 (program): Number of matchings in Moebius ladder M_n.
- A020878 (program): Number of maximum matchings in the n-Moebius ladder M_n.
- A020881 (program): Number of strong restricted edge-subgraphs in Moebius ladder M_n.
- A020882 (program): Ordered hypotenuses (with multiplicity) of primitive Pythagorean triangles.
- A020887 (program): Ordered set of a + b - c as (a,b,c) runs through all primitive Pythagorean triples with a<b<c.
- A020888 (program): Ordered set of (a + b - c)/2 as (a,b,c) runs through all primitive Pythagorean triples with a<b<c.
- A020893 (program): Squarefree sums of two squares; or squarefree numbers with no prime factors of the form 4k+3.
- A020899 (program): Odd number of terms in Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
- A020900 (program): Greatest k such that k-th prime < twice n-th prime.
- A020901 (program): Greatest k such that k-th prime < 3 times n-th prime.
- A020903 (program): Lim f(f(…f(n))) where f is the fractal sequence given by f(n)=A002260(n+1).
- A020904 (program): Positions of 2 in A020903; complement of A191777.
- A020906 (program): Triangle where n-th row is the first n terms of the sequence in reverse order, starting with a(1) = 1 and a(2) = 2.
- A020907 (program): Position of n-th 2 in A020906.
- A020908 (program): Number of terms in Zeckendorf representation of 2^n.
- A020909 (program): Number of bits in the base-2 representation of the n-th Fibonacci number.
- A020910 (program): Number of terms in Zeckendorf representation of 3^n.
- A020911 (program): Number of digits in the base 3 representation of n-th Fibonacci number.
- A020912 (program): Number of terms in base 4 representation of n-th Fibonacci number.
- A020913 (program): Number of terms in base 5 representation of Fibonacci(n).
- A020914 (program): Number of digits in the base-2 representation of 3^n.
- A020915 (program): Number of terms in base-3 representation of 2^n.
- A020917 (program): Maximum number of K4’s (complete 4 graphs) a graph can contain if it contains at most n distinct K3’s (triangles).
- A020918 (program): Expansion of 1/(1-4*x)^(7/2).
- A020919 (program): Partition numbers mod 11.
- A020920 (program): Expansion of 1/(1-4*x)^(9/2).
- A020922 (program): Expansion of 1/(1-4*x)^(11/2).
- A020923 (program): Expansion of (1-4*x)^(11/2).
- A020924 (program): Expansion of 1/(1-4*x)^(13/2).
- A020925 (program): Expansion of (1-4*x)^(13/2).
- A020926 (program): Expansion of 1/(1-4*x)^(15/2).
- A020927 (program): Expansion of (1-4*x)^(15/2).
- A020928 (program): Expansion of 1/(1-4*x)^(17/2).
- A020929 (program): Expansion of (1-4*x)^(17/2).
- A020930 (program): Expansion of 1/(1-4*x)^(19/2).
- A020931 (program): Expansion of (1-4*x)^(19/2).
- A020932 (program): Expansion of 1/(1-4*x)^(21/2).
- A020933 (program): Expansion of (1-4*x)^(21/2).
- A020934 (program): Greatest k such that (k-th prime) < (4 times n-th prime).
- A020935 (program): Greatest k such that (k-th prime) < (5 times n-th prime).
- A020936 (program): Greatest k such that (k-th prime) < (6 times n-th prime).
- A020937 (program): Greatest k such that (k-th prime) < (7 times n-th prime).
- A020938 (program): Greatest k such that (k-th prime) < (8 times n-th prime).
- A020939 (program): Greatest k such that (k-th prime) < (9 times n-th prime).
- A020940 (program): Greatest k such that (k-th prime) < (10 times n-th prime).
- A020941 (program): Main diagonal of Wythoff array: w(n,n)=[ n*tau ]F(n+1)+(n-1)F(n), where tau=(1+sqrt(5))/2, F(n) = Fibonacci numbers.
- A020942 (program): First column of 3rd-order Zeckendorf array.
- A020944 (program): a(2n+1) = |a(2n) - a(2n-1)|, a(2n) = a(n) + a(n-1), a(0) = -1.
- A020951 (program): a(2n+1)=a(n), a(2n)=a(n)+a(n-1).
- A020952 (program): a(2n+1)=a(n), a(2n)=a(n)+a(n-1).
- A020956 (program): Sum of [tau^(n-k)] for k from 1 to infinity.
- A020957 (program): a(n) = Sum_{k >= 1} floor(2*tau^(n-k)).
- A020958 (program): a(n) = Sum_{k >= 1} floor(3*tau^(n-k)).
- A020962 (program): a(n) = Sum_{k >= 1} floor((1+sqrt(2))^(n-k)).
- A020963 (program): Sum of Floor[ 2*(1+sqrt(2))^(n-k) ] for k from 1 to infinity.
- A020964 (program): Sum of Floor[ 3*(1+sqrt(2))^(n-k) ] for k from 1 to infinity.
- A020965 (program): a(n) = Sum_{k >= 1} floor(n*sqrt(2)^(1-k)).
- A020966 (program): a(n) = Sum_{k>=1} floor(n*sqrt(2)^(2-k)).
- A020967 (program): a(n) = Sum_{k >=1} floor(n*sqrt(2)^(3-k)).
- A020968 (program): Expansion of 1/((1-7*x)*(1-8*x)*(1-11*x)).
- A020969 (program): Expansion of 1/((1-7*x)*(1-8*x)*(1-12*x)).
- A020970 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-10*x)).
- A020971 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-11*x)).
- A020972 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-12*x)).
- A020973 (program): Expansion of 1/((1-7*x)*(1-10*x)*(1-11*x)).
- A020974 (program): Expansion of 1/((1-7*x)*(1-10*x)*(1-12*x)).
- A020975 (program): Expansion of 1/((1-7*x)*(1-11*x)*(1-12*x)).
- A020976 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)).
- A020977 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-11*x)).
- A020978 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-12*x)).
- A020979 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)).
- A020980 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-12*x)).
- A020981 (program): Expansion of 1/((1-8*x)*(1-11*x)*(1-12*x)).
- A020982 (program): Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)).
- A020983 (program): Expansion of 1/((1-9*x)*(1-10*x)*(1-12*x)).
- A020984 (program): Expansion of 1/((1-9*x)*(1-11*x)*(1-12*x)).
- A020985 (program): The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials).
- A020986 (program): a(n) = n-th partial sum of Golay-Rudin-Shapiro sequence A020985.
- A020987 (program): Zero-one version of Golay-Rudin-Shapiro sequence (or word).
- A020988 (program): a(n) = (2/3)*(4^n-1).
- A020989 (program): a(n) = (5*4^n - 2)/3.
- A020990 (program): a(n) = Sum_{k=0..n} (-1)^k*A020985(k).
- A020991 (program): Largest value of k for which Golay-Rudin-Shapiro sequence A020986(k) = n.
- A020992 (program): a(n) = a(n-1) + a(n-2) + a(n-3).
- A020995 (program): Numbers k such that the sum of the digits of Fibonacci(k) is k.
- A021001 (program): Pisot sequence P(2,9).
- A021003 (program): a(n) = (n/2)*(n^4+1).
- A021004 (program): Pisot sequence P(4,10).
- A021006 (program): Pisot sequence P(4,11), a(0)=4, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). Evidently satisfies a(n) = 2*a(n-1)+2*a(n-2).
- A021008 (program): Pisot sequence P(5,11), a(0)=5, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1).
- A021009 (program): Triangle of coefficients of Laguerre polynomials n!*L_n(x) (rising powers of x).
- A021010 (program): Triangle of coefficients of Laguerre polynomials L_n(x) (powers of x in decreasing order).
- A021011 (program): Pisot sequence P(6,11), a(0)=6, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1).
- A021012 (program): Triangle of coefficients in expansion of x^n in terms of Laguerre polynomials L_n(x).
- A021013 (program): Pisot sequence P(7,11), a(0)=7, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). Agrees with A021014 only for n <= 20.
- A021014 (program): a(n)=a(n-1)+a(n-2)-a(n-4)+a(n-5).
- A021016 (program): Decimal expansion of 1/12.
- A021017 (program): Decimal expansion of 1/13.
- A021018 (program): Decimal expansion of 1/14.
- A021019 (program): Decimal expansion of 1/15.
- A021020 (program): Decimal expansion of 1/16.
- A021021 (program): Expansion of 1/((1-10x)(1-11x)(1-12x)).
- A021022 (program): Decimal expansion of 1/18.
- A021023 (program): Decimal expansion of 1/19.
- A021024 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-5x)).
- A021025 (program): Decimal expansion of 1/21.
- A021026 (program): Decimal expansion of 1/22.
- A021027 (program): Decimal expansion of 1/23.
- A021028 (program): Decimal expansion of 1/24.
- A021029 (program): Expansion of 1/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
- A021030 (program): Decimal expansion of 1/26.
- A021031 (program): Decimal expansion of 1/27.
- A021032 (program): Decimal expansion of 1/28.
- A021033 (program): Decimal expansion of 1/29.
- A021034 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-7x)).
- A021035 (program): Decimal expansion of 1/31.
- A021036 (program): Decimal expansion of 1/32.
- A021038 (program): Decimal expansion of 1/34.
- A021039 (program): Decimal expansion of 1/35.
- A021040 (program): Decimal expansion of 1/36.
- A021041 (program): Decimal expansion of 1/37.
- A021042 (program): Decimal expansion of 1/38.
- A021043 (program): Decimal expansion of 1/39.
- A021044 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-8x)).
- A021045 (program): Decimal expansion of 1/41.
- A021046 (program): Decimal expansion of 1/42.
- A021047 (program): Decimal expansion of 1/43.
- A021048 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-9x)).
- A021049 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-10x)).
- A021050 (program): Decimal expansion of 1/46.
- A021051 (program): Decimal expansion of 1/47.
- A021052 (program): Decimal expansion of 1/48.
- A021053 (program): Decimal expansion of 1/49.
- A021054 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-11x)).
- A021055 (program): Decimal expansion of 1/51.
- A021056 (program): Decimal expansion of 1/52.
- A021057 (program): Decimal expansion of 1/53.
- A021058 (program): Decimal expansion of 1/54.
- A021059 (program): Decimal expansion of 1/55.
- A021060 (program): Decimal expansion of 1/56.
- A021061 (program): Decimal expansion of 1/57.
- A021062 (program): Decimal expansion of 1/58.
- A021063 (program): Decimal expansion of 1/59.
- A021064 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-12x)).
- A021065 (program): Decimal expansion of 1/61.
- A021066 (program): Decimal expansion of 1/62.
- A021067 (program): Decimal expansion of 1/63.
- A021068 (program): Decimal expansion of 1/64.
- A021069 (program): Decimal expansion of 1/65.
- A021070 (program): Decimal expansion of 1/66.
- A021071 (program): Decimal expansion of 1/67.
- A021072 (program): Decimal expansion of 1/68.
- A021073 (program): Decimal expansion of 1/69.
- A021074 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-5x)).
- A021075 (program): Decimal expansion of 1/71.
- A021076 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-6x)).
- A021077 (program): Decimal expansion of 1/73.
- A021078 (program): Decimal expansion of 1/74.
- A021079 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-7x)).
- A021080 (program): Decimal expansion of 1/76.
- A021081 (program): Decimal expansion of 1/77.
- A021082 (program): Decimal expansion of 1/78.
- A021083 (program): Decimal expansion of 1/79.
- A021084 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-9x)).
- A021085 (program): Decimal expansion of 1/81.
- A021086 (program): Decimal expansion of 1/82.
- A021087 (program): Decimal expansion of 1/83.
- A021088 (program): Decimal expansion of 1/84.
- A021089 (program): Decimal expansion of 1/85.
- A021090 (program): Decimal expansion of 1/86.
- A021091 (program): Decimal expansion of 1/87.
- A021092 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-10x)).
- A021093 (program): Decimal expansion of 1/89.
- A021094 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-11x)).
- A021095 (program): Decimal expansion of 1/91.
- A021096 (program): Decimal expansion of 1/92.
- A021097 (program): Decimal expansion of 1/93.
- A021098 (program): Decimal expansion of 1/94.
- A021099 (program): Decimal expansion of 1/95.
- A021100 (program): Decimal expansion of 1/96.
- A021101 (program): Decimal expansion of 1/97.
- A021102 (program): Decimal expansion of 1/98.
- A021104 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-12x)).
- A021105 (program): Decimal expansion of 1/101.
- A021106 (program): Decimal expansion of 1/102.
- A021107 (program): Decimal expansion of 1/103.
- A021108 (program): Decimal expansion of 1/104.
- A021109 (program): Decimal expansion of 1/105.
- A021110 (program): Decimal expansion of 1/106.
- A021111 (program): Decimal expansion of 1/107.
- A021112 (program): Decimal expansion of 1/108.
- A021113 (program): Decimal expansion of 1/109.
- A021114 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-6x)).
- A021115 (program): Decimal expansion of 1/111.
- A021116 (program): Decimal expansion of 1/112.
- A021117 (program): Decimal expansion of 1/113.
- A021118 (program): Decimal expansion of 1/114.
- A021119 (program): Decimal expansion of 1/115.
- A021120 (program): Decimal expansion of 1/116.
- A021121 (program): Decimal expansion of 1/117.
- A021122 (program): Decimal expansion of 1/118.
- A021123 (program): Decimal expansion of 1/119.
- A021124 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-7x)).
- A021125 (program): Decimal expansion of 1/121.
- A021126 (program): Decimal expansion of 1/122.
- A021127 (program): Decimal expansion of 1/123.
- A021128 (program): Decimal expansion of 1/124.
- A021129 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-8x)).
- A021130 (program): Decimal expansion of 1/126.
- A021131 (program): Decimal expansion of 1/127.
- A021132 (program): Decimal expansion of 1/128.
- A021133 (program): Decimal expansion of 1/129.
- A021134 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-9x)).
- A021135 (program): Decimal expansion of 1/131.
- A021136 (program): Decimal expansion of 1/132.
- A021137 (program): Decimal expansion of 1/133.
- A021138 (program): Decimal expansion of 1/134.
- A021139 (program): Decimal expansion of 1/135.
- A021140 (program): Decimal expansion of 1/136.
- A021141 (program): Decimal expansion of 1/137.
- A021142 (program): Decimal expansion of 1/138.
- A021143 (program): Decimal expansion of 1/139.
- A021144 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-10x)).
- A021145 (program): Decimal expansion of 1/141.
- A021146 (program): Decimal expansion of 1/142.
- A021147 (program): Decimal expansion of 1/143.
- A021148 (program): Decimal expansion of 1/144.
- A021149 (program): Decimal expansion of 1/145.
- A021150 (program): Decimal expansion of 1/146.
- A021151 (program): Decimal expansion of 1/147.
- A021152 (program): Decimal expansion of 1/148.
- A021153 (program): Decimal expansion of 1/149.
- A021154 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-11x)).
- A021155 (program): Decimal expansion of 1/151.
- A021156 (program): Decimal expansion of 1/152.
- A021157 (program): Decimal expansion of 1/153.
- A021158 (program): Decimal expansion of 1/154.
- A021159 (program): Decimal expansion of 1/155.
- A021160 (program): Decimal expansion of 1/156.
- A021161 (program): Decimal expansion of 1/157.
- A021162 (program): Decimal expansion of 1/158.
- A021163 (program): Decimal expansion of 1/159.
- A021164 (program): Expansion of 1/((1-x)*(1-2*x)*(1-5*x)*(1-12*x)).
- A021165 (program): Decimal expansion of 1/161.
- A021166 (program): Decimal expansion of 1/162.
- A021167 (program): Decimal expansion of 1/163.
- A021168 (program): Decimal expansion of 1/164.
- A021169 (program): Decimal expansion of 1/165.
- A021170 (program): Decimal expansion of 1/166.
- A021171 (program): Decimal expansion of 1/167.
- A021172 (program): Decimal expansion of 1/168.
- A021173 (program): Decimal expansion of 1/169.
- A021174 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-7x)).
- A021175 (program): Decimal expansion of 1/171.
- A021176 (program): Decimal expansion of 1/172.
- A021177 (program): Decimal expansion of 1/173.
- A021178 (program): Decimal expansion of 1/174.
- A021179 (program): Decimal expansion of 1/175.
- A021180 (program): Decimal expansion of 1/176.
- A021181 (program): Decimal expansion of 1/177.
- A021182 (program): Decimal expansion of 1/178.
- A021183 (program): Decimal expansion of 1/179.
- A021184 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-8x)).
- A021185 (program): Decimal expansion of 1/181.
- A021186 (program): Decimal expansion of 1/182.
- A021187 (program): Decimal expansion of 1/183.
- A021188 (program): Decimal expansion of 1/184.
- A021189 (program): Decimal expansion of 1/185.
- A021190 (program): Decimal expansion of 1/186.
- A021191 (program): Decimal expansion of 1/187.
- A021192 (program): Decimal expansion of 1/188.
- A021193 (program): Decimal expansion of 1/189.
- A021194 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-9x)).
- A021195 (program): Decimal expansion of 1/191.
- A021196 (program): Decimal expansion of 1/192.
- A021197 (program): Decimal expansion of 1/193.
- A021198 (program): Decimal expansion of 1/194.
- A021199 (program): Decimal expansion of 1/195.
- A021200 (program): Decimal expansion of 1/196.
- A021201 (program): Decimal expansion of 1/197.
- A021202 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-10x)).
- A021203 (program): Decimal expansion of 1/199.
- A021204 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-11x)).
- A021205 (program): Decimal expansion of 1/201.
- A021206 (program): Decimal expansion of 1/202.
- A021207 (program): Decimal expansion of 1/203.
- A021208 (program): Decimal expansion of 1/204.
- A021209 (program): Decimal expansion of 1/205.
- A021210 (program): Decimal expansion of 1/206.
- A021211 (program): Decimal expansion of 1/207.
- A021212 (program): Decimal expansion of 1/208.
- A021213 (program): Decimal expansion of 1/209.
- A021214 (program): Expansion of 1/((1-x)*(1-2x)*(1-6x)*(1-12x)).
- A021215 (program): Decimal expansion of 1/211.
- A021216 (program): Decimal expansion of 1/212.
- A021217 (program): Decimal expansion of 1/213.
- A021218 (program): Decimal expansion of 1/214.
- A021219 (program): Decimal expansion of 1/215.
- A021220 (program): Decimal expansion of 1/216.
- A021221 (program): Decimal expansion of 1/217.
- A021222 (program): Decimal expansion of 1/218.
- A021223 (program): Decimal expansion of 1/219.
- A021224 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-8x)).
- A021225 (program): Decimal expansion of 1/221.
- A021226 (program): Decimal expansion of 1/222.
- A021227 (program): Decimal expansion of 1/223.
- A021228 (program): Decimal expansion of 1/224.
- A021229 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-9x)).
- A021230 (program): Decimal expansion of 1/226.
- A021231 (program): Decimal expansion of 1/227.
- A021232 (program): Decimal expansion of 1/228.
- A021233 (program): Decimal expansion of 1/229.
- A021234 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-10x)).
- A021235 (program): Decimal expansion of 1/231.
- A021236 (program): Decimal expansion of 1/232.
- A021237 (program): Decimal expansion of 1/233.
- A021238 (program): Decimal expansion of 1/234.
- A021239 (program): Decimal expansion of 1/235.
- A021240 (program): Decimal expansion of 1/236.
- A021241 (program): Decimal expansion of 1/237.
- A021242 (program): Decimal expansion of 1/238.
- A021243 (program): Decimal expansion of 1/239.
- A021244 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-11x)).
- A021245 (program): Decimal expansion of 1/241.
- A021246 (program): Decimal expansion of 1/242.
- A021247 (program): Decimal expansion of 1/243.
- A021248 (program): Decimal expansion of 1/244.
- A021249 (program): Decimal expansion of 1/245.
- A021250 (program): Decimal expansion of 1/246.
- A021251 (program): Decimal expansion of 1/247.
- A021252 (program): Decimal expansion of 1/248.
- A021253 (program): Decimal expansion of 1/249.
- A021254 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-12x)).
- A021255 (program): Decimal expansion of 1/251.
- A021256 (program): Decimal expansion of 1/252.
- A021257 (program): Decimal expansion of 1/253.
- A021258 (program): Decimal expansion of 1/254.
- A021259 (program): Decimal expansion of 1/255.
- A021260 (program): Decimal expansion of 1/256.
- A021261 (program): Decimal expansion of 1/257.
- A021262 (program): Decimal expansion of 1/258.
- A021263 (program): Decimal expansion of 1/259.
- A021264 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-9x)).
- A021265 (program): Decimal expansion of 1/261.
- A021266 (program): Decimal expansion of 1/262.
- A021267 (program): Decimal expansion of 1/263.
- A021268 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-10x)).
- A021269 (program): Decimal expansion of 1/265.
- A021270 (program): Decimal expansion of 1/266.
- A021271 (program): Decimal expansion of 1/267.
- A021272 (program): Decimal expansion of 1/268.
- A021273 (program): Decimal expansion of 1/269.
- A021274 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-11x)).
- A021275 (program): Decimal expansion of 1/271.
- A021276 (program): Decimal expansion of 1/272.
- A021277 (program): Decimal expansion of 1/273.
- A021278 (program): Decimal expansion of 1/274.
- A021279 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-12x)).
- A021280 (program): Decimal expansion of 1/276.
- A021281 (program): Decimal expansion of 1/277.
- A021282 (program): Decimal expansion of 1/278.
- A021283 (program): Decimal expansion of 1/279.
- A021284 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-10x)).
- A021285 (program): Decimal expansion of 1/281.
- A021286 (program): Decimal expansion of 1/282.
- A021287 (program): Decimal expansion of 1/283.
- A021288 (program): Decimal expansion of 1/284.
- A021289 (program): Decimal expansion of 1/285.
- A021290 (program): Decimal expansion of 1/286.
- A021291 (program): Decimal expansion of 1/287.
- A021292 (program): Decimal expansion of 1/288.
- A021293 (program): Decimal expansion of 1/289.
- A021294 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-11x)).
- A021295 (program): Decimal expansion of 1/291.
- A021296 (program): Decimal expansion of 1/292.
- A021297 (program): Decimal expansion of 1/293.
- A021298 (program): Decimal expansion of 1/294.
- A021299 (program): Decimal expansion of 1/295.
- A021300 (program): Decimal expansion of 1/296.
- A021301 (program): Decimal expansion of 1/297.
- A021302 (program): Decimal expansion of 1/298.
- A021303 (program): Decimal expansion of 1/299.
- A021304 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-12x)).
- A021305 (program): Decimal expansion of 1/301.
- A021306 (program): Decimal expansion of 1/302.
- A021307 (program): Decimal expansion of 1/303.
- A021308 (program): Decimal expansion of 1/304.
- A021309 (program): Decimal expansion of 1/305.
- A021310 (program): Decimal expansion of 1/306.
- A021311 (program): Decimal expansion of 1/307.
- A021312 (program): Decimal expansion of 1/308.
- A021313 (program): Decimal expansion of 1/309.
- A021314 (program): Expansion of 1/((1-x)(1-2x)(1-10x)(1-11x)).
- A021315 (program): Decimal expansion of 1/311.
- A021316 (program): Decimal expansion of 1/312.
- A021317 (program): Decimal expansion of 1/313.
- A021318 (program): Decimal expansion of 1/314.
- A021319 (program): Decimal expansion of 1/315.
- A021320 (program): Decimal expansion of 1/316.
- A021321 (program): Decimal expansion of 1/317.
- A021322 (program): Decimal expansion of 1/318.
- A021323 (program): Decimal expansion of 1/319.
- A021324 (program): Expansion of 1/((1-x)(1-2x)(1-10x)(1-12x)).
- A021325 (program): Decimal expansion of 1/321.
- A021326 (program): Decimal expansion of 1/322.
- A021327 (program): Decimal expansion of 1/323.
- A021328 (program): Decimal expansion of 1/324.
- A021329 (program): Decimal expansion of 1/325.
- A021330 (program): Decimal expansion of 1/326.
- A021331 (program): Decimal expansion of 1/327.
- A021332 (program): Decimal expansion of 1/328.
- A021333 (program): Decimal expansion of 1/329.
- A021334 (program): Expansion of 1/((1-x)(1-2x)(1-11x)(1-12x)).
- A021335 (program): Decimal expansion of 1/331.
- A021336 (program): Decimal expansion of 1/332.
- A021337 (program): Decimal expansion of 1/333.
- A021338 (program): Decimal expansion of 1/334.
- A021339 (program): Decimal expansion of 1/335.
- A021340 (program): Decimal expansion of 1/336.
- A021341 (program): Decimal expansion of 1/337.
- A021342 (program): Decimal expansion of 1/338.
- A021343 (program): Decimal expansion of 1/339.
- A021344 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-5x)).
- A021345 (program): Decimal expansion of 1/341.
- A021346 (program): Decimal expansion of 1/342.
- A021347 (program): Decimal expansion of 1/343.
- A021348 (program): Decimal expansion of 1/344.
- A021349 (program): Decimal expansion of 1/345.
- A021350 (program): Decimal expansion of 1/346.
- A021351 (program): Decimal expansion of 1/347.
- A021352 (program): Decimal expansion of 1/348.
- A021353 (program): Decimal expansion of 1/349.
- A021354 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-6x)).
- A021355 (program): Decimal expansion of 1/351.
- A021356 (program): Decimal expansion of 1/352.
- A021357 (program): Decimal expansion of 1/353.
- A021358 (program): Decimal expansion of 1/354.
- A021359 (program): Decimal expansion of 1/355.
- A021360 (program): Decimal expansion of 1/356.
- A021361 (program): Decimal expansion of 1/357.
- A021362 (program): Decimal expansion of 1/358.
- A021363 (program): Decimal expansion of 1/359.
- A021364 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-7x)).
- A021365 (program): Decimal expansion of 1/361.
- A021366 (program): Decimal expansion of 1/362.
- A021367 (program): Decimal expansion of 1/363.
- A021368 (program): Decimal expansion of 1/364.
- A021369 (program): Decimal expansion of 1/365.
- A021370 (program): Decimal expansion of 1/366.
- A021371 (program): Decimal expansion of 1/367.
- A021372 (program): Decimal expansion of 1/368.
- A021373 (program): Decimal expansion of 1/369.
- A021374 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-8x)).
- A021375 (program): Decimal expansion of 1/371.
- A021376 (program): Decimal expansion of 1/372.
- A021377 (program): Decimal expansion of 1/373.
- A021378 (program): Decimal expansion of 1/374.
- A021379 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-9x)).
- A021380 (program): Decimal expansion of 1/376.
- A021381 (program): Decimal expansion of 1/377.
- A021382 (program): Decimal expansion of 1/378.
- A021383 (program): Decimal expansion of 1/379.
- A021384 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-10x)).
- A021385 (program): Decimal expansion of 1/381.
- A021386 (program): Decimal expansion of 1/382.
- A021387 (program): Decimal expansion of 1/383.
- A021388 (program): Decimal expansion of 1/384.
- A021389 (program): Decimal expansion of 1/385.
- A021390 (program): Decimal expansion of 1/386.
- A021391 (program): Decimal expansion of 1/387.
- A021392 (program): Decimal expansion of 1/388.
- A021393 (program): Decimal expansion of 1/389.
- A021394 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-11x)).
- A021395 (program): Decimal expansion of 1/391.
- A021396 (program): Decimal expansion of 1/392.
- A021397 (program): Decimal expansion of 1/393.
- A021398 (program): Decimal expansion of 1/394.
- A021399 (program): Decimal expansion of 1/395.
- A021400 (program): Decimal expansion of 1/396.
- A021401 (program): Decimal expansion of 1/397.
- A021402 (program): Decimal expansion of 1/398.
- A021403 (program): Decimal expansion of 1/399.
- A021404 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-12x)).
- A021405 (program): Decimal expansion of 1/401.
- A021406 (program): Decimal expansion of 1/402.
- A021407 (program): Decimal expansion of 1/403.
- A021408 (program): Decimal expansion of 1/404.
- A021409 (program): Decimal expansion of 1/405.
- A021410 (program): Decimal expansion of 1/406.
- A021411 (program): Decimal expansion of 1/407.
- A021412 (program): Decimal expansion of 1/408.
- A021413 (program): Decimal expansion of 1/409.
- A021414 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-6x)).
- A021415 (program): Decimal expansion of 1/411.
- A021416 (program): Decimal expansion of 1/412.
- A021417 (program): Decimal expansion of 1/413.
- A021418 (program): Decimal expansion of 1/414.
- A021419 (program): Decimal expansion of 1/415.
- A021420 (program): Decimal expansion of 1/416.
- A021421 (program): Decimal expansion of 1/417.
- A021422 (program): Decimal expansion of 1/418.
- A021423 (program): Decimal expansion of 1/419.
- A021424 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-7x)).
- A021425 (program): Decimal expansion of 1/421.
- A021426 (program): Decimal expansion of 1/422.
- A021427 (program): Decimal expansion of 1/423.
- A021428 (program): Decimal expansion of 1/424.
- A021429 (program): Decimal expansion of 1/425.
- A021430 (program): Decimal expansion of 1/426.
- A021431 (program): Decimal expansion of 1/427.
- A021432 (program): Decimal expansion of 1/428.
- A021433 (program): Decimal expansion of 1/429.
- A021434 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-8x)).
- A021435 (program): Decimal expansion of 1/431.
- A021436 (program): Decimal expansion of 1/432.
- A021437 (program): Decimal expansion of 1/433.
- A021438 (program): Decimal expansion of 1/434.
- A021439 (program): Decimal expansion of 1/435.
- A021440 (program): Decimal expansion of 1/436.
- A021441 (program): Decimal expansion of 1/437.
- A021442 (program): Decimal expansion of 1/438.
- A021443 (program): Decimal expansion of 1/439.
- A021444 (program): Decimal expansion of 1/440.
- A021445 (program): Decimal expansion of 1/441.
- A021446 (program): Decimal expansion of 1/442.
- A021447 (program): Decimal expansion of 1/443.
- A021448 (program): Decimal expansion of 1/444.
- A021449 (program): Decimal expansion of 1/445.
- A021450 (program): Decimal expansion of 1/446.
- A021451 (program): Decimal expansion of 1/447.
- A021452 (program): Decimal expansion of 1/448.
- A021453 (program): Decimal expansion of 1/449.
- A021454 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-9x)).
- A021455 (program): Decimal expansion of 1/451.
- A021456 (program): Decimal expansion of 1/452.
- A021457 (program): Decimal expansion of 1/453.
- A021458 (program): Decimal expansion of 1/454.
- A021459 (program): Decimal expansion of 1/455.
- A021460 (program): Decimal expansion of 1/456.
- A021461 (program): Decimal expansion of 1/457.
- A021462 (program): Decimal expansion of 1/458.
- A021463 (program): Decimal expansion of 1/459.
- A021464 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-10x)).
- A021465 (program): Decimal expansion of 1/461.
- A021466 (program): Decimal expansion of 1/462.
- A021467 (program): Decimal expansion of 1/463.
- A021468 (program): Decimal expansion of 1/464.
- A021469 (program): Decimal expansion of 1/465.
- A021470 (program): Decimal expansion of 1/466.
- A021471 (program): Decimal expansion of 1/467.
- A021472 (program): Decimal expansion of 1/468.
- A021473 (program): Decimal expansion of 1/469.
- A021474 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-11x)).
- A021475 (program): Decimal expansion of 1/471.
- A021476 (program): Decimal expansion of 1/472.
- A021477 (program): Decimal expansion of 1/473.
- A021478 (program): Decimal expansion of 1/474.
- A021479 (program): Decimal expansion of 1/475.
- A021480 (program): Decimal expansion of 1/476.
- A021481 (program): Decimal expansion of 1/477.
- A021482 (program): Decimal expansion of 1/478.
- A021483 (program): Decimal expansion of 1/479.
- A021484 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-12x)).
- A021485 (program): Decimal expansion of 1/481.
- A021486 (program): Decimal expansion of 1/482.
- A021487 (program): Decimal expansion of 1/483.
- A021488 (program): Decimal expansion of 1/484.
- A021489 (program): Decimal expansion of 1/485.
- A021490 (program): Decimal expansion of 1/486.
- A021491 (program): Decimal expansion of 1/487.
- A021492 (program): Decimal expansion of 1/488.
- A021493 (program): Decimal expansion of 1/489.
- A021494 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-7x)).
- A021495 (program): Decimal expansion of 1/491.
- A021496 (program): Decimal expansion of 1/492.
- A021497 (program): Decimal expansion of 1/493.
- A021498 (program): Decimal expansion of 1/494.
- A021499 (program): Decimal expansion of 1/495.
- A021500 (program): Decimal expansion of 1/496.
- A021501 (program): Decimal expansion of 1/497.
- A021502 (program): Decimal expansion of 1/498.
- A021503 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-8x)).
- A021504 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-9x)).
- A021505 (program): Decimal expansion of 1/501.
- A021506 (program): Decimal expansion of 1/502.
- A021507 (program): Decimal expansion of 1/503.
- A021508 (program): Decimal expansion of 1/504.
- A021509 (program): Decimal expansion of 1/505.
- A021510 (program): Decimal expansion of 1/506.
- A021511 (program): Decimal expansion of 1/507.
- A021512 (program): Decimal expansion of 1/508.
- A021513 (program): Decimal expansion of 1/509.
- A021514 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-10x)).
- A021515 (program): Decimal expansion of 1/511.
- A021516 (program): Decimal expansion of 1/512.
- A021517 (program): Decimal expansion of 1/513.
- A021518 (program): Decimal expansion of 1/514.
- A021519 (program): Decimal expansion of 1/515.
- A021520 (program): Decimal expansion of 1/516.
- A021521 (program): Decimal expansion of 1/517.
- A021522 (program): Decimal expansion of 1/518.
- A021523 (program): Decimal expansion of 1/519.
- A021524 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-11x)).
- A021525 (program): Decimal expansion of 1/521.
- A021526 (program): Decimal expansion of 1/522.
- A021527 (program): Decimal expansion of 1/523.
- A021528 (program): Decimal expansion of 1/524.
- A021529 (program): Decimal expansion of 1/525.
- A021530 (program): Decimal expansion of 1/526.
- A021531 (program): Decimal expansion of 1/527.
- A021532 (program): Decimal expansion of 1/528.
- A021533 (program): Decimal expansion of 1/529.
- A021534 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-12x)).
- A021535 (program): Decimal expansion of 1/531.
- A021536 (program): Decimal expansion of 1/532.
- A021537 (program): Decimal expansion of 1/533.
- A021538 (program): Decimal expansion of 1/534.
- A021539 (program): Decimal expansion of 1/535.
- A021540 (program): Decimal expansion of 1/536.
- A021541 (program): Decimal expansion of 1/537.
- A021542 (program): Decimal expansion of 1/538.
- A021543 (program): Decimal expansion of 1/539.
- A021544 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-8x)).
- A021545 (program): Decimal expansion of 1/541.
- A021546 (program): Decimal expansion of 1/542.
- A021547 (program): Decimal expansion of 1/543.
- A021548 (program): Decimal expansion of 1/544.
- A021549 (program): Decimal expansion of 1/545.
- A021550 (program): Decimal expansion of 1/546.
- A021551 (program): Decimal expansion of 1/547.
- A021552 (program): Decimal expansion of 1/548.
- A021553 (program): Decimal expansion of 1/549.
- A021554 (program): Decimal expansion of 1/550.
- A021555 (program): Decimal expansion of 1/551.
- A021556 (program): Decimal expansion of 1/552.
- A021557 (program): Decimal expansion of 1/553.
- A021558 (program): Decimal expansion of 1/554.
- A021559 (program): Decimal expansion of 1/555.
- A021560 (program): Decimal expansion of 1/556.
- A021561 (program): Decimal expansion of 1/557.
- A021562 (program): Decimal expansion of 1/558.
- A021563 (program): Decimal expansion of 1/559.
- A021564 (program): Decimal expansion of 1/560.
- A021565 (program): Decimal expansion of 1/561.
- A021566 (program): Decimal expansion of 1/562.
- A021567 (program): Decimal expansion of 1/563.
- A021568 (program): Decimal expansion of 1/564.
- A021569 (program): Decimal expansion of 1/565.
- A021570 (program): Decimal expansion of 1/566.
- A021571 (program): Decimal expansion of 1/567.
- A021572 (program): Decimal expansion of 1/568.
- A021573 (program): Decimal expansion of 1/569.
- A021574 (program): Decimal expansion of 1/570.
- A021575 (program): Decimal expansion of 1/571.
- A021576 (program): Decimal expansion of 1/572.
- A021577 (program): Decimal expansion of 1/573.
- A021578 (program): Decimal expansion of 1/574.
- A021579 (program): Decimal expansion of 1/575.
- A021580 (program): Decimal expansion of 1/576.
- A021581 (program): Decimal expansion of 1/577.
- A021582 (program): Decimal expansion of 1/578.
- A021583 (program): Decimal expansion of 1/579.
- A021584 (program): Decimal expansion of 1/580.
- A021585 (program): Decimal expansion of 1/581.
- A021586 (program): Decimal expansion of 1/582.
- A021587 (program): Decimal expansion of 1/583.
- A021588 (program): Decimal expansion of 1/584.
- A021589 (program): Decimal expansion of 1/585.
- A021590 (program): Decimal expansion of 1/586.
- A021591 (program): Decimal expansion of 1/587.
- A021592 (program): Decimal expansion of 1/588.
- A021593 (program): Decimal expansion of 1/589.
- A021594 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-9x)).
- A021595 (program): Decimal expansion of 1/591.
- A021596 (program): Decimal expansion of 1/592.
- A021597 (program): Decimal expansion of 1/593.
- A021598 (program): Decimal expansion of 1/594.
- A021599 (program): Decimal expansion of 1/595.
- A021600 (program): Decimal expansion of 1/596.
- A021601 (program): Decimal expansion of 1/597.
- A021602 (program): Decimal expansion of 1/598.
- A021603 (program): Decimal expansion of 1/599.
- A021604 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-10x)).
- A021605 (program): Decimal expansion of 1/601.
- A021606 (program): Decimal expansion of 1/602.
- A021607 (program): Decimal expansion of 1/603.
- A021608 (program): Decimal expansion of 1/604.
- A021609 (program): Decimal expansion of 1/605.
- A021610 (program): Decimal expansion of 1/606.
- A021611 (program): Decimal expansion of 1/607.
- A021612 (program): Decimal expansion of 1/608.
- A021613 (program): Decimal expansion of 1/609.
- A021614 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-11x)).
- A021615 (program): Decimal expansion of 1/611.
- A021616 (program): Decimal expansion of 1/612.
- A021617 (program): Decimal expansion of 1/613.
- A021618 (program): Decimal expansion of 1/614.
- A021619 (program): Decimal expansion of 1/615.
- A021620 (program): Decimal expansion of 1/616.
- A021621 (program): Decimal expansion of 1/617.
- A021622 (program): Decimal expansion of 1/618.
- A021623 (program): Decimal expansion of 1/619.
- A021624 (program): Decimal expansion of 1/620.
- A021625 (program): Decimal expansion of 1/621.
- A021626 (program): Decimal expansion of 1/622.
- A021627 (program): Decimal expansion of 1/623.
- A021628 (program): Decimal expansion of 1/624.
- A021629 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-12x)).
- A021630 (program): Decimal expansion of 1/626.
- A021631 (program): Decimal expansion of 1/627.
- A021632 (program): Decimal expansion of 1/628.
- A021633 (program): Decimal expansion of 1/629.
- A021634 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-9x)).
- A021635 (program): Decimal expansion of 1/631.
- A021636 (program): Decimal expansion of 1/632.
- A021637 (program): Decimal expansion of 1/633.
- A021638 (program): Decimal expansion of 1/634.
- A021639 (program): Decimal expansion of 1/635.
- A021640 (program): Decimal expansion of 1/636.
- A021641 (program): Decimal expansion of 1/637.
- A021642 (program): Decimal expansion of 1/638.
- A021643 (program): Decimal expansion of 1/639.
- A021644 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-10x)).
- A021645 (program): Decimal expansion of 1/641.
- A021646 (program): Decimal expansion of 1/642.
- A021647 (program): Decimal expansion of 1/643.
- A021648 (program): Decimal expansion of 1/644.
- A021649 (program): Decimal expansion of 1/645.
- A021650 (program): Decimal expansion of 1/646.
- A021651 (program): Decimal expansion of 1/647.
- A021652 (program): Decimal expansion of 1/648.
- A021653 (program): Decimal expansion of 1/649.
- A021654 (program): Decimal expansion of 1/650.
- A021655 (program): Decimal expansion of 1/651.
- A021656 (program): Decimal expansion of 1/652.
- A021657 (program): Decimal expansion of 1/653.
- A021658 (program): Decimal expansion of 1/654.
- A021659 (program): Decimal expansion of 1/655.
- A021660 (program): Decimal expansion of 1/656.
- A021661 (program): Decimal expansion of 1/657.
- A021662 (program): Decimal expansion of 1/658.
- A021663 (program): Decimal expansion of 1/659.
- A021664 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-11x)).
- A021665 (program): Decimal expansion of 1/661.
- A021666 (program): Decimal expansion of 1/662.
- A021667 (program): Decimal expansion of 1/663.
- A021668 (program): Decimal expansion of 1/664.
- A021669 (program): Decimal expansion of 1/665.
- A021670 (program): Decimal expansion of 1/666.
- A021671 (program): Decimal expansion of 1/667.
- A021672 (program): Decimal expansion of 1/668.
- A021673 (program): Decimal expansion of 1/669.
- A021674 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-12x)).
- A021675 (program): Decimal expansion of 1/671.
- A021676 (program): Decimal expansion of 1/672.
- A021677 (program): Decimal expansion of 1/673.
- A021678 (program): Decimal expansion of 1/674.
- A021679 (program): Decimal expansion of 1/675.
- A021680 (program): Decimal expansion of 1/676.
- A021681 (program): Decimal expansion of 1/677.
- A021682 (program): Decimal expansion of 1/678.
- A021683 (program): Decimal expansion of 1/679.
- A021684 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-10x)).
- A021685 (program): Decimal expansion of 1/681.
- A021686 (program): Decimal expansion of 1/682.
- A021687 (program): Decimal expansion of 1/683.
- A021688 (program): Decimal expansion of 1/684.
- A021689 (program): Decimal expansion of 1/685.
- A021690 (program): Decimal expansion of 1/686.
- A021691 (program): Decimal expansion of 1/687.
- A021692 (program): Decimal expansion of 1/688.
- A021693 (program): Decimal expansion of 1/689.
- A021694 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-11x)).
- A021695 (program): Decimal expansion of 1/691.
- A021696 (program): Decimal expansion of 1/692.
- A021697 (program): Decimal expansion of 1/693.
- A021698 (program): Decimal expansion of 1/694.
- A021699 (program): Decimal expansion of 1/695.
- A021700 (program): Decimal expansion of 1/696.
- A021701 (program): Decimal expansion of 1/697.
- A021702 (program): Decimal expansion of 1/698.
- A021703 (program): Decimal expansion of 1/699.
- A021704 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-12x)).
- A021705 (program): Decimal expansion of 1/701.
- A021706 (program): Decimal expansion of 1/702.
- A021707 (program): Decimal expansion of 1/703.
- A021708 (program): Decimal expansion of 1/704.
- A021709 (program): Decimal expansion of 1/705.
- A021710 (program): Decimal expansion of 1/706.
- A021711 (program): Decimal expansion of 1/707.
- A021712 (program): Decimal expansion of 1/708.
- A021713 (program): Decimal expansion of 1/709.
- A021714 (program): Expansion of 1/((1-x)(1-3x)(1-10x)(1-11x)).
- A021715 (program): Decimal expansion of 1/711.
- A021716 (program): Decimal expansion of 1/712.
- A021717 (program): Decimal expansion of 1/713.
- A021718 (program): Decimal expansion of 1/714.
- A021719 (program): Decimal expansion of 1/715.
- A021720 (program): Decimal expansion of 1/716.
- A021721 (program): Decimal expansion of 1/717.
- A021722 (program): Decimal expansion of 1/718.
- A021723 (program): Decimal expansion of 1/719.
- A021724 (program): Expansion of 1/((1-x)(1-3x)(1-10x)(1-12x)).
- A021725 (program): Decimal expansion of 1/721.
- A021726 (program): Decimal expansion of 1/722.
- A021727 (program): Decimal expansion of 1/723.
- A021728 (program): Decimal expansion of 1/724.
- A021729 (program): Decimal expansion of 1/725.
- A021730 (program): Decimal expansion of 1/726.
- A021731 (program): Decimal expansion of 1/727.
- A021732 (program): Decimal expansion of 1/728.
- A021733 (program): Decimal expansion of 1/729.
- A021734 (program): G.f.: 1/((1-x)(1-3x)(1-11x)(1-12x)).
- A021735 (program): Decimal expansion of 1/731.
- A021736 (program): Decimal expansion of 1/732.
- A021737 (program): Decimal expansion of 1/733.
- A021738 (program): Decimal expansion of 1/734.
- A021739 (program): Decimal expansion of 1/735.
- A021740 (program): Decimal expansion of 1/736.
- A021741 (program): Decimal expansion of 1/737.
- A021742 (program): Decimal expansion of 1/738.
- A021743 (program): Decimal expansion of 1/739.
- A021744 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-6x)).
- A021745 (program): Decimal expansion of 1/741.
- A021746 (program): Decimal expansion of 1/742.
- A021747 (program): Decimal expansion of 1/743.
- A021748 (program): Decimal expansion of 1/744.
- A021749 (program): Decimal expansion of 1/745.
- A021750 (program): Decimal expansion of 1/746.
- A021751 (program): Decimal expansion of 1/747.
- A021752 (program): Decimal expansion of 1/748.
- A021753 (program): Decimal expansion of 1/749.
- A021754 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-7x)).
- A021755 (program): Decimal expansion of 1/751.
- A021756 (program): Decimal expansion of 1/752.
- A021757 (program): Decimal expansion of 1/753.
- A021758 (program): Decimal expansion of 1/754.
- A021759 (program): Decimal expansion of 1/755.
- A021760 (program): Decimal expansion of 1/756.
- A021761 (program): Decimal expansion of 1/757.
- A021762 (program): Decimal expansion of 1/758.
- A021763 (program): Decimal expansion of 1/759.
- A021764 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-8x)).
- A021765 (program): Decimal expansion of 1/761.
- A021766 (program): Decimal expansion of 1/762.
- A021767 (program): Decimal expansion of 1/763.
- A021768 (program): Decimal expansion of 1/764.
- A021769 (program): Decimal expansion of 1/765.
- A021770 (program): Decimal expansion of 1/766.
- A021771 (program): Decimal expansion of 1/767.
- A021772 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-9x)).
- A021773 (program): Decimal expansion of 1/769.
- A021774 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-10x)).
- A021775 (program): Decimal expansion of 1/771.
- A021776 (program): Decimal expansion of 1/772.
- A021777 (program): Decimal expansion of 1/773.
- A021778 (program): Decimal expansion of 1/774.
- A021779 (program): Decimal expansion of 1/775.
- A021780 (program): Decimal expansion of 1/776.
- A021781 (program): Decimal expansion of 1/777.
- A021782 (program): Decimal expansion of 1/778.
- A021783 (program): Decimal expansion of 1/779.
- A021784 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-11x)).
- A021785 (program): Decimal expansion of 1/781.
- A021786 (program): Decimal expansion of 1/782.
- A021787 (program): Decimal expansion of 1/783.
- A021788 (program): Decimal expansion of 1/784.
- A021789 (program): Decimal expansion of 1/785.
- A021790 (program): Decimal expansion of 1/786.
- A021791 (program): Decimal expansion of 1/787.
- A021792 (program): Decimal expansion of 1/788.
- A021793 (program): Decimal expansion of 1/789.
- A021794 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-12x)).
- A021795 (program): Decimal expansion of 1/791.
- A021796 (program): Decimal expansion of 1/792.
- A021797 (program): Decimal expansion of 1/793.
- A021798 (program): Decimal expansion of 1/794.
- A021799 (program): Decimal expansion of 1/795.
- A021800 (program): Decimal expansion of 1/796.
- A021801 (program): Decimal expansion of 1/797.
- A021802 (program): Decimal expansion of 1/798.
- A021803 (program): Decimal expansion of 1/799.
- A021804 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-7x)).
- A021805 (program): Decimal expansion of 1/801.
- A021806 (program): Decimal expansion of 1/802.
- A021807 (program): Decimal expansion of 1/803.
- A021808 (program): Decimal expansion of 1/804.
- A021809 (program): Decimal expansion of 1/805.
- A021810 (program): Decimal expansion of 1/806.
- A021811 (program): Decimal expansion of 1/807.
- A021812 (program): Decimal expansion of 1/808.
- A021813 (program): Decimal expansion of 1/809.
- A021814 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-8x)).
- A021815 (program): Decimal expansion of 1/811.
- A021816 (program): Decimal expansion of 1/812.
- A021817 (program): Decimal expansion of 1/813.
- A021818 (program): Decimal expansion of 1/814.
- A021819 (program): Decimal expansion of 1/815.
- A021820 (program): Decimal expansion of 1/816.
- A021821 (program): Decimal expansion of 1/817.
- A021822 (program): Decimal expansion of 1/818.
- A021823 (program): Decimal expansion of 1/819.
- A021824 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-9x)).
- A021825 (program): Decimal expansion of 1/821.
- A021826 (program): Decimal expansion of 1/822.
- A021827 (program): Decimal expansion of 1/823.
- A021828 (program): Decimal expansion of 1/824.
- A021829 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-10x)).
- A021830 (program): Decimal expansion of 1/826.
- A021831 (program): Decimal expansion of 1/827.
- A021832 (program): Decimal expansion of 1/828.
- A021833 (program): Decimal expansion of 1/829.
- A021834 (program): Expansion of 1/((1-x)*(1-4*x)*(1-6*x)*(1-11*x)).
- A021835 (program): Decimal expansion of 1/831.
- A021836 (program): Decimal expansion of 1/832.
- A021837 (program): Decimal expansion of 1/833.
- A021838 (program): Decimal expansion of 1/834.
- A021839 (program): Decimal expansion of 1/835.
- A021840 (program): Decimal expansion of 1/836.
- A021841 (program): Decimal expansion of 1/837.
- A021842 (program): Decimal expansion of 1/838.
- A021843 (program): Decimal expansion of 1/839.
- A021844 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-12x)).
- A021845 (program): Decimal expansion of 1/841.
- A021846 (program): Decimal expansion of 1/842.
- A021847 (program): Decimal expansion of 1/843.
- A021848 (program): Decimal expansion of 1/844.
- A021849 (program): Decimal expansion of 1/845.
- A021850 (program): Decimal expansion of 1/846.
- A021851 (program): Decimal expansion of 1/847.
- A021852 (program): Decimal expansion of 1/848.
- A021853 (program): Decimal expansion of 1/849.
- A021854 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-8x)).
- A021855 (program): Decimal expansion of 1/851.
- A021856 (program): Decimal expansion of 1/852.
- A021857 (program): Decimal expansion of 1/853.
- A021858 (program): Decimal expansion of 1/854.
- A021859 (program): Decimal expansion of 1/855.
- A021860 (program): Decimal expansion of 1/856.
- A021861 (program): Decimal expansion of 1/857.
- A021862 (program): Decimal expansion of 1/858.
- A021863 (program): Decimal expansion of 1/859.
- A021864 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-9x)).
- A021865 (program): Decimal expansion of 1/861.
- A021866 (program): Decimal expansion of 1/862.
- A021867 (program): Decimal expansion of 1/863.
- A021868 (program): Decimal expansion of 1/864.
- A021869 (program): Decimal expansion of 1/865.
- A021870 (program): Decimal expansion of 1/866.
- A021871 (program): Decimal expansion of 1/867.
- A021872 (program): Decimal expansion of 1/868.
- A021873 (program): Decimal expansion of 1/869.
- A021874 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-10x)).
- A021875 (program): Decimal expansion of 1/871.
- A021876 (program): Decimal expansion of 1/872.
- A021877 (program): Decimal expansion of 1/873.
- A021878 (program): Decimal expansion of 1/874.
- A021879 (program): Decimal expansion of 1/875.
- A021880 (program): Decimal expansion of 1/876.
- A021881 (program): Decimal expansion of 1/877.
- A021882 (program): Decimal expansion of 1/878.
- A021883 (program): Decimal expansion of 1/879.
- A021884 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-11x)).
- A021885 (program): Decimal expansion of 1/881.
- A021886 (program): Decimal expansion of 1/882.
- A021887 (program): Decimal expansion of 1/883.
- A021888 (program): Decimal expansion of 1/884.
- A021889 (program): Decimal expansion of 1/885.
- A021890 (program): Decimal expansion of 1/886.
- A021891 (program): Decimal expansion of 1/887.
- A021892 (program): Decimal expansion of 1/888.
- A021893 (program): Decimal expansion of 1/889.
- A021894 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-12x)).
- A021895 (program): Decimal expansion of 1/891.
- A021896 (program): Decimal expansion of 1/892.
- A021897 (program): Decimal expansion of 1/893.
- A021898 (program): Decimal expansion of 1/894.
- A021899 (program): Decimal expansion of 1/895.
- A021900 (program): Decimal expansion of 1/896.
- A021901 (program): Decimal expansion of 1/897.
- A021902 (program): Decimal expansion of 1/898.
- A021903 (program): Decimal expansion of 1/899.
- A021904 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-9x)).
- A021905 (program): Decimal expansion of 1/901.
- A021906 (program): Decimal expansion of 1/902.
- A021907 (program): Decimal expansion of 1/903.
- A021908 (program): Decimal expansion of 1/904.
- A021909 (program): Decimal expansion of 1/905.
- A021910 (program): Decimal expansion of 1/906.
- A021911 (program): Decimal expansion of 1/907.
- A021912 (program): Decimal expansion of 1/908.
- A021913 (program): Period 4: repeat [0, 0, 1, 1].
- A021914 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-10x)).
- A021915 (program): Decimal expansion of 1/911.
- A021916 (program): Decimal expansion of 1/912.
- A021917 (program): Decimal expansion of 1/913.
- A021918 (program): Decimal expansion of 1/914.
- A021919 (program): Decimal expansion of 1/915.
- A021920 (program): Decimal expansion of 1/916.
- A021921 (program): Decimal expansion of 1/917.
- A021922 (program): Decimal expansion of 1/918.
- A021923 (program): Decimal expansion of 1/919.
- A021924 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-11x)).
- A021925 (program): Decimal expansion of 1/921.
- A021926 (program): Decimal expansion of 1/922.
- A021927 (program): Decimal expansion of 1/923.
- A021928 (program): Decimal expansion of 1/924.
- A021929 (program): Decimal expansion of 1/925.
- A021930 (program): Decimal expansion of 1/926.
- A021931 (program): Decimal expansion of 1/927.
- A021932 (program): Decimal expansion of 1/928.
- A021933 (program): Decimal expansion of 1/929.
- A021934 (program): Decimal expansion of 1/930.
- A021935 (program): Decimal expansion of 1/931.
- A021936 (program): Decimal expansion of 1/932.
- A021937 (program): Decimal expansion of 1/933.
- A021938 (program): Decimal expansion of 1/934.
- A021939 (program): Decimal expansion of 1/935.
- A021940 (program): Decimal expansion of 1/936.
- A021941 (program): Decimal expansion of 1/937.
- A021942 (program): Decimal expansion of 1/938.
- A021943 (program): Decimal expansion of 1/939.
- A021944 (program): Expansion of 1/((1-x)*(1-4*x)*(1-8*x)*(1-12*x)).
- A021945 (program): Decimal expansion of 1/941.
- A021946 (program): Decimal expansion of 1/942.
- A021947 (program): Decimal expansion of 1/943.
- A021948 (program): Decimal expansion of 1/944.
- A021949 (program): Decimal expansion of 1/945.
- A021950 (program): Decimal expansion of 1/946.
- A021951 (program): Decimal expansion of 1/947.
- A021952 (program): Decimal expansion of 1/948.
- A021953 (program): Decimal expansion of 1/949.
- A021954 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-10x)).
- A021955 (program): Decimal expansion of 1/951.
- A021956 (program): Decimal expansion of 1/952.
- A021957 (program): Decimal expansion of 1/953.
- A021958 (program): Decimal expansion of 1/954.
- A021959 (program): Decimal expansion of 1/955.
- A021960 (program): Decimal expansion of 1/956.
- A021961 (program): Decimal expansion of 1/957.
- A021962 (program): Decimal expansion of 1/958.
- A021963 (program): Decimal expansion of 1/959.
- A021964 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-11x)).
- A021965 (program): Decimal expansion of 1/961.
- A021966 (program): Decimal expansion of 1/962.
- A021967 (program): Decimal expansion of 1/963.
- A021968 (program): Decimal expansion of 1/964.
- A021969 (program): Decimal expansion of 1/965.
- A021970 (program): Decimal expansion of 1/966.
- A021971 (program): Decimal expansion of 1/967.
- A021972 (program): Decimal expansion of 1/968.
- A021973 (program): Decimal expansion of 1/969.
- A021974 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-12x)).
- A021975 (program): Decimal expansion of 1/971.
- A021976 (program): Decimal expansion of 1/972.
- A021977 (program): Decimal expansion of 1/973.
- A021978 (program): Decimal expansion of 1/974.
- A021979 (program): Decimal expansion of 1/975.
- A021980 (program): Decimal expansion of 1/976.
- A021981 (program): Decimal expansion of 1/977.
- A021982 (program): Decimal expansion of 1/978.
- A021983 (program): Decimal expansion of 1/979.
- A021984 (program): Expansion of 1/((1-x)(1-4x)(1-10x)(1-11x)).
- A021985 (program): Decimal expansion of 1/981.
- A021986 (program): Decimal expansion of 1/982.
- A021987 (program): Decimal expansion of 1/983.
- A021988 (program): Decimal expansion of 1/984.
- A021989 (program): Decimal expansion of 1/985.
- A021990 (program): Decimal expansion of 1/986.
- A021991 (program): Decimal expansion of 1/987.
- A021992 (program): Decimal expansion of 1/988.
- A021993 (program): Decimal expansion of 1/989.
- A021994 (program): G.f.: 1/((1-x)(1-4x)(1-10x)(1-12x)).
- A021995 (program): Decimal expansion of 1/991.
- A021996 (program): Decimal expansion of 1/992.
- A021997 (program): Decimal expansion of 1/993.
- A021998 (program): Decimal expansion of 1/994.
- A021999 (program): Decimal expansion of 1/995.
- A022000 (program): Expansion of 1/((1-x)(1-4x)(1-11x)(1-12x)).
- A022001 (program): Decimal expansion of 1/997.
- A022002 (program): Decimal expansion of 1/998.
- A022003 (program): Decimal expansion of 1/999.
- A022005 (program): Initial members of prime triples (p, p+4, p+6).
- A022015 (program): a(n)=2a(n-1)+3a(n-2)+2a(n-3)+3a(n-4).
- A022018 (program): Define the sequence UD(a(0),a(1)) by a(n) is the least integer such that a(n)/a(n-1) > a(n-1)/a(n-2)+1 for even n >= 2 and such that a(n)/a(n-1) > a(n-1)/a(n-2) for odd n>=2. This is UD(2,16).
- A022019 (program): Define the sequence S(a(0), a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0 . This is S(2,32).
- A022020 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(3,9).
- A022021 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,20).
- A022022 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,45).
- A022023 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,30).
- A022024 (program): Define the sequence S(a(0)a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,66).
- A022025 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,102).
- A022026 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,15).
- A022027 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,16).
- A022028 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,32).
- A022029 (program): a(n) = 3*a(n-1) + a(n-2) - a(n-3) - a(n-5).
- A022030 (program): For even n, a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n); for odd n, the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n); a(0) = 4, a(1) = 16.
- A022031 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,17).
- A022032 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(5,26).
- A022033 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-7x)).
- A022034 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(6,31).
- A022035 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(6,37).
- A022036 (program): Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is T(7,43).
- A022037 (program): Define the sequence T(a(0), a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(7,50).
- A022038 (program): Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is T(8,57).
- A022039 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,65).
- A022040 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(16,36).
- A022042 (program): Theta series of D_11 lattice.
- A022043 (program): Theta series of D_12 lattice.
- A022044 (program): Theta series of D_13 lattice.
- A022045 (program): Theta series of D_14 lattice.
- A022046 (program): Theta series of D_15 lattice.
- A022047 (program): Theta series of D_16 lattice.
- A022048 (program): Theta series of D_17 lattice.
- A022049 (program): Theta series of D_18 lattice.
- A022050 (program): Theta series of D_19 lattice.
- A022051 (program): Theta series of D_20 lattice.
- A022052 (program): Theta series of D_21 lattice.
- A022053 (program): Theta series of D_22 lattice.
- A022055 (program): Theta series of D_24 lattice.
- A022059 (program): Theta series of D_28 lattice.
- A022063 (program): Theta series of D_32 lattice.
- A022086 (program): Fibonacci sequence beginning 0, 3.
- A022087 (program): Fibonacci sequence beginning 0, 4.
- A022088 (program): Fibonacci sequence beginning 0, 5.
- A022089 (program): Fibonacci sequence beginning 0, 6.
- A022090 (program): Fibonacci sequence beginning 0, 7.
- A022091 (program): Fibonacci sequence beginning 0, 8.
- A022092 (program): Fibonacci sequence beginning 0, 9.
- A022093 (program): Fibonacci sequence beginning 0, 10.
- A022094 (program): Sum of first prime(n) primes.
- A022095 (program): Fibonacci sequence beginning 1, 5.
- A022096 (program): Fibonacci sequence beginning 1, 6.
- A022097 (program): Fibonacci sequence beginning 1, 7.
- A022098 (program): Fibonacci sequence beginning 1, 8.
- A022099 (program): Fibonacci sequence beginning 1, 9.
- A022100 (program): Fibonacci sequence beginning 1, 10.
- A022101 (program): Fibonacci sequence beginning 1, 11.
- A022102 (program): Fibonacci sequence beginning 1, 12.
- A022103 (program): Fibonacci sequence beginning 1, 13.
- A022104 (program): Fibonacci sequence beginning 1, 14.
- A022105 (program): Fibonacci sequence beginning 1, 15.
- A022106 (program): Fibonacci sequence beginning 1, 16.
- A022107 (program): Fibonacci sequence beginning 1, 17.
- A022108 (program): Fibonacci sequence beginning 1, 18.
- A022109 (program): Fibonacci sequence beginning 1, 19.
- A022110 (program): Fibonacci sequence beginning 1, 20.
- A022111 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-8x)).
- A022112 (program): Fibonacci sequence beginning 2, 6.
- A022113 (program): Fibonacci sequence beginning 2, 7.
- A022114 (program): Fibonacci sequence beginning 2 9.
- A022115 (program): Fibonacci sequence beginning 2, 11.
- A022116 (program): Fibonacci sequence beginning 2, 13.
- A022117 (program): Fibonacci sequence beginning 2, 15.
- A022118 (program): Fibonacci sequence beginning 2, 17.
- A022119 (program): Fibonacci sequence beginning 2, 19.
- A022120 (program): Fibonacci sequence beginning 3, 7.
- A022121 (program): Fibonacci sequence beginning 3, 8.
- A022122 (program): Fibonacci sequence beginning 3, 10.
- A022123 (program): Fibonacci sequence beginning 3, 11.
- A022124 (program): Fibonacci sequence beginning 3, 13.
- A022125 (program): Fibonacci sequence beginning 3, 14.
- A022126 (program): Fibonacci sequence beginning 3, 16.
- A022127 (program): Fibonacci sequence beginning 3, 17.
- A022128 (program): Fibonacci sequence beginning 3, 19.
- A022129 (program): Fibonacci sequence beginning 3, 20.
- A022130 (program): Fibonacci sequence beginning 4,9.
- A022131 (program): Fibonacci sequence beginning 4, 11.
- A022132 (program): Fibonacci sequence beginning 4, 13.
- A022133 (program): Fibonacci sequence beginning 4, 15.
- A022134 (program): Fibonacci sequence beginning 4, 17.
- A022135 (program): Fibonacci sequence beginning 4, 19.
- A022136 (program): Fibonacci sequence beginning 5, 11.
- A022137 (program): Fibonacci sequence beginning 5, 12.
- A022138 (program): Fibonacci sequence beginning 5, 13.
- A022139 (program): Fibonacci sequence beginning 5, 14.
- A022140 (program): Fibonacci sequence beginning 5, 16.
- A022141 (program): Fibonacci sequence beginning 5, 17.
- A022142 (program): Fibonacci sequence beginning 5, 18.
- A022143 (program): Fibonacci sequence beginning 5, 19.
- A022144 (program): Coordination sequence for root lattice B_2.
- A022145 (program): Coordination sequence for root lattice B_3.
- A022146 (program): Coordination sequence for root lattice B_4.
- A022155 (program): Values of n at which Golay-Rudin-Shapiro sequence A020985 is negative.
- A022156 (program): Difference sequence of A020991.
- A022157 (program): a(n) = n^2 - phi(n)*tau(n)^2.
- A022158 (program): First column of spectral array W(sqrt(3)).
- A022160 (program): First column of spectral array W(e-1).
- A022162 (program): First column of spectral array W(sqrt(3/2)).
- A022163 (program): First row of spectral array W(sqrt(3/2)).
- A022164 (program): First column of spectral array W(sqrt(5)-1).
- A022165 (program): First row of spectral array W(sqrt(5)-1).
- A022189 (program): Gaussian binomial coefficients [ n,6 ] for q = 2.
- A022190 (program): Gaussian binomial coefficients [n,7] for q = 2.
- A022191 (program): Gaussian binomial coefficients [ n,8 ] for q = 2.
- A022192 (program): Gaussian binomial coefficients [ n,9 ] for q = 2.
- A022193 (program): Gaussian binomial coefficients [ n,10 ] for q = 2.
- A022194 (program): Gaussian binomial coefficients [ n,11 ] for q = 2.
- A022195 (program): Gaussian binomial coefficients [ n,12 ] for q = 2.
- A022196 (program): Gaussian binomial coefficients [ n,5 ] for q = 3.
- A022197 (program): Gaussian binomial coefficients [ n,6 ] for q = 3.
- A022198 (program): Gaussian binomial coefficients [ n,7 ] for q = 3.
- A022199 (program): Gaussian binomial coefficients [ n,8 ] for q = 3.
- A022200 (program): Gaussian binomial coefficients [ n,9 ] for q = 3.
- A022204 (program): Gaussian binomial coefficients [ n,5 ] for q = 4.
- A022205 (program): Gaussian binomial coefficients [ n,6 ] for q = 4.
- A022206 (program): Gaussian binomial coefficients [ n,7 ] for q = 4.
- A022212 (program): Gaussian binomial coefficients [ n,5 ] for q = 5.
- A022213 (program): Gaussian binomial coefficients [ n,6 ] for q = 5.
- A022220 (program): Gaussian binomial coefficients [ n,2 ] for q = 6.
- A022221 (program): Gaussian binomial coefficients [ n,3 ] for q = 6.
- A022222 (program): Gaussian binomial coefficients [ n,4 ] for q = 6.
- A022223 (program): Gaussian binomial coefficients [ n,5 ] for q = 6.
- A022231 (program): Gaussian binomial coefficients [ n,2 ] for q = 7.
- A022232 (program): Gaussian binomial coefficients [ n,3 ] for q = 7.
- A022233 (program): Gaussian binomial coefficients [ n,4 ] for q = 7.
- A022234 (program): Gaussian binomial coefficients [ n,5 ] for q = 7.
- A022242 (program): Gaussian binomial coefficients [ n,2 ] for q = 8.
- A022243 (program): Gaussian binomial coefficients [ n,3 ] for q = 8.
- A022244 (program): Gaussian binomial coefficients [ n,4 ] for q = 8.
- A022245 (program): Gaussian binomial coefficients [ n,5 ] for q = 8.
- A022253 (program): Gaussian binomial coefficients [ n,2 ] for q = 9.
- A022254 (program): Gaussian binomial coefficients [ n,3 ] for q = 9.
- A022255 (program): Gaussian binomial coefficients [ n,4 ] for q = 9.
- A022264 (program): a(n) = n*(7*n - 1)/2.
- A022265 (program): a(n) = n*(7*n + 1)/2.
- A022266 (program): a(n) = n*(9*n - 1)/2.
- A022267 (program): a(n) = n*(9*n + 1)/2.
- A022268 (program): a(n) = n*(11*n - 1)/2.
- A022269 (program): a(n) = n*(11*n+1)/2.
- A022270 (program): a(n) = n*(13*n - 1)/2.
- A022271 (program): a(n) = n*(13*n + 1)/2.
- A022272 (program): a(n) = n*(15*n - 1)/2.
- A022273 (program): a(n) = n*(15*n + 1)/2.
- A022274 (program): a(n) = n*(17*n - 1)/2.
- A022275 (program): a(n) = n*(17*n + 1)/2.
- A022276 (program): a(n) = n*(19*n - 1)/2.
- A022277 (program): a(n) = n*(19*n + 1)/2.
- A022278 (program): a(n) = n*(21*n-1)/2.
- A022279 (program): a(n) = n*(21*n + 1)/2.
- A022280 (program): a(n) = n*(23*n - 1)/2.
- A022281 (program): a(n) = n*(23*n + 1)/2.
- A022282 (program): a(n) = n*(25*n - 1)/2.
- A022283 (program): a(n) = n*(25*n + 1)/2.
- A022284 (program): a(n) = n*(27*n - 1)/2.
- A022285 (program): a(n) = n*(27*n + 1)/2.
- A022286 (program): a(n) = n*(29*n - 1)/2.
- A022287 (program): a(n) = n*(29*n + 1)/2.
- A022288 (program): a(n) = n*(31*n-1)/2.
- A022289 (program): a(n) = n*(31*n + 1)/2.
- A022290 (program): Replace 2^k in binary expansion of n with Fibonacci(k+2).
- A022291 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-9x)).
- A022292 (program): Exactly half of first a(n) terms of Kolakoski sequence A000002 are 1’s (not known to be infinite).
- A022293 (program): Sequence A022292 divided by 2.
- A022297 (program): Index of n-th 1 in A006928.
- A022298 (program): Exactly half of first n terms of A006928 are 1’s (not known to be infinite).
- A022299 (program): Sequence A022298 divided by 2.
- A022300 (program): The sequence a of 1’s and 2’s starting with (1,1,2,1) such that a(n) is the length of the (n+2)nd run of a.
- A022301 (program): Index of n-th 1 in A022300.
- A022303 (program): The sequence a of 1’s and 2’s starting with (1,2,1) such that a(n) is the length of the (n+2)nd run of a.
- A022304 (program): Index of n-th 1 in A022303.
- A022305 (program): Exactly half the first a(n) terms of A022303 are 1’s.
- A022306 (program): Sequence A022305 divided by 2.
- A022308 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=3.
- A022309 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=4.
- A022310 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=5.
- A022311 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=1.
- A022312 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=7.
- A022313 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 8.
- A022314 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0, a(1) = 9.
- A022315 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 10.
- A022316 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 11.
- A022317 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 12.
- A022318 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 4.
- A022319 (program): a(n) = a(n-1) + a(n-2) + 1 for n > 1, a(0)=1, a(1)=5.
- A022320 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 6.
- A022321 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 7.
- A022322 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 8.
- A022323 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 9.
- A022324 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 10.
- A022325 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 11.
- A022326 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 12.
- A022328 (program): Exponent of 2 (value of i) in n-th number of form 2^i*3^j (see A003586).
- A022329 (program): Exponent of 3 (value of j) in n-th number of form 2^i*3^j (see A003586).
- A022330 (program): Index of 3^n within sequence of numbers of form 2^i*3^j (A003586).
- A022331 (program): Index of 2^n within sequence of numbers of form 2^i*3^j (A003586).
- A022332 (program): Exponent of 2 (value of i) in n-th number of form 2^i*5^j.
- A022333 (program): Exponent of 5 (value of j) in n-th number of form 2^i*5^j.
- A022334 (program): Index of 5^n within sequence of numbers of form 2^i * 5^j.
- A022335 (program): Index of 2^n within sequence of numbers of form 2^i * 5^j.
- A022338 (program): Index of 5^n within sequence of numbers of form 3^i*5^j.
- A022339 (program): Index of 3^n within sequence of numbers of form 3^i*5^j.
- A022340 (program): Even Fibbinary numbers (A003714); also 2*Fibbinary(n).
- A022341 (program): a(n) = 4*A003714(n) + 1; the odd Fibbinary numbers.
- A022342 (program): Integers with “even” Zeckendorf expansions (do not end with …+F_2 = …+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.
- A022343 (program): Expansion of 1/((1-x)*(1-5*x)*(1-6*x)*(1-10*x)).
- A022344 (program): Allan Wechsler’s “J determinant” sequence.
- A022345 (program): Fibonacci sequence beginning 0, 11.
- A022346 (program): Fibonacci sequence beginning 0, 12.
- A022347 (program): Fibonacci sequence beginning 0, 13.
- A022348 (program): Fibonacci sequence beginning 0, 14.
- A022349 (program): Fibonacci sequence beginning 0, 15.
- A022350 (program): Fibonacci sequence beginning 0, 16.
- A022351 (program): Fibonacci sequence beginning 0, 17.
- A022352 (program): Fibonacci sequence beginning 0, 18.
- A022353 (program): Fibonacci sequence beginning 0, 19.
- A022354 (program): Fibonacci sequence beginning 0, 20.
- A022355 (program): Fibonacci sequence beginning 0, 21.
- A022356 (program): Fibonacci sequence beginning 0, 22.
- A022357 (program): Fibonacci sequence beginning 0, 23.
- A022358 (program): Fibonacci sequence beginning 0, 24.
- A022359 (program): Fibonacci sequence beginning 0, 25.
- A022360 (program): Fibonacci sequence beginning 0, 26.
- A022361 (program): Fibonacci sequence beginning 0, 27.
- A022362 (program): Fibonacci sequence beginning 0, 28.
- A022363 (program): Fibonacci sequence beginning 0, 29.
- A022364 (program): Fibonacci sequence beginning 0, 30.
- A022365 (program): Fibonacci sequence beginning 0, 31.
- A022366 (program): Fibonacci sequence beginning 0, 32.
- A022367 (program): Fibonacci sequence beginning 2, 10.
- A022368 (program): Fibonacci sequence beginning 2, 12.
- A022369 (program): Fibonacci sequence beginning 2, 14.
- A022370 (program): Fibonacci sequence beginning 2, 16.
- A022371 (program): Fibonacci sequence beginning 2, 18.
- A022372 (program): Fibonacci sequence beginning 2, 20.
- A022373 (program): Fibonacci sequence beginning 2, 22.
- A022374 (program): Fibonacci sequence beginning 2, 24.
- A022375 (program): Fibonacci sequence beginning 2, 26.
- A022376 (program): Fibonacci sequence beginning 2, 28.
- A022377 (program): Fibonacci sequence beginning 2, 30.
- A022378 (program): Fibonacci sequence beginning 2, 32.
- A022379 (program): Fibonacci sequence beginning 3, 9.
- A022380 (program): Fibonacci sequence beginning 3, 12.
- A022381 (program): Fibonacci sequence beginning 3, 15.
- A022382 (program): Fibonacci sequence beginning 4, 10.
- A022383 (program): Fibonacci sequence beginning 4, 14.
- A022384 (program): Fibonacci sequence beginning 4, 18.
- A022385 (program): Fibonacci sequence beginning 4, 22.
- A022386 (program): Fibonacci sequence beginning 4, 26.
- A022387 (program): Fibonacci sequence beginning 4, 30.
- A022388 (program): Fibonacci sequence beginning 6, 13.
- A022389 (program): Fibonacci sequence beginning 7, 15.
- A022390 (program): Fibonacci sequence beginning 8, 17.
- A022391 (program): Fibonacci sequence beginning 1, 21.
- A022392 (program): Fibonacci sequence beginning 1, 22.
- A022393 (program): Fibonacci sequence beginning 1, 23.
- A022394 (program): Fibonacci sequence beginning 1, 24.
- A022395 (program): Fibonacci sequence beginning 1, 25.
- A022396 (program): Fibonacci sequence beginning 1, 26.
- A022397 (program): Fibonacci sequence beginning 1, 27.
- A022398 (program): Fibonacci sequence beginning 1, 28.
- A022399 (program): Fibonacci sequence beginning 1, 29.
- A022400 (program): Fibonacci sequence beginning 1, 30.
- A022401 (program): Fibonacci sequence beginning 1, 31.
- A022402 (program): Fibonacci sequence beginning 1, 32.
- A022403 (program): a(0)=a(1)=3; thereafter a(n) = a(n-1) + a(n-2) + 1.
- A022405 (program): a(n) = a(n-1)*a(n-2) - a(n-3), with a(1) = 0, a(2) = 1, a(3) = 2.
- A022406 (program): a(0)=3, a(1)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
- A022407 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=8.
- A022408 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=9.
- A022409 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=10.
- A022410 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=3, a(1)=11.
- A022411 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=12.
- A022412 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-11x)).
- A022413 (program): Kim-sums: “Kimberling sums” K_n + K_2.
- A022415 (program): Kim-sums: “Kimberling sums” K_n + K_4.
- A022416 (program): Kim-sums: “Kimberling sums” K_n + K_5.
- A022418 (program): Kim-sums: “Kimberling sums” K_n + K_7.
- A022420 (program): Kim-sums: “Kimberling sums” K_n + K_9.
- A022421 (program): Kim-sums: “Kimberling sums” K_n + K_10.
- A022423 (program): Kim-sums: “Kimberling sums” K_n + K_12.
- A022424 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 2; see Comments.
- A022425 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 4; see Comments.
- A022426 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 2, a(1) = 3; see Comments.
- A022429 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
- A022430 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
- A022433 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
- A022441 (program): a(n) = c(n) + c(n-1) where c (A055562) is the sequence of numbers not in a.
- A022442 (program): a(n) = c(n) + c(n-1) where c is the sequence of numbers not in a.
- A022446 (program): Fractal sequence of the dispersion of the composite numbers.
- A022447 (program): Fractal sequence of the dispersion of the primes.
- A022448 (program): Expansion of 1/((1-x)*(1-5*x)*(1-6*x)*(1-12*x)).
- A022449 (program): c(p(n)) where p(k) is k-th prime including p(1)=1 and c(k) is k-th composite number.
- A022452 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-8*x)).
- A022453 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-9*x)).
- A022454 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-10*x)).
- A022455 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-11*x)).
- A022456 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-12*x)).
- A022457 (program): a(n) = prime(2n) mod prime(n).
- A022458 (program): a(n) = prime(2n-1) mod prime(n).
- A022459 (program): a(n) = prime(2n+1) mod prime(n).
- A022460 (program): a(n) = prime(3*n) mod prime(n).
- A022461 (program): a(n) = prime(n+1)*prime(n+2) mod prime(n).
- A022462 (program): a(n) = prime(n)*prime(n+2) mod prime(n+1).
- A022463 (program): a(n) = prime(n^2) mod prime(n).
- A022469 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-9*x)).
- A022521 (program): a(n) = (n+1)^5 - n^5.
- A022522 (program): Nexus numbers (n+1)^6 - n^6.
- A022523 (program): Nexus numbers (n+1)^7-n^7.
- A022524 (program): Nexus numbers (n+1)^8 - n^8.
- A022525 (program): Nexus numbers (n+1)^9-n^9.
- A022526 (program): Nexus numbers (n+1)^10-n^10.
- A022527 (program): Nexus numbers: a(n) = (n+1)^11 - n^11.
- A022528 (program): Nexus numbers (n+1)^12-n^12.
- A022529 (program): Nexus numbers (n+1)^13-n^13.
- A022530 (program): Nexus numbers (n+1)^14 - n^14.
- A022531 (program): Nexus numbers (n+1)^15 - n^15.
- A022532 (program): Nexus numbers (n+1)^16-n^16.
- A022533 (program): Nexus numbers (n+1)^17 - n^17.
- A022534 (program): Nexus numbers (n+1)^18 - n^18.
- A022535 (program): Nexus numbers (n+1)^19 - n^19.
- A022536 (program): Nexus numbers (n+1)^20 - n^20.
- A022537 (program): Nexus numbers (n+1)^21 - n^21.
- A022538 (program): Nexus numbers (n+1)^22 - n^22.
- A022539 (program): Nexus numbers (n+1)^23 - n^23.
- A022540 (program): Nexus numbers (n+1)^24 - n^24.
- A022544 (program): Numbers that are not the sum of 2 squares.
- A022549 (program): Sum of a square and a nonnegative cube.
- A022550 (program): Numbers that are not the sum of a square and a nonnegative cube.
- A022551 (program): Numbers that are the sum of 2 squares and a nonnegative cube.
- A022554 (program): a(n) = Sum_{k=0..n} floor(sqrt(k)).
- A022555 (program): Positive integers that are not the sum of two nonnegative cubes.
- A022556 (program): Numbers that are a sum of a square and 2 nonnegative cubes.
- A022558 (program): Number of permutations of length n avoiding the pattern 1342.
- A022559 (program): Sum of exponents in prime-power factorization of n!.
- A022560 (program): a(0)=0, a(2*n) = 2*a(n) + 2*a(n-1) + n^2 + n, a(2*n+1) = 4*a(n) + (n+1)^2.
- A022561 (program): Numbers that are not the sum of 3 nonnegative cubes.
- A022564 (program): Number of 2-connected non-Hamiltonian claw-free graphs on n nodes.
- A022565 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-10*x)).
- A022566 (program): Numbers that are not the sum of 4 nonnegative cubes.
- A022567 (program): Expansion of Product_{m>=1} (1+x^m)^2.
- A022568 (program): Expansion of Product_{m>=1} (1+x^m)^3.
- A022569 (program): Expansion of Product_{m>=1} (1+x^m)^4.
- A022570 (program): Expansion of Product_{m>=1} (1+x^m)^5.
- A022571 (program): Expansion of Product_{m>=1} (1+x^m)^6.
- A022572 (program): Expansion of Product_{m>=1} (1+x^m)^7.
- A022573 (program): Expansion of Product_{m>=1} (1+x^m)^8.
- A022574 (program): Expansion of Product_{m>=1} (1+x^m)^9.
- A022575 (program): Expansion of Product_{m>=1} (1+x^m)^10.
- A022576 (program): Expansion of Product_{m>=1} (1+x^m)^11.
- A022577 (program): Expansion of Product_{m>=1} (1+x^m)^12.
- A022578 (program): Expansion of Product_{m>=1} (1+x^m)^13.
- A022579 (program): Expansion of Product_{m>=1} (1+x^m)^14.
- A022580 (program): Expansion of Product_{m>=1} (1+x^m)^15.
- A022581 (program): Expansion of Product_{m>=1} (1+x^m)^16.
- A022582 (program): Expansion of Product_{m>=1} (1+x^m)^17.
- A022583 (program): Expansion of Product_{m>=1} (1+x^m)^18.
- A022584 (program): Expansion of Product_{m>=1} (1+x^m)^19.
- A022585 (program): Expansion of Product_{m>=1} (1+x^m)^20.
- A022586 (program): Expansion of Product_{m>=1} (1+x^m)^21.
- A022587 (program): Expansion of Product_{m>=1} (1 + x^m)^22.
- A022588 (program): Expansion of Product_{m>=1} (1 + x^m)^23.
- A022589 (program): Expansion of Product_{m>=1} (1 + q^m)^25.
- A022590 (program): Expansion of Product_{m>=1} (1+q^m)^26.
- A022591 (program): Expansion of Product_{m>=1} (1+q^m)^27.
- A022592 (program): Expansion of Product_{m>=1} (1+q^m)^28.
- A022593 (program): Expansion of Product_{m>=1} (1+q^m)^29.
- A022594 (program): Expansion of Product_{m>=1} (1+q^m)^30.
- A022595 (program): Expansion of Product_{m >=1} (1+q^m)^31.
- A022596 (program): Expansion of Product_{m>=1} (1+q^m)^32.
- A022597 (program): Expansion of Product_{m >= 1} (1 + q^m)^(-2).
- A022598 (program): Expansion of Product_{m>=1} (1+q^m)^(-3).
- A022599 (program): Expansion of Product_{m>=1} (1+q^m)^(-4).
- A022600 (program): Expansion of Product_{m>=1} (1+q^m)^(-5).
- A022601 (program): Expansion of Product_{m>=1} (1+q^m)^(-6).
- A022602 (program): Expansion of Product_{m>=1} (1+q^m)^(-7).
- A022604 (program): Expansion of Product_{m>=1} (1+q^m)^(-9).
- A022605 (program): Expansion of Product_{m>=1} (1+q^m)^(-10).
- A022606 (program): Expansion of Product_{m>=1} (1+q^m)^(-11).
- A022608 (program): Expansion of Product_{m>=1} (1+q^m)^(-13).
- A022609 (program): Expansion of Product_{m>=1} (1+q^m)^(-14).
- A022610 (program): Expansion of Product_{m>=1} (1+q^m)^(-15).
- A022611 (program): Expansion of Product_{m>=1} (1+q^m)^(-16).
- A022612 (program): Expansion of Product_{m>=1} (1+q^m)^(-17).
- A022613 (program): Expansion of Product_{m>=1} (1+q^m)^(-18).
- A022614 (program): Expansion of Product_{m>=1} (1+q^m)^(-19).
- A022615 (program): Expansion of Product_{m>=1} (1+q^m)^(-20).
- A022616 (program): Expansion of Product_{m>=1} (1+q^m)^(-21).
- A022617 (program): Expansion of Product_{m>=1} (1+q^m)^(-22).
- A022618 (program): Expansion of Product_{m>=1} (1+q^m)^(-23).
- A022620 (program): Expansion of Product_{m>=1} (1+q^m)^(-25).
- A022621 (program): Expansion of Product_{m>=1} (1+q^m)^(-26).
- A022622 (program): Expansion of Product_{m>=1} (1+q^m)^(-27).
- A022623 (program): Expansion of Product_{m>=1} (1+q^m)^(-28).
- A022624 (program): Expansion of Product_{m>=1} (1+q^m)^(-29).
- A022625 (program): Expansion of Product_{m>=1} (1+q^m)^(-30).
- A022626 (program): Expansion of Product_{m>=1} (1+q^m)^(-31).
- A022627 (program): Expansion of Product_{m>=1} (1+q^m)^(-32).
- A022628 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-11*x)).
- A022629 (program): Expansion of Product_{m>=1} (1 + m*q^m).
- A022630 (program): Expansion of Product_{m>=1} (1 + m*q^m)^2.
- A022631 (program): Expansion of Product_{m>=1} (1 + m*q^m)^3.
- A022632 (program): Expansion of Product_{m>=1} (1 + m*q^m)^4.
- A022633 (program): Expansion of Product_{m>=1} (1 + m*q^m)^5.
- A022634 (program): Expansion of Product_{m>=1} (1 + m*q^m)^6.
- A022635 (program): Expansion of Product_{m>=1} (1 + m*q^m)^7.
- A022636 (program): Expansion of Product_{m>=1} (1 + m*q^m)^8.
- A022637 (program): Expansion of Product_{m>=1} (1 + m*q^m)^9.
- A022638 (program): Expansion of Product_{m>=1} (1 + m*q^m)^10.
- A022639 (program): Expansion of Product_{m>=1} (1 + m*q^m)^11.
- A022640 (program): Expansion of Product_{m>=1} (1 + m*q^m)^12.
- A022641 (program): Expansion of Product_{m>=1} (1 + m*q^m)^13.
- A022642 (program): Expansion of Product_{m>=1} (1 + m*q^m)^14.
- A022643 (program): Expansion of Product_{m>=1} (1 + m*q^m)^15.
- A022644 (program): Expansion of Product_{m>=1} (1 + m*q^m)^16.
- A022645 (program): Expansion of Product_{m>=1} (1 + m*q^m)^17.
- A022646 (program): Expansion of Product_{m>=1} (1 + m*q^m)^18.
- A022647 (program): Expansion of Product_{m>=1} (1 + m*q^m)^19.
- A022648 (program): Expansion of Product_{m>=1} (1 + m*q^m)^20.
- A022649 (program): Expansion of Product_{m >=1} (1+m*q^m)^21.
- A022650 (program): Expansion of Product_{m>=1} (1+m*q^m)^22.
- A022651 (program): Expansion of Product_{m>=1} (1+m*q^m)^23.
- A022652 (program): Expansion of Product_{m>=1} (1+m*q^m)^24.
- A022653 (program): Expansion of Product_{m>=1} (1+m*q^m)^25.
- A022654 (program): Expansion of Product_{m>=1} (1+m*q^m)^26.
- A022655 (program): Expansion of Product_{m>=1} (1+m*q^m)^27.
- A022656 (program): Expansion of Product_{m>=1} (1+m*q^m)^28.
- A022657 (program): Expansion of Product_{m>=1} (1+m*q^m)^29.
- A022658 (program): Expansion of Product_{m>=1} (1+m*q^m)^30.
- A022659 (program): Expansion of Product_{m>=1} (1+m*q^m)^31.
- A022660 (program): Expansion of Product_{m>=1} (1+m*q^m)^32.
- A022661 (program): Expansion of Product_{m>=1} (1-m*q^m).
- A022662 (program): Expansion of Product_{m>=1} (1 - m*q^m)^2.
- A022663 (program): Expansion of Product_{m>=1} (1 - m*q^m)^3.
- A022664 (program): Expansion of Product_{m>=1} (1 - m*q^m)^4.
- A022665 (program): Expansion of Product_{m>=1} (1 - m*q^m)^5.
- A022666 (program): Expansion of Product_{m>=1} (1 - m*q^m)^6.
- A022667 (program): Expansion of Product_{m>=1} (1 - m*q^m)^7.
- A022668 (program): Expansion of Product_{m>=1} (1 - m*q^m)^8.
- A022669 (program): Expansion of Product_{m>=1} (1 - m*q^m)^9.
- A022670 (program): Expansion of Product_{m >= 1} (1-m*q^m)^10.
- A022671 (program): Expansion of Product_{m >= 1} (1-m*q^m)^11.
- A022672 (program): Expansion of Product_{m >= 1} (1-m*q^m)^12.
- A022673 (program): Expansion of Product_{m >= 1} (1-m*q^m)^13.
- A022674 (program): Expansion of Product_{m >= 1} (1-m*q^m)^14.
- A022675 (program): Expansion of Product_{m >= 1} (1-m*q^m)^15.
- A022676 (program): Expansion of Product_{m >= 1} (1-m*q^m)^16.
- A022678 (program): Expansion of Product_{m>=1} (1-m*q^m)^18.
- A022679 (program): Expansion of Product_{m>=1} (1-m*q^m)^19.
- A022680 (program): Expansion of Product_{m>=1} (1-m*q^m)^20.
- A022681 (program): Expansion of Product_{m>=1} (1-m*q^m)^21.
- A022682 (program): Expansion of Product_{m>=1} (1-m*q^m)^22.
- A022683 (program): Expansion of Product_{m>=1} (1-m*q^m)^23.
- A022684 (program): Expansion of Product_{m>=1} (1-m*q^m)^24.
- A022685 (program): Expansion of Product_{m>=1} (1-m*q^m)^25.
- A022686 (program): Expansion of Product_{m>=1} (1-m*q^m)^26.
- A022687 (program): Expansion of Product_{m>=1} (1-m*q^m)^27.
- A022688 (program): Expansion of Product_{m>=1} (1-m*q^m)^28.
- A022689 (program): Expansion of Product_{m>=1} (1-m*q^m)^29.
- A022690 (program): Expansion of Product_{m>=1} (1-m*q^m)^30.
- A022691 (program): Expansion of Product_{m>=1} (1-m*q^m)^31.
- A022692 (program): Expansion of Product_{m>=1} (1-m*q^m)^32.
- A022693 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m).
- A022694 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-2.
- A022695 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-3.
- A022696 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-4.
- A022697 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^5.
- A022698 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^6.
- A022699 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^7.
- A022700 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^8.
- A022701 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^9.
- A022702 (program): Expansion of Product_{m>=1} (1+m*q^m)^(-10).
- A022703 (program): Expansion of Product_{m>=1} (1+m*q^m)^-11.
- A022704 (program): Expansion of Product_{m>=1} (1+m*q^m)^-12.
- A022705 (program): Expansion of Product_{m>=1} (1+m*q^m)^-13.
- A022706 (program): Expansion of Product_{m>=1} (1+m*q^m)^-14.
- A022707 (program): Expansion of Product_{m>=1} (1+m*q^m)^-15.
- A022708 (program): Expansion of Product_{m>=1} (1+m*q^m)^-16.
- A022710 (program): Expansion of Product_{m>=1} (1+m*q^m)^-18.
- A022711 (program): Expansion of Product_{m>=1} (1+m*q^m)^-19.
- A022712 (program): Expansion of Product_{m>=1} (1+m*q^m)^-20.
- A022713 (program): Expansion of Product_{m>=1} (1+m*q^m)^-21.
- A022714 (program): Expansion of Product_{m>=1} (1+m*q^m)^-22.
- A022716 (program): Expansion of Product_{m>=1} (1+m*q^m)^-24.
- A022717 (program): Expansion of Product_{m>=1} (1+m*q^m)^-25.
- A022718 (program): Expansion of Product_{m>=1} (1+m*q^m)^-26.
- A022719 (program): Expansion of Product_{m>=1} (1+m*q^m)^-27.
- A022720 (program): Expansion of Product_{m>=1} (1+m*q^m)^-28.
- A022721 (program): Expansion of Product_{m>=1} (1+m*q^m)^-29.
- A022722 (program): Expansion of Product_{m>=1} (1+m*q^m)^(-30).
- A022723 (program): Expansion of Product_{m>=1} (1+m*q^m)^-31.
- A022724 (program): Expansion of Product_{m>=1} (1+m*q^m)^-32.
- A022725 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-12*x)).
- A022726 (program): Expansion of 1/Product_{m>=1} (1 - m*q^m)^2.
- A022727 (program): Expansion of Product_{m>=1} (1-m*q^m)^-3.
- A022728 (program): Expansion of Product_{m>=1} (1-m*q^m)^-4.
- A022729 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^5.
- A022730 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^6.
- A022731 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^7.
- A022732 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^8.
- A022733 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^9.
- A022734 (program): Expansion of Product_{m>=1} (1-m*q^m)^-10.
- A022735 (program): Expansion of Product_{m>=1} (1-m*q^m)^-11.
- A022736 (program): Expansion of Product_{m>=1} (1-m*q^m)^-12.
- A022737 (program): Expansion of Product_{m>=1} (1-m*q^m)^-13.
- A022738 (program): Expansion of Product_{m>=1} (1-m*q^m)^-14.
- A022739 (program): Expansion of Product (1-m*q^m)^-15; m=1..inf.
- A022740 (program): Expansion of Product (1-m*q^m)^-16; m=1..inf.
- A022742 (program): Expansion of Product (1-m*q^m)^-18; m=1..inf.
- A022743 (program): Expansion of Product (1-m*q^m)^-19; m=1..inf.
- A022744 (program): Expansion of Product (1-m*q^m)^-20; m=1..inf.
- A022745 (program): Expansion of Product (1-m*q^m)^-21; m=1..inf.
- A022746 (program): Expansion of Product (1-m*q^m)^-22; m=1..inf.
- A022747 (program): Expansion of Product_{m>=1} (1-m*q^m)^-23.
- A022748 (program): Expansion of Product_{m>=1} (1-m*q^m)^-24.
- A022749 (program): Expansion of Product (1-m*q^m)^-25; m=1..inf.
- A022750 (program): Expansion of Product (1-m*q^m)^-26; m=1..inf.
- A022751 (program): Expansion of Product (1-m*q^m)^-27; m=1..inf.
- A022752 (program): Expansion of Product (1-m*q^m)^-28; m=1..inf.
- A022753 (program): Expansion of Product (1-m*q^m)^-29; m=1..inf.
- A022754 (program): Expansion of Product (1-m*q^m)^-30; m=1..inf.
- A022755 (program): Expansion of Product (1-m*q^m)^-31; m=1..inf.
- A022756 (program): Expansion of Product (1-m*q^m)^-32; m=1..inf.
- A022757 (program): n-th 4k+1 prime plus n-th 4k+3 prime.
- A022758 (program): (n-th 4k+1 prime plus n-th 4k+3 prime)/4.
- A022761 (program): n-th 8k+1 prime plus n-th 8k+7 prime.
- A022762 (program): (n-th 8k+1 prime plus n-th 8k+7 prime)/8.
- A022775 (program): Place where n-th 1 occurs in A007336.
- A022776 (program): Place where n-th 1 occurs in A023115.
- A022777 (program): Place where n-th 1 occurs in A007337.
- A022778 (program): Place where n-th 1 occurs in A023116.
- A022779 (program): Place where n-th 1 occurs in A023117.
- A022780 (program): Place where n-th 1 occurs in A023118.
- A022781 (program): Place where n-th 1 occurs in A023119.
- A022782 (program): Place where n-th 1 occurs in A023120.
- A022783 (program): Place where n-th 1 occurs in A023121.
- A022784 (program): Place where n-th 1 occurs in A023122.
- A022785 (program): Place where n-th 1 occurs in A023123.
- A022786 (program): Place where n-th 1 occurs in A023124.
- A022787 (program): Place where n-th 1 occurs in A023125.
- A022788 (program): Place where n-th 1 occurs in A023126.
- A022789 (program): Place where n-th 1 occurs in A023127.
- A022790 (program): Place where n-th 1 occurs in A023128.
- A022791 (program): Place where n-th 1 occurs in A023129.
- A022792 (program): Place where n-th 1 occurs in A023130.
- A022793 (program): Place where n-th 1 occurs in A023131.
- A022794 (program): Place where n-th 1 occurs in A023132.
- A022795 (program): Place where n-th 1 occurs in A023133.
- A022796 (program): Place where n-th 1 occurs in A023134.
- A022797 (program): n-th prime + n-th nonprime.
- A022798 (program): a(n) = P(n) + c(n), where P(1) = 1, P(n) = (n-1)-st prime for n >= 2, c(n) = n-th number not in sequence P.
- A022799 (program): a(n) = F(n+1) + c(n) where F(k) is k-th Fibonacci number and c(n) is n-th non-Fibonacci number.
- A022800 (program): a(n) = F(n+2) + c(n) where F(k) is k-th Fibonacci number and c(n) is n-th number that is 1 or is a non-Fibonacci number.
- A022801 (program): n-th Lucas number (A000204(n)) + n-th non-Lucas number (A090946(n+1)).
- A022802 (program): a(n) = L(n+1) + c(n) where L(k) = k-th Lucas number and c(n) is n-th number that is 1 or not a Lucas number.
- A022803 (program): Numbers that reach …,7,8,4,2,1 under the mapping: if n is even divide by 2 else add 1.
- A022804 (program): a(n) = B(n) + c(n) where B(n) is Beatty sequence [ n*sqrt(2) ] and c is the complement of B.
- A022805 (program): a(n) = B(n) + C(n) where B(n) is Beatty sequence [ n*sqrt(3) ] and C is complement of B.
- A022810 (program): a(n) = L(n+2) + c(n) where L(k) is the k-th Lucas number and c(n) is the n-th number that is 1 or 3 or is not a Lucas number.
- A022815 (program): Number of terms in 5th derivative of a function composed with itself n times.
- A022816 (program): Number of terms in 6th derivative of a function composed with itself n times.
- A022817 (program): Number of terms in 7th derivative of a function composed with itself n times.
- A022819 (program): a(n) = floor(1/(n-1) + 2/(n-2) + 3/(n-3) + … + (n-1)/1).
- A022820 (program): [ n/1 ] - [ (n-1)/2 ] + [ (n-2)/3 ] - … + ((-1)^n)[ 2/(n-1) ].
- A022821 (program): [ (n+1)/(n-1) ] + [ (n+2)/(n-2) ] + … + [ (2n-1)/1 ].
- A022822 (program): a(n) = [ (n+2)/(n-1) ] + [ (n+4)/(n-2) ] + … + [ (3n-2)/1 ].
- A022823 (program): a(n) = [ (2n+1)/(n-1) ] + [ (2n+2)/(n-2) ] + … + [ (3n-1)/1 ].
- A022824 (program): a(n) = [ (2n+2)/(n-1) ] + [ (2n+4)/(n-2) ] + … + [ (4n-2)/1 ].
- A022825 (program): a(n) = a([ n/2 ]) + a([ n/3 ]) + . . . + a([ n/n ]) for n > 1, a(1) = 1.
- A022826 (program): a(n) = a([ (n+1)/2 ]) + a([ (n+1)/3 ]) + . . . + a([ (n+1)/n ]).
- A022831 (program): a(n) = c(1)p(1) + … + c(n)p(n), where c(i) = 1 if a(i-1) <= p(i) and c(i) = -1 if a(i-1) > p(i), for i = 1,…,n (p(i) = primes).
- A022833 (program): a(0)=2; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n). Cf. A008348.
- A022834 (program): a(n) = c(1)p(3) + … + c(n)p(n+2), where c(i) = 1 if a(i-1) <= p(i+2) and c(i) = -1 if a(i-1) > p(i+2) (p(i) = primes).
- A022835 (program): a(n) = c(1)p(3) + … + c(n)p(n+2), where c(i) = 1 if a(i-1) < p(i+2) and c(i) = -1 if a(i-1) >= p(i+2) (p(i) = primes).
- A022836 (program): a(n) = c(1)*p(0) + … + c(n)*p(n-1), where c(i) = 1 if a(i-1) <= p(i-1) and c(i) = -1 if a(i-1) > p(i-1) (with p(0) = 1 and p(i) a prime for i >= 1).
- A022837 (program): a(n) = c(0)*p(0) + … + c(n)*p(n), where c(i) = 1 if a(i-1) < p(i) and c(i) = -1 if a(i-1) >= p(i) (p(0) = 1, p(i) = prime(i)).
- A022838 (program): Beatty sequence for sqrt(3); complement of A054406.
- A022839 (program): Beatty sequence for sqrt(5).
- A022840 (program): Beatty sequence for sqrt(6).
- A022841 (program): Beatty sequence for sqrt(7).
- A022842 (program): Beatty sequence for sqrt(8).
- A022843 (program): Beatty sequence for e: a(n) = floor(n*e).
- A022844 (program): a(n) = floor(n*Pi).
- A022845 (program): Expansion of 1/((1-x)*(1-5*x)*(1-9*x)*(1-10*x)).
- A022846 (program): Nearest integer to n*sqrt(2).
- A022847 (program): Integer nearest n*sqrt(3).
- A022848 (program): Integer nearest nx, where x = sqrt(5).
- A022849 (program): Integer nearest nx, where x = sqrt(6).
- A022850 (program): Integer nearest n*x, where x = sqrt(7).
- A022851 (program): a(n) = integer nearest n*x, where x = sqrt(8).
- A022852 (program): Integer nearest n * e, where e is the natural log base.
- A022853 (program): a(n) = integer nearest n*Pi.
- A022854 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
- A022856 (program): a(n) = n-2 + Sum_{i = 1..n-2} (a(i+1) mod a(i)) for n >= 3 with a(1) = a(2) = 1.
- A022867 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
- A022873 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
- A022905 (program): a(n) = M(n) + m(n) for n >= 2, where M(n) = max{ a(i) + a(n-i): i = 1..n-1 }, m(n) = min{ a(i) + a(n-i): i = 1..n-1 }.
- A022907 (program): The sequence m(n) in A022905.
- A022908 (program): The sequence M(n) in A022905.
- A022915 (program): Multinomial coefficients (0, 1, …, n)! = C(n+1,2)!/(0!*1!*2!*…*n!).
- A022916 (program): Multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).
- A022917 (program): Multinomial coefficient n!/ ([n/4]!, [(n+1)/4]!, [(n+2)/4]!, [(n+3)/4]!).
- A022919 (program): Multinomial coefficients(TOP, BOTTOM), where TOP = n^2, BOTTOM = ( 1 3 5 … 2n-1 ).
- A022921 (program): Number of 2^m between 3^n and 3^(n+1).
- A022922 (program): Number of integers m such that 5^n < 2^m < 5^(n+1).
- A022924 (program): Number of 3^m between 2^n and 2^(n+1).
- A022925 (program): Number of 5^m between 2^n and 2^(n+1).
- A022926 (program): Number of powers of 7 between 2^n and 2^(n+1).
- A022927 (program): Number of 3^m between 5^n and 5^(n+1).
- A022928 (program): Number of 5^m between 3^n and 3^(n+1).
- A022929 (program): Number of 3^m between 4^n and 4^(n+1).
- A022930 (program): Number of 4^m between 3^n and 3^(n+1).
- A022931 (program): Number of e^m between Pi^n and Pi^(n+1).
- A022932 (program): a(n) is the number of powers Pi^m between e^n and e^(n+1).
- A022933 (program): Number of e^m between 2^n and 2^(n+1).
- A022934 (program): Number of 2^m between e^n and e^(n+1).
- A022953 (program): a(n) = a(n-1) + c(n+1) for n >= 3, a( ) increasing, given a(1)=1, a(2)=7; where c( ) is complement of a( ).
- A022958 (program): a(n) = 2 - n.
- A022959 (program): 3-n.
- A022960 (program): 4-n.
- A022961 (program): 5-n.
- A022962 (program): 6-n.
- A022963 (program): 7-n.
- A022964 (program): a(n) = 8-n.
- A022965 (program): 9-n.
- A022966 (program): 10-n.
- A022967 (program): 11-n.
- A022968 (program): a(n) = 12-n.
- A022969 (program): 13-n.
- A022970 (program): 14-n.
- A022971 (program): 15-n.
- A022972 (program): 16-n.
- A022973 (program): 17-n.
- A022974 (program): 18-n.
- A022975 (program): a(n) = 19 - n.
- A022976 (program): 20-n.
- A022977 (program): 21-n.
- A022978 (program): 22-n.
- A022979 (program): 23-n.
- A022980 (program): 24-n.
- A022981 (program): 25-n.
- A022982 (program): 26-n.
- A022983 (program): 27-n.
- A022984 (program): a(n) = 28-n.
- A022985 (program): 29-n.
- A022986 (program): 30-n.
- A022987 (program): 31-n.
- A022988 (program): 32-n.
- A022989 (program): 33-n.
- A022990 (program): 34-n.
- A022991 (program): 35-n.
- A022992 (program): 36-n.
- A022993 (program): a(n) = 37 - n.
- A022994 (program): 38-n.
- A022995 (program): 39-n.
- A022996 (program): 40-n.
- A022997 (program): Numerator of n*(n-2)*(2*n-1)/(2*(n-1)).
- A022998 (program): If n is odd then n, otherwise 2n.
- A023000 (program): a(n) = (7^n - 1)/6.
- A023001 (program): a(n) = (8^n - 1)/7.
- A023002 (program): Sum of 10th powers.
- A023003 (program): Number of partitions of n into parts of 4 kinds.
- A023004 (program): Number of partitions of n into parts of 5 kinds.
- A023005 (program): Number of partitions of n into parts of 6 kinds.
- A023006 (program): Number of partitions of n into parts of 7 kinds.
- A023007 (program): Number of partitions of n into parts of 8 kinds.
- A023008 (program): Number of partitions of n into parts of 9 kinds.
- A023009 (program): Number of partitions of n into parts of 10 kinds.
- A023010 (program): Number of partitions of n into parts of 11 kinds.
- A023011 (program): Number of partitions of n into parts of 13 kinds.
- A023012 (program): Number of partitions of n into parts of 14 kinds.
- A023013 (program): Number of partitions of n into parts of 15 kinds.
- A023014 (program): Number of partitions of n into parts of 16 kinds.
- A023015 (program): Number of partitions of n into parts of 17 kinds.
- A023016 (program): Number of partitions of n into parts of 18 kinds.
- A023017 (program): Number of partitions of n into parts of 19 kinds.
- A023018 (program): Number of partitions of n into parts of 20 kinds.
- A023019 (program): Number of partitions of n into parts of 21 kinds.
- A023020 (program): Number of partitions of n into parts of 22 kinds.
- A023021 (program): Number of partitions of n into parts of 23 kinds.
- A023022 (program): Number of partitions of n into two relatively prime parts. After initial term, this is the “half-totient” function phi(n)/2 (A000010(n)/2).
- A023023 (program): Number of partitions of n into 3 unordered relatively prime parts.
- A023037 (program): a(n) = n^0+n^1+…+n^(n-1), or a(n) = (n^n-1)/(n-1) with a(0)=0; a(1)=1.
- A023038 (program): a(n) = 12*a(n-1) - a(n-2).
- A023039 (program): a(n) = 18*a(n-1) - a(n-2).
- A023043 (program): 6th differences of factorial numbers.
- A023044 (program): 7th differences of factorial numbers.
- A023045 (program): 8th differences of factorial numbers.
- A023046 (program): 9th differences of factorial numbers.
- A023047 (program): 10th differences of factorial numbers.
- A023053 (program): Number of noncrossing rooted trees with n nodes on a circle that do not have leaves at level 1.
- A023054 (program): Simon Plouffe’s conjectured extension of sequence A008368.
- A023105 (program): Number of distinct quadratic residues mod 2^n.
- A023111 (program): Squares that remain square when the digit 1 is appended.
- A023112 (program): Squares that remain square when the digit 4 is appended.
- A023113 (program): Squares that remain square when the digit 6 is appended.
- A023114 (program): Squares that remain square when the digit 9 is appended.
- A023134 (program): Signature sequence of 1/Pi (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i’s is the signature of x).
- A023136 (program): Number of cycles of function f(x) = 4x mod n.
- A023140 (program): Number of cycles of function f(x) = 8x mod n.
- A023162 (program): Numbers k such that F(k) == -1 (mod k), where F(n) = A000045(n) is the n-th Fibonacci number.
- A023165 (program): Numbers k such that Fibonacci(k) == -5 (mod k).
- A023173 (program): Numbers k such that Fibonacci(k) == 1 (mod k).
- A023196 (program): Nondeficient numbers: numbers k such that sigma(k) >= 2k; union of A000396 and A005101.
- A023200 (program): Primes p such that p + 4 is also prime.
- A023201 (program): Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)
- A023202 (program): Primes p such that p + 8 is also prime.
- A023203 (program): Primes p such that p + 10 is also prime.
- A023204 (program): Primes p such that 2*p + 3 is also prime.
- A023205 (program): Numbers m such that m and 2*m + 5 are both prime.
- A023206 (program): Numbers m such that m and 2*m + 7 both prime.
- A023207 (program): Numbers m such that m and 2*m + 9 both prime.
- A023208 (program): Primes p such that 3*p + 2 is also prime.
- A023209 (program): Primes p such that 3p + 4 is also prime.
- A023210 (program): Primes p such that 3*p + 8 is also prime.
- A023211 (program): Primes p such that 3*p + 10 is also prime.
- A023212 (program): Primes p such that 4*p+1 is also prime.
- A023213 (program): Primes p such that 4p + 3 is prime.
- A023214 (program): Primes p such that 4*p + 5 is also prime.
- A023215 (program): Primes p such that 4*p + 7 is also prime.
- A023216 (program): Primes p such that 4*p + 9 is also prime.
- A023217 (program): Primes p such that 5*p + 2 is also prime.
- A023218 (program): Primes p such that 5*p + 4 is also prime.
- A023219 (program): Primes p such that 5p+6 is a prime.
- A023220 (program): Primes p such that 5*p + 8 is also prime.
- A023221 (program): Primes p such that 6*p + 5 is also prime.
- A023222 (program): Primes p such that 6*p + 7 is also prime.
- A023223 (program): Primes p such that 7*p + 2 is also prime.
- A023224 (program): Primes p such that 7*p + 4 is also prime.
- A023225 (program): Primes p such that 7*p + 6 is also prime.
- A023226 (program): Primes p such that 7*p + 8 is also prime.
- A023227 (program): Primes p such that 7*p + 10 is also prime.
- A023228 (program): Numbers k such that k and 8*k + 1 are both prime.
- A023229 (program): Primes p such that 8*p + 3 is also prime.
- A023230 (program): Numbers k such that k and 8*k + 5 are both prime.
- A023231 (program): Primes p such that 8*p + 7 is also prime.
- A023232 (program): Primes p such that 8*p + 9 is also prime.
- A023233 (program): Primes p such that 9*p + 2 is also prime.
- A023234 (program): Primes p such that 9*p + 4 is also prime.
- A023235 (program): Primes p such that 9*p + 8 is also prime.
- A023236 (program): Primes p such that 9*p + 10 is also prime.
- A023237 (program): Numbers k such that k and 10*k + 1 are both prime.
- A023238 (program): Primes p such that 10*p + 3 is also prime.
- A023239 (program): Primes p such that 10*p + 7 is also prime.
- A023240 (program): Primes p such that 10*p + 9 is also prime.
- A023358 (program): Number of compositions into sums of cubes.
- A023359 (program): Number of compositions (ordered partitions) of n into powers of 2.
- A023360 (program): Number of compositions of n into prime parts.
- A023361 (program): Number of compositions of n into positive triangular numbers.
- A023367 (program): a(n+1) = a(n) converted to base 4 from base 3 (written in base 10).
- A023369 (program): a(n+1) = a(n) converted to base 6 from base 3 (written in base 10).
- A023370 (program): a(n+1) = a(n) converted to base 7 from base 3 (written in base 10).
- A023371 (program): a(n+1) = a(n) converted to base 8 from base 3 (written in base 10).
- A023373 (program): a(n+1) = a(n) converted to base 5 from base 4 (written in base 10).
- A023374 (program): a(n+1) = a(n) converted to base 6 from base 4 (written in base 10).
- A023375 (program): a(n+1) = a(n) converted to base 7 from base 4 (written in base 10).
- A023376 (program): a(n+1) = a(n) converted to base 8 from base 4 (written in base 10).
- A023377 (program): a(n+1) = a(n) converted to base 9 from base 4 (written in base 10).
- A023378 (program): a(n+1) = a(n) converted to base 10 from base 4 (written in base 10).
- A023379 (program): a(n+1) = a(n) converted to base 6 from base 5 (written in base 10).
- A023380 (program): a(n+1) = a(n) converted to base 7 from base 5 (written in base 10).
- A023381 (program): a(n+1) = a(n) converted to base 8 from base 5 (written in base 10).
- A023382 (program): a(n+1) = a(n) converted to base 9 from base 5 (written in base 10).
- A023383 (program): a(n+1) = a(n) converted to base 10 from base 5 (written in base 10).
- A023384 (program): a(n+1) = a(n) converted to base 7 from base 6 (written in base 10).
- A023385 (program): a(n+1) = a(n) converted to base 8 from base 6 (written in base 10).
- A023386 (program): a(n+1) = a(n) converted to base 9 from base 6 (written in base 10).
- A023387 (program): a(n+1) = a(n) converted to base 10 from base 6 (written in base 10).
- A023390 (program): a(n+1) = a(n) written in base 7 (read in base 10); a(1) = 7.
- A023393 (program): Maximal number of circles of radius 1 that can be packed in a circle of radius n.
- A023396 (program): If any odd power of 2 ends with k 1’s and 2’s, they must be the first k terms of this sequence in reverse order.
- A023397 (program): In base 10, if any power of 2 ends with k 2’s and 3’s, they must be the first k terms of this sequence in reverse order.
- A023398 (program): If any power of 2 ends with k 2’s and 5’s, they must be the first k terms of this sequence in reverse order.
- A023399 (program): If any power of 2 ends with k 2’s and 7’s, they must be the first k terms of this sequence in reverse order.
- A023400 (program): If any power of 2 ends with k 2’s and 9’s, they must be the first k terms of this sequence in reverse order.
- A023401 (program): If any even power of 2 ends with k 1’s and 4’s, they must be the first k terms of this sequence in reverse order.
- A023402 (program): If any power of 2 ends with k 3’s and 4’s, they must be the first k terms of this sequence in reverse order.
- A023403 (program): If any power of 2 ends with k 4’s and 5’s, they must be the first k terms of this sequence in reverse order.
- A023404 (program): If any power of 2 ends with k 4’s and 7’s, they must be the first k terms of this sequence in reverse order.
- A023405 (program): If any power of 2 ends with k 4’s and 9’s, they must be the first k terms of this sequence in reverse order.
- A023406 (program): If any even power of 2 ends with k 1’s and 6’s, they must be the first k terms of this sequence in reverse order.
- A023407 (program): If any power of 2 ends with k 3’s and 6’s, they must be the first k terms of this sequence in reverse order.
- A023408 (program): If any power of 2 ends with k 5’s and 6’s, they must be the first k terms of this sequence in reverse order.
- A023409 (program): If any power of 2 ends with k 6’s and 7’s, they must be the first k terms of this sequence in reverse order.
- A023410 (program): In base 10, if any power of 2 ends with k 6’s and 9’s, they must be the first k terms of this sequence in reverse order.
- A023411 (program): If any even power of 2 ends with k 1’s and 8’s, they must be the first k terms of this sequence in reverse order.
- A023412 (program): If any power of 2 ends with k 3’s and 8’s, they must be the first k terms of this sequence in reverse order.
- A023413 (program): If any power of 2 ends with k 5’s and 8’s, they must be the first k terms of this sequence in reverse order.
- A023414 (program): If any power of 2 ends with k 7’s and 8’s, they must be the first k terms of this sequence in reverse order.
- A023415 (program): If any power of 2 ends with k 8’s and 9’s, they must be the first k terms of this sequence in reverse order.
- A023416 (program): Number of 0’s in binary expansion of n.
- A023418 (program): Denominator of n*(n-3)*(3*n^2 - 6*n + 2)/(3*(n-1)*(n-2)).
- A023424 (program): Expansion of (1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5).
- A023426 (program): Generalized Catalan Numbers.
- A023427 (program): Number of Dyck n-paths with ascents and descents of length equal to 1 (mod 4).
- A023431 (program): Generalized Catalan Numbers.
- A023432 (program): Number of Dyck n-paths with ascents and descents of length equal to 1 (mod 3).
- A023434 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-4).
- A023435 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-5).
- A023436 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6).
- A023437 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-7).
- A023438 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-8).
- A023439 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-9).
- A023440 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-10).
- A023441 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-11).
- A023442 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-12).
- A023443 (program): a(n) = n - 1.
- A023444 (program): a(n) = n-2.
- A023445 (program): n-3.
- A023446 (program): n-4.
- A023447 (program): a(n) = n-5.
- A023448 (program): n-6.
- A023449 (program): n-7.
- A023450 (program): n-8.
- A023451 (program): a(n) = n-9.
- A023452 (program): n-10.
- A023453 (program): n-11.
- A023454 (program): n-12.
- A023455 (program): n-13.
- A023456 (program): n-14.
- A023457 (program): n-15.
- A023458 (program): n-16.
- A023459 (program): n-17.
- A023460 (program): n-18.
- A023461 (program): n-19.
- A023462 (program): n-20.
- A023463 (program): n-21.
- A023464 (program): n-22.
- A023465 (program): n-23.
- A023466 (program): a(n) = n - 24.
- A023467 (program): n-25.
- A023468 (program): n-26.
- A023469 (program): n-27.
- A023470 (program): n-28.
- A023471 (program): n-29.
- A023472 (program): a(n) = n - 30.
- A023473 (program): n-31.
- A023474 (program): a(n) = n-32.
- A023475 (program): n-33.
- A023476 (program): n-34.
- A023477 (program): n-35.
- A023478 (program): n-36.
- A023479 (program): n-37.
- A023480 (program): n-38.
- A023481 (program): n-39.
- A023482 (program): n-40.
- A023483 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th non-Fibonacci number).
- A023484 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number) and d(n) = (n-th non-Fibonacci number).
- A023485 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number A000204 > 1) and d(n) = (n-th non-Fibonacci number).
- A023486 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th non-Fibonacci number).
- A023487 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th non-Fibonacci number).
- A023488 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th number that is 1 or is not a Fibonacci number).
- A023489 (program): Sum of n-th Lucas number greater than 3 and n-th number that is 1 or is not a Fibonacci number.
- A023490 (program): n-th non-Lucas number plus Fibonacci(n + 1).
- A023491 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th non-Lucas number).
- A023493 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 1) and d(n) = (n-th non-Lucas number).
- A023494 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th non-Lucas number).
- A023495 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th non-Lucas number).
- A023496 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th number that is 1 or is not a Lucas number).
- A023497 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th number that is 1 or is not a Lucas number).
- A023499 (program): a(n) = b(n) + d(n), where b(n) = ( (n+1)st Fibonacci number) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
- A023500 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
- A023501 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 1) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
- A023502 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2 ) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
- A023503 (program): Greatest prime divisor of prime(n) - 1.
- A023504 (program): Greatest exponent in prime-power factorization of prime(n) - 1.
- A023505 (program): Least odd prime divisor of prime(n) - 1, or 1 if prime(n) - 1 is a power of 2.
- A023506 (program): Exponent of 2 in prime factorization of prime(n) - 1.
- A023507 (program): a(n) = sum of distinct prime divisors of prime(n) - 1.
- A023508 (program): Sum of exponents in prime-power factorization of n-th prime - 1.
- A023509 (program): Greatest prime divisor of prime(n) + 1.
- A023510 (program): Greatest exponent in prime-power factorization of prime(n) + 1.
- A023511 (program): Least odd prime divisor of prime(n) + 1, or 1 if prime(n) + 1 is a power of 2.
- A023512 (program): Exponent of 2 in prime factorization of prime(n) + 1.
- A023513 (program): a(n) = sum of distinct prime divisors of prime(n) + 1.
- A023514 (program): a(n) = sum of exponents in prime-power factorization of prime(n) + 1.
- A023515 (program): a(n) = prime(n)*prime(n-1) - 1.
- A023516 (program): Number of distinct prime divisors of prime(n)*prime(n-1) - 1.
- A023517 (program): Greatest prime divisor of prime(n)*prime(n-1) - 1.
- A023518 (program): Greatest exponent in prime-power factorization of prime(n)*prime(n-1) - 1.
- A023519 (program): Least odd prime divisor of prime(n)*prime(n-1) - 1, or 1 if prime(n)*prime(n-1) - 1 is a power of 2.
- A023520 (program): Exponent of 2 in prime factorization of prime(n)*prime(n-1) - 1.
- A023521 (program): Sum of distinct prime divisors of prime(n)*prime(n-1) - 1.
- A023522 (program): Sum of exponents in prime-power factorization of p(n)*p(n-1) - 1.
- A023523 (program): a(n) = prime(n)*prime(n-1) + 1.
- A023524 (program): Number of distinct prime divisors of prime(n)*prime(n-1) + 1.
- A023525 (program): Greatest prime divisor of prime(n)*prime(n-1) + 1.
- A023526 (program): Greatest exponent in prime-power factorization of p(n)*p(n-1) + 1.
- A023527 (program): Least odd prime divisor of p(n)*p(n-1) + 1, or 1 if p(n)*p(n-1) + 1 is a power of 2.
- A023528 (program): Exponent of 2 in prime factorization of prime(n)*prime(n-1) + 1.
- A023529 (program): Sum of distinct prime divisors of p(n)*p(n-1) + 1.
- A023530 (program): Sum of exponents in prime-power factorization of p(n)*p(n-1) + 1.
- A023531 (program): a(n) = 1 if n is of the form m(m+3)/2, otherwise 0.
- A023532 (program): a(n) = 0 if n of form m(m+3)/2, otherwise 1.
- A023533 (program): a(n) = 1 if n is of the form m(m+1)(m+2)/6, and 0 otherwise.
- A023535 (program): Convolution of natural numbers with A023531.
- A023536 (program): Convolution of natural numbers with A023532.
- A023537 (program): a(n) = Lucas(n+4) - (3*n+7).
- A023538 (program): Convolution of natural numbers with (1, p(1), p(2), … ), where p(k) is the k-th prime.
- A023539 (program): Convolution of natural numbers with composite numbers.
- A023540 (program): Expansion of 1/((1-x)(1-5x)(1-9x)(1-11x)).
- A023541 (program): Convolution of natural numbers with Beatty sequence for the golden mean A000201.
- A023542 (program): Convolution of natural numbers with Beatty sequence for tau^2 A001950.
- A023543 (program): Convolution of natural numbers with A023533.
- A023544 (program): Convolution of natural numbers with A014306.
- A023545 (program): Convolution of natural numbers >= 2 and natural numbers >= 3.
- A023546 (program): Convolution of natural numbers >= 2 and A023531.
- A023547 (program): Convolution of natural numbers >= 2 and A023532.
- A023548 (program): Convolution of natural numbers >= 2 and Fibonacci numbers.
- A023549 (program): Convolution of natural numbers >= 2 and Lucas numbers.
- A023550 (program): Convolution of natural numbers >= 2 and (F(2), F(3), F(4), …).
- A023551 (program): Self-convolution of natural numbers >= 3.
- A023552 (program): Convolution of natural numbers >= 3 and Fibonacci numbers.
- A023553 (program): Convolution of natural numbers >= 3 and Lucas numbers.
- A023554 (program): Convolution of natural numbers >= 3 and (Fib(2), Fib(3), Fib(4), …).
- A023555 (program): Self-convolution of A023531.
- A023556 (program): Convolution of A023531 and A023532.
- A023557 (program): Convolution of A023531 and Fibonacci numbers.
- A023558 (program): Convolution of A023531 and Lucas numbers.
- A023559 (program): Convolution of A023531 and (1, p(1), p(2), …).
- A023560 (program): Convolution of A023531 and composite numbers (A002808).
- A023561 (program): Convolution of A023531 and (F(2), F(3), F(4), …).
- A023562 (program): Convolution of A023531 and odd numbers.
- A023563 (program): Convolution of A023531 and A000201.
- A023564 (program): Convolution of A023531 and A001950.
- A023565 (program): Convolution of A023531 and A023533.
- A023566 (program): Convolution of A023531 and A014306.
- A023567 (program): Convolution of A023531 and primes.
- A023568 (program): Number of distinct prime divisors of prime(n)-3.
- A023569 (program): Greatest prime divisor of prime(n) - 3.
- A023570 (program): Greatest exponent in prime-power factorization of p(n)-3.
- A023571 (program): Least odd prime divisor of p(n)-3, or 1 if p(n)-3 is a power of 2.
- A023572 (program): Exponent of 2 in prime factorization of prime(n) - 3.
- A023573 (program): Sum of distinct prime divisors of prime(n)-3.
- A023574 (program): Sum of exponents in prime-power factorization of p(n)-3.
- A023575 (program): Number of distinct prime divisors of prime(n)+3.
- A023576 (program): Greatest prime divisor of prime(n)+3.
- A023577 (program): Greatest exponent in prime-power factorization of prime(n)+3.
- A023578 (program): Least odd prime divisor of prime(n)+3, or 1 if prime(n)+3 is a power of 2.
- A023579 (program): Exponent of 2 in prime factorization of prime(n)+3.
- A023580 (program): Sum of distinct prime divisors of prime(n)+3.
- A023581 (program): Sum of exponents in prime-power factorization of p(n)+3.
- A023582 (program): Number of distinct prime divisors of 2*prime(n)-1.
- A023583 (program): Greatest prime divisor of 2*prime(n)-1.
- A023584 (program): Greatest exponent in prime-power factorization of 2*p(n)-1.
- A023585 (program): Least prime divisor of 2*prime(n)-1.
- A023587 (program): a(n) = sum of distinct prime divisors of 2*prime(n)-1.
- A023588 (program): a(n) = sum of exponents in prime-power factorization of 2*prime(n)-1.
- A023589 (program): a(n) is the number of distinct prime divisors of 2*prime(n)+1.
- A023590 (program): Greatest prime divisor of 2*prime(n)+1.
- A023591 (program): Greatest exponent in prime-power factorization of 2*prime(n)+1.
- A023592 (program): Least odd prime divisor of 2*prime(n)+1.
- A023594 (program): a(n) = sum of distinct prime divisors of 2*prime(n)+1.
- A023595 (program): a(n) = sum of exponents in prime-power factorization of 2*prime(n)+1.
- A023596 (program): Convolution of A023532 and Fibonacci numbers.
- A023597 (program): Convolution of A023532 and Lucas numbers.
- A023600 (program): Convolution of A023532 and (F(2), F(3), F(4), …).
- A023601 (program): Convolution of A023532 and odd numbers.
- A023607 (program): a(n) = n * Fibonacci(n+1).
- A023608 (program): Convolution of Fibonacci numbers and (1, prime(1), prime(2), …).
- A023609 (program): Convolution of Fibonacci numbers and composite numbers.
- A023610 (program): Convolution of Fibonacci numbers and {F(2), F(3), F(4), …}.
- A023611 (program): Convolution of Fibonacci numbers and A000201.
- A023612 (program): Convolution of Fibonacci numbers and A001950.
- A023613 (program): Convolution of Fibonacci numbers and A023533.
- A023614 (program): Convolution of Fibonacci numbers and A014306.
- A023615 (program): Convolution of Fibonacci numbers and primes.
- A023617 (program): Convolution of Lucas numbers and (1, p(1), p(2), …).
- A023618 (program): Convolution of Lucas numbers and composite numbers.
- A023619 (program): Convolution of Lucas numbers and (F(2), F(3), F(4), …).
- A023620 (program): Convolution of Lucas numbers and odd numbers.
- A023621 (program): Convolution of Lucas numbers and A000201.
- A023622 (program): Convolution of Lucas numbers and A001950.
- A023623 (program): Convolution of Lucas numbers and A023533.
- A023624 (program): Convolution of Lucas numbers and A014306.
- A023625 (program): Convolution of Lucas numbers and primes.
- A023628 (program): Convolution of (1, p(1), p(2), …) and (F(2), F(3), F(4), …).
- A023629 (program): a(n) = c([ n/2 ]) + n, with a(1) = 1, c = complement to a.
- A023630 (program): a(n) = s(2n) - s(2n-1), where s( ) is sequence A023629.
- A023631 (program): a(n) = c([ (n+1)/2 ]) + n, with a(1) = 1 and a(2) = 4, c = complement to a.
- A023632 (program): a(n) = s(2n+1) - s(2n), where s( ) is sequence A023631.
- A023633 (program): a(n) = c([ n/3 ]) + n, with a(1) = 1, a(2) = 2, c = complement to a.
- A023634 (program): s(3n)-s(3n-1), where s( ) is sequence A023633.
- A023645 (program): a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even.
- A023649 (program): Convolution of composite numbers and (F(2), F(3), F(4), …).
- A023650 (program): Convolution of composite numbers and odd numbers.
- A023652 (program): Convolution of (F(2), F(3), F(4), …) and odd numbers.
- A023653 (program): Convolution of (F(2), F(3), F(4), …) and A000201.
- A023654 (program): Convolution of (F(2), F(3), F(4), …) and A001950.
- A023655 (program): Convolution of (F(2), F(3), F(4), …) and A023533.
- A023656 (program): Convolution of (F(2), F(3), F(4), …) and A014306.
- A023657 (program): Convolution of (F(2), F(3), F(4), …) and primes.
- A023658 (program): Convolution of odd numbers and A000201.
- A023659 (program): Convolution of odd numbers and A001950.
- A023660 (program): Convolution of odd numbers and A023533.
- A023661 (program): Convolution of odd numbers and A014306.
- A023662 (program): Convolution of odd numbers and primes.
- A023670 (program): Convolution of A023533 with itself.
- A023688 (program): Numbers with exactly 6 ones in binary expansion.
- A023689 (program): Numbers with exactly 7 ones in binary expansion.
- A023690 (program): Numbers with exactly 8 ones in binary expansion.
- A023691 (program): Numbers with exactly 9 ones in binary expansion.
- A023692 (program): Numbers with a single 1 in their ternary expansion.
- A023693 (program): Numbers with exactly 2 1’s in ternary expansion.
- A023694 (program): Numbers with exactly 3 1’s in ternary expansion.
- A023695 (program): Numbers with exactly 4 1’s in ternary expansion.
- A023696 (program): Numbers with exactly 5 1’s in ternary expansion.
- A023697 (program): Numbers with exactly 6 1’s in ternary expansion.
- A023698 (program): Numbers with exactly 7 1’s in ternary expansion.
- A023699 (program): Numbers with a single 2 in their ternary expansion.
- A023700 (program): Numbers with exactly 2 2’s in ternary expansion.
- A023701 (program): Numbers with exactly 3 2’s in their ternary expansion.
- A023702 (program): Numbers with exactly 4 2’s in ternary expansion of n.
- A023703 (program): Numbers with exactly 5 2’s in ternary expansion.
- A023704 (program): Numbers with exactly 6 2’s in ternary expansion.
- A023705 (program): Numbers with no 0’s in base-4 expansion.
- A023706 (program): Numbers with a single 0 in their base 4 expansion.
- A023707 (program): Numbers with exactly 2 0’s in base 4 expansion.
- A023708 (program): Numbers with exactly 3 0’s in base 4 expansion.
- A023709 (program): Numbers with no 1’s in base 4 expansion.
- A023710 (program): Numbers with a single 1 in their base 4 expansion.
- A023711 (program): Numbers with exactly 2 1’s in base 4 expansion.
- A023712 (program): Numbers with exactly 3 1’s in base 4 expansion.
- A023713 (program): Numbers with no 2’s in base 4 expansion.
- A023714 (program): Numbers with a single 2 in their base 4 expansion.
- A023715 (program): Numbers with exactly 2 2’s in base 4 expansion.
- A023716 (program): Numbers with exactly 3 2’s in base 4 expansion.
- A023717 (program): Numbers with no 3’s in base-4 expansion.
- A023718 (program): Numbers with a single 3 in their base 4 expansion.
- A023719 (program): Numbers with exactly two 3’s in base 4 expansion.
- A023720 (program): Numbers with exactly 3 3’s in base 4 expansion.
- A023721 (program): Numbers with no 0’s in their base-5 expansion.
- A023722 (program): Numbers with a single 0 in their base 5 expansion.
- A023723 (program): Numbers with exactly 2 0’s in base 5 expansion.
- A023724 (program): Numbers with exactly 3 0’s in base 5 expansion.
- A023725 (program): Numbers with no 1’s in their base-5 expansion.
- A023726 (program): Numbers with a single 1 in their base 5 expansion.
- A023727 (program): Numbers with exactly 2 1’s in their base 5 expansion.
- A023728 (program): Numbers with exactly 3 1’s in base 5 expansion.
- A023729 (program): Numbers with no 2’s in their base-5 expansion.
- A023730 (program): Numbers with a single 2 in their base 5 expansion.
- A023731 (program): Numbers with exactly two 2’s in base 5 expansion.
- A023732 (program): Numbers with exactly 3 2’s in base 5 expansion.
- A023733 (program): Numbers with no 3’s in base-5 expansion.
- A023734 (program): Numbers with a single 3 in their base-5 expansion.
- A023735 (program): Numbers with exactly 2 3’s in their base-5 expansion.
- A023736 (program): Numbers with exactly 3 3’s in their base-5 expansion.
- A023738 (program): Numbers with a single 4 in their base 5 expansion.
- A023739 (program): Numbers with exactly 2 4’s in base 5 expansion.
- A023740 (program): Numbers with exactly 3 4’s in base 5 expansion.
- A023741 (program): Ternary expansion uses each positive digit just once.
- A023743 (program): Base 5 expansion uses each positive digit just once.
- A023744 (program): Base 6 expansion uses each positive digit just once.
- A023745 (program): Plaindromes: numbers whose digits in base 3 are in nondecreasing order.
- A023746 (program): Plaindromes: numbers whose digits in base 4 are in nondecreasing order.
- A023747 (program): Plaindromes: numbers whose digits in base 5 are in nondecreasing order.
- A023748 (program): Plaindromes: numbers whose digits in base 6 are in nondecreasing order.
- A023749 (program): Plaindromes: numbers whose digits in base 7 are in nondecreasing order.
- A023750 (program): Plaindromes: numbers whose digits in base 8 are in nondecreasing order.
- A023751 (program): Plaindromes: numbers whose digits in base 9 are in nondecreasing order.
- A023758 (program): Numbers of the form 2^i - 2^j with i >= j.
- A023759 (program): Nialpdromes: digits in base 3 are in nonincreasing order.
- A023760 (program): Nialpdromes: digits in base 4 are in nonincreasing order.
- A023761 (program): Nialpdromes: digits in base 5 are in nonincreasing order.
- A023762 (program): Nialpdromes: digits in base 6 are in nonincreasing order.
- A023763 (program): Nialpdromes: digits in base 7 are in nonincreasing order.
- A023764 (program): Nialpdromes: digits in base 8 are in nonincreasing order.
- A023765 (program): Nialpdromes: digits in base 9 are in nonincreasing order.
- A023772 (program): Expansion of 1/((1-x)(1-5x)(1-9x)(1-12x)).
- A023774 (program): Metadromes: numbers whose digits in base 5 are in strict ascending order.
- A023786 (program): Katadromes: digits in base 4 are in strict descending order.
- A023787 (program): Katadromes: digits in base 5 are in strict descending order.
- A023788 (program): Katadromes: digits in base 6 are in strict descending order.
- A023789 (program): Katadromes: digits in base 7 are in strict descending order.
- A023790 (program): Katadromes: digits in base 8 are in strict descending order.
- A023791 (program): Katadromes: digits in base 9 are in strict descending order.
- A023796 (program): Katadromes: digits in base 15 are in strict descending order.
- A023797 (program): Katadromes: digits in base 16 are in strict descending order.
- A023798 (program): Xenodromes: all digits in base 3 are different.
- A023805 (program): Xenodromes: all digits in base 11 are different.
- A023806 (program): Xenodromes: all digits in base 12 are different.
- A023807 (program): Xenodromes: all digits in base 13 are different.
- A023808 (program): Xenodromes: all digits in base 14 are different.
- A023809 (program): Xenodromes: all digits in base 15 are different.
- A023810 (program): Xenodromes: all digits in base 16 are different.
- A023811 (program): Largest metadrome (number with digits in strict ascending order) in base n.
- A023813 (program): a(n) = n^(n*(n+1)/2).
- A023816 (program): Sum of exponents in prime-power factorization of C(2n,n).
- A023817 (program): Sum of exponents in prime-power factorization of C(2n,n-1).
- A023818 (program): Sum of exponents in prime-power factorization of C(2n,n-2).
- A023819 (program): Sum of exponents in prime-power factorization of C(3n,n).
- A023820 (program): Sum of exponents in prime-power factorization of C(3n,n-1).
- A023821 (program): Sum of exponents in prime-power factorization of C(3n,n-2).
- A023822 (program): Sum of exponents in prime-power factorization of C(3n,n-3).
- A023823 (program): Sum of exponents in prime-power factorization of C(3n,n+1).
- A023824 (program): Sum of exponents in prime-power factorization of C(3n,n+2).
- A023825 (program): Sum of exponents in prime-power factorization of C(3n,n+3).
- A023826 (program): Sum of exponents in prime-power factorization of C(4n,n).
- A023827 (program): Sum of exponents in prime-power factorization of C(4n,n-1).
- A023828 (program): Sum of exponents in prime-power factorization of C(4n,n-2).
- A023829 (program): Sum of exponents in prime-power factorization of C(4n,n-3).
- A023830 (program): Sum of exponents in prime-power factorization of C(4n,n-4).
- A023831 (program): Sum of exponents in prime-power factorization of C(4n,n+1).
- A023832 (program): Sum of exponents in prime-power factorization of C(4n,n+2).
- A023833 (program): Sum of exponents in prime-power factorization of C(4n,n+3).
- A023834 (program): Sum of exponents in prime-power factorization of C(4n,2n).
- A023835 (program): Sum of exponents in prime-power factorization of C(4n,2n-1).
- A023836 (program): Sum of exponents in prime-power factorization of C(4n,2n-2).
- A023837 (program): Sum of exponents in prime-power factorization of C(5n,n).
- A023838 (program): Sum of exponents in prime-power factorization of C(5n,n-1).
- A023839 (program): Sum of exponents in prime-power factorization of C(5n,n-2).
- A023840 (program): Sum of exponents in prime-power factorization of C(5n,n-3).
- A023841 (program): Sum of exponents in prime-power factorization of C(5n,n-4).
- A023842 (program): Sum of exponents in prime-power factorization of C(5n,n-5).
- A023843 (program): Sum of exponents in prime-power factorization of C(5n,n+1).
- A023844 (program): Sum of exponents in prime-power factorization of C(5n,n+2).
- A023845 (program): Sum of exponents in prime-power factorization of binomial(5n, n+3).
- A023846 (program): Sum of exponents in prime-power factorization of binomial(5n, n+4).
- A023847 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n).
- A023848 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n-1).
- A023849 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n-2).
- A023850 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n+1).
- A023851 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n+2).
- A023852 (program): Sum of exponents in prime-power factorization of binomial(6n, n).
- A023853 (program): Sum of exponents in prime-power factorization of binomial(6n, 2n).
- A023854 (program): Sum of exponents in prime-power factorization of binomial(6n, 3n).
- A023855 (program): a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + … + (n+1-k)*k, where k = floor((n+1)/2).
- A023856 (program): a(n) = 1*(n+1-1) + 2*(n+1-2) + … + k*(n+1-k), where k = floor((n+1)/2).
- A023857 (program): a(n) = 1*(n+3-1) + 2*(n+3-2) + …. + k*(n+3-k), where k=floor((n+1)/2).
- A023858 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k = floor((n+1)/2), t = A023531.
- A023859 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2), and t = A023532.
- A023860 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2), t = A000045 (Fibonacci numbers).
- A023861 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A000032 (Lucas numbers).
- A023862 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A008578 ({1} U primes).
- A023863 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A002808 (composite numbers).
- A023864 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = (F(2), F(3), F(4), …), F(n) = Fibonacci(n).
- A023865 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t(n)=2*n+1 (odd numbers).
- A023866 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A000201 (lower Wythoff sequence).
- A023867 (program): a(n) = 1*t(n) + 2*t(n-1) + …+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).
- A023868 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A023533.
- A023869 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A014306.
- A023870 (program): a(n) = 1*prime(n) + 2*prime(n-1) + … + k*prime(n+1-k), where k=floor((n+1)/2) and prime(n) is the n-th prime.
- A023871 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^2).
- A023872 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^3).
- A023873 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^4).
- A023874 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^5).
- A023875 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^6).
- A023876 (program): G.f.: Product_{k>=1} (1 - x^k)^(-k^7).
- A023877 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^8).
- A023878 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^9).
- A023879 (program): Number of partitions in expanding space.
- A023880 (program): Number of partitions in expanding space.
- A023881 (program): Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n.
- A023882 (program): Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n).
- A023883 (program): Nonprimes whose average of divisors is an integer.
- A023884 (program): Average of divisors except itself is an integer.
- A023887 (program): a(n) = sigma_n(n): sum of n-th powers of divisors of n.
- A023888 (program): Sum of prime power divisors of n (1 included).
- A023889 (program): Sum of the prime power divisors of n (not including 1).
- A023890 (program): Sum of the nonprime divisors of n.
- A023891 (program): Sum of composite divisors of n.
- A023893 (program): Number of partitions of n into prime power parts (1 included); number of nonisomorphic Abelian subgroups of symmetric group S_n.
- A023894 (program): Number of partitions of n into prime power parts (1 excluded).
- A023895 (program): Number of partitions of n into composite parts.
- A023896 (program): Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
- A023900 (program): Dirichlet inverse of Euler totient function (A000010).
- A023901 (program): Derivative of log of A002126.
- A023946 (program): Expansion of 1/((1-x)(1-5x)(1-10x)(1-11x)).
- A023947 (program): Expansion of 1/((1-x)(1-5x)(1-10x)(1-12x)).
- A023948 (program): Expansion of 1/((1-x)(1-5x)(1-11x)(1-12x)).
- A023949 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-8x)).
- A023950 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-9x)).
- A023951 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-10x)).
- A023952 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-11x)).
- A023953 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-12x)).
- A023954 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-9x)).
- A023955 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-10x)).
- A023956 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-11x)).
- A023961 (program): First digit after decimal point of square root of n.
- A023962 (program): First digit after decimal point of cube root of n.
- A023963 (program): First digit after decimal point of 4th root of n.
- A023969 (program): a(n) = round(sqrt(n)) - floor(sqrt(n)).
- A023970 (program): First bit in fractional part of binary expansion of cube root of n.
- A023971 (program): First bit in fractional part of binary expansion of 4th root of n.
- A023972 (program): First bit in fractional part of binary expansion of 5th root of n.
- A023974 (program): First bit in fractional part of binary expansion of 7th root of n.
- A023975 (program): First bit in fractional part of binary expansion of 8th root of n.
- A023976 (program): First bit in fractional part of binary expansion of 9th root of n.
- A023978 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(3n; n,n,n).
- A023979 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(4n; n,n,n,n).
- A023980 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(4n;2n,n,n).
- A023981 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n; n,n,n,n,n).
- A023982 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n;3n,n,n).
- A023983 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n;2n,2n,n).
- A023985 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(6n,2n,2n,2n).
- A023991 (program): Sum of exponents of primes in multinomial coefficient M(3n; n+1,n,n-1).
- A023999 (program): Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling inward, starting in a corner.
- A024000 (program): a(n) = 1 - n.
- A024001 (program): a(n) = 1-n^3.
- A024002 (program): a(n) = 1 - n^4.
- A024003 (program): a(n) = 1 - n^5.
- A024004 (program): a(n) = 1 - n^6.
- A024005 (program): a(n) = 1 - n^7.
- A024006 (program): a(n) = 1 - n^8.
- A024007 (program): a(n) = 1 - n^9.
- A024008 (program): a(n) = 1 - n^10.
- A024009 (program): a(n) = 1 - n^11.
- A024010 (program): a(n) = 1 - n^12.
- A024012 (program): a(n) = 2^n - n^2.
- A024013 (program): 2^n-n^3.
- A024014 (program): 2^n-n^4.
- A024015 (program): 2^n-n^5.
- A024016 (program): 2^n-n^6.
- A024017 (program): 2^n-n^7.
- A024018 (program): 2^n-n^8.
- A024019 (program): 2^n-n^9.
- A024020 (program): a(n) = 2^n - n^10.
- A024021 (program): 2^n-n^11.
- A024022 (program): a(n) = 2^n - n^12.
- A024023 (program): a(n) = 3^n - 1.
- A024024 (program): a(n) = 3^n - n.
- A024025 (program): a(n) = 3^n-n^2.
- A024026 (program): a(n) = 3^n - n^3.
- A024027 (program): a(n) = 3^n - n^4.
- A024028 (program): a(n) = 3^n - n^5.
- A024029 (program): a(n) = 3^n-n^6.
- A024030 (program): a(n) = 3^n - n^7.
- A024031 (program): a(n) = 3^n - n^8.
- A024032 (program): a(n) = 3^n - n^9.
- A024033 (program): a(n) = 3^n - n^10.
- A024034 (program): a(n) = 3^n - n^11.
- A024035 (program): a(n) = 3^n - n^12.
- A024036 (program): a(n) = 4^n - 1.
- A024037 (program): a(n) = 4^n - n.
- A024038 (program): a(n) = 4^n - n^2.
- A024039 (program): a(n) = 4^n - n^3.
- A024040 (program): a(n) = 4^n - n^4.
- A024041 (program): a(n) = 4^n - n^5.
- A024042 (program): a(n) = 4^n - n^6.
- A024043 (program): a(n) = 4^n - n^7.
- A024044 (program): a(n) = 4^n - n^8.
- A024045 (program): a(n) = 4^n-n^9.
- A024046 (program): a(n) = 4^n - n^10.
- A024047 (program): a(n) = 4^n - n^11.
- A024048 (program): a(n) = 4^n - n^12.
- A024049 (program): a(n) = 5^n - 1.
- A024050 (program): a(n) = 5^n - n.
- A024051 (program): a(n) = 5^n - n^2.
- A024052 (program): a(n) = 5^n - n^3.
- A024053 (program): a(n) = 5^n - n^4.
- A024054 (program): a(n) = 5^n - n^5.
- A024055 (program): a(n) = 5^n - n^6.
- A024056 (program): a(n) = 5^n - n^7.
- A024057 (program): a(n) = 5^n - n^8.
- A024058 (program): a(n) = 5^n - n^9.
- A024059 (program): a(n) = 5^n - n^10.
- A024060 (program): a(n) = 5^n - n^11.
- A024061 (program): a(n) = 5^n - n^12.
- A024062 (program): a(n) = 6^n - 1.
- A024063 (program): 6^n-n.
- A024064 (program): a(n) = 6^n - n^2.
- A024065 (program): a(n) = 6^n - n^3.
- A024066 (program): a(n) = 6^n - n^4.
- A024067 (program): a(n) = 6^n - n^5.
- A024068 (program): a(n) = 6^n - n^6.
- A024069 (program): a(n) = 6^n - n^7.
- A024070 (program): a(n) = 6^n-n^8.
- A024071 (program): a(n) = 6^n - n^9.
- A024072 (program): a(n) = 6^n - n^10.
- A024073 (program): a(n) = 6^n - n^11.
- A024074 (program): a(n) = 6^n - n^12.
- A024075 (program): a(n) = 7^n-1.
- A024076 (program): 7^n-n.
- A024077 (program): a(n) = 7^n - n^2.
- A024078 (program): a(n) = 7^n - n^3.
- A024079 (program): a(n) = 7^n - n^4.
- A024080 (program): a(n) = 7^n - n^5.
- A024081 (program): a(n) = 7^n - n^6.
- A024082 (program): 7^n-n^7.
- A024083 (program): a(n) = 7^n - n^8.
- A024084 (program): a(n) = 7^n - n^9.
- A024085 (program): a(n) = 7^n - n^10.
- A024086 (program): a(n) = 7^n - n^11.
- A024087 (program): a(n) = 7^n - n^12.
- A024088 (program): a(n) = 8^n - 1.
- A024089 (program): 8^n-n.
- A024090 (program): 8^n-n^2.
- A024091 (program): a(n) = 8^n - n^3.
- A024092 (program): a(n) = 8^n - n^4.
- A024093 (program): a(n) = 8^n - n^5.
- A024094 (program): 8^n-n^6.
- A024095 (program): a(n) = 8^n - n^7.
- A024096 (program): a(n) = 8^n - n^8.
- A024097 (program): a(n) = 8^n - n^9.
- A024098 (program): a(n) = 8^n - n^10.
- A024099 (program): a(n) = 8^n - n^11.
- A024100 (program): a(n) = 8^n - n^12.
- A024101 (program): a(n) = 9^n-1.
- A024102 (program): a(n) = 9^n - n.
- A024103 (program): a(n) = 9^n - n^2.
- A024104 (program): a(n) = 9^n - n^3.
- A024105 (program): a(n) = 9^n - n^4.
- A024106 (program): a(n) = 9^n-n^5.
- A024107 (program): a(n) = 9^n - n^6.
- A024108 (program): a(n) = 9^n-n^7.
- A024109 (program): a(n) = 9^n - n^8.
- A024110 (program): a(n) = 9^n - n^9.
- A024111 (program): a(n) = 9^n - n^10.
- A024112 (program): a(n) = 9^n - n^11.
- A024113 (program): 9^n-n^12.
- A024114 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-12x)).
- A024115 (program): 10^n-n.
- A024116 (program): a(n) = 10^n - n^2.
- A024117 (program): a(n) = 10^n - n^3.
- A024118 (program): a(n) = 10^n - n^4.
- A024119 (program): a(n) = 10^n - n^5.
- A024120 (program): a(n) = 10^n - n^6.
- A024121 (program): a(n) = 10^n - n^7.
- A024122 (program): a(n) = 10^n - n^8.
- A024123 (program): a(n) = 10^n - n^9.
- A024124 (program): a(n) = 10^n - n^10.
- A024125 (program): a(n) = 10^n - n^11.
- A024126 (program): a(n) = 10^n - n^12.
- A024127 (program): a(n) = 11^n-1.
- A024128 (program): a(n) = 11^n - n.
- A024129 (program): 11^n-n^2.
- A024130 (program): a(n) = 11^n - n^3.
- A024131 (program): a(n) = 11^n - n^4.
- A024132 (program): a(n) = 11^n - n^5.
- A024133 (program): a(n) = 11^n - n^6.
- A024134 (program): a(n) = 11^n - n^7.
- A024135 (program): a(n) = 11^n - n^8.
- A024136 (program): a(n) = 11^n - n^9.
- A024137 (program): a(n) = 11^n - n^10.
- A024138 (program): a(n) = 11^n - n^11.
- A024139 (program): a(n) = 11^n - n^12.
- A024140 (program): a(n) = 12^n-1.
- A024141 (program): a(n) = 12^n - n.
- A024142 (program): 12^n-n^2.
- A024143 (program): a(n) = 12^n - n^3.
- A024144 (program): a(n) = 12^n - n^4.
- A024145 (program): a(n) = 12^n - n^5.
- A024146 (program): a(n) = 12^n - n^6.
- A024147 (program): a(n) = 12^n - n^7.
- A024148 (program): a(n) = 12^n - n^8.
- A024149 (program): a(n) = 12^n - n^9.
- A024150 (program): a(n) = 12^n - n^10.
- A024151 (program): a(n) = 12^n - n^11.
- A024152 (program): a(n) = 12^n - n^12.
- A024163 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b < b - a.
- A024164 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b = b - a.
- A024165 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b > b - a.
- A024166 (program): a(n) = Sum_{1 <= i < j <= n} (j-i)^3.
- A024167 (program): a(n) = n!*(1 - 1/2 + 1/3 - … + c/n), where c = (-1)^(n+1).
- A024168 (program): a(n) = n!*(1/2 - 1/3 + … + c/n), where c = (-1)^n.
- A024169 (program): Integer part of ((2nd elementary symmetric function of 1,2,…,n)/(1+2+…+n)).
- A024170 (program): Expansion of 1/((1-x)(1-6x)(1-9x)(1-10x)).
- A024172 (program): Integer part of ((3rd elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,…,n)).
- A024174 (program): a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,…,n)).
- A024175 (program): Expansion of (x^3 - 6*x^2 + 5*x - 1)/((2*x - 1)*(2*x^2 - 4*x + 1))
- A024176 (program): a(n) = (n+2)!(1/3 - 1/4 + … + c/(n+2)), where c=(-1)^(n+1).
- A024177 (program): a(n) = floor ( (2nd elementary symmetric function of 2,3,…,n+2)/(2+3+…+n+2) ).
- A024178 (program): a(n) = floor(3rd elementary symmetric function of 2,3,…,n+3)/(2+3+…+n+3)).
- A024180 (program): a(n) = floor(3rd elementary symmetric function of 2,3,…,n+3)/ 2nd elementary symmetric function of (2,3,…,n+3) ).
- A024182 (program): Integer part of ((4th elementary symmetric function of 2,3,…,n+4)/(3rd elementary symmetric function of 2,3,…,n+4)).
- A024183 (program): Second elementary symmetric function of 3,4,…,n+3.
- A024184 (program): Third elementary symmetric function of 3,4,…,n+4.
- A024187 (program): n-th elementary symmetric function of 3,4,…,n+3.
- A024188 (program): a(n) = ((n+2)!/2)(1/3 - 1/4 + … + c/(n+2)), where c = (-1)^(n+1).
- A024189 (program): a(n) = ((n+3)!/2)*Sum_{k=1..n} (-1)^(k+1)/(k+3).
- A024190 (program): [ (2nd elementary symmetric function of 3,4,…,n+3)/(3+4+…+n+3) ].
- A024191 (program): [ (3rd elementary symmetric function of 3,4,…,n+4)/(3+4+…+n+4) ].
- A024195 (program): Integer part of (4th elementary symmetric function of S(n))/(3rd elementary symmetric of S(n)), where S(n) = {3,4, …, n+5}.
- A024196 (program): a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.
- A024197 (program): a(n) = 3rd elementary symmetric function of the first n+2 odd positive integers.
- A024199 (program): a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1).
- A024200 (program): a(0) = 1, a(1) = 0, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1).
- A024201 (program): [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 odd positive integers}.
- A024202 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.
- A024204 (program): [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.
- A024206 (program): Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2).
- A024212 (program): 2nd elementary symmetric function of first n+1 positive integers congruent to 1 mod 3.
- A024215 (program): Sum of squares of first n positive integers congruent to 1 mod 3.
- A024216 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 3.
- A024217 (program): a(n) = ( Product {k = 1..n} 3*k - 2 ) * ( Sum {k = 1..n} (-1)^(k+1)/(3*k - 2) ).
- A024218 (program): a(n) = s(1)*s(2)*…*s(n+1)(1/s(2) - 1/s(3) + … + c/s(n+1)), where c=(-1)^n+1 and s(k) = 3k-2 for k = 1,2,3,…
- A024219 (program): a(n) = floor( (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ), where S(n) = {first n+1 positive integers congruent to 1 mod 3}.
- A024220 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 3}.
- A024222 (program): Number of shuffles (perfect faro shuffles with cut) required to return a deck of size n to original order.
- A024224 (program): a(n) = floor((4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n))), where S(n) = {first n+3 positive integers congruent to 1 mod 3}.
- A024235 (program): E.g.f. tan(x)*sin(x)/2 (even powers only).
- A024253 (program): Expansion of sin(sin(x))*x/2.
- A024255 (program): a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers.
- A024270 (program): Expansion of sin(x)*sin(sin(x))/2.
- A024272 (program): E.g.f. tan(x)*sinh(x)/2 (even powers only).
- A024283 (program): E.g.f. (1/2) * tan(x)^2 (even powers only).
- A024305 (program): a(n) = 2*(n+1) + 3*n + … + (k+1)*(n+2-k), where k = floor((n+1)/2).
- A024306 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k=[ (n+1)/2) ], s = (natural numbers >= 2), t = (natural numbers >= 3).
- A024307 (program): a(n) = 2*t(n) + 3*t(n-1) + … + (k+1)*t(n+1-k), where k=floor((n+1)/2) and t = A023531.
- A024308 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k=[ (n+1)/2) ], s = (natural numbers >= 2), t = A023532.
- A024309 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Fibonacci numbers).
- A024310 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Lucas numbers).
- A024312 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3).
- A024313 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3), t = A023531.
- A024314 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3), t = A023532.
- A024315 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor(n/2), s = (natural numbers >= 3), t = (Fibonacci numbers).
- A024316 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2)), s = A023531.
- A024323 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (odd natural numbers).
- A024330 (program): Expansion of tanh(log(1+x))*log(1+x)/2.
- A024332 (program): E.g.f.: sin(log(1+x))*log(1+x)/2.
- A024337 (program): Expansion of sinh(log(1+x))*log(1+x)/2.
- A024343 (program): Expansion of e.g.f. sin(x^2) in powers of x^(4*n + 2).
- A024346 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)(1-11*x)).
- A024347 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)*(1-12*x)).
- A024348 (program): Expansion of tan(x^2).
- A024352 (program): Numbers which are the difference of two positive squares, c^2 - b^2 with 1 <= b < c.
- A024355 (program): Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives values of AUB, sorted.
- A024358 (program): Sum of the sizes of binary subtrees of the perfect binary tree of height n.
- A024361 (program): Number of primitive Pythagorean triangles with leg n.
- A024362 (program): Number of primitive Pythagorean triangles with hypotenuse n.
- A024378 (program): a(n) = 2nd elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
- A024381 (program): a(n) = sum of squares of first n positive integers congruent to 1 mod 4.
- A024382 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
- A024383 (program): a(n) = s(1)*s(2)*…*s(n)*(1/s(1) - 1/s(2) + … + c/s(n)), where c = (-1)^(n+1) and s(k) = 4k-3 for k = 1,2,3,…
- A024384 (program): a(n) = s(1)*s(2)*…*s(n+1)*(1/s(2) - 1/s(3) + … + c/s(n+1)), where c = (-1)^(n+1) and s(k) = 4k-3 for k = 1,2,3,…
- A024385 (program): a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 1 mod 4}.
- A024386 (program): [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 4}.
- A024388 (program): [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 4}.
- A024390 (program): [ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 1 mod 4}.
- A024391 (program): 2nd elementary symmetric function of the first n+1 positive integers congruent to 2 mod 3.
- A024392 (program): a(n) = 3rd elementary symmetric function of the first n+2 positive integers congruent to 2 mod 3.
- A024394 (program): a(n) is the sum of squares of the first n positive integers congruent to 2 mod 3.
- A024395 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 2 mod 3.
- A024396 (program): a(n) = ( Product {k = 1..n} 3*k - 1 ) * ( Sum {k = 1..n} (-1)^(k+1)/(3*k - 1) ).
- A024397 (program): a(n) = s(1)*s(2)*…*s(n+1)*(1/s(2) - 1/s(3) + … + c/s(n+1)), where c = (-1)^(n+1) and s(k) = 3k-1 for k = 1,2,3,…
- A024398 (program): a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 2 mod 3}.
- A024399 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.
- A024401 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.
- A024403 (program): [ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.
- A024409 (program): Hypotenuses of more than one primitive Pythagorean triangle.
- A024418 (program): a(n) = t mod s(n,n-1), where t = max{s(n,k): k=1,2,…,n}, s(n,k) = Stirling numbers of the second kind, n >= 2.
- A024419 (program): a(n) = n! (1/C(n,0) + 1/C(n,1) + … + 1/C(n,[ n/2 ])).
- A024420 (program): a(n) = n! * Sum_{j=0..floor(n/2)} (-1)^j/binomial(n,j).
- A024421 (program): a(n) = n!*(1/C(n,0) - 1/C(n,1) - … - 1/C(n,[ n/2 ])).
- A024426 (program): a(n) = floor((1/n)*(S(n,1) + S(n,2) + … + S(n,n))), where S(i,j) are Stirling numbers of second kind.
- A024429 (program): Expansion of e.g.f. sinh(exp(x)-1).
- A024430 (program): Expansion of e.g.f. cosh(exp(x)-1).
- A024434 (program): Expansion of 1/((1-x)(1-6x)(1-10x)(1-11x)).
- A024435 (program): Expansion of 1/((1-x)(1-6x)(1-10x)(1-12x)).
- A024436 (program): Expansion of 1/((1-x)(1-6x)(1-11x)(1-12x)).
- A024437 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-9x)).
- A024438 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-10x)).
- A024439 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-11x)).
- A024440 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-12x)).
- A024441 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-10x)).
- A024442 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-11x)).
- A024443 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-12x)).
- A024444 (program): Expansion of 1/((1-x)(1-7x)(1-10x)(1-11x)).
- A024445 (program): Expansion of 1/((1-x)(1-7x)(1-10x)(1-12x)).
- A024446 (program): Expansion of 1/((1-x)(1-7x)(1-11x)(1-12x)).
- A024447 (program): Sum of the products of the primes taken 2 at a time from the first n primes.
- A024450 (program): Sum of squares of the first n primes.
- A024451 (program): a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
- A024458 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers).
- A024459 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (Lucas numbers).
- A024460 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (1, p(1), p(2), …).
- A024461 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (composite numbers).
- A024463 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (odd natural numbers).
- A024464 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A000201 (lower Wythoff sequence).
- A024465 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A001950 (upper Wythoff sequence).
- A024466 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers), t = A023533.
- A024467 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A014306.
- A024468 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (primes).
- A024469 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers).
- A024470 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (1, p(1), p(2), …).
- A024471 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (composite numbers).
- A024472 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (F(2), F(3), …).
- A024473 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (odd natural numbers).
- A024474 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A000201 (lower Wythoff sequence).
- A024475 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A001950 (upper Wythoff sequence).
- A024476 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Lucas numbers), t = A023533.
- A024477 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A014306.
- A024478 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (primes).
- A024479 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (1, p(1), p(2), …).
- A024482 (program): a(n) = (1/2)*(binomial(2n, n) - binomial(2n-2, n-1)).
- A024483 (program): a(n) = binomial(2*n, n) mod binomial(2*n-2, n-1).
- A024485 (program): a(n) = (2/(3*n-1))*binomial(3*n,n).
- A024486 (program): a(n) = (1/(2n+1))*Multinomial(3n; n,n,n).
- A024487 (program): a(n) = (1/(4n+2))*M(3n; n,n,n).
- A024488 (program): a(n) = (1/(3n-1))*M(3n; n,n,n), where M(…) is a multinomial coefficient.
- A024489 (program): a(n) = (1/(9n-3))*M(3n; n,n,n), where M() is a multinomial coefficient.
- A024490 (program): a(n) = C(n-1,1) + C(n-3,3) + … + C(n-2*m-1,2*m+1), where m = floor((n-2)/4).
- A024491 (program): a(n) = (1/(4n-1))*C(4n,2n).
- A024492 (program): Catalan numbers with odd index: a(n) = binomial(4*n+2, 2*n+1)/(2*n+2).
- A024493 (program): a(n) = C(n,0) + C(n,3) + … + C(n,3[n/3]).
- A024494 (program): a(n) = C(n,1) + C(n,4) + … + C(n, 3*floor(n/3) + 1).
- A024495 (program): a(n) = C(n,2) + C(n,5) + … + C(n, 3*floor(n/3)+2).
- A024496 (program): a(n) = (3/(8n-4))*C(4n,n).
- A024498 (program): a(n) = [ C(2n,n)/n ].
- A024499 (program): a(n) = [ C(2n,n)/(n-1) ].
- A024500 (program): a(n) = [ C(2n,n)/n^2 ].
- A024501 (program): [ C(4n,2n)/C(4n,n) ].
- A024502 (program): a(n) = floor(C(2n,n)/2^n).
- A024503 (program): a(n) = floor(binomial(2*n,n)/3^n).
- A024504 (program): a(n) = floor(C(2n,n)/2^(n+1)).
- A024505 (program): a (n) = [C (2 n, n)/2^(n + 2)].
- A024506 (program): a(n) = [ C(2n,n)/2^(n+3) ].
- A024507 (program): Numbers that are the sum of 2 distinct nonzero squares (with repetition).
- A024508 (program): Numbers that are a sum of 2 distinct nonzero squares in more than one way.
- A024509 (program): Numbers that are the sum of 2 nonzero squares, including repetitions.
- A024515 (program): Positions of even numbers in A000404 (sums of 2 nonzero squares).
- A024516 (program): Positions of odd numbers in A000404 (sums of 2 nonzero squares).
- A024522 (program): a(n) = 2nd elementary symmetric function of {1, p(1), p(2), …, p(n-1)}, where p(0) = 1.
- A024525 (program): a(n) = 1^2 + prime(1)^2 + prime(2)^2 + … + prime(n)^2.
- A024528 (program): a(n) = n-th elementary symmetric function of {1, prime(1), prime(2), …, prime(n)}.
- A024529 (program): a(n) = s(1)*s(2)*…*s(n)*(1/s(1) - 1/s(2) + … + c/s(n)), where s(1) = 1, s(k) = p(k-1) for k >= 2 and c = (-1)^(n+1).
- A024537 (program): a(n) = floor( a(n-1)/(sqrt(2) - 1) ), with a(0) = 1.
- A024538 (program): a(n) = [ n/{n*sqrt(2)} ], where {x} := x - [ x ].
- A024539 (program): a(n) = [ 1/{n*sqrt(2)} ], where {x} := x - [ x ].
- A024540 (program): a(n) = Sum_{k=1..n} floor( 1/{k*sqrt(2)} ), where {x} := x - floor(x).
- A024543 (program): [ n/{n/sqrt(2)} ], where {x} := x - [ x ].
- A024544 (program): a(n) = [ 1/{n/sqrt(2)} ], where {x} := x - [ x ].
- A024545 (program): a(n) = Sum_{k=1..n} floor( 1/{k/sqrt(2)} ), where {x} := x - floor(x).
- A024547 (program): a(n) = [ n/{n*sqrt(3)} ], where {x} := x - [ x ].
- A024548 (program): [ 1/{n*sqrt(3)} ], where {x} := x - [ x ].
- A024549 (program): Sum of [ 1/{k*sqrt(3)} ], k = 1,2,…,n, where {x} := x - [ x ].
- A024551 (program): a(n) = floor(a(n-1)/(sqrt(5) - 2)) for n > 0 and a(0) = 1.
- A024552 (program): a(n) = [ n/{n*sqrt(5)} ], where {x} := x - [ x ].
- A024553 (program): [ 1/{n*sqrt(5)} ], where {x} := x - [ x ].
- A024554 (program): a(n) = Sum_{k=1..n} floor( 1/{k*sqrt(5)} ), where {x} := x - floor(x).
- A024556 (program): Odd squarefree composite numbers.
- A024557 (program): a(n) = [ a(n-1)/(sqrt(6) - 2) ], where a(0) = 1.
- A024558 (program): a(n) = [ n/{n*sqrt(6)} ], where {x} := x - [ x ].
- A024559 (program): a(n) = [ 1/{n*sqrt(6)} ], where {x} := x - [ x ].
- A024560 (program): a(n) = Sum_{k=1..n} floor(1/{k*sqrt(6)}) where {x} := x - floor(x).
- A024562 (program): a(n) = integer nearest a(n-1)/(sqrt(6) - 2), where a(0) = 1.
- A024563 (program): a(n) = [ n/{n*sqrt(7)} ], where {x} := x - [ x ].
- A024564 (program): a(n) = [ 1/{n*sqrt(7)} ], where {x} := x - [ x ].
- A024565 (program): a(n) = Sum_{k=1..n} [ 1/{k*sqrt(7)} ] where {x} := x - [ x ].
- A024567 (program): a(n) = integer nearest a(n-1)/(sqrt(7) - 2), where a(1) = 1.
- A024568 (program): a(n) = [ n/{n*r} ], where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
- A024569 (program): [ 1/{n*r} ], where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
- A024570 (program): a(n) = Sum_{k=1..n} [ 1/{k*r} ] where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
- A024572 (program): a(n) = [ n/{n*e} ], {x} := x - [ x ].
- A024573 (program): a(n) = floor(1/frac(n*e)).
- A024574 (program): a(n) = Sum_{k=1..n} [ 1/{k*e} ] where {x} := x - [ x ].
- A024577 (program): a(n) = [ n/{n/e} ], {x} := x - [ x ].
- A024578 (program): a(n) = [ 1/{n/e} ], {x} := x - [ x ].
- A024579 (program): a(n) = Sum_{k=1..n} [ 1/{k/e} ], where {x} := x - [ x ].
- A024591 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …).
- A024592 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = (odd natural numbers).
- A024593 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A000201 (lower Wythoff sequence).
- A024594 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A001950 (upper Wythoff sequence).
- A024595 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (F(2), F(3), …), t = A023533.
- A024596 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A014306.
- A024597 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = (primes).
- A024598 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers).
- A024599 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A000201 (lower Wythoff sequence).
- A024600 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A001950 (upper Wythoff sequence).
- A024601 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers), t = A023533.
- A024602 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A014306.
- A024603 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = (primes).
- A024605 (program): Number in position n when the numbers i^2 - i*j + j^2 (1 <= i <= j) are arranged in nondecreasing order.
- A024606 (program): Numbers of form x^2 + xy + y^2 with distinct x and y > 0.
- A024609 (program): Positions of odd numbers in A003136.
- A024619 (program): Numbers that are not powers of primes p^k (k >= 0); complement of A000961.
- A024620 (program): Positions of primes among the powers of primes (A000961).
- A024624 (program): a(n) = position of square of n-th prime among the powers of primes (A000961).
- A024629 (program): n written in fractional base 3/2.
- A024630 (program): n written in fractional base 4/2.
- A024631 (program): n written in fractional base 4/3.
- A024632 (program): n written in fractional base 5/2.
- A024633 (program): n written in fractional base 5/3.
- A024634 (program): n written in fractional base 5/4.
- A024635 (program): n written in fractional base 6/2.
- A024636 (program): n written in fractional base 6/3.
- A024637 (program): n written in fractional base 6/4.
- A024638 (program): n written in fractional base 6/5.
- A024639 (program): n written in fractional base 7/2.
- A024640 (program): n written in fractional base 7/3.
- A024641 (program): n written in fractional base 7/4.
- A024642 (program): n written in fractional base 7/5.
- A024643 (program): n written in fractional base 7/6.
- A024644 (program): n written in fractional base 8/2.
- A024645 (program): n written in fractional base 8/3.
- A024646 (program): n written in fractional base 8/4.
- A024647 (program): n written in fractional base 8/5.
- A024648 (program): n written in fractional base 8/6.
- A024649 (program): n written in fractional base 8/7.
- A024650 (program): n written in fractional base 9/2.
- A024651 (program): n written in fractional base 9/3.
- A024652 (program): n written in fractional base 9/4.
- A024653 (program): n written in fractional base 9/5.
- A024654 (program): n written in fractional base 9/6.
- A024655 (program): n written in fractional base 9/7.
- A024656 (program): n written in fractional base 9/8.
- A024661 (program): n written in fractional base 10/6.
- A024664 (program): n written in fractional base 10/9.
- A024670 (program): Numbers that are sums of 2 distinct positive cubes.
- A024675 (program): Average of two consecutive odd primes.
- A024676 (program): Prime divisors (not necessarily distinct) of n-th term of sequence A024675 (averages of two consecutive odd primes).
- A024677 (program): Smallest prime divisor of n-th terms of sequence A024675 (averages of two consecutive odd primes).
- A024678 (program): a(n) is the position of (prime(n+1) + prime(n+2))/2 in the ordered nonprimes.
- A024683 (program): a(n) is the number of ways prime(n) is a sum of two composite numbers r,s satisfying r < s.
- A024685 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = A000201 (lower Wythoff sequence).
- A024692 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = floor((n+1)/2), s = A023533.
- A024698 (program): a(n) = (prime(n+1) - 1)/4 if this is an integer or (prime(n+1) + 1)/4 otherwise.
- A024699 (program): a(n) = (prime(n+2)-1)/6 if this is an integer or (prime(n+2)+ 1)/6 otherwise.
- A024700 (program): a(n) = (prime(n+2)^2 - 1)/3.
- A024701 (program): a(n) = (-1 + prime(n+1)^2)/4.
- A024702 (program): a(n) = (prime(n)^2 - 1)/24.
- A024703 (program): Prime divisors, including repetitions, of n-th term of A024702.
- A024704 (program): Positions of even numbers in A024702.
- A024705 (program): Positions of odd numbers in A024702.
- A024706 (program): Positions of multiples of 3 in A024702.
- A024707 (program): Positions of multiples of 5 in A024702.
- A024708 (program): Number of distinct prime divisors of n-th term of A024702.
- A024709 (program): Least prime divisor of A024702(n).
- A024710 (program): Greatest prime divisor of A024702(n).
- A024711 (program): a(n) = residue mod 2 of n-th term of A024702.
- A024712 (program): a(n) = residue mod 3 of n-th term of A024702.
- A024713 (program): a(n) = residue mod 5 of n-th term of A024702.
- A024714 (program): a(n) = residue mod 7 of n-th term of A024702.
- A024715 (program): a(n) = residue mod 11 of n-th term of A024702.
- A024716 (program): a(n) = Sum_{1 <= j <= i <= n} S(i,j), where S(i,j) are Stirling numbers of the second kind.
- A024717 (program): Sum of max{S(i,j): 1<=j<=i} for i = 1,2,…,n, where S(i,j) are Stirling numbers of the second kind.
- A024718 (program): a(n) = (1/2)*(1 + Sum_{k=0..n} binomial(2*k, k)).
- A024719 (program): a(n) = (1/3)*(2 + Sum_{k=0..n} C(3k,k)).
- A024720 (program): a(n) = (1/4)*(3 + Sum_{k=0..n} C(4k,k)).
- A024721 (program): a(n) = (1/5)*(4 + sum of C(5k,k)) for k = 0,1,2,…,n.
- A024771 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-10x)).
- A024772 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-11x)).
- A024778 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-12x)).
- A024786 (program): Number of 2’s in all partitions of n.
- A024787 (program): Number of 3’s in all partitions of n.
- A024788 (program): Number of 4’s in all partitions of n.
- A024789 (program): Number of 5’s in all partitions of n.
- A024790 (program): Number of 6’s in all partitions of n.
- A024791 (program): Number of 7’s in all partitions of n.
- A024792 (program): Number of 8’s in all partitions of n.
- A024793 (program): Number of 9’s in all partitions of n.
- A024794 (program): Number of 10’s in all partitions of n.
- A024798 (program): Positions of even numbers in A000408.
- A024810 (program): a(n) = floor( tan(m*Pi/2) ), where m = 1 - 2^(-n).
- A024811 (program): a(n) = floor(tan(m*Pi/2)), where m = 1 - 1/n.
- A024812 (program): Numbers n for which there is exactly one positive integer m such that n = floor(cot(Pi/(2m))).
- A024816 (program): Antisigma(n): Sum of the numbers less than n that do not divide n.
- A024819 (program): a(n) = least m such that if r and s in {1/1, 1/3, 1/5,…, 1/(2n-1)} satisfy r < s, then r < k/m < s for some integer k.
- A024820 (program): a(n) = least m such that if r and s in {1/2, 1/4, 1/6,…, 1/2n} satisfy r < s, then r < k/m < s for some integer k.
- A024822 (program): a(n) = least m such that if r and s in {1/1, 1/4, 1/7,…, 1/(3n-2)} satisfy r < s, then r < k/m < s for some integer k.
- A024823 (program): Least m such that if r and s in {1/2, 1/5, 1/8,…, 1/(3n-1)}, satisfy r < s, then r < k/m < s for some integer k.
- A024824 (program): a(n) = least m such that if r and s in {1/3, 1/6, 1/9,…, 1/3n} satisfy r < s, then r < k/m < s for some integer k.
- A024825 (program): a(n) = least m such that if r and s in {1/4, 1/8, 1/12,…, 1/4n} satisfy r < s, then r < k/m < s for some integer k.
- A024831 (program): a(n) = least m such that if r and s in {F(h)/F(2*h): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).
- A024832 (program): Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k.
- A024835 (program): a(n) = least m such that if r and s in {1/2, 1/4, 1/6, …, 1/2n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
- A024838 (program): Least m such that if r and s in {1/3, 1/6, 1/9, …, 1/3n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
- A024839 (program): Least m such that if r and s in {1/4, 1/8, 1/12, …, 1/4n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
- A024849 (program): a(n) = least m such that if r and s in {|F(h+1)-tau*F(h)|: h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).
- A024851 (program): Least m such that if r and s in {-F(2*h) + tau*(F(2*h-1): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).
- A024853 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (natural numbers >= 2).
- A024854 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = (natural numbers), t = (natural numbers >= 3).
- A024855 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A023531.
- A024856 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A023532.
- A024857 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Fibonacci numbers).
- A024858 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Lucas numbers).
- A024860 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (composite numbers).
- A024861 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (F(2), F(3), F(4), … ).
- A024862 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor( n/2 ), s = natural numbers, t = odd natural numbers.
- A024863 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A000201 (lower Wythoff sequence).
- A024864 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A001950 (upper Wythoff sequence).
- A024865 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000027, t = A023533.
- A024866 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A014306.
- A024867 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (primes).
- A024868 (program): a(n) = 2*(n+1) + 3*n + … + (k+1)*(n+2-k), where k = floor(n/2).
- A024869 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor( n/2 ), s = natural numbers >= 2, t = natural numbers >= 3.
- A024870 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = A023531.
- A024871 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = A023532.
- A024872 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (Fibonacci numbers).
- A024873 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (Lucas numbers).
- A024874 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (F(2), F(3), F(4), …).
- A024875 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = floor( n/2 ), s = natural numbers >= 3.
- A024876 (program): Expansion of (3-2*x-3*x^2-4*x^3)/(1-3*x+x^2+x^3+x^4).
- A024877 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (Lucas numbers).
- A024878 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (F(2), F(3), F(4), …).
- A024879 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = A023531.
- A024886 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = A023531, t = (odd natural numbers).
- A024892 (program): Numbers k such that 3*k+1 is prime.
- A024893 (program): Numbers k such that 3*k+2 is prime.
- A024894 (program): Numbers k such that 5*k + 1 is prime.
- A024895 (program): Numbers k such that 5*k - 3 is prime.
- A024896 (program): Numbers k such that 5*k - 2 is prime.
- A024897 (program): Numbers k such that 5*k + 4 is prime.
- A024898 (program): Positive integers k such that 6*k - 1 is prime.
- A024899 (program): Numbers k such that 6*k + 1 is prime.
- A024900 (program): Numbers k such that 7*k + 6 is prime.
- A024901 (program): Numbers k such that 7*k - 2 is prime.
- A024902 (program): Numbers k such that 7*k + 4 is prime.
- A024903 (program): Numbers k such that 7*k - 4 is prime.
- A024904 (program): Numbers k such that 7*k - 5 is prime.
- A024905 (program): Numbers k such that 7*k + 1 is prime.
- A024906 (program): Numbers k such that 9*k + 1 is prime.
- A024907 (program): Numbers k such that 9*k - 7 is prime.
- A024908 (program): Numbers k such that 9*k - 5 is prime.
- A024909 (program): Numbers k such that 9*k - 4 is prime.
- A024910 (program): Numbers k such that 9*k - 2 is prime.
- A024912 (program): Numbers k such that 10*k + 1 is prime.
- A024913 (program): Numbers k such that 10*k - 7 is prime.
- A024914 (program): Numbers k such that 10*k - 3 is prime.
- A024916 (program): a(n) = Sum_{k=1..n} k*floor(n/k); also Sum_{k=1..n} sigma(k) where sigma(n) = sum of divisors of n (A000203).
- A024917 (program): a(n) = Sum_{k=2..n} k*floor(n/k).
- A024918 (program): Partial sums of the sequence of prime powers (A000961).
- A024919 (program): a(n) = Sum_{k=1..n} (-1)^k*k*floor(n/k).
- A024920 (program): a(n) = Sum_{k=1..n} (n-k) * floor(n/k).
- A024921 (program): a(n) = Sum_{k=1..n} floor((n/k)*floor(n/k)).
- A024922 (program): a(n) = Sum_{k=1..n} floor((n/k) * floor((n/k) * floor(n/k))).
- A024923 (program): Partial products of the sequence of prime powers (A000961).
- A024924 (program): a(n) = Sum_{k=1..n} prime(k)*floor(n/prime(k)).
- A024925 (program): Sum of remainders of n mod prime(k), for k = 1,2,3,…,n.
- A024926 (program): a(n) = Sum_{k=1..n} floor(p(k)/k).
- A024927 (program): a(n) = Sum_{k=1..n} k*floor( prime(k)/k ).
- A024930 (program): a(n) = sum of remainders of n mod 1,3,5,…,2k-1, where k = [ (n+1)/2 ].
- A024931 (program): a(n) = sum of remainders of n mod 2,4,6,…,2k, where k = [ n/2 ].
- A024932 (program): a(n) = Sum_{k=1..n} k*[ (n/k)*[ n/k ] ].
- A024933 (program): a(n) = Sum_{k=1..n} k*[ (n/k)*[ (n/k)*[ n/k ] ] ].
- A024934 (program): Sum of remainders n mod p, over all primes p < n.
- A024935 (program): a(n) = minimal length of any partition of n into distinct primes.
- A024937 (program): a(n) = number of 2’s in all partitions of n into distinct primes.
- A024939 (program): Number of partitions of n into distinct odd primes.
- A024966 (program): 7 times triangular numbers: 7*n*(n+1)/2.
- A024973 (program): Sum of three distinct positive cubes, including repetitions (first differs from A024975 at 1009).
- A024975 (program): Sums of three distinct positive cubes.
- A024997 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.
- A024998 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A024996.
- A024999 (program): Expansion of 1/((1-x)(1-8x)(1-10x)(1-11x)).
- A025000 (program): a(1) = 3; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
- A025001 (program): a(1) = 5; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
- A025002 (program): a(1) = 7; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
- A025004 (program): a(1) = 3; a(n+1) = a(n)-th nonprime, where nonprimes begin at 1.
- A025007 (program): Expansion of 1/((1-x)(1-8x)(1-10x)(1-12x)).
- A025008 (program): Expansion of 1/((1-x)(1-8x)(1-11x)(1-12x)).
- A025009 (program): Expansion of 1/((1-x)(1-9x)(1-10x)(1-11x)).
- A025012 (program): Central heptanomial coefficients: largest coefficient of (1+x+…+x^6)^n.
- A025016 (program): Final digits of !n = Sum i!, i=0..n, (A003422) for very large n, read from right.
- A025020 (program): Numbers whose least quadratic nonresidue (A020649) is 2.
- A025031 (program): Expansion of 1/((1-x)(1-9x)(1-10x)(1-12x)).
- A025035 (program): Number of partitions of { 1, 2, …, 3n } into sets of size 3.
- A025036 (program): Number of partitions of { 1, 2, …, 4n } into sets of size 4.
- A025037 (program): Number of partitions of { 1, 2, …, 5n } into sets of size 5.
- A025038 (program): Number of partitions of { 1, 2, …, 6n } into sets of size 6.
- A025045 (program): a(n) not of form prime +- a(k), k < n.
- A025065 (program): Number of palindromic partitions of n.
- A025078 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ] and s = (Fibonacci numbers).
- A025079 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (Lucas numbers).
- A025081 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (composite numbers).
- A025082 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (F(2), F(3), F(4), …).
- A025083 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (odd natural numbers).
- A025084 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A000201 (lower Wythoff sequence).
- A025085 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A001950 (upper Wythoff sequence).
- A025086 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.
- A025087 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A014306.
- A025088 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (primes).
- A025089 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (Lucas numbers).
- A025090 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (1, p(1), p(2), …).
- A025091 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (composite numbers).
- A025092 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (F(2), F(3), F(4), …).
- A025093 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (odd natural numbers).
- A025094 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A000201 (lower Wythoff sequence).
- A025095 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A001950 (upper Wythoff sequence).
- A025096 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000032, t = A023533.
- A025097 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A014306.
- A025098 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (primes).
- A025099 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (1, p(1), p(2), …).
- A025105 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …).
- A025106 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = (odd natural numbers).
- A025107 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A000201 (lower Wythoff sequence).
- A025108 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A001950 (upper Wythoff sequence).
- A025109 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = (F(2), F(3), F(4), …), t = A023533.
- A025110 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A014306.
- A025111 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = (primes).
- A025112 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = floor(n/2), s = (odd natural numbers).
- A025113 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A000201 (lower Wythoff sequence).
- A025114 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A001950 (upper Wythoff sequence).
- A025115 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A005408 (odd natural numbers), t = A023533.
- A025116 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A014306.
- A025117 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = (primes).
- A025118 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = A000201 (lower Wythoff sequence).
- A025125 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n-k+1), where k = floor(n/2), s = A023533.
- A025130 (program): Expansion of 1/((1-x)(1-9x)(1-11x)(1-12x)).
- A025134 (program): a(n) = n-th elementary symmetric function of C(n,0), C(n,1), …, C(n,n).
- A025136 (program): a(n) = 2nd elementary symmetric function of C(n,0), C(n,1), …, C(n,[ n/2 ]).
- A025140 (program): a(n) = floor(n/2)-th elementary symmetric function of C(n,0), C(n,1), …, C(n, floor(n/2)).
- A025147 (program): Number of partitions of n into distinct parts >= 2.
- A025156 (program): A prime number of consecutive composites follow n.
- A025163 (program): The value of the associated Legendre Polynomial of index n and order 1 evaluated at x=2^(-1/2) multiplied by 2^(3*n/2-1).
- A025164 (program): a(n) = a(n-2) + (2n-1)a(n-1); a(0)=1, a(1)=1.
- A025165 (program): a(n) = H_n(1) / 2^floor(n/2) where H_n is the n-th Hermite polynomial.
- A025166 (program): E.g.f.: -exp(-x/(1-2*x))/(1-2*x).
- A025167 (program): E.g.f: exp(x/(1-2*x))/(1-2*x).
- A025168 (program): E.g.f.: exp(x/(1-2*x)).
- A025169 (program): a(n) = 2*Fibonacci(2*n+2).
- A025170 (program): G.f.: 1/(1 + 2*x + 9*x^2).
- A025171 (program): Reciprocal Chebyshev polynomial of second kind evaluated at 4 multiplied by (-1)^n.
- A025172 (program): Let phi = arccos(1/3), the dihedral angle of the regular tetrahedron. Then cos(n*phi) = a(n)/3^n.
- A025173 (program): The Gegenbauer Polynomial of index n, order 1, evaluated at x=1/3 and multiplied by n*3^n/2.
- A025174 (program): a(n) = binomial(3n-1, n-1).
- A025175 (program): Jacobi polynomial P((1, 1), n, (1/2)).
- A025176 (program): a(n) = Jacobi P-Polynomial P_n(alpha=1, beta=1, x=sqrt(2)) multiplied by 2^(n/2+floor(n/2)) and divided by n+1.
- A025177 (program): Triangular array, read by rows: first differences in n,n direction of trinomial array A027907.
- A025178 (program): First differences of the central trinomial coefficients A002426.
- A025179 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.
- A025180 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A025177.
- A025181 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.
- A025182 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.
- A025183 (program): a(n) = T(2n-1,n), where T is the array defined in A025177.
- A025184 (program): a(n) = T(2n,n), where T is the array defined in A025177.
- A025185 (program): a(n) = T(3n,n), where T is the array defined in A025177.
- A025186 (program): T(4n,n), where T is the array defined in A025177.
- A025187 (program): a(n) = T(2n,n-1), where T is the array defined in A025177.
- A025188 (program): a(n) = T(2n,n+1), where T is the array defined in A025177.
- A025189 (program): a(n) = T(n,[ n/2 ]), where T is the array defined in A025177.
- A025190 (program): Expansion of 1/((1-x)(1-10x)(1-11x)(1-12x)).
- A025191 (program): a(n) = Sum{T(n,k)}, k = 0,1,…,n, where T is the array defined in A025177.
- A025192 (program): a(0)=1; a(n) = 2*3^(n-1) for n >= 1.
- A025211 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-5x)).
- A025218 (program): a(n) = floor( Sum_{k=1..n} sqrt(k+1) ).
- A025225 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).
- A025226 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 2. Also a(n) = 3^n*C(n-1), where C = A000108 (Catalan numbers).
- A025227 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + … + a(n-1)*a(1) for n >= 3.
- A025228 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
- A025229 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
- A025230 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
- A025231 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
- A025232 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
- A025233 (program): Expansion of Product_{m>=1} (1 + q^m)^48.
- A025234 (program): An L-tile is a 2 X 2 square with the upper 1 X 1 subsquare removed; no rotations are allowed. a(n) = number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or L-tiles.
- A025235 (program): a(n) = (1/2)*s(n+2), where s = A014431.
- A025237 (program): Expansion of (1 -x -sqrt(1-2*x-11*x^2))/(6*x^2).
- A025238 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
- A025239 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
- A025240 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
- A025242 (program): Generalized Catalan numbers.
- A025246 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
- A025247 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
- A025248 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
- A025249 (program): a(n) = (1/2)*s(n+3), where s = A025248.
- A025250 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
- A025251 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
- A025252 (program): a(n) = (1/2)*s(n+3), where s = A025251.
- A025262 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 4.
- A025265 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + … + a(n-1)*a(1) for n >= 4.
- A025266 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 4.
- A025273 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
- A025275 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
- A025276 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5, with a(1) = 1, a(2) = a(3) = 0, a(4) = 1.
- A025277 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
- A025281 (program): a(n) = sopfr(n!), where sopfr = A001414 is the integer log.
- A025284 (program): Numbers that are the sum of 2 nonzero squares in exactly 1 way.
- A025285 (program): Numbers that are the sum of 2 nonzero squares in exactly 2 ways.
- A025302 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 1 way.
- A025303 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.
- A025304 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 3 ways.
- A025305 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 4 ways.
- A025426 (program): Number of partitions of n into 2 nonzero squares.
- A025435 (program): Number of partitions of n into 2 distinct squares.
- A025440 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-6x)).
- A025441 (program): Number of partitions of n into 2 distinct nonzero squares.
- A025445 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-7x)).
- A025446 (program): Number of partitions of n into 2 nonnegative cubes.
- A025447 (program): Number of partitions of n into 3 nonnegative cubes.
- A025448 (program): Number of partitions of n into 4 nonnegative cubes.
- A025455 (program): a(n) is the number of partitions of n into 2 positive cubes.
- A025456 (program): Number of partitions of n into 3 positive cubes.
- A025464 (program): Number of partitions of n into 2 distinct nonnegative cubes.
- A025465 (program): Number of partitions of n into 3 distinct nonnegative cubes.
- A025467 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-8x)).
- A025468 (program): a(n) is the number of partitions of n into 2 distinct positive cubes.
- A025469 (program): Number of partitions of n into 3 distinct positive cubes.
- A025470 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-9x)).
- A025473 (program): a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).
- A025474 (program): Exponent of the n-th prime power A000961(n).
- A025475 (program): 1 and the prime powers p^m where m >= 2, thus excluding the primes.
- A025476 (program): Prime root of n-th nontrivial prime power (A025475).
- A025480 (program): a(2n) = n, a(2n+1) = a(n).
- A025484 (program): a(0) = 0; a(n) = a(n/5)/5 if n = a(n/5) = 0 (mod 5); a(n) = a(n-1)+1 otherwise.
- A025485 (program): Number of iterations of function f(k) = ceiling(sqrt(k))^2 - k on n required to force n <= 2.
- A025486 (program): Least k with A025485(k) = n.
- A025492 (program): Fixed point reached by iterating the Kempner function A002034 starting at n.
- A025496 (program): Number of terms in Zeckendorf representation of 4^n.
- A025497 (program): Number of terms in Zeckendorf representation of 5^n.
- A025498 (program): Number of terms in Zeckendorf representation of 6^n.
- A025499 (program): Number of terms in Zeckendorf representation of 7^n.
- A025500 (program): Number of terms in Zeckendorf representation of 8^n.
- A025501 (program): Number of terms in Zeckendorf representation of 9^n.
- A025502 (program): Number of terms in Zeckendorf representation of 10^n.
- A025505 (program): Index of n-th 2 in A006928.
- A025512 (program): Index of n-th 2 in A022300.
- A025516 (program): Index of n-th 2 in A022303.
- A025523 (program): a(n) = 1 + Sum_{ k < n and k | n} a(k).
- A025527 (program): a(n) = n!/lcm{1,2,…,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), …, C(n-1,n-1)}.
- A025528 (program): Number of prime powers <= n with exponents > 0 (A246655).
- A025529 (program): a(n) = (1/1 + 1/2 + … + 1/n)*lcm{1,2,…,n}.
- A025530 (program): a(n) = (1/1 - 1/2 + … + (-1)^(n-1)/n)*lcm{1..n}.
- A025532 (program): a(n) is the sum of exponents in the prime factorization of lcm{C(n,0), C(n,1), …, C(n,n)}.
- A025533 (program): a(n) = (1/C(n,0) + 1/C(n,1) + … + 1/C(n,n))*L, where L = LCM{C(n,0), C(n,1),…, C(n,n)}..
- A025534 (program): a(n) = (1/C(n,0) + 1/C(n,1) + … + 1/C(n,k))*L, where k = [ n/2 ], L = LCM{C(n,0), C(n,1),…, C(n,n)}.
- A025535 (program): a(n) = (1/C(2n,0) - 1/C(2n,1) + … + d/C(2n,2n))*L, where d = (-1)^2n, L = LCM{C(2n,0), C(2n,1),…, C(2n,2n)}.
- A025536 (program): a(n) = (1/C(n,0) - 1/C(n,1) + … + d/C(n,k))*L, where d = (-1)^k,k = [ n/2 ], L = LCM{C(n,0), C(n,1),…, C(n,n)}.
- A025540 (program): Least common multiple of {C(0,0), C(2,1), …, C(2n,n)}.
- A025543 (program): Least common multiple of the first n composite numbers.
- A025544 (program): a(n) = sum of the exponents in the prime factorization of the least common multiple of the first n composite numbers.
- A025547 (program): Least common multiple of {1,3,5,…,2n-1}.
- A025548 (program): a(n) = sum of the exponents in the prime factorization of the least common multiple of {1,3,5,…,2n-1}.
- A025549 (program): a(n) = (2n-1)!!/lcm{1,3,5,…,2n-1}.
- A025551 (program): a(n) = 3^n*(3^n + 1)/2.
- A025552 (program): LCM of {C(0,0), C(1,0), …, C(n, floor(n/2))}.
- A025555 (program): Least common multiple (or LCM) of first n positive triangular numbers (A000217).
- A025556 (program): a(n) = sum of the exponents in the prime factorization of LCM{1,3,6,…,C(n+1,2)}.
- A025557 (program): a(n) = (n+1)!/LCM{1,3,6,…,C(n+1,2)}.
- A025558 (program): a(n) = (n/(n+1)) * lcm(1,2,…,n+1).
- A025559 (program): (1/1 - 1/3 + 1/6 + … + d/C(n+1,2))*LCM{1,3,6,…,C(n+1,2)}, where d = (-1)^n.
- A025560 (program): a(n) = LCM{1, C(n-1,1), C(n-2,2), …, C(n-[ n/2 ],[ n/2 ])}.
- A025561 (program): a(n) = sum of the exponents in the prime factorization of LCM{1, n-1, …, C(n-[ n/2 ],[ n/2 ])}.
- A025562 (program): a(n) = n!/LCM{1, C(n-1,1), C(n-2,2), …, C(n-[ n/2 ],[ n/2 ])}.
- A025564 (program): Triangular array, read by rows: pairwise sums of trinomial array A027907.
- A025565 (program): a(n) = T(n,n-1), where T is array defined in A025564.
- A025566 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.
- A025567 (program): a(n) = T(n,n+1), where T is the array defined in A025564.
- A025568 (program): a(n) = T(n,n+2) where T is the array defined in A025564.
- A025569 (program): T(2n-1,n), where T is the array defined in A025564.
- A025570 (program): a(n) = T(2n,n), where T is the array defined in A025564.
- A025571 (program): a(n) = T(3n,n), where T is the array defined in A025564.
- A025572 (program): a(n) = T(4n,n), where T is the array defined in A025564.
- A025573 (program): a(n) = T(2n,n-1), where T is the array defined in A025564.
- A025574 (program): T(2n,n+1), where T is the array defined in A025564.
- A025575 (program): a(n) = T(n,[ n/2 ]), where T is the array defined in A025564.
- A025576 (program): a(n) = T(n,[ n/2 ]+1), where T is the array defined in A025564.
- A025577 (program): Expansion of (x/(1-x))*sqrt((1+x)/(1-3*x)).
- A025578 (program): a(n) = Sum{T(n,k-1), k = 1,2,…,n}.
- A025579 (program): a(1)=1, a(2)=2, a(n) = 4*3^(n-3) for n >= 3.
- A025581 (program): Triangle read by rows: T(n, k) = n-k, for 0 <= k <= n.
- A025583 (program): Composite numbers that are not the sum of 2 primes.
- A025584 (program): Primes p such that p-2 is not a prime.
- A025585 (program): Central Eulerian numbers A(2n-1,n).
- A025586 (program): Largest value in ‘3x+1’ trajectory of n.
- A025607 (program): Number of n-move rook paths on 8 X 8 board from given corner to same corner.
- A025608 (program): Number of n-move rook paths on 8 X 8 board from given corner to opposite corner.
- A025609 (program): Number of n-move rook paths on 8 X 8 board from given corner to adjacent corner.
- A025620 (program): Numbers of form 4^i*9^j, with i, j >= 0.
- A025643 (program): Exponent of 3 (value of i) in n-th number of form 3^i*8^j.
- A025644 (program): Exponent of 3 (value of i) in n-th number of form 3^i*10^j.
- A025669 (program): Exponent of 7 (value of i) in n-th number of form 7^i*8^j.
- A025672 (program): Exponent of 8 (value of j) in n-th number of form 3^i*8^j.
- A025675 (program): Exponent of 8 (value of j) in n-th number of form 7^i*8^j.
- A025676 (program): Exponent of 8 (value of i) in n-th number of form 8^i*9^j.
- A025682 (program): Exponent of 9 (value of j) in n-th number of form 8^i*9^j.
- A025683 (program): Exponent of 9 (value of i) in n-th number of form 9^i*10^j.
- A025685 (program): Exponent of 10 (value of j) in n-th number of form 3^i*10^j.
- A025691 (program): Exponent of 10 (value of j) in n-th number of form 9^i*10^j.
- A025692 (program): Index of 2^n within sequence of numbers of form 2^i*6^j.
- A025693 (program): Index of 2^n within sequence of numbers of form 2^i*7^j.
- A025694 (program): Index of 2^n within sequence of numbers of form 2^i * 9^j.
- A025695 (program): Index of 2^n within sequence of numbers of form 2^i*10^j.
- A025696 (program): Index of 3^n within sequence of numbers of form 3^i*4^j.
- A025697 (program): Index of 3^n within sequence of numbers of form 3^i*6^j.
- A025698 (program): Index of 3^n within sequence of numbers of form 3^i*7^j.
- A025699 (program): Index of 3^n within sequence of numbers of form 3^i*8^j (A025615).
- A025700 (program): Index of 3^n within sequence of numbers of form 3^i*10^j.
- A025701 (program): Index of 4^n within sequence of numbers of form 3^i*4^j.
- A025702 (program): Index of 4^n within sequence of numbers of form 4^i*5^j.
- A025703 (program): Index of 4^n within sequence of numbers of form 4^i*6^j.
- A025704 (program): Index of 4^n within sequence of numbers of form 4^i*7^j.
- A025705 (program): Index of 4^n within sequence of numbers of form 4^i*10^j.
- A025706 (program): Index of 5^n within sequence of numbers of form 4^i*5^j.
- A025707 (program): Index of 5^n within sequence of numbers of form 5^i*6^j.
- A025708 (program): Index of 5^n within sequence of numbers of form 5^i*7^j.
- A025709 (program): Index of 5^n within sequence of numbers of form 5^i*8^j.
- A025710 (program): Index of 5^n within sequence of numbers of form 5^i*9^j.
- A025711 (program): Index of 5^n within sequence of numbers of form 5^i*10^j.
- A025712 (program): Index of 6^n within sequence of numbers of form 2^i*6^j.
- A025713 (program): Index of 6^n within sequence of numbers of form 3^i*6^j.
- A025714 (program): Index of 6^n within sequence of numbers of form 4^i*6^j.
- A025715 (program): Index of 6^n in A025622 (numbers of form 5^i*6^j).
- A025716 (program): Index of 6^n within sequence of numbers of form 6^i*7^j.
- A025717 (program): Index of 6^n within sequence of numbers of form 6^i*8^j.
- A025718 (program): Index of 6^n within sequence of numbers of form 6^i*9^j.
- A025719 (program): Index of 6^n within sequence of numbers of form 6^i*10^j.
- A025720 (program): Index of 7^n within sequence of numbers of form 2^i*7^j.
- A025721 (program): Index of 7^n within sequence of numbers of form 3^i*7^j.
- A025722 (program): Index of 7^n within sequence of numbers of form 4^i*7^j.
- A025723 (program): Index of 7^n within sequence of numbers of form 5^i*7^j.
- A025724 (program): Index of 7^n within sequence of numbers of form 6^i*7^j.
- A025725 (program): Index of 7^n within sequence of numbers of form 7^i*8^j.
- A025726 (program): Index of 7^n within sequence of numbers of form 7^i*9^j.
- A025727 (program): Index of 7^n within sequence of numbers of form 7^i*10^j.
- A025728 (program): Index of 8^n within sequence of numbers of form 3^i*8^j (A025615).
- A025729 (program): Index of 8^n within sequence of numbers of form 5^i*8^j.
- A025730 (program): Index of 8^n within sequence of numbers of form 6^i*8^j.
- A025731 (program): Index of 8^n within sequence of numbers of form 7^i*8^j.
- A025732 (program): Index of 8^n within sequence of numbers of form 8^i*9^j.
- A025733 (program): Index of 8^n within sequence of numbers of form 8^i*10^j.
- A025734 (program): Index of 9^n within sequence of numbers of form 2^i*9^j.
- A025735 (program): Index of 9^n within sequence of numbers of form 5^i*9^j.
- A025736 (program): Index of 9^n within sequence of numbers of form 6^i*9^j.
- A025737 (program): Index of 9^n within sequence of numbers of form 7^i*9^j.
- A025738 (program): Index of 9^n within sequence of numbers of form 8^i*9^j.
- A025739 (program): Index of 9^n within sequence of numbers of form 9^i*10^j.
- A025740 (program): Index of 10^n within sequence of numbers of form 2^i*10^j.
- A025742 (program): a(n) is the index of 10^n within sequence of numbers of form 4^i*10^j.
- A025743 (program): Index of 10^n within sequence of numbers of form 5^i*10^j.
- A025744 (program): Index of 10^n within sequence of numbers of form 6^i*10^j.
- A025745 (program): Index of 10^n within sequence of numbers of form 7^i*10^j.
- A025746 (program): Index of 10^n within sequence of numbers of form 8^i*10^j.
- A025748 (program): 3rd order Patalan numbers (generalization of Catalan numbers).
- A025749 (program): 4th order Patalan numbers (generalization of Catalan numbers).
- A025750 (program): 5th-order Patalan numbers (generalization of Catalan numbers).
- A025751 (program): 6th-order Patalan numbers (generalization of Catalan numbers).
- A025752 (program): 7th-order Patalan numbers (generalization of Catalan numbers).
- A025753 (program): 8th-order Patalan numbers (generalization of Catalan numbers).
- A025754 (program): 9th-order Patalan numbers (generalization of Catalan numbers).
- A025755 (program): 10th-order Patalan numbers (generalization of Catalan numbers).
- A025756 (program): 3rd order Vatalan numbers (generalization of Catalan numbers).
- A025757 (program): 4th order Vatalan numbers (generalization of Catalan numbers).
- A025758 (program): 5th-order Vatalan numbers (generalization of Catalan numbers).
- A025759 (program): 6th-order Vatalan numbers (generalization of Catalan numbers).
- A025760 (program): 7th-order Vatalan numbers (generalization of Catalan numbers).
- A025761 (program): 8th-order Vatalan numbers (generalization of Catalan numbers).
- A025762 (program): 9th-order Vatalan numbers (generalization of Catalan numbers).
- A025763 (program): 10th-order Vatalan numbers (generalization of Catalan numbers).
- A025764 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)).
- A025765 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)).
- A025766 (program): Expansion of 1/((1-x)(1-x^2)(1-x^11)).
- A025767 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^4)).
- A025768 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^7)).
- A025769 (program): Expansion of 1/((1-x)(1-x^3)(1-x^8)).
- A025770 (program): Expansion of 1/((1-x)(1-x^3)(1-x^10)).
- A025771 (program): Expansion of 1/((1-x)(1-x^3)(1-x^11)).
- A025772 (program): Expansion of 1/((1-x)(1-x^4)(1-x^5)).
- A025773 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)).
- A025774 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)).
- A025775 (program): Expansion of 1/((1-x)(1-x^4)(1-x^11)).
- A025776 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)).
- A025777 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)).
- A025778 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)).
- A025779 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^9)).
- A025780 (program): Expansion of 1/((1-x)(1-x^5)(1-x^11)).
- A025781 (program): Expansion of 1/((1-x)(1-x^5)(1-x^12)).
- A025782 (program): Expansion of 1/((1-x)*(1-x^6)*(1-x^7)).
- A025783 (program): Expansion of 1/((1-x)(1-x^6)(1-x^11)).
- A025784 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)).
- A025785 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)).
- A025786 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)).
- A025787 (program): Expansion of 1/((1-x)(1-x^7)(1-x^11)).
- A025788 (program): Expansion of 1/((1-x)(1-x^7)(1-x^12)).
- A025789 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)).
- A025790 (program): Expansion of 1/((1-x)(1-x^8)(1-x^11)).
- A025791 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)).
- A025792 (program): Expansion of 1/((1-x)(1-x^9)(1-x^11)).
- A025793 (program): Expansion of 1/((1-x)(1-x^10)(1-x^11)).
- A025794 (program): Expansion of 1/((1-x)(1-x^11)(1-x^12)).
- A025795 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)).
- A025796 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)).
- A025797 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)).
- A025798 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)).
- A025799 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)).
- A025800 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^11)).
- A025801 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^12)).
- A025802 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)).
- A025803 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)).
- A025804 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)).
- A025805 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^11)).
- A025806 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)).
- A025807 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^7)).
- A025808 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)).
- A025809 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)).
- A025810 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)) in powers of x.
- A025811 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^11)).
- A025812 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^12)).
- A025813 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^7)).
- A025814 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^9)).
- A025815 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^11)).
- A025816 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^8)).
- A025817 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^9)).
- A025818 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^10)).
- A025819 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^11)).
- A025820 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^12)).
- A025821 (program): Expansion of 1/((1-x^2)(1-x^8)(1-x^9)).
- A025822 (program): Expansion of 1/((1-x^2)(1-x^8)(1-x^11)).
- A025823 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^10)).
- A025824 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^11)).
- A025825 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^12)).
- A025826 (program): Expansion of 1/((1-x^2)(1-x^10)(1-x^11)).
- A025827 (program): Expansion of 1/((1-x^2)(1-x^11)(1-x^12)).
- A025828 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)).
- A025829 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)).
- A025830 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)).
- A025831 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)).
- A025832 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)).
- A025833 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^11)).
- A025834 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^12)).
- A025835 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)).
- A025836 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)).
- A025837 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^9)).
- A025838 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)).
- A025839 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^11)).
- A025840 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^12)).
- A025841 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)).
- A025842 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)).
- A025843 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)).
- A025844 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^11)).
- A025845 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)).
- A025846 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)).
- A025847 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)).
- A025848 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^11)).
- A025849 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^12)).
- A025850 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)).
- A025851 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)).
- A025852 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^11)).
- A025853 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^12)).
- A025854 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)).
- A025855 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^11)).
- A025856 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^11)).
- A025857 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^12)).
- A025858 (program): Expansion of 1/((1-x^3)*(1-x^11)*(1-x^12)).
- A025859 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)).
- A025860 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)).
- A025861 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)).
- A025862 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)).
- A025863 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^11)).
- A025864 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^12)).
- A025865 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)).
- A025866 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^11)).
- A025867 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)).
- A025868 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)).
- A025869 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)).
- A025870 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^11)).
- A025871 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^12)).
- A025872 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)).
- A025873 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^11)).
- A025874 (program): Expansion of 1/((1-x^4)*(1-x^9)*(1-x^12)).
- A025875 (program): Expansion of 1/((1-x^4)*(1-x^11)*(1-x^12)).
- A025876 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^7)).
- A025877 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^8)).
- A025878 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^9)).
- A025879 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^10)).
- A025880 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^11)).
- A025881 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^12)).
- A025882 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^8)).
- A025883 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^9)).
- A025884 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^10)).
- A025885 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^11)).
- A025886 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^12)).
- A025887 (program): Expansion of 1/((1-x^5)*(1-x^8)*(1-x^9)).
- A025888 (program): Expansion of 1/((1-x^5)*(1-x^8)*(1-x^10)).
- A025889 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^11)).
- A025890 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^12)).
- A025891 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)).
- A025892 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^11)).
- A025893 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^12)).
- A025894 (program): Expansion of 1/((1-x^5)(1-x^10)(1-x^11)).
- A025895 (program): Expansion of 1/((1-x^5)(1-x^10)(1-x^12)).
- A025896 (program): Expansion of 1/((1-x^5)(1-x^11)(1-x^12)).
- A025897 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)).
- A025898 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)).
- A025899 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)).
- A025900 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^11)).
- A025901 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^12)).
- A025902 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)).
- A025903 (program): Expansion of 1/((1-x^6)*(1-x^8)*(1-x^11)).
- A025904 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)).
- A025905 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^11)).
- A025906 (program): Expansion of 1/((1-x^6)(1-x^10)(1-x^11)).
- A025907 (program): Expansion of 1/((1-x^6)(1-x^11)(1-x^12)).
- A025908 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)).
- A025909 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)).
- A025910 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^11)).
- A025911 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^12)).
- A025912 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)).
- A025913 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^11)).
- A025914 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^12)).
- A025915 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^11)).
- A025916 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^12)).
- A025917 (program): Expansion of 1/((1-x^7)(1-x^11)(1-x^12)).
- A025918 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)).
- A025919 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^11)).
- A025920 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^12)).
- A025921 (program): Expansion of 1/((1-x^8)(1-x^10)(1-x^11)).
- A025922 (program): Expansion of 1/((1-x^8)(1-x^11)(1-x^12)).
- A025923 (program): Expansion of 1/((1-x^9)*(1-x^10)*(1-x^11)).
- A025924 (program): Expansion of 1/((1-x^9)*(1-x^10)*(1-x^12)).
- A025925 (program): Expansion of 1/((1-x^9)(1-x^11)(1-x^12)).
- A025926 (program): Expansion of 1/((1-x^10)(1-x^11)(1-x^12)).
- A025927 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-10x)).
- A025928 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-11x)).
- A025929 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-12x)).
- A025930 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-6x)).
- A025931 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-7x)).
- A025932 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-8x)).
- A025933 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-9x)).
- A025934 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-10x)).
- A025935 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-11x)).
- A025936 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-12x)).
- A025937 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-7x)).
- A025938 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-8x)).
- A025939 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-9x)).
- A025940 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-10x)).
- A025941 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-11x)).
- A025942 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-12x)).
- A025943 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-8x)).
- A025944 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-9x)).
- A025945 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-10x)).
- A025946 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-11x)).
- A025947 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-12x)).
- A025948 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-9x)).
- A025949 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-10x)).
- A025950 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-11x)).
- A025951 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-12x)).
- A025952 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-10x)).
- A025953 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-11x)).
- A025954 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-12x)).
- A025955 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)(1-11x)).
- A025956 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)(1-12x)).
- A025957 (program): Expansion of 1/((1-2x)(1-3x)(1-11x)(1-12x)).
- A025958 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-6x)).
- A025959 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-7x)).
- A025960 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-8x)).
- A025961 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-9x)).
- A025962 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-10x)).
- A025963 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-11x)).
- A025964 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-12x)).
- A025965 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-7x)).
- A025966 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-8x)).
- A025967 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-9x)).
- A025968 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-10x)).
- A025969 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-11x)).
- A025970 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-12x)).
- A025971 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-8x)).
- A025972 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-9x)).
- A025973 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-10x)).
- A025974 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-11x)).
- A025975 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-12x)).
- A025976 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-9x)).
- A025977 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-10x)).
- A025978 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-11x)).
- A025979 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-12x)).
- A025980 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-10x)).
- A025981 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-11x)).
- A025982 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-12x)).
- A025983 (program): Expansion of 1/((1-2x)(1-4x)(1-10x)(1-11x)).
- A025984 (program): Expansion of 1/((1-2x)(1-4x)(1-10x)(1-12x)).
- A025985 (program): Expansion of 1/((1-2x)(1-4x)(1-11x)(1-12x)).
- A025986 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-7x)).
- A025987 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-8x)).
- A025988 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-9x)).
- A025989 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-10x)).
- A025990 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-11x)).
- A025991 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-12x)).
- A025992 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-8x)).
- A025993 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-9x)).
- A025994 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-10x)).
- A025995 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-11x)).
- A025996 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-12*x)).
- A025997 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-9x)).
- A025998 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-10x)).
- A025999 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-11x)).
- A026000 (program): a(n) = T(2n, n), where T is the Delannoy triangle (A008288).
- A026001 (program): a(n) = T(3n,n), where T = Delannoy triangle (A008288).
- A026002 (program): a(n) = T(n,n+2), where T = Delannoy triangle (A008288).
- A026003 (program): a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288).
- A026004 (program): a(n) = T(3n+1,n), where T = Catalan triangle (A008315).
- A026005 (program): a(n) = T(4*n,n), where T = Catalan triangle (A008315).
- A026006 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-12x)).
- A026007 (program): Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.
- A026008 (program): a(n) = T(n, floor(n/2)), where T = Catalan triangle (A008315).
- A026010 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.
- A026011 (program): Expansion of Product_{m>=1} (1 + q^m)^(2*m).
- A026012 (program): Second differences of Catalan numbers A000108.
- A026013 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 4. Also a(n) = T(2n,n-1), where T is the array defined in A026009.
- A026014 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 6. Also a(n) = T(2n,n-2), where T is the array defined in A026009.
- A026015 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 8. Also a(n) = T(2n,n-3), where T is the array defined in A026009.
- A026016 (program): a(n) = binomial(2*n-1, n) - binomial(2*n-1, n+3).
- A026017 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n-1) = 5. Also a(n) = T(2n-1,n-2), where T is the array defined in A026009.
- A026018 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n-1) = 7. Also a(n) = T(2n-1,n-3), where T is the array defined in A026009.
- A026019 (program): a(n) = binomial(3*n,n) - binomial(3*n,n-3).
- A026020 (program): a(n) = binomial(4n, n) - binomial(4n, n - 3).
- A026021 (program): T(n,[ n/2 ]), where T is the array defined in A026009.
- A026023 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n and s(0) = 3. Also a(n) = Sum{T(n,k), k = 0,1,…,[ (n+3)/2 ]}, where T is defined in A026022.
- A026024 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-10x)).
- A026025 (program): a(n) = (n!)^2 * (1 + Sum(k=0…n-1) 1/((k+1)(k!)^2)).
- A026026 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n-1) = 4. Also a(n) = T(2n-1,n-1), where T is defined in A026022.
- A026027 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n-1) = 6. Also a(n) = T(2n-1,n-2), where T is defined in A026022.
- A026028 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-11x)).
- A026029 (program): Number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,….,n, s(0) = 3, s(2n) = 3. Also T(2n,n), where T is defined in A026022.
- A026030 (program): a(n) = T(2n,n-1), where T is defined in A026022.
- A026031 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n) = 7. Also a(n) = T(2n,n-2), where T is defined in A026022.
- A026032 (program): a(n) = C(3n,n) - C(3n,n-4).
- A026033 (program): C(4n,n) - C(4n,n-4).
- A026034 (program): T(n,[ n/2 ]), where T is defined in A026022.
- A026035 (program): Expansion of x^2*(2 - x + x^2) / ((1 + x)*(1 - x)^4).
- A026036 (program): (d(n)-r(n))/5, where d = A006527 and r is the periodic sequence with fundamental period (4,1,4,0,1).
- A026037 (program): a(n) = dot_product(1,2,…,n)*(3,4,…,n,1,2).
- A026038 (program): a(n) = (d(n)-r(n))/2, where d = A026037 and r is the periodic sequence with fundamental period (1,0,0,1).
- A026039 (program): a(n) = (d(n) - r(n))/5, where d = A026037 and r is the periodic sequence with fundamental period (1,2,0,2,0).
- A026040 (program): a(n) = dot_product(1,2,…,n)*(4,5,…,n,1,2,3).
- A026041 (program): a(n) = d(n)/2, where d = A026040.
- A026042 (program): a(n) = (d(n)-r(n))/5, where d = A026040 and r is the periodic sequence with fundamental period (4,0,4,3,4).
- A026043 (program): a(n) = dot_product(1,2,…,n)*(5,6,…,n,1,2,3,4).
- A026044 (program): a(n) = (d(n)-r(n))/2, where d = A026043 and r is the periodic sequence with fundamental period (1,1,0,0).
- A026045 (program): a(n) = (d(n)-r(n))/5, where d = A026043 and r is the periodic sequence with fundamental period (0,2,3,0,0).
- A026046 (program): a(n) = dot_product(1,2,…,n)*(6,7,…,n,1,2,3,4,5).
- A026047 (program): a(n) = (d(n)-r(n))/2, where d = A026046 and r is the periodic sequence with fundamental period (0,1,0,1).
- A026048 (program): (d(n)-r(n))/5, where d = A026046 and r is the periodic sequence with fundamental period (1,0,4,0,0).
- A026049 (program): a(n) = dot_product(1,2,…,n)*(7,8,…,n,1,2,3,4,5,6).
- A026050 (program): a(n) = (d(n)-r(n))/2, where d = A026049 and r is the periodic sequence with fundamental period (1,0,0,1).
- A026051 (program): a(n) = (d(n)-r(n))/5, where d = A026049 and r is the periodic sequence with fundamental period (4,1,4,0,1).
- A026052 (program): (d(n)-r(n))/2, where d = A008778 and r is the periodic sequence with fundamental period (1,1,0,1).
- A026053 (program): (d(n)-r(n))/5, where d = A008778 and r is the periodic sequence with fundamental period (0,3,1,0,1).
- A026054 (program): dot product (n,n-1,…2,1).(3,4,…,n,1,2).
- A026055 (program): a(n) = (d(n)-r(n))/2, where d = A026054 and r is the periodic sequence with fundamental period (1,0,0,0).
- A026056 (program): a(n) = (d(n)-r(n))/5, where d = A026054 and r is the periodic sequence with fundamental period (3,3,0,0,4).
- A026057 (program): a(n) = n*(n^2 + 12*n - 25)/6.
- A026058 (program): a(n) = (d(n)-r(n))/2, where d = A026057 and r is the periodic sequence with fundamental period (0,0,1,0).
- A026059 (program): a(n) = (d(n)-r(n))/5, where d = A026057 and r is the periodic sequence with fundamental period (1,0,3,1,0).
- A026060 (program): a(n) = dot_product(n,n-1,…2,1)*(5,6,…,n,1,2,3,4).
- A026061 (program): a(n) = (d(n)-r(n))/2, where d = A026060 and r is the periodic sequence with fundamental period (1,0,0,0).
- A026062 (program): a(n) = (d(n)-r(n))/5, where d = A026060 and r is the periodic sequence with fundamental period (0,0,1,4,0).
- A026063 (program): dot_product(n,n-1,…2,1)*(6,7,…,n,1,2,3,4,5).
- A026064 (program): a(n) = (d(n)-r(n))/2, where d = A026063 and r is the periodic sequence with fundamental period (1,1,0,1).
- A026065 (program): a(n) = (d(n)-r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).
- A026066 (program): dot_product(n,n-1,…2,1)*(7,8,…,n,1,2,3,4,5,6).
- A026067 (program): a(n) = (d(n)-r(n))/2, where d = A026066 and r is the periodic sequence with fundamental period (1,0,0,0).
- A026068 (program): (d(n)-r(n))/5, where d = A026066 and r is the periodic sequence with fundamental period (0,3,1,0,1).
- A026069 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A024996.
- A026070 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A024996.
- A026071 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A024996.
- A026072 (program): a(n) = T(2n-1,n), where T is the array defined in A024996.
- A026073 (program): T(2n,n), where T is the array defined in A024996.
- A026074 (program): a(n) = T(3n,n), where T is the array defined in A024996.
- A026075 (program): a(n) = T(4n,n), where T is the array defined in A024996.
- A026076 (program): a(n) = T(2n,n-1), where T is the array defined in A024996.
- A026077 (program): a(n) = T(2n,n+1), where T is the array defined in A024996.
- A026079 (program): a(n) = Sum_{k = 1..n} T(k,k-1), where T is the array defined in A024996.
- A026083 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4. Also a(n) = T(n,n), where T is the array defined in A026082.
- A026084 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A026082.
- A026085 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A026082.
- A026086 (program): Number of (s(0), s(1), …, s(n)) such that s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 3; also a(n) = T(n,n-3), where T is the array defined in A026082.
- A026087 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A026082.
- A026088 (program): a(n) = T(2n-1,n), where T is the array defined in A026082.
- A026089 (program): a(n) = T(2n,n), where T is the array defined in A026082.
- A026091 (program): a(n) = T(4n,n), where T is the array defined in A026082.
- A026092 (program): a(n) = T(2n,n-1), where T is the array defined in A026082.
- A026093 (program): T(2n,n+1), where T is the array defined in A026082.
- A026095 (program): a(n) = Sum{T(k,k-1)}, k = 1,2,…,n, where T is the array defined in A026082.
- A026097 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4. Also a(n) = sum of numbers in row n+1 of the array T defined in A026082 and a(n) = 24*3^(n-4) for n >= 4.
- A026107 (program): Second differences of Motzkin numbers (A001006).
- A026108 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-12x)).
- A026109 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 3, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-3), where T is the array defined in A026105.
- A026110 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-4), where T is the array defined in A026105.
- A026112 (program): a(n) = T(2n,n), where T is the array defined in A026105.
- A026116 (program): T(2n,n+1), where T is the array defined in A026105.
- A026119 (program): Bisection of A000016 (also of A000013).
- A026121 (program): a(n) = 3^n*(3^n-1)/2.
- A026122 (program): a(n) is the number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array in A026120.
- A026123 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-1), where T is the array in A026120; a(n) = U(n,n+1), where U is the array in A026148.
- A026124 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 3, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-2), where T is the array in A026120.
- A026125 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 4, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-3), where T is the array in A026120.
- A026134 (program): a(n) = Sum_{k=1..n} T(k, k-1), where T is the array in A026120.
- A026135 (program): Number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120.
- A026136 (program): Lexicographically earliest permutation of the positive integers such that |a(n)-n| = [a(n)/2].
- A026137 (program): a(n) = position of n in A026136.
- A026138 (program): Numbers k such that s(j) < s(k) for all j < k, where s = A026136.
- A026139 (program): a(n) = s(k), where k is the n-th number such that s(j) < s(k) for all j < k, where s = A026136. Also a(n) = 2*t(n) - 1, where t = A026138.
- A026140 (program): a(n) = (1/2)*(s(n) - 1), where s = A026139.
- A026141 (program): a(n) = (s(n)-s(n-1))/2, where s = A026139.
- A026144 (program): Numbers k such that s(j) < s(k) for all j < k, where s = A026142.
- A026145 (program): a(n) = s(k), where k is the n-th number such that s(j) < s(k) for all j < k, where s = A026142. Also a(n) = 2*t(n) for n >= 2, where t = A026144.
- A026146 (program): a(n) = (1/2)*|s(n) - s(n-1)|, where s = A026145.
- A026147 (program): a(n) = position of n-th 1 in A001285 or A010059 (Thue-Morse sequence).
- A026149 (program): Expansion of 1/((1-2x)(1-5x)(1-10x)(1-11x)).
- A026150 (program): a(0) = a(1) = 1; a(n+2) = 2*a(n+1) + 2*a(n).
- A026151 (program): a(n) = T(n,n), where T is the array in A026148.
- A026152 (program): a(n) = T(n,n-1), where T is the array in A026148.
- A026153 (program): T(n,n-2), where T is the array in A026148.
- A026154 (program): a(n) = T(n,n-3), where T is the array in A026148.
- A026155 (program): T(n,n-4), where T is the array in A026148.
- A026163 (program): Sum{T(k,k-1)}, k = 1,2,…,n, where T is the array in A026148.
- A026165 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T in A026148.
- A026166 (program): For n >= 2, let h=floor((n-1)/2), L=n-h, R=n+h; then a(L)=n if a(L) not yet defined, otherwise a(R)=n; thus |a(n)-n| = floor((1/2)*(a(n)-1)).
- A026167 (program): a(n) is the position of n in A026166.
- A026168 (program): Numbers k such that A026166(j) < A026166(k) for all j < k.
- A026169 (program): a(n) = s(k), where k is the n-th number k such that s(j)<s(k) for all j<k, where s = A026166.
- A026177 (program): For n >= 2, let h=floor(n/2), L=n-h, R=n+h; then a(R)=n if n odd or a(L) already defined, otherwise a(L)=n.
- A026178 (program): a(n) is the position of n in A026177.
- A026179 (program): Numbers k such that A026177(j) < A026177(k) for all j < k.
- A026180 (program): a(n) = s(k), where k is the n-th number such that s(j)<s(k) for all j<k, where s = A026177.
- A026181 (program): a(n) = (1/2)*(s(n) - s(n-1)), where s = A026180.
- A026182 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A026136.
- A026183 (program): Position of n in A026182.
- A026184 (program): a(n) = (1/3)*s(n), where s(n) is the n-th multiple of 3 in A026136.
- A026185 (program): If n even, then 2n. If n odd, then nearest integer to 2n/3.
- A026188 (program): a(n) = (1/5)*s(n), where s(n) is the n-th multiple of 5 in A026136.
- A026200 (program): a(n) = (s(n) + 2)/3, where s(n) is the n-th number congruent to 1 mod 3 in A026166.
- A026201 (program): Position of n in A026200.
- A026202 (program): a(n) = (1/4)*s(n), where s(n) is the n-th multiple of 4 in A026166.
- A026203 (program): position of n in A026202.
- A026204 (program): a(n) = (1/5)*s(n), where s(n) is the n-th multiple of 5 in A026166.
- A026214 (program): a(n) = (1/2)*s(n), where s(n) is the n-th even number in A026177.
- A026215 (program): a(n) is the position of n in A026214.
- A026218 (program): a(n) = (1/3)*(s(n) + 2), where s(n) is the n-th number congruent to 1 mod 3 in A026177.
- A026219 (program): Position of n in A026218.
- A026222 (program): Numbers k such that A026136(k) = A026142(k).
- A026223 (program): (1/3)*s(n+1), where s = A026222.
- A026224 (program): Numbers n such that t(n) = s(n) + 1, where s = A026136, t = A026142.
- A026225 (program): Numbers of the form 3^i * (3k+1).
- A026226 (program): Numbers k such that A026136(k) = A026166(k).
- A026227 (program): a(n) = (1/3)*(s(n) + 2), where s = A026226.
- A026228 (program): Numbers k such that A026166(k) = A026136(k) - 1.
- A026229 (program): Numbers k such that A026166(k) = A026142(k) - 2.
- A026230 (program): a(n) = (1/3)*s(n+1), where s = A026229.
- A026231 (program): Numbers k such that A026166(k) = A026142(k) + 1.
- A026232 (program): a(n) = (1/3)*(s(n) + 1), where s = A026231.
- A026233 (program): a(n) = j if n is the j-th prime, else a(n) = k if n is the k-th nonprime.
- A026238 (program): a(n) = j if n is the j-th prime, else a(n) = k if n is the k-th composite.
- A026241 (program): Expansion of 1/((1-2x)(1-5x)(1-10x)(1-12x)).
- A026242 (program): a(n) = j if n is L(j), else a(n) = k if n is U(k), where L = A000201, U = A001950 (lower and upper Wythoff sequences).
- A026243 (program): a(n) = A000522(n) - 2.
- A026244 (program): a(n) = 4^n*(4^n+1)/2.
- A026245 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A002251.
- A026247 (program): a(n) = (1/2)*s(n), where s(n) is n-th even number in A002251.
- A026249 (program): a(n) = j if n = [ j*sqrt(2) ], else a(n) = k if n = [ k*(2 + sqrt(2)) ].
- A026250 (program): Beginning with the natural numbers, swap [ k*sqrt(2) ] and [ k*(2 + sqrt(2)) ], for all k >= 1.
- A026251 (program): a(n) = |s(n) - n|, where s = A026250. Also a(n) = 2*t(n), where t = A026249.
- A026252 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A026250. Also a(n) = position of n in A026252.
- A026253 (program): a(n) = (1/2)*s(n), where s(n) is the n-th even number in A026250. Also a(n) = position of n in A026253.
- A026254 (program): a(n) = j if n = [ j*sqrt(3) ], else a(n) = k if n = [ (k/2)*(3 + sqrt(3)) ].
- A026261 (program): a(n) = j if n = [ j*sqrt(5) ], else a(n) = k if n = [ (k/4)*(5 + sqrt(5)) ].
- A026269 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n) and a(n) = Sum{T(k,k-1)}, k = 1,2,…,n, where T is array in A026268.
- A026270 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1 = s(n), |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also T(n,n-1), where T is the array in A026268.
- A026271 (program): a(n) = sum of the numbers between the two n’s in A026242.
- A026272 (program): a(n) = smallest k such that k=a(n-k-1) is the only appearance of k so far; if there is no such k, then a(n) = least positive integer that has not yet appeared.
- A026273 (program): a(n) = least k such that s(k) = n, where s = A026272.
- A026274 (program): Greatest k such that s(k) = n, where s = A026272.
- A026275 (program): Sum of numbers between the two n’s in A026272.
- A026276 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 2, else a(n) = least positive integer that has not yet occurred.
- A026277 (program): a(n) = least k such that s(k) = n, where s = A026276.
- A026278 (program): a(n) = greatest k such that s(k) = n, where s = A026276.
- A026280 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 3, else a(n) = least positive integer that has not yet occurred.
- A026281 (program): a(n) = least k such that s(k) = n, where s = A026280.
- A026282 (program): a(n) = greatest k such that s(k) = n, where s = A026280.
- A026284 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 4, else a(n) = least positive integer that has not yet occurred.
- A026285 (program): a(n) = least k such that s(k) = n, where s = A026284.
- A026286 (program): a(n) = greatest k such that s(k) = n, where s = A026284.
- A026288 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 2, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also T(n,n-2), where T is the array in A026268.
- A026289 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 3, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n-3), where T is the array in A026268.
- A026290 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >=2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n-4), where T is the array in A026268.
- A026299 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also sum of numbers in row n+1 of the array T in A026268.
- A026300 (program): Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,…,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).
- A026302 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.
- A026303 (program): a(n) = T(3n,n), where T is the array in A026300.
- A026304 (program): a(n) = T(4n,n), where T is the array in A026300.
- A026305 (program): a(n) = T(2n,n-1), where T is the array in A026300.
- A026306 (program): a(n) = T(2n,n+1), where T is the array in A026300.
- A026307 (program): a(n) = T(n,[ n/2 ]), where T is the array in A026300.
- A026308 (program): Expansion of 1/((1-2x)(1-5x)(1-11x)(1-12x)).
- A026310 (program): sin(n) > cos(n+1).
- A026312 (program): n-th nonnegative integer k satisfying cos(k) > sin(k+1).
- A026313 (program): Numbers k such that |sin(k)*sin(k+2)| < (sin(k+1))^2.
- A026314 (program): a(n) = n-th nonnegative integer k satisfying |cos(k)*cos(k+2)| > (cos(k+1))^2.
- A026315 (program): |sin(n)| < |sin(n+1)|.
- A026316 (program): Numbers k such that |sin(k)| > |cos(k+1)|.
- A026317 (program): Nonnegative integers k such that |cos(k)| > |sin(k+1)|.
- A026318 (program): a(n) = n-th nonnegative integer k satisfying sin(k) < cos(k) < sin(k+1).
- A026319 (program): a(n) = n-th nonnegative integer k satisfying |sin(k)| < |cos(k)| < |sin(k+1)|.
- A026320 (program): sin(n) > cos(n) > sin(n+1).
- A026321 (program): n-th nonnegative integer k satisfying |sin(k)| > |cos(k)| > |sin(k+1)|.
- A026322 (program): |sin(2n)| > |sin(n)|.
- A026324 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-8x)).
- A026325 (program): Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0).
- A026326 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-9x)).
- A026327 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 4. Also a(n) = T(n,n-2), where T is the array in A026323.
- A026328 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 5. Also a(n) = T(n,n-3), where T is the array in A026323.
- A026329 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 6. Also a(n) = T(n,n-4), where T is the array in A026323.
- A026330 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(2n) = n+1. Also a(n) = T(2n,n+1), where T is the array in A026323.
- A026337 (program): a(n) = 4^n*(4^n - 1)/2.
- A026338 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = m+[ m/2 ]+1, else a(n) = least positive integer that has not yet occurred.
- A026339 (program): a(n) = least k such that s(k) = n, where s = A026338.
- A026340 (program): a(n) = greatest k such that s(k) = n, where s = A026338.
- A026343 (program): Least k such that s(k) = n, where s = A026342.
- A026344 (program): a(n) = greatest k such that s(k) = n, where s = A026342.
- A026346 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+[ 3m/2 ], else a(n) = least positive integer that has not yet occurred.
- A026347 (program): a(n) = least k such that s(k) = n, where s = A026346.
- A026348 (program): Greatest k such that s(k) = n, where s = A026346.
- A026350 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+m-1, else a(n) = least positive integer that has not yet occurred.
- A026351 (program): a(n) = floor(n*phi) + 1, where phi = (1+sqrt(5))/2.
- A026352 (program): a(n) = floor(n*tau)+n+1.
- A026353 (program): a(n) = sum of the numbers between the two n’s in A026350.
- A026354 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+m-2, else a(n) = least positive integer that has not yet occurred.
- A026355 (program): a(n) = least k such that s(k) = n+1, where s = A026354.
- A026356 (program): a(n) = floor((n-1)*phi) + n + 1, n > 0, where phi = (1+sqrt(5))/2.
- A026357 (program): a(n) = sum of the numbers between the two n’s in A026354.
- A026358 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m-2, else a(n) = least positive integer that has not yet occurred.
- A026359 (program): a(n) = least k such that s(k) = n, where s = A026358.
- A026360 (program): a(n) = greatest k such that s(k) = n, where s = A026358.
- A026362 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m-1, else a(n) = least positive integer that has not yet occurred.
- A026363 (program): a(n) = least k such that s(k) = n, where s = A026362.
- A026364 (program): a(n) = greatest k such that s(k) = n, where s = A026362.
- A026366 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m, else a(n) = least positive integer that has not yet occurred.
- A026367 (program): a(n) = least k such that s(k) = n, where s = A026366.
- A026368 (program): a(n) = greatest k such that s(k) = n, where s = A026366.
- A026370 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m+1, else a(n) = least positive integer that has not yet occurred.
- A026371 (program): a(n) = least k such that s(k) = n, where s = A026370.
- A026372 (program): a(n) = greatest k such that s(k) = n, where s = A026370.
- A026374 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0, T(n,k) = T(n-1,k-1) + T(n-1,k) for odd n and 1< = k <= n-1, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for even n and 1 <= k <= n-1.
- A026375 (program): a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).
- A026376 (program): a(n) is the number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).
- A026377 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).
- A026378 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=1; also a(n) = T(2n-1,n-1).
- A026379 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=3; also a(n) = T(2n-1,n-2).
- A026380 (program): a(n) = T(n,[ n/2 ]), where T is the array in A026374.
- A026381 (program): T(n,n-2), where T is the array in A026374.
- A026382 (program): a(n) = T(n,n-3), where T is the array in A026374.
- A026383 (program): a(n) = 5*a(n-2), starting 1,2.
- A026384 (program): a(n) = Sum_{j=0..i, i=0..n} T(i,j), where T is the array in A026374.
- A026385 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026374.
- A026386 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0; T(n,k) = T(n-1,k-1) + T(n-1,k) for even n and k = 1..n-1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for odd n and k = 1 ..n-1.
- A026387 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=0; also a(n) = T(2n,n).
- A026388 (program): a(n) is the number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=2; also a(n) = T(2n,n-1).
- A026389 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=4; also a(n) = T(2n,n-2).
- A026390 (program): Expansion of (2 + x + x^2)/((1 - x)*(1 - x - x^2)).
- A026391 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-10x)).
- A026392 (program): T(n,[ n/2 ]), where T is the array in A026386.
- A026393 (program): a(n) = T(n,n-2), where T is the array in A026386.
- A026394 (program): a(n) = T(n,n-3), where T is the array in A026386.
- A026395 (program): a(n) = 5*a(n-2), starting 1,2,4.
- A026396 (program): Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.
- A026397 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026386.
- A026422 (program): a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1 <= i <= j < n.
- A026424 (program): Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.
- A026430 (program): a(n) is the sum of first n terms of A001285 (Thue-Morse sequence).
- A026465 (program): Length of n-th run of identical symbols in the Thue-Morse sequence A010060 (or A001285).
- A026472 (program): {3, 7} together with the numbers congruent to {1, 2} mod 12.
- A026474 (program): a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j) or a(i)+a(j)+a(k) for 1<=i<j<k<n (a 3-Stohr sequence).
- A026476 (program): For n>3, a(n) = 7*n - 21 + 2*(-1)^n.
- A026478 (program): a(n) = least positive integer > a(n-1) and not of form a(i)*a(j)*a(k) for 1<=i<=j<=k<n.
- A026488 (program): a(n) is the least positive integer > a(n-1) and not a(i)*a(j)-a(k) for 1 <= i <= j <= k <= n, where a(1) = 1.
- A026490 (program): Length of n-th run of identical symbols in A026465.
- A026491 (program): a(n) = least k > a(n-1) such that A001285(k-1) = A001285(n-1) for n >= 1.
- A026492 (program): a(n) = t(3n), where t = A001285 (Thue-Morse sequence).
- A026498 (program): a(n) = t(1+3n), where t = A001285 (Thue-Morse sequence).
- A026513 (program): a(n) = t(2+3n), where t = A001285 (Thue-Morse sequence).
- A026517 (program): a(n) = t(5n), where t = A001285 (Thue-Morse sequence).
- A026520 (program): a(n) = T(n,n), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 0.
- A026521 (program): a(n) = T(n, n-1), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 1.
- A026522 (program): a(n) = T(n, n-2), where T is given by A026519. Also number of integer strings s(0), …, s(n), counted by T, such that s(n) = 2.
- A026523 (program): a(n) = T(n, n-3), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 3.
- A026524 (program): a(n) = T(n, n-4), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 4.
- A026525 (program): a(n) = T(2*n, n), where T is given by A026519.
- A026526 (program): a(n) = T(2n,n-1), T given by A026519.
- A026527 (program): a(n) = T(2*n, n-2), where T is given by A026519.
- A026528 (program): a(n) = T(2*n-1, n-1), T given by A026519.
- A026529 (program): a(n) = T(2*n-1, n-2), where T is given by A026519.
- A026530 (program): a(n) = T(n, floor(n/2)), T given by A026519.
- A026532 (program): Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, …
- A026534 (program): a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
- A026535 (program): a(n) = t(1+5n) where t = A001285 (Thue-Morse sequence).
- A026537 (program): a(n) = T(n,n), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n)=0.
- A026538 (program): a(n) = T(n,n-1), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 1.
- A026539 (program): a(n) = T(n,n-2), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 2.
- A026540 (program): a(n) = T(n,n-3), T given by A026536. Also number of integer strings s(0), …, s(n), counted by T, such that s(n) = 3.
- A026541 (program): a(n) = T(n,n-4), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 4.
- A026542 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-11*x)).
- A026543 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-12*x)).
- A026545 (program): a(n) = T(2n-1, n-1), T given by A026536.
- A026546 (program): a(n) = T(2n-1,n-2), T given by A026536.
- A026547 (program): a(n) = T(n, floor(n/2)), T given by A026536.
- A026549 (program): Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, …
- A026551 (program): Expansion of 3*(1+2*x-2*x^2)/((1-x)*(1-6*x^2)).
- A026553 (program): a(n) = T(n,n), T given by A026552. Also a(n) is the number of integer strings s(0),…,s(n) counted by T, such that s(n)=0.
- A026554 (program): a(n) = T(n,n-1), T given by A026552. Also a(n) is the number of integer strings s(0),…,s(n) counted by T, such that s(n)=1.
- A026555 (program): a(n) = T(n, n-2), T given by A026552. Also a(n) = number of integer strings s(0), …, s(n) counted by T, such that s(n) = 2.
- A026556 (program): a(n) = T(n, n-3), T given by A026552. Also a(n) = number of integer strings s(0), …, s(n) counted by T, such that s(n) = 3.
- A026557 (program): a(n) = T(n, n-4), T given by A026552. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
- A026558 (program): a(n) = T(2*n, n), where T is given by A026552.
- A026559 (program): a(n) = T(2*n, n-1), where T is given by A026552.
- A026560 (program): a(n) = T(2*n, n-2), where T is given by A026552.
- A026561 (program): Expansion of 1/((1-2x)(1-6x)(1-8x)(1-9x)).
- A026562 (program): Expansion of 1/((1-2x)(1-6x)(1-8x)(1-10x)).
- A026563 (program): a(n) = T(n, floor(n/2)), where T is given by A026552.
- A026565 (program): a(n) = 6*a(n-2), starting with 1, 3, 9.
- A026567 (program): a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.
- A026569 (program): a(n) = T(n,n), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=0.
- A026570 (program): a(n)=T(n,n-1), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T such that s(n)=1.
- A026571 (program): a(n)=T(n,n-2), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=2.
- A026572 (program): a(n) = T(n,n-3), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=3.
- A026573 (program): a(n)=T(n,n-4), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
- A026574 (program): T(2n,n), T given by A026568.
- A026575 (program): T(2n,n-1), T given by A026568.
- A026576 (program): T(2n,n-2), T given by A026568.
- A026577 (program): T(2n-1,n-1), T given by A026568.
- A026578 (program): T(2n-1,n-2), T given by A026568.
- A026579 (program): T(n,[ n/2 ]), T given by A026568.
- A026581 (program): Expansion of (1 + 2*x) / (1 - x - 4*x^2).
- A026583 (program): a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=2n, T given by A026568.
- A026585 (program): a(n) = T(n,n), T given by A026584. Also a(n) is the number of integer strings s(0), …, s(n) counted by T, such that s(n)=0.
- A026587 (program): a(n) = T(n, n-2), T given by A026584. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=2.
- A026589 (program): a(n) = T(n,n-4), T given by A026584. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
- A026590 (program): a(n) = T(2*n, n), where T is given by A026584.
- A026591 (program): a(n) = T(2*n, n-1), where T is given by A026584.
- A026592 (program): a(n) = T(2*n, n-2), where T is given by A026584.
- A026593 (program): a(n) = T(2*n-1, n-1), where T is given by A026584.
- A026594 (program): a(n) = T(2*n-1, n-2), where T is given by A026584.
- A026595 (program): a(n) = T(n, floor(n/2)), where T is given by A026584.
- A026597 (program): Expansion of (1+x)/(1-x-4*x^2).
- A026599 (program): a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).
- A026600 (program): a(n) is the n-th letter of the infinite word generated from w(1)=1 inductively by w(n)=JUXTAPOSITION{w(n-1),w’(n-1),w”(n-1)}, where w(k) becomes w’(k) by the cyclic permutation 1->2->3->1 and w”(k) = (w’)’(k).
- A026601 (program): Numbers k such that A026600(k) = 1.
- A026602 (program): Numbers k such that A026600(k) = 2.
- A026603 (program): Numbers k such that A026600(k) = 3.
- A026604 (program): a(n) = s(1) + s(2) + … + s(n), where s = A026600.
- A026605 (program): [3->null]-transform of three-symbol Thue-Morse A026600
- A026606 (program): [1->null]-transform of three-symbol Thue-Morse A026600, with 1 subtracted.
- A026607 (program): Delete all 2’s from A026600 and then replace each 3 with 2.
- A026608 (program): a(n) = number of 2’s between n-th 1 and (n+1)st 1 in A026600.
- A026609 (program): a(n) = number of 3’s between n-th 1 and (n+1)st 1 in A026600.
- A026610 (program): a(n) = number of 1’s between n-th 2 and (n+1)st 2 in A026600.
- A026611 (program): Number of 3’s between n-th 2 and (n+1)st 2 in A026600.
- A026612 (program): a(n) = number of 1’s between n-th 3 and (n+1)st 3 in A026600.
- A026613 (program): Number of 2’s between n-th 3 and (n+1)st 3 in A026600.
- A026614 (program): a(n) least k > a(n-1) such that a(k)=s(n), for n >= 2, where s = A026600.
- A026615 (program): Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(n,1)=T(n,n-1)=2n-1 for n >= 1; T(n,k)=T(n-1,k-1)+T(n-1,k) for 2<=k<=n-2, n >= 4.
- A026616 (program): T(2n,n), T given by A026615.
- A026617 (program): T(2n,n-1), T given by A026615.
- A026618 (program): T(2n,n-2), T given by A026615.
- A026619 (program): T(2n-1,n-1), T given by A026615.
- A026620 (program): T(2n-1,n-2), T given by A026615.
- A026621 (program): T(n,[ n/2 ]), T given by A026615.
- A026622 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A026615.
- A026623 (program): a(n) = T(n,0) + T(n,1) + … + T(n,[ n/2 ]), T given by A026615.
- A026624 (program): a(n) = Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026615.
- A026625 (program): a(n) = Sum_{k=0..floor(n/2)} A026615(n-k,k).
- A026627 (program): T(2n,n), T given by A026626.
- A026628 (program): T(2n,n-1), T given by A026626.
- A026630 (program): T(2n-1,n-1), T given by A026626.
- A026632 (program): T(n,[ n/2 ]), T given by A026626.
- A026633 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026626.
- A026635 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026626.
- A026636 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], T given by A026626.
- A026638 (program): T(2n,n), T given by A026637.
- A026639 (program): T(2n,n-1), T given by A026637.
- A026640 (program): T(2n,n-2), T given by A026637.
- A026641 (program): Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.
- A026642 (program): a(n) = T(2n-1,n-2), T given by A026637.
- A026643 (program): T(n,[ n/2 ]), T given by A026637.
- A026644 (program): a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.
- A026646 (program): a(n) = Sum_{0<=i,j<=n} A026637(i,j).
- A026647 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], T given by A026637.
- A026655 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026648.
- A026657 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026648.
- A026670 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 1, T(n,1) = T(n,n-1) = n+1; for n >= 2, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k = n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
- A026671 (program): Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).
- A026672 (program): a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.
- A026673 (program): a(n) = T(2n,n-2), T given by A026670.
- A026674 (program): a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.
- A026675 (program): a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.
- A026676 (program): a(n) = T(n, floor(n/2)), T given by A026670.
- A026677 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026670.
- A026678 (program): a(n) = T(n,0) + T(n,1) + … + T(n,[ n/2 ]), T given by A026670.
- A026679 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026670.
- A026704 (program): T(2n,n), T given by A026703.
- A026705 (program): T(2n,n-1), T given by A026703.
- A026706 (program): T(2n,n-2), T given by A026703.
- A026707 (program): T(2n-1,n-1), T given by A026703.
- A026708 (program): T(2n-1,n-2), T given by A026703.
- A026726 (program): a(n) = T(2n,n), T given by A026725.
- A026727 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)*(1-11*x)).
- A026728 (program): a(n) = number of primes of the form k*(n-k) + 1.
- A026729 (program): Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by antidiagonals.
- A026730 (program): a(8n)=n, a(8n+4)=a(8n)+a(8n+8), a(4n+2)=a(4n)+a(4n+4), a(2n+1)=a(2n)+a(2n+2).
- A026731 (program): Greatest number in row n of array T given by A026725.
- A026732 (program): a(n) = Sum_{k=0..n} T(n,k), T given by A026725.
- A026733 (program): a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.
- A026734 (program): a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.
- A026737 (program): a(n) = T(2*n,n), T given by A026736.
- A026738 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)*(1-12*x)).
- A026740 (program): a(n) = 2^n*(2^n - 1)*(2^n - 2)/6.
- A026741 (program): a(n) = n if n odd, n/2 if n even.
- A026742 (program): a(n) = T(n, floor(n/2)), T given by A026736.
- A026743 (program): a(n) = Sum_{j=0..n} T(n,j), T given by A026736.
- A026745 (program): a(n) = Sum_{j=0..n} Sum_{i=0..n} T(j,i), T given by A026736.
- A026748 (program): a(n) = T(2n,n), T given by A026747.
- A026759 (program): a(n) = T(2n, n), T given by A026758.
- A026762 (program): a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747.
- A026773 (program): a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.
- A026795 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-9*x)*(1-10*x)).
- A026796 (program): Number of partitions of n in which the least part is 3.
- A026806 (program): a(n) = number of numbers k such that only one partition of n has least part k.
- A026808 (program): a(n) is the number of products P of distinct positive integers satisfying P <= n.
- A026809 (program): a(n) = 3^n*(3^n-1)*(3^n-2)/6.
- A026810 (program): Number of partitions of n in which the greatest part is 4.
- A026811 (program): Number of partitions of n in which the greatest part is 5.
- A026812 (program): Number of partitions of n in which the greatest part is 6.
- A026813 (program): Number of partitions of n in which the greatest part is 7.
- A026814 (program): Number of partitions of n in which the greatest part is 8.
- A026815 (program): Number of partitions of n in which the greatest part is 9.
- A026817 (program): Number of sets which can be obtained by selecting unique elements from two sets with 2n and 3n elements respectively and n common elements.
- A026818 (program): Largest digit of n concatenated with smallest digit of n is prime.
- A026822 (program): CONTINUANT transform of Fibonacci number 1, 1, 2, 3, 5, 8, …
- A026834 (program): a(n) = number of numbers k such that only one partition of n into distinct parts has least part k.
- A026837 (program): Number of partitions of n into distinct parts, the greatest being odd.
- A026838 (program): Number of partitions of n into distinct parts, the greatest being even.
- A026841 (program): a(n) = T(2n,n-4), T given by A026725.
- A026842 (program): a(n) = T(2n,n-3), T given by A026725.
- A026843 (program): a(n) = T(2n,n+3), T given by A026725.
- A026844 (program): a(n) = T(2n,n+4), T given by A026725.
- A026846 (program): a(n) = T(2n+1,n+4), T given by A026725.
- A026847 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m=[ (n+1)/2 ], T given by A026725.
- A026848 (program): a(n) = T(2n,n-4), T given by A026736.
- A026849 (program): a(n) = T(2n,n-3), T given by A026736.
- A026850 (program): a(n) = T(2n,n+1), T given by A026736.
- A026851 (program): a(n) = T(2n,n+2), T given by A026736.
- A026852 (program): a(n) = T(2n,n+3), T given by A026736.
- A026853 (program): a(n) = T(2n,n+4), T given by A026736.
- A026854 (program): a(n) = T(2n+1,n+1), T given by A026736.
- A026855 (program): a(n) = T(2n+1,n+2), T given by A026736.
- A026856 (program): a(n) = T(2n+1,n+3), T given by A026736.
- A026857 (program): a(n) = T(2n+1,n+4), T given by A026736.
- A026861 (program): T(2n,n+1), T given by A026747.
- A026898 (program): a(n) = Sum_{k=0..n} (n-k+1)^k.
- A026905 (program): Partial sums of the partition numbers A000041 of the positive integers.
- A026906 (program): Number of sums S of distinct positive integers satisfying S <= n.
- A026907 (program): Triangular array T read by rows (9-diamondization of Pascal’s triangle). Step 1: t(n,k) = sum of 9 entries in diamond-shaped subarray of Pascal’s triangle having vertices C(n,k), C(n+4,k+2), C(n+2,k), C(n+2,k+2). Step 2: T(n,k) = t(n,k) - t(0,0) + 1.
- A026908 (program): T(2n,n), T given by A026907.
- A026909 (program): (1/2)*T(2n,n), T given by A026907.
- A026910 (program): T(2n,n-1), T given by A026907.
- A026911 (program): T(2n,n-2), T given by A026907.
- A026912 (program): T(2n-1,n-1), T given by A026907.
- A026913 (program): T(2n-1,n-2), T given by A026907.
- A026914 (program): T(n,[ n/2 ]), T given by A026907.
- A026915 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A026907.
- A026917 (program): a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=n, T given by A026907.
- A026922 (program): Number of partitions of n into an odd number of parts, the greatest being 2; also, a(n+3) = number of partitions of n+1 into an even number of parts, each <=2.
- A026923 (program): Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.
- A026927 (program): Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3.
- A026928 (program): Number of partitions of n into an even number of parts, the greatest being 4; also, a(n+7) = number of partitions of n+3 into an odd number of parts, each <=4.
- A026933 (program): Self-convolution of array T given by A008288.
- A026934 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A008288.
- A026937 (program): a(n) = Sum_{k=0..n} (k+1)*T(n,n-k), where T is given by A008288.
- A026938 (program): Greatest number in row of n array T given by A026300.
- A026939 (program): Self-convolution of array T given by A026300.
- A026940 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026300.
- A026943 (program): a(n) = Sum_{k=0..n} (k+1) * T(n, k), with T given by A026300.
- A026945 (program): A bisection of the Motzkin numbers A001006.
- A026946 (program): Self-convolution of array T given by A026374.
- A026947 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026374.
- A026948 (program): a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026374.
- A026949 (program): a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026374.
- A026950 (program): a(n) = Sum{(k+1)*T(n,k)}, 0<=k<=n, T given by A026374.
- A026951 (program): Self-convolution of array T given by A026386.
- A026952 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026386.
- A026953 (program): a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026386.
- A026954 (program): a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026386.
- A026955 (program): a(n) = Sum_{k=0..n} (k+1) * T(n,k), with T given by A026386.
- A026956 (program): a(n) = self-convolution of array T given by A026615.
- A026960 (program): a(n) = Sum_{k=0..n} (k+1) * A026615(n,k).
- A026965 (program): a(n) = Sum_{k=0..n} (k+1) * A026626(n,k).
- A026970 (program): a(n) = Sum_{k=0..n} (k+1) * A026637(n,k).
- A026975 (program): a(n) = Sum_{k=0..n} (k+1) * A026648(n,k).
- A026985 (program): a(n) = Sum_{k=0..n} (k+1) * A026670(n, k).
- A026998 (program): Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027960, 0<=k<=n, n >= 0.
- A027000 (program): a(n) = Lucas(2n+3) - (6n+4).
- A027001 (program): a(n) = T(2*n, n+2), T given by A026998.
- A027002 (program): a(n) = T(2*n, n+3), T given by A026998.
- A027003 (program): a(n) = A026998(2n, n+4).
- A027004 (program): a(n) = T(2*n+1,n+1), T given by A026998.
- A027005 (program): a(n) = T(2*n+1,n+2), T given by A026998.
- A027006 (program): a(n) = T(2*n+1, n+3), T given by A026998.
- A027007 (program): a(n) = A026998(2n+1, n+4).
- A027008 (program): a(n) = greatest number in row n of array T given by A026998.
- A027009 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m=[ (n+2)/2 ], T given by A026998.
- A027010 (program): a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is the n-th diagonal sum of left-justified array T given by A026998.
- A027011 (program): Triangular array T read by rows: T(n,k) = t(n, 2k+1) for 0 <= k <= floor((2n-1)/2), t given by A027960, n >= 0.
- A027012 (program): a(n) = T(2*n, n+1), T given by A027011.
- A027013 (program): a(n) = T(2*n, n+2), T given by A027011.
- A027014 (program): a(n) = T(2*n, n+3), T given by A027011.
- A027015 (program): a(n) = A027011(2n, n+4).
- A027016 (program): T(2n+1,n+1), T given by A027011.
- A027017 (program): a(n) = T(2*n+1, n+2), T given by A027011.
- A027018 (program): a(n) = T(2*n+1, n+3), T given by A027011.
- A027019 (program): a(n) = A027011(2n+1, n+4).
- A027020 (program): a(n) = greatest number in row n of array T given by A027011.
- A027021 (program): a(n) = T(n,n) + T(n,m+1) + … + T(n,n), where m=[ (n+2)/2 ], T given by A027011.
- A027022 (program): a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is n-th diagonal sum of left-justified array T given by A027011.
- A027024 (program): a(n) = T(n,n+2), T given by A027023.
- A027025 (program): a(n) = T(n,n+3), T given by A027023.
- A027026 (program): a(n) = T(n,n+4), T given by A027023.
- A027053 (program): a(n) = T(n,n+2), T given by A027052.
- A027054 (program): a(n) = T(n, n+3), T given by A027052.
- A027055 (program): a(n) = T(n, n+4), T given by A027052.
- A027056 (program): a(n) = A027052(n, 2n-1).
- A027057 (program): a(n) = (1/2) * A027052(n, 2n-1).
- A027058 (program): a(n) = A027052(n, 2n-2).
- A027059 (program): a(n) = A027052(n, 2n-3).
- A027083 (program): a(n) = A027082(n, n+2)
- A027084 (program): G.f.: x^2*(x^2 + x + 1)/(x^4 - 2*x + 1).
- A027085 (program): a(n) = A027082(n, n+3).
- A027086 (program): a(n) = A027082(n, n+4).
- A027107 (program): a(n) = Sum_{k=0..2n} (k+1) * A027082(n, 2n-k).
- A027114 (program): a(n) = A027113(n, n+2).
- A027116 (program): a(n) = A027113(n, n+3).
- A027117 (program): a(n) = A027113(n, n+4).
- A027138 (program): a(n) = Sum_{k=0..2n} (k+1) * A027113(n, 2n-k).
- A027151 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027144.
- A027153 (program): a(n) = Sum_{0<=j<=i<=n} A027144(i, j).
- A027154 (program): a(n) = Sum_{k=0..floor(n/2)} A027144(n-k, k).
- A027164 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027157.
- A027166 (program): a(n) = Sum_{0<=j<=i<=n} A027157(i, j).
- A027167 (program): a(n) = Sum_{k=0..floor(n/2)} A027157(n-k, k).
- A027170 (program): Triangular array T read by rows (4-diamondization of Pascal’s triangle). Step 1: t(n,k) = C(n+2,k+1) + C(n+1,k) + C(n+1,k+1) + C(n,k). Step 2: T(n,k) = t(n,k) - t(0,0) + 1. Domain: 0 <= k <= n, n >= 0.
- A027171 (program): a(n) = A027170(2n, n).
- A027172 (program): a(n) = (1/2) * A027170(2n, n).
- A027173 (program): a(n) = A027170(2n, n-1).
- A027174 (program): a(n) = A027170(2n, n-2).
- A027175 (program): a(n) = A027170(2n-1, n-1).
- A027176 (program): a(n) = A027170(2n-1, n-2).
- A027177 (program): a(n) = A027170(n, floor(n/2)).
- A027178 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027170.
- A027180 (program): a(n) = Sum_{0<=j<=i<=n} A027170(i, j).
- A027181 (program): a(n) = Lucas(n+4) - 2*(n+3).
- A027187 (program): Number of partitions of n into an even number of parts.
- A027193 (program): Number of partitions of n into an odd number of parts.
- A027257 (program): a(n) = self-convolution of row n of array T given by A025177.
- A027258 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A025177.
- A027259 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A025177.
- A027260 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A025177.
- A027261 (program): a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).
- A027262 (program): a(n) = self-convolution of row n of array T given by A026519.
- A027263 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026519.
- A027264 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026519.
- A027265 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026519.
- A027266 (program): a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).
- A027267 (program): a(n) = self-convolution of row n of array T given by A026536.
- A027268 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.
- A027269 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026536.
- A027270 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026536.
- A027271 (program): a(n) = Sum_{k=0..2n} (k+1)*T(n,k), where T is given by A026536.
- A027272 (program): Self-convolution of row n of array T given by A026552.
- A027273 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.
- A027274 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026552.
- A027275 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026552.
- A027276 (program): a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
- A027277 (program): a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n-k,k).
- A027279 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026568.
- A027281 (program): a(n) = Sum_{k=0..2n} (k+1) * A026568(n, k).
- A027282 (program): a(n) = self-convolution of row n of array T given by A026584.
- A027284 (program): a(n) = Sum_{k=0..2*n-2} T(n,k) * T(n,k+2), with T given by A026584.
- A027286 (program): a(n) = Sum_{k=0..2n} (k+1) * A026584(n, k).
- A027292 (program): a(n) = Sum_{k=0..m} (k+1) * A026009(n, m-k) where m = floor(n/2)+1.
- A027293 (program): Triangular array given by rows: P(n,k) is the number of partitions of n that contain k as a part.
- A027301 (program): a(n) = self-convolution of row n of Catalan triangle (A008315).
- A027302 (program): a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315.
- A027305 (program): a(n) = Sum_{k=0..floor((n+1)/2)} (k+1) * A008315(n, k).
- A027306 (program): a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
- A027307 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).
- A027309 (program): a(n) = Sum_{k=0..n+1} T(n,k) * T(n,k+1), with T given by A026323.
- A027313 (program): a(n) = Sum_{k=0..2n} (k+1) * A026323(n, 2n-k).
- A027314 (program): a(n) is the sum of squares of numbers in row n of array T given by A026323.
- A027315 (program): Self-convolution of array T given by A026082.
- A027327 (program): a(n) = Sum_{k=0..m} (k+1) * A026120(n, m-k), where m=0 for n=0,1; m=n for n >= 2.
- A027328 (program): a(n) is the sum of squares of the numbers in row n of array T given by A026120.
- A027334 (program): a(n) = Sum_{k=0..m} (k+1) * A026148(n, m-k), where m=0 for n=1; m=n+1 for n >= 2.
- A027336 (program): Number of partitions of n that do not contain 2 as a part.
- A027337 (program): Number of partitions of n that do not contain 3 as a part.
- A027338 (program): Number of partitions of n that do not contain 4 as a part.
- A027339 (program): Number of partitions of n that do not contain 5 as a part.
- A027340 (program): Number of partitions of n that do not contain 6 as a part.
- A027341 (program): Number of partitions of n that do not contain 7 as a part.
- A027342 (program): Number of partitions of n that do not contain 8 as a part.
- A027343 (program): Number of partitions of n that do not contain 9 as a part.
- A027346 (program): Expansion of Product_{m>=1} (1 + q^m)^(3*m).
- A027375 (program): Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.
- A027376 (program): Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.
- A027377 (program): Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.
- A027378 (program): Expansion of (1+x^2-x^3)/(1-x)^4.
- A027379 (program): Expansion of (1+x^2-x^3)/(1-x)^3.
- A027380 (program): Number of irreducible polynomials of degree n over GF(8); dimensions of free Lie algebras.
- A027381 (program): Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.
- A027382 (program): a(n) = n^4 - 6*n^3 + 12*n^2 - 4*n + 1.
- A027383 (program): a(2*n) = 3*2^n - 2; a(2*n+1) = 2^(n+2) - 2.
- A027390 (program): Number of labeled servers of dimension 3.
- A027391 (program): Number of labeled servers of dimension 4.
- A027396 (program): Number of labeled servers of dimension 9.
- A027397 (program): Number of labeled servers of dimension 10.
- A027398 (program): Number of labeled servers of dimension 11.
- A027399 (program): Number of labeled servers of dimension 12.
- A027400 (program): Number of labeled servers of dimension 13.
- A027401 (program): Number of labeled servers of dimension 14.
- A027402 (program): Number of labeled servers of dimension 15.
- A027403 (program): Number of labeled servers of dimension 16.
- A027404 (program): Number of labeled servers of dimension 17.
- A027405 (program): Number of labeled servers of dimension 18.
- A027406 (program): Number of labeled servers of dimension 19.
- A027407 (program): Number of labeled servers of dimension 20.
- A027408 (program): Number of labeled servers of dimension 21.
- A027409 (program): Number of labeled servers of dimension 22.
- A027410 (program): Number of labeled servers of dimension 23.
- A027411 (program): Number of labeled servers of dimension 24.
- A027412 (program): a(n) = 2*a(n-1) + (n-2)*a(n-2).
- A027414 (program): G.f. for Moebius transform is x * (1 + x) / (1 + x^4).
- A027423 (program): Number of divisors of n!.
- A027434 (program): a(1) = 2; then defined by property that a(n) = smallest number >= a(n-1) such that successive runs have lengths 1,1,2,2,3,3,4,4.
- A027437 (program): a(n) = floor( e * 2^n ).
- A027439 (program): Expansion of 1/(1 - 4*x + 5*x^2 - 3*x^3).
- A027441 (program): a(n) = (n^4 + n)/2 (Row sums of an n X n X n magic cube, when it exists).
- A027444 (program): a(n) = n^3 + n^2 + n.
- A027445 (program): a(n) = n^4 + n^3 + n^2 + n^1.
- A027449 (program): Second diagonal of A027446.
- A027451 (program): First diagonal of A027447.
- A027454 (program): First diagonal of A027448.
- A027457 (program): a(n) = (H(n) - 1)*lcm{1,…,n}, where H(n) is the n-th harmonic number.
- A027459 (program): Numerator of Sum_{k=1..n} H(k)/k, where H(k) is k-th harmonic number.
- A027462 (program): a(n) is the numerator of (-1/6) * Integral_{x=0..1} x^n * log^3(1-x).
- A027465 (program): Cube of lower triangular normalized binomial matrix.
- A027466 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j).
- A027467 (program): Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).
- A027468 (program): 9 times the triangular numbers A000217.
- A027469 (program): a(n) = 49*(n-1)*(n-2)/2.
- A027470 (program): a(n) = 225*(n-1)*(n-2)/2.
- A027471 (program): a(n) = (n-1)*3^(n-2), n > 0.
- A027472 (program): Third convolution of the powers of 3 (A000244).
- A027473 (program): Second column of A027466.
- A027474 (program): a(n) = 7^(n-2) * C(n,2).
- A027475 (program): a(n) = (n-1) * 15^(n-2).
- A027476 (program): Third column of A027467.
- A027480 (program): a(n) = n*(n+1)*(n+2)/2.
- A027481 (program): Second subdiagonal of triangle A027477, constructed from the Stirling numbers of the first kind.
- A027482 (program): a(n) = n*(n^3 - 1)/2.
- A027484 (program): a(n) = n*(n^4-1)/2.
- A027540 (program): Second diagonal of A027537.
- A027542 (program): Second diagonal of A027538.
- A027544 (program): Second diagonal of A027539.
- A027555 (program): Triangle of binomial coefficients C(-n,k).
- A027556 (program): Unbalanced strings of length n.
- A027557 (program): Number of 3-balanced strings of length n: let d(S)= #(1)’s in S - #(0)’s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=3.
- A027558 (program): Number of 3-unbalanced strings of length n (= 2^n - A027557(n)).
- A027559 (program): Number of 4-balanced strings of length n: let d(S)= #(1)’s in S - #(0)’s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=4.
- A027561 (program): Number of 4-unbalanced strings of length n (=2^n-A027559(n)).
- A027575 (program): a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2.
- A027578 (program): Sums of five consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2.
- A027599 (program): a(n) = 3*n^2 - 7*n + 6.
- A027602 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3.
- A027603 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3.
- A027604 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3 + (n+4)^3.
- A027608 (program): Expansion of 1/((1-x)*(1-2*x)^4).
- A027611 (program): Denominator of n * n-th harmonic number.
- A027612 (program): Numerator of 1/n + 2/(n-1) + 3/(n-2) + … + (n-1)/2 + n.
- A027615 (program): Number of 1’s when n is written in base -2.
- A027616 (program): Number of permutations of n elements containing a 2-cycle.
- A027617 (program): Number of permutations of n elements containing a 3-cycle.
- A027618 (program): c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n).
- A027620 (program): a(n) = n + (n+1)^2 + (n+2)^3.
- A027621 (program): a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4.
- A027622 (program): a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.
- A027625 (program): Numerator of n*(n+5)/((n+2)*(n+3)).
- A027626 (program): Denominator of n*(n+5)/((n+2)*(n+3)).
- A027628 (program): Expansion of Molien series for 5-dimensional group G_3 acting on Jacobi polynomials of ternary self-dual codes.
- A027637 (program): a(n) = Product_{i=1..n} (4^i - 1).
- A027639 (program): Order of unitary 2^n X 2^n group H_{n,4} acting on Siegel modular forms.
- A027641 (program): Numerator of Bernoulli number B_n.
- A027642 (program): Denominator of Bernoulli number B_n.
- A027649 (program): a(n) = 2*(3^n) - 2^n.
- A027650 (program): Poly-Bernoulli numbers B_n^(k) with k=-3.
- A027656 (program): Expansion of 1/(1-x^2)^2 (included only for completeness - the policy is always to omit the zeros from such sequences).
- A027657 (program): Expansion of (1+4*x)/(1-34*x+x^2).
- A027658 (program): a(n) = binomial(n+2, 2) + binomial(n+4, 5).
- A027659 (program): a(n) = binomial(n+2,2) + binomial(n+3,3) + binomial(n+4,4) + binomial(n+5,5).
- A027660 (program): a(n) = C(n+2, 2) + C(n+2, 3) + C(n+2, 4) + C(n+2, 5).
- A027670 (program): Number of different bracelets with 6 beads of at most n colors, allowing turning over.
- A027674 (program): Numerical distance between m-th and (m+n)-th spheres in loxodromic sequence of spheres in which each 5 consecutive spheres are in mutual contact.
- A027688 (program): a(n) = n^2 + n + 3.
- A027689 (program): a(n) = n^2 + n + 4.
- A027690 (program): a(n) = n^2 + n + 5.
- A027691 (program): a(n) = n^2 + n + 6.
- A027692 (program): a(n) = n^2 + n + 7.
- A027693 (program): a(n) = n^2 + n + 8.
- A027694 (program): a(n) = n^2 + n + 9.
- A027695 (program): Number of primitive polynomials of degree n over GF(4).
- A027697 (program): Odious primes: primes with odd number of 1’s in binary expansion.
- A027698 (program): Numbers k such that the k-th prime has an odd number of 1’s in its binary expansion.
- A027699 (program): Evil primes: primes with even number of 1’s in their binary expansion.
- A027700 (program): Numbers k such that the k-th prime has an even number of 1’s in its binary expansion.
- A027709 (program): Minimal perimeter of polyomino with n square cells.
- A027710 (program): Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.
- A027711 (program): Number of binary sequences of length n with an even number of ones, at least two of the ones being contiguous.
- A027742 (program): a(n) = phi(4^n-1)/(2*n).
- A027749 (program): Take the list 1,2,3,4,… and replace each n with all d > 1 that divide n.
- A027750 (program): Triangle read by rows in which row n lists the divisors of n.
- A027751 (program): Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention.
- A027752 (program): Numbers k such that k^2 + k + 3 is prime.
- A027753 (program): Primes of form n^2 + n + 3.
- A027754 (program): Numbers k such that k^2 + k + 5 is prime.
- A027755 (program): Primes of the form k^2 + k + 5.
- A027756 (program): Numbers k such that k^2 + k + 7 is prime.
- A027757 (program): Numbers k such that k^2 + k + 9 is prime.
- A027758 (program): Primes of the form k^2 + k + 9.
- A027759 (program): Numerator of Sum_{p prime, p-1|n} 1/p.
- A027760 (program): Denominator of Sum_{p prime, p-1 divides n} 1/p.
- A027761 (program): Numerator of sum_{p prime, p-1 divides 2*n} 1/p.
- A027762 (program): Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.
- A027764 (program): a(n) = (n+1)*binomial(n+1,4).
- A027765 (program): a(n) = (n+1)*binomial(n+1,5).
- A027766 (program): a(n) = (n+1)*binomial(n+1,6).
- A027767 (program): a(n) = (n+1)*binomial(n+1,7).
- A027768 (program): a(n) = (n+1)*binomial(n+1,8).
- A027769 (program): a(n) = (n+1)*binomial(n+1, 9).
- A027770 (program): a(n) = (n + 1)*binomial(n + 1, 10).
- A027771 (program): a(n) = (n+1)*binomial(n+1,11).
- A027772 (program): a(n) = (n+1)*binomial(n+1,12).
- A027773 (program): a(n) = (n+1)*binomial(n+1,13).
- A027774 (program): a(n) = (n+1)*binomial(n+1,14).
- A027775 (program): a(n) = (n+1)*binomial(n+1, 15).
- A027776 (program): a(n) = (n+1)*binomial(n+1,16).
- A027777 (program): a(n) = 2*(n+1)*binomial(n+2,4).
- A027778 (program): a(n) = 5*(n+1)*binomial(n+2, 5)/2.
- A027779 (program): a(n) = 3*(n+1)*binomial(n+2,6).
- A027780 (program): a(n) = 7*(n+1)*binomial(n+2,7)/2.
- A027781 (program): a(n) = 4*(n+1)*binomial(n+2,8).
- A027782 (program): a(n) = 9*(n+1)*binomial(n+2,9)/2.
- A027783 (program): a(n) = 5*(n+1)*binomial(n+2,10).
- A027784 (program): a(n) = 11*(n+1)*binomial(n+2,11)/2.
- A027785 (program): a(n) = 6*(n+1)*binomial(n+2,12).
- A027786 (program): a(n) = 13*(n+1)*binomial(n+2,13)/2.
- A027787 (program): a(n) = 7*(n+1)*binomial(n+2,14).
- A027788 (program): a(n) = 15*(n+1)*binomial(n+2,15)/2.
- A027789 (program): a(n) = 2*(n+1)*binomial(n+3,4).
- A027790 (program): a(n) = 10*(n+1)*binomial(n+3,5)/3.
- A027791 (program): a(n) = 5*(n+1)*binomial(n+3,6).
- A027792 (program): a(n) = 7*(n+1)*binomial(n+3,7).
- A027793 (program): a(n) = 28*(n+1)*binomial(n+3,8)/3.
- A027794 (program): a(n) = 12*(n+1)*binomial(n+3,9).
- A027795 (program): a(n) = 15*(n+1)*binomial(n+3,10).
- A027796 (program): a(n) = 55*(n+1)*binomial(n+3,11)/3.
- A027797 (program): a(n) = 22*(n+1)*binomial(n+3,12).
- A027798 (program): a(n) = 26*(n+1)*binomial(n+3,13).
- A027799 (program): a(n) = 91*(n+1)*binomial(n+3,14)/3.
- A027800 (program): a(n) = (n+1)*binomial(n+4, 4).
- A027801 (program): a(n) = 5*(n+1)*binomial(n+4,5)/2.
- A027802 (program): a(n) = 5*(n+1)*binomial(n+4,6).
- A027803 (program): a(n) = 35*(n+1)*binomial(n+4, 7)/4.
- A027804 (program): a(n) = 14*(n+1)*binomial(n+4,8).
- A027805 (program): a(n) = 21*(n+1)*binomial(n+4,9).
- A027806 (program): a(n) = 30*(n+1)*binomial(n+4,10).
- A027807 (program): a(n) = 165*(n+1)*binomial(n+4,11)/4.
- A027808 (program): a(n) = 55*(n+1)*binomial(n+4,12).
- A027809 (program): a(n) = 143*(n+1)*binomial(n+4,13)/2.
- A027810 (program): a(n) = (n+1)*binomial(n+5, 5).
- A027811 (program): a(n) = 3*(n+1)*binomial(n+5,6).
- A027812 (program): a(n) = 7*(n+1)*binomial(n+5,7).
- A027813 (program): a(n) = 14*(n+1)*binomial(n+5,8).
- A027814 (program): a(n) = 126*(n+1)*binomial(n+5,9)/5.
- A027815 (program): a(n) = 42*(n+1) * binomial(n+5,10).
- A027816 (program): a(n) = 66*(n+1)*binomial(n+5,11).
- A027817 (program): a(n) = 99*(n+1)*binomial(n+5,12).
- A027818 (program): a(n) = (n+1)*binomial(n+6,6).
- A027819 (program): a(n) = 7*(n+1)*binomial(n+6,7)/2.
- A027820 (program): a(n) = 28*(n+1)*binomial(n+6,8)/3.
- A027821 (program): a(n) = 21*(n+1)*binomial(n+6,9).
- A027822 (program): a(n) = 42*(n+1)*binomial(n+6,10).
- A027823 (program): a(n) = 77*(n+1)*binomial(n+6,11).
- A027826 (program): Inverse binomial transform of a_0 = 1, a_1, a_2, etc. is a_0, 0, a_1, 0, a_2, 0, etc.
- A027828 (program): First differences of A010785.
- A027831 (program): Expansion of 1/(1 - 4*x + 2*x^2 + 4*x^3 - 2*x^4).
- A027833 (program): Distances between successive 2’s in sequence A001223 of differences between consecutive primes.
- A027837 (program): Number of subgroups of index n in free group of rank 3.
- A027847 (program): a(n) = Sum_{d|n} sigma(n/d)*d^3.
- A027848 (program): a(n) = Sum_{ d|n } sigma(n/d)*d^4.
- A027849 (program): a(n) = (n+1)*(5*n^2+4*n+1).
- A027850 (program): a(n) = (n+1)*(14*n^3+13*n^2+6*n+1).
- A027857 (program): Number of positive divisors of n!, read mod n.
- A027861 (program): Numbers k such that k^2 + (k+1)^2 is prime.
- A027862 (program): Primes of the form j^2 + (j+1)^2.
- A027863 (program): Numbers k such that k^2 + (k+1)^2 + (k+2)^2 is prime.
- A027864 (program): Primes of the form k^2 + (k+1)^2 + (k+2)^2.
- A027865 (program): Sums of six consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.
- A027866 (program): Numbers k such that k^2 + (k+1)^2 + (k+2)^2 + (k+3)^2 + (k+4)^2 + (k+5)^2 is prime.
- A027867 (program): Primes of the form n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.
- A027868 (program): Number of trailing zeros in n!; highest power of 5 dividing n!.
- A027869 (program): Number of 0’s in n!.
- A027871 (program): a(n) = Product_{i=1..n} (3^i - 1).
- A027872 (program): a(n) = Product_{i=1..n} (5^i - 1).
- A027873 (program): a(n) = Product_{i=1..n} (6^i - 1).
- A027874 (program): Minimal degree path length of a tree with n leaves.
- A027875 (program): a(n) = Product_{i=1..n} (7^i - 1).
- A027876 (program): a(n) = Product_{i=1..n} (8^i - 1).
- A027877 (program): a(n) = Product_{i=1..n} (9^i - 1).
- A027878 (program): a(n) = Product_{i=1..n} (10^i - 1).
- A027879 (program): a(n) = Product_{i=1..n} (11^i - 1).
- A027880 (program): a(n) = Product_{i=1..n} (12^i - 1).
- A027882 (program): a(n) = sum_{k>=1} k^n (2/3)^k.
- A027883 (program): Positions of primes in sequence (A246655) of primes and prime powers {p^i, i >= 1}.
- A027903 (program): n * (n + 1) * (3*n + 1).
- A027904 (program): Terminating decimals of length n of form p/2^q using at most one of each nonzero digit.
- A027906 (program): Expansion of Product_{m>=1} (1+q^m)^(4*m).
- A027907 (program): Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.
- A027908 (program): a(n) = T(2*n, n), T given by A027907.
- A027909 (program): T(2n,n-1), T given by A027907.
- A027910 (program): T(2n,n-2), T given by A027907.
- A027911 (program): a(n) = T(2*n+1,n), with T given by A027907.
- A027912 (program): T(2n-1,n-2), T given by A027907.
- A027913 (program): T(n,[ n/2 ]), T given by A027907.
- A027914 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A027907.
- A027915 (program): a(n) = Sum_{0<=j<=i, 0<=i<=n} A027907(i, j).
- A027916 (program): Least k such that 1+2+…+k >= E{1,2,…,n}, where E = 2nd elementary symmetric function.
- A027917 (program): a(n) = least k such that 1+2+…+k >= E{1,2,…,n}, where E is the 3rd elementary symmetric function.
- A027918 (program): Least k such that 1+2+…+k >= E{1,2,…,n}, where E is the 4th elementary symmetric function.
- A027922 (program): Least k such that 1+2+…+k >= 1^2 + 2^2 + … + n^2.
- A027924 (program): a(n) = least k such that 1+2+…+k >= 1^3 + 2^3 + … + n^3.
- A027925 (program): a(n) = least k such that E{1,2,…,k} >= 1^3 + 2^3 + … + n^3, where E = 2nd elementary symmetric function.
- A027926 (program): Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.
- A027927 (program): Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.
- A027928 (program): a(n) = T(n, 2*n-5), T given by A027926.
- A027929 (program): a(n) = T(n, 2*n-6), T given by A027926.
- A027930 (program): a(n) = T(n, 2*n-7), T given by A027926.
- A027931 (program): T(n, 2n-8), T given by A027926.
- A027932 (program): T(n, 2n-9), T given by A027926.
- A027933 (program): a(n) = T(n, 2*n-10), T given by A027926.
- A027934 (program): a(0)=0, a(1)=1, a(2)=2; for n > 2, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
- A027935 (program): Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027926; 0 <= k <= n, n >= 0.
- A027937 (program): a(n) = T(2*n, n+1), T given by A027935.
- A027938 (program): a(n) = T(2n, n+2), T given by A027935.
- A027939 (program): a(n) = T(2*n, n+3), T given by A027935.
- A027940 (program): a(n) = T(2*n, n+4), T given by A027935.
- A027941 (program): a(n) = Fibonacci(2*n + 1) - 1.
- A027942 (program): a(n) = T(2n+1, n+2), T given by A027935.
- A027943 (program): a(n) = T(2*n+1, n+3), T given by A027935.
- A027944 (program): a(n) = T(2n+1, n+4), T given by A027935.
- A027945 (program): Greatest number in row n of array T given by A027935.
- A027946 (program): a(n) is the sum of the non-Fibonacci numbers in row n of array T given by A027935, computed as T(n,m) + T(n,m+1) + … + T(n,n-1), where m = floor((n+2)/2).
- A027947 (program): a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027935.
- A027948 (program): Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.
- A027949 (program): a(n) = T(2n,n+1), T given by A027948.
- A027950 (program): a(n) = T(2n,n+2), T given by A027948.
- A027951 (program): a(n) = T(2n,n+3), T given by A027948.
- A027952 (program): a(n) = T(2n,n+4), T given by A027948.
- A027953 (program): a(0)=1, a(n) = Fibonacci(2n+4) - (2n+3).
- A027954 (program): a(n) = T(2n+1, n+2), T given by A027948.
- A027955 (program): a(n) = T(2n+1, n+3), T given by A027948.
- A027956 (program): a(n) = T(2n+1, n+4), T given by A027948.
- A027957 (program): a(n) = greatest number in row n of array T given by A027948.
- A027958 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m = floor((n+2)/2), T given by A027948.
- A027959 (program): a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027948.
- A027960 (program): ‘Lucas array’: triangular array T read by rows.
- A027961 (program): a(n) = Lucas(n+2) - 3.
- A027963 (program): T(n,n+3), T given by A027960.
- A027964 (program): T(n,n+4), T given by A027960.
- A027965 (program): T(n, 2*n-3), T given by A027960.
- A027966 (program): T(n, 2*n-4), T given by A027960.
- A027967 (program): T(n, 2*n-5), T given by A027960.
- A027968 (program): a(n) = T(n, 2*n-6), T given by A027960.
- A027969 (program): a(n) = T(n, 2*n-7), T given by A027960.
- A027970 (program): a(n) = T(n, 2*n-8), T given by A027960.
- A027971 (program): T(n, 2n-9), T given by A027960.
- A027972 (program): T(n, 2n-10), T given by A027960.
- A027973 (program): a(n) = T(n,n) + T(n,n+1) + … + T(n,2n), T given by A027960.
- A027974 (program): a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960.
- A027975 (program): a(n) is the n-th diagonal sum of left justified array T given by A027960.
- A027976 (program): n-th diagonal sum of right justified array T given by A027960.
- A027977 (program): a(n) = greatest number in row n of array T given by A027960.
- A027978 (program): a(n) = self-convolution of row n of array T given by A027960.
- A027979 (program): a(n) = Sum_{k=0..n} T(n,k)*T(n,2n-k), T given by A027960.
- A027980 (program): a(n) = Sum_{k=0..n-1} T(n,k)*T(n,2n-k), T given by A027960.
- A027981 (program): Sum{(k+1)*T(n,k)}, 0<=k<=2n, T given by A027960.
- A027982 (program): Sum{(k+1)*T(n,2n-k)}, 0<=k<=2n, T given by A027960.
- A027983 (program): T(n,n+1) + T(n,n+2) + … + T(n,2n), T given by A027960.
- A027984 (program): a(n) = Sum{T(n,k)*T(n,n+k)}, 0<=k<=n, T given by A027960.
- A027988 (program): Greatest number in row n of array T given by A027926.
- A027989 (program): a(n) = self-convolution of row n of array T given by A027926.
- A027990 (program): Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n, T given by A027926.
- A027991 (program): a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.
- A027992 (program): a(n) = 1*T(n,0) + 2*T(n,1) + … + (2n+1)*T(n,2n), T given by A027926.
- A027993 (program): a(n) = 1*T(n,2n) + 2*T(n,2n-1) + … + (2n+1)*T(n,0), T given by A027926.
- A027994 (program): a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.
- A027995 (program): a(n)=Sum{T(n,k)*T(n,k+1)}, 0<=k<=2n-1, T given by A027926.
- A027996 (program): a(n)=Sum{T(n,k)*T(n,k+2)}, 0<=k<=2n-2, T given by A027926.
- A027997 (program): Sum{T(n,k)*T(n,k+3)}, 0<=k<=2n-3, T given by A027926.
- A027998 (program): Expansion of Product_{m>=1} (1+q^m)^(m^2).
- A028000 (program): Expansion of 1/((1-2x)(1-6x)(1-9x)(1-11x)).
- A028001 (program): Expansion of 1/((1-2x)(1-6x)(1-9x)(1-12x)).
- A028002 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-10*x)*(1-11*x)).
- A028003 (program): Expansion of 1/((1-2x)(1-6x)(1-10x)(1-12x)).
- A028004 (program): Expansion of 1/((1-2x)(1-6x)(1-11x)(1-12x)).
- A028005 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-9x)).
- A028006 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-10x)).
- A028007 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-11x)).
- A028008 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-12x)).
- A028009 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-10x)).
- A028010 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-11x)).
- A028011 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-12x)).
- A028012 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)(1-11x)).
- A028013 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)(1-12x)).
- A028014 (program): Expansion of 1/((1-2x)(1-7x)(1-11x)(1-12x)).
- A028015 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-10x)).
- A028016 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-11x)).
- A028017 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-12x)).
- A028018 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)(1-11x)).
- A028019 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)(1-12x)).
- A028020 (program): Expansion of 1/((1-2x)(1-8x)(1-11x)(1-12x)).
- A028021 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)(1-11x)).
- A028022 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)(1-12x)).
- A028023 (program): Expansion of 1/((1-2x)(1-9x)(1-11x)(1-12x)).
- A028024 (program): Expansion of 1/((1-2x)(1-10x)(1-11x)(1-12x)).
- A028025 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-6x)).
- A028026 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-7x)).
- A028027 (program): Expansion of 1 / ((1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 8*x)).
- A028028 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)*(1-9*x)).
- A028029 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-10x)).
- A028030 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-11x)).
- A028031 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-12x)).
- A028032 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-7x)).
- A028033 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-8x)).
- A028034 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-9x)).
- A028035 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-10x)).
- A028036 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-11x)).
- A028037 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-12x)).
- A028038 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-8x)).
- A028039 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-9x)).
- A028040 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-10x)).
- A028041 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-11x)).
- A028042 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-12x)).
- A028043 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-9x)).
- A028044 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-10x)).
- A028045 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-11x)).
- A028046 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-12x)).
- A028047 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-10x)).
- A028048 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-11x)).
- A028049 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-12x)).
- A028050 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)(1-11x)).
- A028051 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)(1-12x)).
- A028052 (program): Expansion of 1/((1-3x)(1-4x)(1-11x)(1-12x)).
- A028053 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-7x)).
- A028054 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-8x)).
- A028055 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-9x)).
- A028056 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-10x)).
- A028057 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-11x)).
- A028058 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-12x)).
- A028059 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-8x)).
- A028060 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-9x)).
- A028061 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-10x)).
- A028062 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-11x)).
- A028063 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-12x)).
- A028064 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-9x)).
- A028065 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-10x)).
- A028066 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-11x)).
- A028067 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-12x)).
- A028068 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-10x)).
- A028069 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-11x)).
- A028070 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-12x)).
- A028071 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)(1-11x)).
- A028072 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)(1-12x)).
- A028073 (program): Expansion of 1/((1-3x)(1-5x)(1-11x)(1-12x)).
- A028074 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-8x)).
- A028075 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-9x)).
- A028076 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-10x)).
- A028077 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-11x)).
- A028078 (program): Expansion of 1/((1-3*x)*(1-6*x)*(1-7*x)*(1-12*x)).
- A028079 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-9x)).
- A028080 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-10x)).
- A028081 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-11x)).
- A028082 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-12x)).
- A028083 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-10x)).
- A028084 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-11x)).
- A028085 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-12x)).
- A028086 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)(1-11x)).
- A028087 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)(1-12x)).
- A028088 (program): Expansion of 1/((1-3x)(1-6x)(1-11x)(1-12x)).
- A028089 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-9x)).
- A028090 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-10x)).
- A028091 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-11x)).
- A028092 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-12x)).
- A028093 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-10x)).
- A028094 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-11x)).
- A028095 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-12x)).
- A028096 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)(1-11x)).
- A028097 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)(1-12x)).
- A028098 (program): Expansion of 1/((1-3x)(1-7x)(1-11x)(1-12x)).
- A028099 (program): Expansion of 1/((1 - 3*x)*(1 - 8*x)*(1 - 9*x)*(1 - 10*x)).
- A028100 (program): Expansion of 1/((1-3x)(1-8x)(1-9x)(1-11x)).
- A028101 (program): Expansion of 1/((1-3x)(1-8x)(1-9x)(1-12x)).
- A028102 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)(1-11x)).
- A028103 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)(1-12x)).
- A028104 (program): Expansion of 1/((1-3x)(1-8x)(1-11x)(1-12x)).
- A028105 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)(1-11x)).
- A028106 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)(1-12x)).
- A028107 (program): Expansion of 1/((1-3x)(1-9x)(1-11x)(1-12x)).
- A028108 (program): Expansion of 1/((1-3x)(1-10x)(1-11x)(1-12x)).
- A028110 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-8x)).
- A028111 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-9x)).
- A028112 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-10x)).
- A028113 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-11x)).
- A028114 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-12x)).
- A028115 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-8x)).
- A028116 (program): Expansion of 1 / ((1-4*x)*(1-5*x)*(1-7*x)*(1-9*x)).
- A028117 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-10x)).
- A028118 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-11x)).
- A028119 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-12x)).
- A028120 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-9x)).
- A028121 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-10x)).
- A028122 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-11x)).
- A028123 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-12x)).
- A028124 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-10x)).
- A028125 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-11x)).
- A028126 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-12x)).
- A028127 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)(1-11x)).
- A028128 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)(1-12x)).
- A028129 (program): Expansion of 1/((1-4x)(1-5x)(1-11x)(1-12x)).
- A028130 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-8x)).
- A028131 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-9x)).
- A028132 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-10x)).
- A028133 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-11x)).
- A028134 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-12x)).
- A028135 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-9x)).
- A028136 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-10x)).
- A028137 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-11x)).
- A028138 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-12x)).
- A028139 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-10x)).
- A028140 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-11x)).
- A028141 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-12x)).
- A028142 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)(1-11x)).
- A028143 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)(1-12x)).
- A028144 (program): Expansion of 1/((1-4x)(1-6x)(1-11x)(1-12x)).
- A028145 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-9x)).
- A028146 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-10x)).
- A028147 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-11x)).
- A028148 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-12x)).
- A028149 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-10x)).
- A028150 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-11x)).
- A028151 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-12x)).
- A028152 (program): Expansion of 1/((1-4x)(1-7x)(1-10x)(1-11x)).
- A028153 (program): Expansion of 1/((1-4x)(1-7x)(1-10x)(1-12x)).
- A028154 (program): Expansion of 1/((1-4x)(1-7x)(1-11x)(1-12x)).
- A028155 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-10x)).
- A028156 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-11x)).
- A028157 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-12x)).
- A028158 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)(1-11x)).
- A028159 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)(1-12x)).
- A028160 (program): Expansion of 1/((1-4x)(1-8x)(1-11x)(1-12x)).
- A028161 (program): Expansion of 1/((1-4*x)*(1-9*x)*(1-10*x)*(1-11*x)).
- A028162 (program): Expansion of 1/((1-4x)(1-9x)(1-10x)(1-12x)).
- A028163 (program): Expansion of 1/((1-4x)(1-9x)(1-11x)(1-12x)).
- A028164 (program): Expansion of 1/((1-4x)(1-10x)(1-11x)(1-12x)).
- A028165 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-8x)).
- A028166 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-9x)).
- A028167 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-10x)).
- A028168 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-11x)).
- A028169 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-12x)).
- A028170 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-9x)).
- A028171 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-10x)).
- A028172 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-11x)).
- A028173 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-12x)).
- A028174 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-10x)).
- A028175 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-11x)).
- A028176 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-12x)).
- A028177 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)(1-11x)).
- A028178 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)(1-12x)).
- A028179 (program): Expansion of 1/((1-5x)(1-6x)(1-11x)(1-12x)).
- A028180 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-9x)).
- A028181 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-10x)).
- A028182 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-11x)).
- A028183 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-12x)).
- A028184 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-10x)).
- A028185 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-11x)).
- A028186 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-12x)).
- A028187 (program): Expansion of 1/((1-5x)(1-7x)(1-10x)(1-11x)).
- A028188 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-10*x)*(1-12*x)).
- A028189 (program): Expansion of 1/((1-5x)(1-7x)(1-11x)(1-12x)).
- A028190 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-10x)).
- A028191 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-11x)).
- A028192 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-12x)).
- A028193 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)(1-11x)).
- A028194 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)(1-12x)).
- A028195 (program): Expansion of 1/((1-5x)(1-8x)(1-11x)(1-12x)).
- A028196 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)(1-11x)).
- A028197 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)(1-12x)).
- A028198 (program): Expansion of 1/((1-5x)(1-9x)(1-11x)(1-12x)).
- A028199 (program): Expansion of 1/((1-5x)(1-10x)(1-11x)(1-12x)).
- A028200 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-9x)).
- A028201 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-10x)).
- A028202 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-11x)).
- A028203 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-12x)).
- A028204 (program): Expansion of 1/((1-6*x)*(1-7*x)*(1-9*x)*(1-10*x)).
- A028205 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)(1-11x)).
- A028206 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)(1-12x)).
- A028207 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)(1-11x)).
- A028208 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)(1-12x)).
- A028209 (program): Expansion of 1/((1-6x)(1-7x)(1-11x)(1-12x)).
- A028210 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-10x)).
- A028211 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-11x)).
- A028212 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-12x)).
- A028213 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)(1-11x)).
- A028214 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)(1-12x)).
- A028215 (program): Expansion of 1/((1-6x)(1-8x)(1-11x)(1-12x)).
- A028216 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)(1-11x)).
- A028217 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)(1-12x)).
- A028218 (program): Expansion of 1/((1-6x)(1-9x)(1-11x)(1-12x)).
- A028219 (program): Expansion of 1/((1 - 6*x)*(1 - 10*x)*(1 - 11*x)*(1 - 12*x)).
- A028220 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-11x)).
- A028221 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-12x)).
- A028222 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)(1-11x)).
- A028223 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)(1-12x)).
- A028224 (program): Expansion of 1/((1-7x)(1-8x)(1-11x)(1-12x)).
- A028225 (program): Expansion of 1/((1-7x)(1-9x)(1-10x)(1-11x)).
- A028226 (program): Expansion of 1/((1-7x)(1-9x)(1-10x)(1-12x)).
- A028227 (program): Expansion of 1/((1-7x)(1-9x)(1-11x)(1-12x)).
- A028228 (program): Expansion of 1/((1-7x)(1-10x)(1-11x)(1-12x)).
- A028229 (program): Call m Egyptian if we can partition m = x_1+x_2+…+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all non-Egyptian numbers.
- A028230 (program): Bisection of A001353. Indices of square numbers which are also octagonal.
- A028231 (program): From hexagons in a circle problem.
- A028233 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.
- A028234 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = n/p_1^e_1, with a(1) = 1.
- A028235 (program): If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947).
- A028236 (program): If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j.
- A028242 (program): Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.
- A028243 (program): a(n) = 3^(n-1) - 2*2^(n-1) + 1 (essentially Stirling numbers of second kind).
- A028244 (program): a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).
- A028245 (program): a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind).
- A028246 (program): Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.
- A028249 (program): Molien series for complete weight enumerator of self-dual code over GF(4) containing 1^n.
- A028250 (program): Sequence arising in multiprocessor page migration.
- A028251 (program): Sequence arising in multiprocessor page migration.
- A028252 (program): Sequence arising in multiprocessor page migration.
- A028253 (program): n mod Fibonacci(n).
- A028255 (program): Fibonacci(n+3) mod n-th prime.
- A028256 (program): Fibonacci(n+2) mod n-th prime.
- A028258 (program): Expansion of 1/((1-2*x)*(1-4*x)(1-8*x)(1-16*x)).
- A028260 (program): Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda(k) (A008836) is positive.
- A028261 (program): Numbers whose total number of prime factors (counting multiplicity) is squarefree.
- A028262 (program): Elements in 3-Pascal triangle (by row).
- A028263 (program): Elements in 3-Pascal triangle A028262 (by row) that are not 1.
- A028264 (program): Odd elements in 3-Pascal triangle A028262 (by row).
- A028265 (program): Odd elements in 3-Pascal triangle A028262 (by row) that are not 1.
- A028266 (program): Even elements in 3-Pascal triangle A028262 (by row).
- A028270 (program): Central elements in 3-Pascal triangle A028262 (by row).
- A028271 (program): Elements to right of central elements in 3-Pascal triangle A028262.
- A028272 (program): Elements to right of central elements in 3-Pascal triangle A028262 that are not 1.
- A028273 (program): Even elements to right of central elements in 3-Pascal triangle A028262.
- A028274 (program): Odd elements (greater than 1) to right of central elements in 3-Pascal triangle A028262.
- A028275 (program): Elements in 4-Pascal triangle (by row).
- A028276 (program): Elements in 4-Pascal triangle A028275 (by row) that are not 1.
- A028277 (program): Odd elements in 4-Pascal triangle A028275 (by row).
- A028278 (program): Odd elements in 4-Pascal triangle A028275 (by row) that are not 1.
- A028279 (program): Even elements in 4-Pascal triangle A028275 (by row).
- A028283 (program): Central elements in 4-Pascal triangle A028275 (by row).
- A028284 (program): Elements to right of central elements in 4-Pascal triangle A028275.
- A028285 (program): Elements to right of central elements in 4-Pascal triangle A028275 that are not 1.
- A028286 (program): Even elements to right of central elements in 4-Pascal triangle A028275.
- A028287 (program): Odd elements (greater than 1) to right of central elements in 4-Pascal triangle A028275.
- A028288 (program): Molien series for complex 4-dimensional Clifford group of order 92160 and genus 2. Also Molien series of ring of biweight enumerators of Type II self-dual binary codes.
- A028289 (program): Expansion of (1+x^2+x^3+x^5)/((1-x)(1-x^3)(1-x^4)(1-x^6)).
- A028290 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^5)(1-x^8)).
- A028291 (program): Expansion of 1/((1-x)^2(1-x^2)(1-x^3)(1-x^5)) in powers of x.
- A028293 (program): Period 7.
- A028296 (program): Expansion of e.g.f. Gudermannian(x) = 2*arctan(exp(x)) - Pi/2.
- A028297 (program): Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).
- A028302 (program): a(n) = prime(n)*Catalan(n).
- A028303 (program): a(n) = floor((1/(ceiling(n/2)+1))*binomial(n,floor(n/2))) (interpolates between Catalan numbers).
- A028304 (program): a(n) = ceiling((1/(ceiling(n/2)+1))*binomial(n,floor(n/2))) (interpolates between Catalan numbers).
- A028309 (program): Molien series for ring of symmetrized weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).
- A028310 (program): Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.
- A028311 (program): Odd numbers k such that {1..k-1} can be partitioned into disjoint sets I, J with 2I == -J (mod k) such that I, J are unions of cyclotomic cosets mod k.
- A028312 (program): Odd numbers k such that {1..k-1} cannot be partitioned into disjoint sets I, J such that 2I == -J (mod k) and I, J are unions of cyclotomic cosets mod k.
- A028313 (program): Elements in the 5-Pascal triangle (by row).
- A028314 (program): Elements in the 5-Pascal triangle A028313 that are not 1.
- A028315 (program): Odd elements in the 5-Pascal triangle A028313.
- A028316 (program): Odd elements in the 5-Pascal triangle A028313 that are not 1.
- A028317 (program): Even elements in the 5-Pascal triangle A028313.
- A028321 (program): Even elements to the right of the central elements of the 5-Pascal triangle A028313.
- A028322 (program): Central elements in the 5-Pascal triangle A028313.
- A028323 (program): Elements to the right of the central elements of the 5-Pascal triangle A028313.
- A028324 (program): Elements to the right of the central elements of the 5-Pascal triangle A028313 that are not 1.
- A028325 (program): Odd elements to the right of the central elements of the 5-Pascal triangle A028313.
- A028326 (program): Twice Pascal’s triangle A007318: T(n,k) = 2*C(n,k).
- A028327 (program): Elements in the even-Pascal triangle A028326 that are not 2.
- A028329 (program): Twice central binomial coefficients.
- A028330 (program): Elements to the right of the central elements of the even-Pascal triangle A028326.
- A028331 (program): Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.
- A028334 (program): Differences between consecutive odd primes, divided by 2.
- A028339 (program): Coefficient of x^2 in expansion of (x+1)*(x+3)*…*(x+2*n-1).
- A028340 (program): Coefficient of x^3 in expansion of (x+1)*(x+3)*…*(x+2*n-1).
- A028342 (program): Expansion of Product_{i>=1} (1 - x^i)^(-1/i); also of exp(Sum_{n>=1} (d(n)*x^n/n)) where d is number of divisors function.
- A028343 (program): Expansion of Product_{i>=1} (1-x^i)^(1/i); also of exp(- Sum_{n>=1}(d(n)*x^n/n)) where d(n) is the number of divisors of n.
- A028346 (program): Expansion of 1/((1-x)^4*(1-x^2)^2).
- A028347 (program): a(n) = n^2 - 4.
- A028350 (program): Expansion of -1/x + 6*3F2( 5/6, 1, 7/6; 3/2, 2; 108*x).
- A028352 (program): A Golomb-like recurrence that decreases infinitely often.
- A028353 (program): Coefficient of x^(2*n+1) in arctanh(x)/sqrt(1-x^2), multiplied by (2*n+1)!.
- A028356 (program): Simple periodic sequence underlying clock sequence A028354.
- A028357 (program): Partial sums of A028356.
- A028358 (program): Partial sums of A028357.
- A028359 (program): Two-bell analog of A028355.
- A028361 (program): Number of totally isotropic spaces of index n in orthogonal geometry of dimension 2n.
- A028362 (program): Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
- A028365 (program): Order of general affine group over GF(2), AGL(n,2).
- A028368 (program): a(n) = (Product_{j=1..n-1} (2^j-1)) * 2^binomial(n+1,2).
- A028373 (program): Numbers that have only the straight digits {1, 4, 7}.
- A028374 (program): Curved numbers: numbers that have only curved digits (0, 2, 3, 5, 6, 8, 9).
- A028375 (program): Squares of (odd numbers not divisible by 5).
- A028379 (program): a(n) = 6*(n+1)*(2*n+6)!/((n+3)!*(n+5)!).
- A028387 (program): a(n) = n + (n+1)^2.
- A028389 (program): The 5x + 1 sequence beginning at 7.
- A028390 (program): Nearest integer to 3n/4 unless that is an integer, when 3n/2.
- A028391 (program): a(n) = n - floor(sqrt(n)).
- A028392 (program): a(n) = n + floor(sqrt(n)).
- A028393 (program): Iterate the map in A006368 starting at 8.
- A028394 (program): Iterate the map in A006369 starting at 8.
- A028395 (program): Iterate the map in A006368 starting at 14.
- A028396 (program): Iterate the map in A006369 starting at 14.
- A028399 (program): a(n) = 2^n - 4.
- A028400 (program): a(n) = (2^n + 1)^2.
- A028401 (program): The (2^n+1)-th triangular number (cf. A000217).
- A028402 (program): Number of types of Boolean functions of n variables under a certain group.
- A028403 (program): Number of types of Boolean functions of n variables under a certain group.
- A028408 (program): Number of types of Boolean functions of n variables under a certain group.
- A028410 (program): Number of types of Boolean functions of n variables under a certain group.
- A028425 (program): Clog sequence in base 4. Right to left concatenation of n, int(log_4(n)), int(log_4(int(log_4(n)))), … in base 4.
- A028426 (program): Clog sequence in base 5. Right to left concatenation of n,int(log_5(n)),int(log_5(int(log_5(n)))),… in base5.
- A028427 (program): Clog sequence in base 6. Right to left concatenation of n,int(log_6(n)),int(log_6(int(log_6(n)))),… in base6.
- A028428 (program): Clog sequence in base 7. Right to left concatenation of n,int(log_7(n)),int(log_7(int(log_7(n)))),… in base7.
- A028429 (program): Clog sequence in base 8. Right to left concatenation of n, int(log_8(n)),int(log_8(int(log_8(n)))),… in base8.
- A028430 (program): Clog sequence in base 9. Right to left concatenation of n, int(log_9(n)), int(log_9(int(log_9(n)))),… in base9.
- A028431 (program): Clog sequence in base 10. Right to left concatenation of n, int(log_10(n)), int(log_10(int(log_10(n)))),… in base10.
- A028434 (program): Golc sequence in base 4. Left to right concatenation of n,int(log_4(n)),int(log_4(int(log_4(n)))),… in base 4.
- A028435 (program): Golc sequence in base 5. Left to right concatenation of n,int(log_5(n)),int(log_5(int(log_5(n)))),… in base5.
- A028436 (program): Golc sequence in base 6. Left to right concatenation of n,int(log_6(n)),int(log_6(int(log_6(n)))),… in base6.
- A028438 (program): Golc sequence in base 8. Left to right concatenation of n,int(log_8(n)),int(log_8(int(log_8(n)))),… in base8.
- A028439 (program): Golc sequence in base 9. Left to right concatenation of n,int(log_9(n)),int(log_9(int(log_9(n)))),… in base9.
- A028440 (program): Golc sequence in base 10. Left to right concatenation of n,int(log_10(n)),int(log_10(int(log_10(n)))),… in base 10.
- A028477 (program): Number of perfect matchings in graph C_{6} X P_{n}.
- A028493 (program): a(0) = 16, a(n+1) = 3a(n) - (6-n)^2.
- A028494 (program): a(n) = -(1/2)*(n+2)*(n^2 - 6*n - 1).
- A028495 (program): Expansion of (1-x^2)/(1-x-2*x^2+x^3).
- A028505 (program): Number of primes <= 100*n.
- A028552 (program): a(n) = n*(n+3).
- A028557 (program): a(n) = n*(n+5).
- A028560 (program): a(n) = n*(n + 6), also numbers j such that 9*(9 + j) is a perfect square.
- A028563 (program): a(n) = n*(n+7).
- A028566 (program): a(n) = n*(n+8).
- A028569 (program): a(n) = n*(n + 9).
- A028572 (program): Expansion of theta_3(z)*theta_3(2z) + theta_2(z)*theta_2(2z) in powers of q^(1/4).
- A028574 (program): Expansion of 1/((1-16*x)^2*(1 - 14*x + 56*x^2 - 64*x^3)).
- A028594 (program): Expansion of (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2 in powers of q.
- A028601 (program): Expansion of (theta_3(z)*theta_3(9z) + theta_2(z)*theta_2(9z)).
- A028609 (program): Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z)).
- A028617 (program): Expansion of (theta_3(z)*theta_3(13z) + theta_2(z)*theta_2(13z)).
- A028625 (program): Expansion of (theta_3(z)*theta_3(15z)+theta_2(z)*theta_2(15z)).
- A028633 (program): Expansion of (theta_3(z)*theta_3(17z) + theta_2(z)*theta_2(17z)).
- A028641 (program): Expansion of theta_3(q) * theta_3(q^19) + theta_2(q) * theta_2(q^19) in powers of q.
- A028665 (program): Galois numbers for p=3; order of group AGL(n,3).
- A028666 (program): a(n) = order of the orthogonal group O_n(2) if n is odd or O^(+)_n(2) if n is even.
- A028723 (program): a(n) = (1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2).
- A028724 (program): a(n) = (1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2).
- A028725 (program): a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.
- A028729 (program): Nonsquares mod 16.
- A028731 (program): Nonsquares mod 18.
- A028733 (program): Nonsquares mod 20.
- A028734 (program): Nonsquares mod 21.
- A028735 (program): Nonsquares mod 22.
- A028736 (program): Nonsquares mod 23.
- A028737 (program): Nonsquares mod 24.
- A028738 (program): Nonsquares mod 25.
- A028739 (program): Nonsquares mod 26.
- A028740 (program): Nonsquares mod 27.
- A028741 (program): Nonsquares mod 28.
- A028742 (program): Nonsquares mod 29.
- A028743 (program): Nonsquares mod 30.
- A028744 (program): Nonsquares mod 31.
- A028745 (program): Nonsquares mod 32.
- A028746 (program): Nonsquares mod 33.
- A028747 (program): Nonsquares mod 34.
- A028748 (program): Nonsquares mod 35.
- A028749 (program): Nonsquares mod 36.
- A028750 (program): Nonsquares mod 37.
- A028751 (program): Nonsquares mod 38.
- A028752 (program): Nonsquares mod 39.
- A028753 (program): Nonsquares mod 40.
- A028754 (program): Nonsquares mod 41.
- A028755 (program): Nonsquares mod 42.
- A028756 (program): Nonsquares mod 43.
- A028757 (program): Nonsquares mod 44.
- A028758 (program): Nonsquares mod 45.
- A028760 (program): Nonsquares mod 47.
- A028761 (program): Nonsquares mod 48.
- A028762 (program): Nonsquares mod 49.
- A028763 (program): Nonsquares mod 50.
- A028764 (program): Nonsquares mod 51.
- A028765 (program): Nonsquares mod 52.
- A028766 (program): Nonsquares mod 53.
- A028767 (program): Nonsquares mod 54.
- A028768 (program): Nonsquares mod 55.
- A028769 (program): Nonsquares mod 56.
- A028770 (program): Nonsquares mod 57.
- A028771 (program): Nonsquares mod 58.
- A028772 (program): Nonsquares mod 59.
- A028773 (program): Nonsquares mod 60.
- A028774 (program): Nonsquares mod 61.
- A028775 (program): Nonsquares mod 62.
- A028776 (program): Nonsquares mod 63.
- A028777 (program): Nonsquares mod 64.
- A028778 (program): Nonsquares mod 65.
- A028779 (program): Nonsquares mod 66.
- A028780 (program): Nonsquares mod 67.
- A028781 (program): Nonsquares mod 68.
- A028783 (program): Nonsquares mod 70.
- A028785 (program): Nonsquares mod 72.
- A028787 (program): Nonsquares mod 74.
- A028788 (program): Nonsquares mod 75.
- A028789 (program): Nonsquares mod 76.
- A028791 (program): Nonsquares mod 78.
- A028792 (program): Nonsquares mod 79.
- A028793 (program): Nonsquares mod 80.
- A028794 (program): Nonsquares mod 81.
- A028795 (program): Nonsquares mod 82.
- A028796 (program): Nonsquares mod 83.
- A028797 (program): Nonsquares mod 84.
- A028798 (program): Nonsquares mod 85.
- A028799 (program): Nonsquares mod 86.
- A028800 (program): Nonsquares mod 87.
- A028801 (program): Nonsquares mod 88.
- A028803 (program): Nonsquares mod 90.
- A028804 (program): Nonsquares mod 91.
- A028805 (program): Nonsquares mod 92.
- A028806 (program): Nonsquares mod 93.
- A028807 (program): Nonsquares mod 94.
- A028808 (program): Nonsquares mod 95.
- A028809 (program): Nonsquares mod 96.
- A028811 (program): Nonsquares mod 98.
- A028812 (program): Nonsquares mod 99.
- A028813 (program): Nonsquares mod 100.
- A028814 (program): Expansion of (1-2*x)/((1-x)^3*(1-4*x)).
- A028815 (program): a(n) = n-th prime + 1 (starting with 1).
- A028823 (program): Numbers k such that k^2 + k + 17 is prime.
- A028826 (program): Distinct orders of elements of Mathieu group M_24.
- A028828 (program): Distinct orders of elements of Conway simple group Co_3.
- A028830 (program): Distinct orders of elements of Conway simple group Co_2.
- A028831 (program): Expansion of (1+2*x+3*x^2)/(1-x-x^2-x^3-x^4).
- A028834 (program): Numbers whose sum of digits is a prime.
- A028835 (program): Numbers whose iterated sum of digits is a prime.
- A028836 (program): Iterated sum of digits of n is a power of 2.
- A028837 (program): Iterated sum of digits of n is a square.
- A028838 (program): Numbers whose sum of digits is a power of 2.
- A028839 (program): Sum of digits of n is a square.
- A028840 (program): Numbers k such that sum of digits of k is a Fibonacci number.
- A028841 (program): Iterated sum of digits of n is a Fibonacci number.
- A028843 (program): Numbers whose iterated product of digits is a prime.
- A028845 (program): Iterated product of digits of n is a nonzero square.
- A028846 (program): Numbers whose product of digits is a power of 2.
- A028859 (program): a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.
- A028860 (program): a(n+2) = 2*a(n+1) + 2*a(n); a(0) = -1, a(1) = 1.
- A028870 (program): Numbers k such that k^2 - 2 is prime.
- A028871 (program): Primes of the form k^2 - 2.
- A028872 (program): a(n) = n^2 - 3.
- A028873 (program): Numbers k such that k^2 - 3 is prime.
- A028874 (program): Primes of form n^2 - 3.
- A028875 (program): a(n) = n^2 - 5.
- A028876 (program): Numbers k such that k^2 - 5 is prime.
- A028877 (program): Primes of form k^2 - 5.
- A028878 (program): a(n) = (n+3)^2 - 6.
- A028879 (program): Numbers k such that k^2 - 6 is prime.
- A028880 (program): Primes of the form n^2 - 6.
- A028881 (program): a(n) = n^2 - 7.
- A028882 (program): Numbers k such that k^2 - 7 is prime.
- A028883 (program): Primes of form n^2 - 7.
- A028884 (program): a(n) = (n + 3)^2 - 8.
- A028885 (program): Numbers k such that k^2 - 8 is prime.
- A028886 (program): Primes of the form k^2 - 8.
- A028887 (program): Theta series of 4-dimensional 5-modular lattice with det 25 and minimal norm 2.
- A028889 (program): Numbers whose iterated product of digits is a power of 2.
- A028890 (program): Product of digits of n is a nonzero Fibonacci number.
- A028892 (program): a(n) = Fibonacci(n) - 2^(floor(n/2)).
- A028894 (program): a(n) = either 4a(n-1)+1 or 4a(n-1)+3 depending on corresponding term of A005614, +1 for 0, +3 for 1.
- A028895 (program): 5 times triangular numbers: a(n) = 5*n*(n+1)/2.
- A028896 (program): 6 times triangular numbers: a(n) = 3*n*(n+1).
- A028897 (program): If n = Sum c_i 10^i then a(n) = Sum c_i 2^i.
- A028899 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 4^i.
- A028900 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 5^i.
- A028901 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 6^i.
- A028902 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 7^i.
- A028903 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 8^i.
- A028905 (program): Arrange digits of primes in ascending order.
- A028906 (program): Arrange digits of primes in descending order.
- A028907 (program): Arrange digits of squares in ascending order.
- A028908 (program): Arrange digits of squares in descending order.
- A028909 (program): Arrange digits of 2^n in ascending order.
- A028910 (program): Arrange digits of 2^n in descending order.
- A028913 (program): First differences of A007952.
- A028914 (program): Divide A028913 by 2.
- A028917 (program): a(n) = (3*n+1)! / (24*n).
- A028918 (program): (3n+1)!/(4*(3n-1)).
- A028919 (program): Congruent to 0, 6, 10, 12 (mod 14).
- A028920 (program): Pit harvesting sequence for winning solitaire Tchoukaillon (or Mancala).
- A028925 (program): Maximal number of pairs of minimal vectors in an n-dimensional lattice.
- A028927 (program): Numbers represented by quadratic form with Gram matrix [ 3, 1; 1, 5 ].
- A028929 (program): Numbers represented by quadratic form with Gram matrix [ 4, 1; 1, 6 ], divided by 2.
- A028931 (program): Strings giving winning positions in Tchoukaillon (or Mancala) solitaire.
- A028935 (program): a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).
- A028936 (program): Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
- A028937 (program): Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.
- A028939 (program): a(n) = denominator of y-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
- A028940 (program): a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.
- A028941 (program): Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
- A028943 (program): Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
- A028944 (program): Numerator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
- A028945 (program): a(n) = A006720(n)^2 (squared terms of Somos-4 sequence).
- A028949 (program): Write numbers from 1 to n(n+1)/2 in a left-justified lower triangular array (a) downwards and (b) across; a(n) is number of numbers in same position in both.
- A028950 (program): Minimal norm of n-dimensional, strictly odd, unimodular lattice.
- A028951 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 4 ] (or the Kleinian 2-d lattice, see A002652).
- A028954 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 6 ]. (divided by 2).
- A028955 (program): Numbers represented by quadratic form with Gram matrix [ 4, 1; 1, 4 ] (divided by 2).
- A028956 (program): Theta series of quadratic form (or lattice) with Gram matrix [ 4, 1; 1, 4 ].
- A028957 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 8 ] (divided by 2).
- A028958 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 12 ] (divided by 2).
- A028962 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 0; 1, 3, 1; 0, 1, 5 ].
- A028966 (program): Norms of vectors in the a.c.c. lattice, divided by 2.
- A028968 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 1; 1, 2, 1; 1, 1, 3 ].
- A028982 (program): Squares and twice squares.
- A028983 (program): Numbers whose sum of divisors is even.
- A028991 (program): Odd 9-gonal (or enneagonal) numbers.
- A028992 (program): Even 9-gonal (or enneagonal) numbers.
- A028993 (program): Odd 10-gonal (or decagonal) numbers.
- A028994 (program): Even 10-gonal (or decagonal) numbers.
- A029000 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^6)).
- A029001 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^7)).
- A029002 (program): Expansion of 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^8)).
- A029003 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^9)).
- A029004 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^10)).
- A029005 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^11)).
- A029006 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^12)).
- A029007 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^5)).
- A029008 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^7)).
- A029009 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^9)).
- A029010 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^11)).
- A029011 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^6)).
- A029012 (program): Expansion of 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^7)).
- A029013 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^8)).
- A029014 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^9)).
- A029015 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^11)).
- A029016 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^12)).
- A029017 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^7)).
- A029018 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^9)).
- A029019 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^11)).
- A029020 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^8)).
- A029021 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^9)).
- A029022 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^10)).
- A029023 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^11)).
- A029024 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^12)).
- A029025 (program): Expansion of 1/((1-x)(1-x^2)(1-x^8)(1-x^9)).
- A029026 (program): Expansion of 1/((1-x)(1-x^2)(1-x^8)(1-x^11)).
- A029027 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^10)).
- A029028 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^11)).
- A029029 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^12)).
- A029030 (program): Expansion of 1/((1-x)(1-x^2)(1-x^10)(1-x^11)).
- A029031 (program): Expansion of 1/((1-x)(1-x^2)(1-x^11)(1-x^12)).
- A029032 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^5)).
- A029033 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^7)).
- A029034 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^8)).
- A029035 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)).
- A029036 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^10)).
- A029037 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^11)).
- A029038 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^12)).
- A029039 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^6)).
- A029040 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^8)).
- A029041 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^9)).
- A029042 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^10)).
- A029043 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^11)).
- A029044 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^12)).
- A029045 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^7)).
- A029046 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^8)).
- A029047 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^10)).
- A029048 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^11)).
- A029049 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^8)).
- A029050 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^9)).
- A029051 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^10)).
- A029052 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^11)).
- A029053 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^12)).
- A029054 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^9)).
- A029055 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^10)).
- A029056 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^11)).
- A029057 (program): Expansion of 1/((1-x)(1-x^3)(1-x^8)(1-x^12)).
- A029058 (program): Expansion of 1/((1-x)(1-x^3)(1-x^9)(1-x^10)).
- A029059 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^11)).
- A029060 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^10)*(1-x^11)).
- A029061 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^10)*(1-x^12)).
- A029062 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^11)*(1-x^12)).
- A029063 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^6)).
- A029064 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^7)).
- A029065 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^8)).
- A029066 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^9)).
- A029067 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^10)).
- A029068 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^11)).
- A029069 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^12)).
- A029070 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^6)*(1-x^7)).
- A029071 (program): Expansion of 1/((1-x)(1-x^4)(1-x^6)(1-x^9)).
- A029072 (program): Expansion of 1/((1-x)(1-x^4)(1-x^6)(1-x^11)).
- A029073 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^8)).
- A029074 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^9)).
- A029075 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^10)).
- A029076 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^11)).
- A029077 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^12)).
- A029078 (program): Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^9)).
- A029079 (program): Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^11)).
- A029080 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^10)).
- A029081 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^11)).
- A029082 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^12)).
- A029083 (program): Expansion of 1/((1-x)(1-x^4)(1-x^10)(1-x^11)).
- A029084 (program): Expansion of 1/((1-x)(1-x^4)(1-x^11)(1-x^12)).
- A029085 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^7)).
- A029086 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^8)).
- A029087 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^9)).
- A029088 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^10)).
- A029089 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^11)).
- A029090 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^12)).
- A029091 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^8)).
- A029092 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^9)).
- A029093 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^10)).
- A029094 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^11)).
- A029095 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).
- A029096 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^9)).
- A029097 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^10)).
- A029098 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^11)).
- A029099 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^12)).
- A029100 (program): Expansion of 1/((1-x)(1-x^5)(1-x^9)(1-x^10)).
- A029101 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^9)*(1-x^11)).
- A029102 (program): Expansion of 1/((1-x)(1-x^5)(1-x^9)(1-x^12)).
- A029103 (program): Expansion of 1/((1-x)(1-x^5)(1-x^10)(1-x^11)).
- A029104 (program): Expansion of 1/((1-x)(1-x^5)(1-x^10)(1-x^12)).
- A029105 (program): Expansion of 1/((1-x)(1-x^5)(1-x^11)(1-x^12)).
- A029106 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^8)).
- A029107 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^9)).
- A029108 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^10)).
- A029109 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^11)).
- A029110 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^12)).
- A029111 (program): Expansion of 1/((1-x)(1-x^6)(1-x^8)(1-x^9)).
- A029112 (program): Expansion of 1/((1-x)(1-x^6)(1-x^8)(1-x^11)).
- A029113 (program): Expansion of 1/((1-x)(1-x^6)(1-x^9)(1-x^10)).
- A029114 (program): Expansion of 1/((1-x)(1-x^6)(1-x^9)(1-x^11)).
- A029115 (program): Expansion of 1/((1-x)(1-x^6)(1-x^10)(1-x^11)).
- A029116 (program): Expansion of 1/((1-x)(1-x^6)(1-x^11)(1-x^12)).
- A029117 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^9)).
- A029118 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^10)).
- A029119 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^11)).
- A029120 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^12)).
- A029121 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^10)).
- A029122 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^11)).
- A029123 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^12)).
- A029124 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)(1-x^11)).
- A029125 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)(1-x^12)).
- A029126 (program): Expansion of 1/((1-x)(1-x^7)(1-x^11)(1-x^12)).
- A029127 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)(1-x^10)).
- A029128 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)(1-x^11)).
- A029129 (program): Expansion of 1/((1-x)*(1-x^8)*(1-x^9)*(1-x^12)).
- A029130 (program): Expansion of 1/((1-x)(1-x^8)(1-x^10)(1-x^11)).
- A029131 (program): Expansion of 1/((1-x)(1-x^8)(1-x^11)(1-x^12)).
- A029132 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)(1-x^11)).
- A029133 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)(1-x^12)).
- A029134 (program): Expansion of 1/((1-x)(1-x^9)(1-x^11)(1-x^12)).
- A029135 (program): Expansion of 1/((1-x)(1-x^10)(1-x^11)(1-x^12)).
- A029136 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
- A029137 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)).
- A029138 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^8)).
- A029139 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^9)).
- A029140 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^10)).
- A029141 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^11)).
- A029142 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^12)).
- A029143 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.
- A029144 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^7)).
- A029145 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^8)).
- A029146 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^9)).
- A029147 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^10)).
- A029148 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^11)).
- A029149 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)).
- A029150 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^7)).
- A029151 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^8)).
- A029152 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^9)).
- A029153 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^10)).
- A029154 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^11)).
- A029155 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^12)).
- A029156 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^8)).
- A029157 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^9)).
- A029158 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^10)).
- A029159 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^11)).
- A029160 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^12)).
- A029161 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^9)).
- A029162 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^10)).
- A029163 (program): Expansion of 1/((1 - x^2)*(1 - x^3)*(1 - x^8)*(1 - x^11)).
- A029164 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^12)).
- A029165 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^10)).
- A029166 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^11)).
- A029167 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^12)).
- A029168 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)(1-x^11)).
- A029169 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)(1-x^12)).
- A029170 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^11)(1-x^12)).
- A029171 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^6)).
- A029172 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^7)).
- A029173 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^8)).
- A029174 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^9)).
- A029175 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^10)).
- A029176 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^11)).
- A029177 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^12)).
- A029178 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^7)).
- A029179 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^9)).
- A029180 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^11)).
- A029181 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^8)).
- A029182 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^9)).
- A029183 (program): Expansion of 1/((1-x^2)*(1-x^4)*(1-x^7)*(1-x^10)).
- A029184 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^11)).
- A029185 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^12)).
- A029186 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^8)(1-x^9)).
- A029187 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^8)(1-x^11)).
- A029188 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^10)).
- A029189 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^11)).
- A029190 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^12)).
- A029191 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^10)(1-x^11)).
- A029192 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^11)(1-x^12)).
- A029193 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^7)).
- A029194 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^8)).
- A029195 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^9)).
- A029196 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)).
- A029197 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^11)).
- A029198 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^12)).
- A029199 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^7)(1-x^8)).
- A029200 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^9)).
- A029201 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)).
- A029202 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^11)).
- A029203 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^12)).
- A029204 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^8)*(1-x^9)).
- A029205 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^8)*(1-x^10)).
- A029206 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)(1-x^11)).
- A029207 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)(1-x^12)).
- A029208 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^10)).
- A029209 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^11)).
- A029210 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^12)).
- A029211 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)(1-x^11)).
- A029212 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)(1-x^12)).
- A029213 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^11)(1-x^12)).
- A029214 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^7)(1-x^8)).
- A029215 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^9)).
- A029216 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^10)).
- A029217 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^11)).
- A029218 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^12)).
- A029219 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^9)).
- A029220 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^11)).
- A029221 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^10)).
- A029222 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^11)).
- A029223 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^12)).
- A029224 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^10)(1-x^11)).
- A029225 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^11)(1-x^12)).
- A029226 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^9)).
- A029227 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^10)).
- A029228 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^11)).
- A029229 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^12)).
- A029230 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^9)(1-x^10)).
- A029231 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^9)*(1-x^11)).
- A029232 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^9)*(1-x^12)).
- A029233 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^11)).
- A029234 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^12)).
- A029235 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^11)*(1-x^12)).
- A029236 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^10)).
- A029237 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^11)).
- A029238 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^12)).
- A029239 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^10)*(1-x^11)).
- A029240 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^11)*(1-x^12)).
- A029241 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^10)*(1-x^11)).
- A029242 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^10)*(1-x^12)).
- A029243 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^11)*(1-x^12)).
- A029244 (program): Expansion of 1/((1-x^2)(1-x^10)(1-x^11)(1-x^12)).
- A029245 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^7)).
- A029246 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^8)).
- A029247 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^9)).
- A029248 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^10)).
- A029249 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^11)).
- A029250 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^12)).
- A029251 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)(1-x^7)).
- A029252 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)(1-x^8)).
- A029253 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^9)).
- A029254 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^10)).
- A029255 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^11)).
- A029256 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^12)).
- A029257 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^7)*(1-x^8)).
- A029258 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^9)).
- A029259 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^10)).
- A029260 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^11)).
- A029261 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^12)).
- A029262 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^9)).
- A029263 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^10)).
- A029264 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^11)).
- A029265 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^12)).
- A029266 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^10)).
- A029267 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^11)).
- A029268 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^12)).
- A029269 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)(1-x^11)).
- A029270 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)(1-x^12)).
- A029271 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^11)(1-x^12)).
- A029272 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^7)).
- A029273 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^8)).
- A029274 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^9)).
- A029275 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^10)).
- A029276 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^11)).
- A029277 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^12)).
- A029278 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^8)).
- A029279 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^10)).
- A029280 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^11)).
- A029281 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^12)).
- A029282 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^9)).
- A029283 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^10)).
- A029284 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^11)).
- A029285 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^12)).
- A029286 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^10)).
- A029287 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^11)).
- A029288 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^12)).
- A029289 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^11)).
- A029290 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^12)).
- A029291 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^11)(1-x^12)).
- A029292 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^8)).
- A029293 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^9)).
- A029294 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^10)).
- A029295 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^11)).
- A029296 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^12)).
- A029297 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^9)).
- A029298 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^10)).
- A029299 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^11)).
- A029300 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^12)).
- A029301 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^9)(1-x^10)).
- A029302 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^9)(1-x^11)).
- A029303 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)(1-x^11)).
- A029304 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)(1-x^12)).
- A029305 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^11)(1-x^12)).
- A029306 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^9)).
- A029307 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^10)).
- A029308 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^11)).
- A029309 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^12)).
- A029310 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^10)).
- A029311 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^11)).
- A029312 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^12)).
- A029313 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)(1-x^11)).
- A029314 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)(1-x^12)).
- A029315 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^11)(1-x^12)).
- A029316 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^10)).
- A029317 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^11)).
- A029318 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^12)).
- A029319 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)(1-x^11)).
- A029320 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)(1-x^12)).
- A029321 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^11)(1-x^12)).
- A029322 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)(1-x^11)).
- A029323 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)(1-x^12)).
- A029324 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^11)(1-x^12)).
- A029325 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^11)(1-x^12)).
- A029326 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^7)).
- A029327 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^8)).
- A029328 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^9)).
- A029329 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^10)).
- A029330 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^11)).
- A029331 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^12)).
- A029332 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^8)).
- A029333 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^9)).
- A029334 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^10)).
- A029335 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^11)).
- A029336 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^7)*(1-x^12)).
- A029337 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^9)).
- A029338 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^10)).
- A029339 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^11)).
- A029340 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^12)).
- A029341 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)(1-x^10)).
- A029342 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)(1-x^11)).
- A029343 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^9)*(1-x^12)).
- A029344 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)(1-x^11)).
- A029345 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)(1-x^12)).
- A029346 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^11)(1-x^12)).
- A029347 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^8)).
- A029348 (program): Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)*(1-x^9)).
- A029349 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^10)).
- A029350 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^11)).
- A029351 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^12)).
- A029352 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^8)(1-x^9)).
- A029353 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^8)(1-x^11)).
- A029354 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^10)).
- A029355 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^11)).
- A029356 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^12)).
- A029357 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^10)(1-x^11)).
- A029358 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^11)(1-x^12)).
- A029359 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^9)).
- A029360 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^10)).
- A029361 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^11)).
- A029362 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^12)).
- A029363 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^10)).
- A029364 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^11)).
- A029365 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^12)).
- A029366 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)(1-x^11)).
- A029367 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)(1-x^12)).
- A029368 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^11)(1-x^12)).
- A029369 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^10)).
- A029370 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^11)).
- A029371 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^12)).
- A029372 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^10)(1-x^11)).
- A029373 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^11)(1-x^12)).
- A029374 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^10)(1-x^11)).
- A029375 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^10)(1-x^12)).
- A029376 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^11)(1-x^12)).
- A029377 (program): Expansion of 1/((1-x^4)(1-x^10)(1-x^11)(1-x^12)).
- A029378 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^8)).
- A029379 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^9)).
- A029380 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^10)).
- A029381 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^11)).
- A029382 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^12)).
- A029383 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^9)).
- A029384 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^10)).
- A029385 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^11)).
- A029386 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^12)).
- A029387 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^9)(1-x^10)).
- A029388 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^9)(1-x^11)).
- A029389 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^9)*(1-x^12)).
- A029390 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^10)(1-x^11)).
- A029391 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^10)(1-x^12)).
- A029392 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^11)(1-x^12)).
- A029393 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^9)).
- A029394 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^10)).
- A029395 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^11)).
- A029396 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^12)).
- A029397 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^10)).
- A029398 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^11)).
- A029399 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^12)).
- A029400 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^10)(1-x^11)).
- A029401 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^10)(1-x^12)).
- A029402 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^11)(1-x^12)).
- A029403 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^10)).
- A029404 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^11)).
- A029405 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^12)).
- A029406 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^10)(1-x^11)).
- A029407 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^10)(1-x^12)).
- A029408 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^11)(1-x^12)).
- A029409 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)(1-x^11)).
- A029410 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)(1-x^12)).
- A029411 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^11)(1-x^12)).
- A029412 (program): Expansion of 1/((1-x^5)*(1-x^10)*(1-x^11)*(1-x^12)).
- A029413 (program): Expansion of 1/((1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)).
- A029414 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^10)).
- A029415 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^11)).
- A029416 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^12)).
- A029417 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^10)).
- A029418 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^11)).
- A029419 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^12)).
- A029420 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)(1-x^11)).
- A029421 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)(1-x^12)).
- A029422 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^11)(1-x^12)).
- A029423 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^10)).
- A029424 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^11)).
- A029425 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^12)).
- A029426 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^10)(1-x^11)).
- A029427 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^11)(1-x^12)).
- A029428 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)(1-x^11)).
- A029429 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)(1-x^12)).
- A029430 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^11)(1-x^12)).
- A029431 (program): Expansion of 1/((1-x^6)(1-x^10)(1-x^11)(1-x^12)).
- A029432 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^10)).
- A029433 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^11)).
- A029434 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^12)).
- A029435 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)(1-x^11)).
- A029436 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)(1-x^12)).
- A029437 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^11)(1-x^12)).
- A029438 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)(1-x^11)).
- A029439 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)(1-x^12)).
- A029440 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^11)(1-x^12)).
- A029441 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^11)(1-x^12)).
- A029442 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)(1-x^11)).
- A029443 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)(1-x^12)).
- A029444 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^11)(1-x^12)).
- A029445 (program): Expansion of 1/((1-x^8)(1-x^10)(1-x^11)(1-x^12)).
- A029446 (program): Expansion of 1/((1-x^9)(1-x^10)(1-x^11)(1-x^12)).
- A029546 (program): Expansion of 1/( (1-x)*(1-34*x+x^2) ).
- A029547 (program): Expansion of 1/(1-34*x+x^2).
- A029548 (program): Expansion of 1/(1 - 32*x + x^2).
- A029549 (program): a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.
- A029551 (program): Highest minimal norm for an (even or odd) 3-modular lattice in dimension n.
- A029571 (program): Number of permutations of an n-set containing a 4-cycle.
- A029572 (program): Number of permutations of an n-set containing a 5-cycle.
- A029573 (program): Number of permutations of an n-set containing a 6-cycle.
- A029574 (program): Number of permutations of an n-set containing a 7-cycle.
- A029578 (program): The natural numbers interleaved with the even numbers.
- A029579 (program): a(2*n) = n+1, a(2*n-1) = 2*n-1.
- A029580 (program): a(n+1) = [ A*a(n)+B ]/p^r, where p^r is the highest power of p diving [ A*a(n)+B ] and p=2, A=2.00013, B=3.0.
- A029582 (program): E.g.f. sin(x) + cos(x) + tan(x).
- A029583 (program): Expansion of sin x + cos x + tan x + sec x.
- A029584 (program): Expansion of cos x + tan x + sec x.
- A029587 (program): a(n) = A029571(n) / 6.
- A029588 (program): a(n) = A029572(n) / 24.
- A029598 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 0; 1, 2, 1; 0, 1, 3 ].
- A029600 (program): Numbers in the (2,3)-Pascal triangle (by row).
- A029602 (program): Numbers in the (2,3)-Pascal triangle A029600 that are different from 2.
- A029603 (program): Numbers in the (2,3)-Pascal triangle A029600 that are different from 3.
- A029604 (program): Odd numbers in the (2,3)-Pascal triangle A029600.
- A029605 (program): Even numbers in the (2,3)-Pascal triangle A029600.
- A029606 (program): Odd numbers in the (2,3)-Pascal triangle A029600 that are different from 3.
- A029607 (program): Even numbers in the (2,3)-Pascal triangle A029600 that are different from 2.
- A029609 (program): Central numbers in the (2,3)-Pascal triangle A029600.
- A029610 (program): Numbers to the left of the central numbers of the (2,3)-Pascal triangle A029600.
- A029611 (program): Numbers to the left of the central elements of the (2,3)-Pascal triangle A029600 that are different from 2.
- A029612 (program): Odd numbers to the left of the central elements of the (2,3)-Pascal triangle A029600.
- A029613 (program): Even numbers (not equal to 2) to the left of the central elements of the (2,3)-Pascal triangle A029600.
- A029614 (program): Numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
- A029615 (program): Numbers to the right of the central elements of the (2,3)-Pascal triangle A029600 that are different from 3.
- A029616 (program): Odd numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
- A029617 (program): Table read by rows: list of even numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
- A029618 (program): Numbers in (3,2)-Pascal triangle (by row).
- A029620 (program): Numbers in (3,2)-Pascal triangle A029618 that are different from 2.
- A029621 (program): Numbers in (3,2)-Pascal triangle A029618 that are different from 3.
- A029622 (program): Odd numbers in (3,2)-Pascal triangle A029618.
- A029623 (program): Even numbers in (3,2)-Pascal triangle A029618.
- A029624 (program): Odd numbers in (3,2)-Pascal triangle A029618 that are different from 3.
- A029625 (program): Even numbers in (3,2)-Pascal triangle A029618 that are different from 2.
- A029627 (program): Even numbers to right of central numbers of the (3,2)-Pascal triangle A029618.
- A029628 (program): Numbers to left of central numbers of the (3,2)-Pascal triangle A029618.
- A029629 (program): Numbers to left of central elements of the (3,2)-Pascal triangle A029618 that are different from 3.
- A029630 (program): Odd numbers to left of central elements of the (3,2)-Pascal triangle A029618.
- A029631 (program): Even numbers to left of central elements of the (3,2)-Pascal triangle A029618.
- A029632 (program): Numbers to right of central elements of the (3,2)-Pascal triangle A029618.
- A029633 (program): Numbers to right of central elements of the (3,2)-Pascal triangle A029618 that are different from 2.
- A029634 (program): Odd numbers to right of central elements of the (3,2)-Pascal triangle A029618.
- A029635 (program): The (1,2)-Pascal triangle (or Lucas triangle) read by rows.
- A029637 (program): Numbers in the (1,2)-Pascal triangle A029635 that are different from 2.
- A029638 (program): Numbers in the (1,2)-Pascal triangle A029635 that are different from 1.
- A029639 (program): Odd numbers in the (1,2)-Pascal triangle A029635 that are different from 1.
- A029640 (program): Even numbers in the (1,2)-Pascal triangle A029635.
- A029641 (program): Even numbers in the (1,2)-Pascal triangle A029635 that are different from 2.
- A029643 (program): Even numbers to the right of the central numbers of the (1,2)-Pascal triangle A029635.
- A029644 (program): Numbers to the left of the central numbers of the (1,2)-Pascal triangle A029635.
- A029645 (program): Numbers to the left of the central elements of the (1,2)-Pascal triangle A029635 that are different from 1.
- A029646 (program): Odd numbers to the left of the central elements of the (1,2)-Pascal triangle A029635.
- A029647 (program): Even numbers to the left of the central elements of the (1,2)-Pascal triangle A029635.
- A029648 (program): Numbers to the right of the central elements of the (1,2)-Pascal triangle A029635.
- A029649 (program): Numbers to the right of the central elements of the (1,2)-Pascal triangle A029635 that are different from 2.
- A029650 (program): Odd numbers to the right of the central elements of the (1,2)-Pascal triangle A029635.
- A029651 (program): Central elements of the (1,2)-Pascal triangle A029635.
- A029652 (program): Odd numbers in the (1,2)-Pascal triangle A029635.
- A029653 (program): Numbers in (2,1)-Pascal triangle (by row).
- A029655 (program): Numbers in the (2,1)-Pascal triangle A029653 that are different from 2.
- A029656 (program): Numbers in the (2,1)-Pascal triangle A029653 that are different from 1.
- A029657 (program): Odd numbers in (2,1)-Pascal triangle A029653 that are different from 1.
- A029658 (program): Even numbers in the (2,1)-Pascal triangle A029653.
- A029659 (program): Even numbers in the (2,1)-Pascal triangle A029653 that are different from 2.
- A029661 (program): Even numbers to the right of the central numbers of the (2,1)-Pascal triangle A029653.
- A029662 (program): Numbers to the left of the central numbers of the (2,1)-Pascal triangle A029653.
- A029663 (program): Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
- A029664 (program): Odd numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.
- A029665 (program): Even numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.
- A029666 (program): Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653.
- A029667 (program): Numbers to the left of the central elements of the (2,1)-Pascal triangle A029653 that are different from 2.
- A029668 (program): Odd numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
- A029669 (program): Odd numbers in the (2,1)-Pascal triangle A029653.
- A029691 (program): n-th binary digit in fractional part of square root of n.
- A029697 (program): Number of words of length 2n in the 6 transpositions of S[ 4 ] equivalent to the identity.
- A029698 (program): Number of words of length 2n in the 10 transpositions of S[5] equivalent to the identity.
- A029699 (program): Number of words of length 4 in the n(n-1)/2 transpositions of S[ n ] equivalent to the identity.
- A029706 (program): Sum C(n,k)*b(k), k=1..n, where b(k) is given by A001861.
- A029707 (program): Numbers n such that the n-th and the (n+1)-st primes are twin primes.
- A029708 (program): Numbers k such that k-2 and k+2 are consecutive primes.
- A029709 (program): Numbers k such that k-th and (k+1)st primes differ by 4.
- A029710 (program): Primes such that next prime is 4 greater.
- A029711 (program): a(n) = n^(n+1) + (n-1)^2.
- A029714 (program): a(n) = Sum_{k divides 3^n} S(k), where S is the Kempner function A002034.
- A029715 (program): a(n) = Sum_{k divides 2^n} S(k), where S is the Kempner function A002034.
- A029716 (program): Partial sums of Kempner numbers A002034.
- A029717 (program): First differences of Kempner numbers A002034.
- A029718 (program): Numbers of form 2x^2 + 2xy + 3y^2.
- A029723 (program): Trace of Frobenius of the reduction mod 2 of the elliptic curve C / L, L a lattice with Gram matrix [ 4 1; 1 2n ].
- A029739 (program): Numbers that are congruent to {1, 3, 4} mod 6.
- A029742 (program): Nonpalindromic numbers.
- A029744 (program): Numbers of the form 2^n or 3*2^n.
- A029745 (program): Expansion of (1 + 2x + 6x^2 + x^3)/(1 - 2x^2).
- A029746 (program): Numbers of the form 2^k or 7*2^k.
- A029747 (program): Numbers of the form 2^k times 1, 3 or 5.
- A029748 (program): Numbers of the form 2^k times 1, 3 or 7.
- A029749 (program): Numbers of the form 2^k times 1, 5 or 7.
- A029750 (program): List of numbers of the form 2^k times 1, 3, 5 or 7.
- A029757 (program): a(n) = 5^n mod 2^n.
- A029758 (program): Number of AVL trees of height n.
- A029759 (program): Number of permutations which are the union of an increasing and a decreasing subsequence.
- A029760 (program): A sum with next-to-central binomial coefficients of even order, Catalan related.
- A029761 (program): Partial sums of A005001.
- A029763 (program): Denominator of Bernoulli(2n+2) - Bernoulli(2n).
- A029765 (program): Denominator of |Bernoulli(2n+2)| - |Bernoulli(2n)|.
- A029766 (program): Unary-binary rooted trees with n nodes.
- A029767 (program): a(n) = (n-1)!*(2^n-1) for n>=1, a(0)=0.
- A029803 (program): Numbers that are palindromic in base 8.
- A029826 (program): Expansion of 1/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1) (inverse of Salem polynomial).
- A029832 (program): A discrete version of the Mangoldt function: if n is prime then ceiling(log(n)) else 0.
- A029833 (program): A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.
- A029834 (program): A discrete version of the Mangoldt function: if n is prime then floor(log(n)) else 0.
- A029835 (program): [ log(n-th prime) ].
- A029836 (program): log( n-th prime) rounded to nearest integer.
- A029837 (program): Binary order of n: log_2(n) rounded up to next integer.
- A029838 (program): Expansion of square root of q times normalized Hauptmodul for Gamma(4) in powers of q^8.
- A029839 (program): McKay-Thompson series of class 16B for the Monster group.
- A029840 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^3.
- A029841 (program): McKay-Thompson series of class 8E for the Monster group.
- A029842 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^5.
- A029843 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^6.
- A029844 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^7.
- A029845 (program): Expansion of 16/lambda(z) in powers of nome q = exp(Pi*i*z).
- A029846 (program): a(n) = a(n-1)*b(n-2)+2, b() given by A029758.
- A029848 (program): a(n) = 1 + C(2*n,n) + C(3*n,n).
- A029854 (program): a(n) = gcd(prime(n)+prime(n+1), prime(n+1)+prime(n+2)).
- A029858 (program): a(n) = (3^n - 3)/2.
- A029859 (program): Euler transform of 3 2 1 1 1 1 1 1…
- A029863 (program): Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), … = 2 3 2 3 2 3 2 3 ….
- A029865 (program): Smallest covering radius of [ n,6 ] binary code.
- A029879 (program): Binomial transform of Thue-Morse sequence A001285.
- A029880 (program): Inverse binomial transform of Thue-Morse sequence A001285.
- A029882 (program): Inverse Moebius transform of Thue-Morse sequence A001285.
- A029883 (program): First differences of Thue-Morse sequence A001285.
- A029884 (program): Second differences of Thue-Morse sequence A001285.
- A029887 (program): A sum over scaled A000531 related to Catalan numbers C(n).
- A029898 (program): Pitoun’s sequence: a(n+1) is digital root of a(0) + … + a(n).
- A029903 (program): p(n), where exists one-parameter family of strategic partitions (k+p(n)+q(n), k+q(n), r(n)) for k = 0,1,2,… in Chomp.
- A029905 (program): r(n), where exists one-parameter family of strategic partitions (k+p(n)+q(n), k+q(n), r(n)) for k = 0,1,2,… in Chomp.
- A029906 (program): Zack’s sequence (the pattern is evident).
- A029907 (program): a(n+1) = a(n) + a(n-1) + Fibonacci(n), with a(0) = 0 and a(1) = 1.
- A029908 (program): Starting with n, repeatedly sum prime factors (with multiplicity) until reaching 0 or a fixed point. Then a(n) is the fixed point (or 0).
- A029909 (program): Starting with n (but omitting the primes), repeatedly sum prime factors (counted with multiplicity) until reaching a limit.
- A029910 (program): Start with n; if prime, stop; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
- A029911 (program): Start with n; if prime, skip; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
- A029912 (program): Start with n; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
- A029915 (program): Convert n from yards to meters.
- A029916 (program): Convert n from meters to yards.
- A029917 (program): Convert n from feet to meters.
- A029918 (program): Convert n from meters to feet.
- A029919 (program): Convert n from inches (“) to centimeters (cm).
- A029920 (program): Convert n from centimeters (cm) to inches (“).
- A029921 (program): Convert n from miles to kilometers (km).
- A029922 (program): Convert n from kilometers (km) to miles.
- A029925 (program): Convert n from degrees Celsius to Fahrenheit.
- A029926 (program): Convert n from degrees Fahrenheit to Centigrade (or Celsius).
- A029927 (program): Convert n from nautical miles to statute miles.
- A029928 (program): Convert n from statute miles to nautical miles.
- A029929 (program): a(n) = n*(n + ceiling(2^n/12)).
- A029930 (program): If 2n = Sum 2^e_i, a(n) = Product 2^e_i.
- A029931 (program): If 2n = Sum 2^e_i, a(n) = Sum e_i.
- A029935 (program): a(n) = Sum phi(d)*phi(n/d); d divides n.
- A029936 (program): Number of cusps of Gamma_1(n)\P_1(Q).
- A029938 (program): a(n) = (p-5)(p-7)/24, where p=prime(n).
- A029939 (program): a(n) = Sum_{d|n} phi(d)^2.
- A029940 (program): a(n) = Product_{d|n} phi(d).
- A029950 (program): Odd palindromes.
- A029951 (program): Even palindromes.
- A029952 (program): Palindromic in base 5.
- A029953 (program): Palindromic in base 6.
- A029954 (program): Palindromic in base 7.
- A029955 (program): Palindromic in base 9.
- A030002 (program): (prime(n)-5)(prime(n)-7)(prime(n)-9)/48.
- A030003 (program): (prime(n)-3)(prime(n)-5)(prime(n)-7)/48.
- A030004 (program): (prime(n)-1)(prime(n)-3)(prime(n)-5)/48.
- A030005 (program): (prime(n)-1)(prime(n)-3)/8.
- A030006 (program): a(n) = (prime(n)-1)*(prime(n)-5)/12.
- A030007 (program): a(n) = (prime(n)-3)*(prime(n)-5)/8.
- A030014 (program): Inverse Moebius transform of {1, primes}.
- A030015 (program): Binomial transform of {1, primes}.
- A030016 (program): Inverse binomial transform of {1, primes}.
- A030017 (program): a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.
- A030018 (program): Coefficients in 1/(1+P(x)), where P(x) is the generating function of the primes.
- A030019 (program): Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).
- A030031 (program): Binomial((n+1)^2, prime(n)).
- A030053 (program): a(n) = binomial(2n+1,n-3).
- A030054 (program): a(n) = binomial(2n+1,n-4).
- A030055 (program): a(n) = binomial(2*n+1, n-5).
- A030056 (program): a(n) = binomial(2*n+1, n-6).
- A030057 (program): Least number that is not a sum of distinct divisors of n.
- A030059 (program): Numbers that are the product of an odd number of distinct primes.
- A030060 (program): Third derivative of Catalan generating function/3!.
- A030065 (program): a(4n)=n, a(4n+2)=a(4n)+a(4n+4), a(2n+1)=a(2n)+a(2n+2).
- A030067 (program): The “Semi-Fibonacci sequence”: a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).
- A030068 (program): The “semi-Fibonacci numbers”: a(n) = A030067(2n - 1), where A030067 is the semi-Fibonacci sequence.
- A030076 (program): a(n) = 10 - m, where m = maximal digit of n.
- A030078 (program): Cubes of primes.
- A030096 (program): Primes whose digits are all odd.
- A030097 (program): Numbers k such that k^2 has only even digits.
- A030098 (program): Squares whose digits are all even.
- A030101 (program): a(n) is the number produced when n is converted to binary digits, the binary digits are reversed and then converted back into a decimal number.
- A030102 (program): Base-3 reversal of n (written in base 10).
- A030103 (program): Base 4 reversal of n (written in base 10).
- A030104 (program): Base 5 reversal of n (written in base 10).
- A030105 (program): Base 6 reversal of n (written in base 10).
- A030106 (program): Base 7 reversal of n (written in base 10).
- A030107 (program): Base 8 reversal of n (written in base 10).
- A030108 (program): Base 9 reversal of n (written in base 10).
- A030109 (program): Write n in binary, reverse bits, subtract 1, divide by 2.
- A030110 (program): a(n) = 2^n - n^2 + 1.
- A030111 (program): Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n).
- A030117 (program): Number of triangles a queen can make (starting anywhere) on an n X n board.
- A030118 (program): a(0) = 1, a(1) = 1, a(n) = a(n-1) - a(n-2) + n.
- A030119 (program): a(n) = a(n-1) + a(n-2) + n, a(0) = a(1) = 1.
- A030123 (program): Most likely total for a roll of n 6-sided dice, choosing the smallest if there is a choice.
- A030124 (program): Complement (and also first differences) of Hofstadter’s sequence A005228.
- A030130 (program): Binary expansion contains a single 0.
- A030132 (program): Digital root of Fibonacci(n).
- A030133 (program): a(n+1) is the sum of digits of (a(n) + a(n-1)).
- A030139 (program): a(n+1) = sum of digits of (a(n) + a(n-1)).
- A030140 (program): The nonsquares squared.
- A030141 (program): Numbers in which parity of the decimal digits alternates.
- A030142 (program): Odd numbers in which parity of digits alternates.
- A030143 (program): Even numbers in which parity of digits alternates.
- A030151 (program): Numbers k such that in k^2 the parity of digits alternates.
- A030152 (program): Squares in which parity of digits alternates.
- A030173 (program): Differences p(i)-p(j) between primes, sorted in numerical order.
- A030179 (program): Quarter-squares squared: A002620^2.
- A030180 (program): a(n) = (n^7 - n)/42.
- A030182 (program): McKay-Thompson series of class 3B for the Monster group with a(0) = -12.
- A030186 (program): a(n) = 3*a(n-1) + a(n-2) - a(n-3) for n >= 3, a(0)=1, a(1)=2, a(2)=7.
- A030191 (program): Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2.
- A030192 (program): Scaled Chebyshev U-polynomial evaluated at sqrt(6)/2.
- A030195 (program): a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=1.
- A030203 (program): Expansion of q^(-1/6) * eta(q) * eta(q^3) in powers of q.
- A030204 (program): Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.
- A030207 (program): Expansion of eta(q)^2 * eta(q^2) * eta(q^4) * eta(q^8)^2 in powers of q.
- A030211 (program): Expansion of q^(-1/2) * (eta(q) * eta(q^2))^4 in powers of q.
- A030221 (program): Chebyshev even indexed U-polynomials evaluated at sqrt(7)/2.
- A030229 (program): Numbers that are the product of an even number of distinct primes.
- A030230 (program): Numbers that have an odd number of distinct prime divisors.
- A030231 (program): Number of distinct primes dividing n is even.
- A030236 (program): Cycle-path coverings of a family of digraphs.
- A030237 (program): Catalan’s triangle with right border removed (n > 0, 0 <= k < n).
- A030238 (program): Backwards shallow diagonal sums of Catalan triangle A009766.
- A030240 (program): Scaled Chebyshev U-polynomials evaluated at sqrt(7)/2.
- A030241 (program): Minimal determinant of any n-dimensional even lattice.
- A030267 (program): Compose the natural numbers with themselves, A(x) = B(B(x)) where B(x) = x/(1-x)^2 is the generating function for natural numbers.
- A030270 (program): Number of nonisomorphic and nonantiisomorphic reflexive transitive and cotransitive (complement is transitive) relations.
- A030280 (program): COMPOSE triangular numbers with triangular numbers.
- A030297 (program): a(n) = n*(n + a(n-1)) with a(0)=0.
- A030300 (program): Runs have lengths 2^n, n >= 0.
- A030301 (program): n-th run has length 2^(n-1).
- A030308 (program): Triangle T(n, k): Write n in base 2, reverse order of digits, to get the n-th row.
- A030309 (program): Position of n-th 0 in A030308.
- A030310 (program): Position of n-th 1 in A030308.
- A030314 (program): (# 1’s)-(# 0’s) in first n terms of A030308.
- A030426 (program): a(n) = Fibonacci(prime(n)).
- A030428 (program): a(n) = 0! * 1! * 2! * … * n! - 1.
- A030429 (program): a(n+2) = 7*a(n+1) - 7*a(n) - 9*n; a(n+4) = 9*a(n+3) - 22*a(n+2) + 21*a(n+1) - 7*a(n).
- A030430 (program): Primes of the form 10*n+1.
- A030431 (program): Primes of form 10n+3.
- A030432 (program): Primes of form 10n+7.
- A030433 (program): Primes of form 10*k + 9.
- A030434 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(2*n-7)*(2*n^2-11*n+18).
- A030435 (program): Expansion of g.f.: (1+x-2*x^2-x^3)/(1/2-2*x^2+x^4).
- A030436 (program): Expansion of (1+x-2*x^2-x^3)/(1-4*x^2+2*x^4).
- A030438 (program): a(n) = A030019(n)*n! (or A035051*(n-1)!).
- A030439 (program): a(n+1) = smallest number not containing any digits of a(n), working in base 3.
- A030440 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(n-1)*(2*n+3)*(2*n-1).
- A030441 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(2*n - 3)*(2*n^2 - 3*n + 4).
- A030442 (program): Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).
- A030451 (program): a(2*n) = n, a(2*n+1) = n+2.
- A030452 (program): Markov numbers satisfying region 5 (x=5) of the equation x^2 + y^2 + z^2 = 3xyz.
- A030457 (program): Numbers k such that k concatenated with k+1 is prime.
- A030458 (program): Primes formed by concatenating n with n+1.
- A030474 (program): n does not have the property that all even digits occur together and all odd digits occur together.
- A030494 (program): If n is even, 2(n/2 + 1)! - 1; if n is odd, ((n + 1)/2 + 1)! - 1.
- A030495 (program): a(n) = (n+1)!+ n.
- A030503 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,3) constant-weight code.
- A030504 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,4) constant-weight code.
- A030511 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,3) constant-weight code.
- A030512 (program): Concatenation of first n 2-digit positive integers including leading zeros.
- A030513 (program): Numbers with 4 divisors.
- A030514 (program): a(n) = prime(n)^4.
- A030515 (program): Numbers with exactly 6 divisors.
- A030516 (program): Numbers with 7 divisors. 6th powers of primes.
- A030517 (program): Number of walks of length n between two vertices on an icosahedron at distance 1.
- A030518 (program): Number of walks of length n between two vertices on an icosahedron at distance 2.
- A030523 (program): A convolution triangle of numbers obtained from A001792.
- A030528 (program): Triangle read by rows: a(n,k) = binomial(k,n-k).
- A030530 (program): n appears A070939(n) times.
- A030531 (program): Value of 3^x - 2^x - 5 for the solutions of 3^x - 2^x == 5 (mod 7).
- A030533 (program): Expansion of Molien series for 4-D extraspecial group 2^{1+2*2}.
- A030541 (program): Remainder-numerators from Egyptian fraction expansion of 2/588391 using odd greedy algorithm.
- A030542 (program): Remainder-numerators from Egyptian fraction expansion of 4/538199 using odd greedy algorithm.
- A030546 (program): Remainder-numerators from Egyptian fraction expansion of 5/5809 using odd greedy algorithm.
- A030556 (program): run length of n-th run of digit 0 in A030548.
- A030625 (program): n(n+Z(n)), where Z( ) is the Narayana-Zidek-Capell sequence (A002083).
- A030626 (program): Numbers with exactly 8 divisors.
- A030627 (program): Numbers with 9 divisors.
- A030628 (program): 1 together with numbers of the form p*q^4 and p^9, where p and q are primes.
- A030629 (program): Numbers with 11 divisors.
- A030630 (program): Numbers with 12 divisors.
- A030631 (program): Numbers with 13 divisors.
- A030632 (program): Numbers with 14 divisors.
- A030634 (program): Numbers with 16 divisors.
- A030635 (program): Numbers with 17 divisors.
- A030636 (program): Numbers with 18 divisors.
- A030637 (program): Numbers with 19 divisors.
- A030638 (program): Numbers with 20 divisors.
- A030640 (program): Discriminant of lattice A_n of determinant n+1.
- A030644 (program): Decimal expansion of 10 - Pi.
- A030647 (program): Dimension of multiples of minimal representation of complex Lie algebra F4.
- A030648 (program): Dimensions of multiples of minimal representation of complex Lie algebra E6.
- A030649 (program): Dimensions of multiples of minimal representation of complex Lie algebra E7.
- A030653 (program): n^3*a(n) is the number of circles in complex projective plane tangent to three smooth curves of degree n in general position.
- A030654 (program): n^4*a(n) is the number of spheres in complex projective space tangent to 4 smooth surfaces of degree n in general position.
- A030655 (program): Pair up the numbers.
- A030656 (program): Pair up the numbers.
- A030657 (program): Parity of digits of Pi.
- A030658 (program): 1 iff n-th digit of Pi is >= (n+1)st digit.
- A030661 (program): Product of next 2 primes after n.
- A030662 (program): Number of combinations of n things from 1 to n at a time, with repeats allowed.
- A030664 (program): Product of largest prime <= n and smallest prime >= n.
- A030695 (program): Smallest nontrivial extension of n-th cube which is a cube.
- A030696 (program): Cube root of A030695.
- A030701 (program): Decimal expansion of 4^n contains no zeros (probably finite).
- A030702 (program): Decimal expansion of 6^n contains no zeros (probably finite).
- A030703 (program): Decimal expansion of 7^n contains no zeros (probably finite).
- A030704 (program): Numbers k such that the decimal expansion of 8^k contains no zeros (probably finite).
- A030705 (program): Numbers k such that the decimal expansion of 9^k contains no zeros (probably finite).
- A030706 (program): Decimal expansion of 11^n contains no zeros (probably finite).
- A030799 (program): a(n) = floor(exp(1/2)*n!).
- A030804 (program): a(n) = floor(exp(7/24)*n!).
- A030805 (program): a(n) = floor(exp(5/24)*n!).
- A030806 (program): a(n) = floor(exp(1/24)*n!).
- A030809 (program): a(n) = floor(exp(20/23) * n!).
- A030812 (program): a(n) = floor(exp(17/23) * n!).
- A030813 (program): a(n) = floor(exp(16/23) * n!).
- A030816 (program): a(n) = floor(exp(13/23)*n!).
- A030817 (program): Floor(exp(12/23) * n!).
- A030818 (program): [ exp(11/23)*n! ].
- A030819 (program): [ exp(10/23)*n! ].
- A030820 (program): [ exp(9/23)*n! ].
- A030821 (program): [ exp(8/23)*n! ].
- A030822 (program): [ exp(7/23)*n! ].
- A030823 (program): [ exp(6/23)*n! ].
- A030824 (program): [ exp(5/23)*n! ].
- A030825 (program): [ exp(4/23)*n! ].
- A030826 (program): [ exp(3/23)*n! ].
- A030827 (program): [ exp(2/23)*n! ].
- A030828 (program): [ exp(1/23)*n! ].
- A030831 (program): [ exp(17/22)*n! ].
- A030832 (program): [ exp(15/22)*n! ].
- A030833 (program): [ exp(13/22)*n! ].
- A030834 (program): [ exp(9/22)*n! ].
- A030835 (program): [ exp(7/22)*n! ].
- A030836 (program): [ exp(5/22)*n! ].
- A030838 (program): [ exp(3/22)*n! ].
- A030839 (program): [ exp(1/22)*n! ].
- A030841 (program): a(n) = floor( exp(19/21)*n! ).
- A030842 (program): [ exp(17/21)*n! ].
- A030843 (program): [ exp(16/21)*n! ].
- A030845 (program): [ exp(11/21)*n! ].
- A030846 (program): [ exp(10/21)*n! ].
- A030847 (program): [ exp(8/21)*n! ].
- A030848 (program): [ exp(5/21)*n! ].
- A030849 (program): Floor( exp(4/21)*n! ).
- A030850 (program): [ exp(2/21)*n! ].
- A030851 (program): a(n) = floor(exp(1/21) * n!).
- A030853 (program): [ exp(17/20)*n! ].
- A030854 (program): [ exp(13/20)*n! ].
- A030855 (program): [ exp(11/20)*n! ].
- A030856 (program): [ exp(9/20)*n! ].
- A030857 (program): [ exp(7/20)*n! ].
- A030858 (program): [ exp(3/20)*n! ].
- A030859 (program): [ exp(1/20)*n! ].
- A030861 (program): [ exp(17/19)*n! ].
- A030862 (program): [ exp(16/19)*n! ].
- A030864 (program): [ exp(14/19)*n! ].
- A030865 (program): [ exp(13/19)*n! ].
- A030867 (program): a(n) = floor( exp(11/19)*n! ).
- A030868 (program): [ exp(10/19)*n! ].
- A030869 (program): [ exp(9/19)*n! ].
- A030870 (program): [ exp(8/19)*n! ].
- A030872 (program): [ exp(6/19)*n! ].
- A030873 (program): [ exp(5/19)*n! ].
- A030874 (program): [ exp(4/19)*n! ].
- A030875 (program): [ exp(3/19)*n! ].
- A030876 (program): [ exp(2/19)*n! ].
- A030877 (program): [ exp(1/19)*n! ].
- A030879 (program): [ exp(13/18)*n! ].
- A030881 (program): [ exp(7/18)*n! ].
- A030882 (program): [ exp(5/18)*n! ].
- A030883 (program): [ exp(1/18)*n! ].
- A030888 (program): a(n) = floor(exp(12/17)*n!).
- A030889 (program): [ exp(11/17)*n! ].
- A030890 (program): [ exp(10/17)*n! ].
- A030891 (program): [ exp(9/17)*n! ].
- A030892 (program): [ exp(8/17)*n! ].
- A030893 (program): a(n) = floor( exp(7/17)*n! ).
- A030894 (program): [ exp(6/17)*n! ].
- A030896 (program): [ exp(4/17)*n! ].
- A030897 (program): [ exp(3/17)*n! ].
- A030898 (program): [ exp(2/17)*n! ].
- A030899 (program): [ exp(1/17)*n! ].
- A030903 (program): [ exp(9/16)*n! ].
- A030904 (program): [ exp(7/16)*n! ].
- A030905 (program): [ exp(5/16)*n! ].
- A030906 (program): [ exp(3/16)*n! ].
- A030907 (program): a(n) = floor( exp(1/16)*n! ).
- A030910 (program): [ exp(11/15)*n! ].
- A030911 (program): [ exp(8/15)*n! ].
- A030912 (program): [ exp(7/15)*n! ].
- A030913 (program): [ exp(4/15)*n! ].
- A030914 (program): [ exp(2/15)*n! ].
- A030915 (program): [ exp(1/15)*n! ].
- A030916 (program): [ exp(13/14)*n! ].
- A030917 (program): [ exp(11/14)*n! ].
- A030918 (program): [ exp(9/14)*n! ].
- A030919 (program): [ exp(5/14)*n! ].
- A030921 (program): [ exp(1/14)*n! ].
- A030922 (program): [ exp(12/13)*n! ].
- A030924 (program): [ exp(10/13)*n! ].
- A030926 (program): [ exp(8/13)*n! ].
- A030928 (program): [ exp(6/13)*n! ].
- A030929 (program): a(n) = floor( exp(5/13)*n! ).
- A030930 (program): [ exp(4/13)*n! ].
- A030931 (program): [ exp(3/13)*n! ].
- A030932 (program): [ exp(2/13)*n! ].
- A030933 (program): a(n) = floor(exp(1/13)*n!).
- A030936 (program): [ exp(5/12)*n! ].
- A030937 (program): [ exp(1/12)*n! ].
- A030939 (program): [ exp(9/11)*n! ].
- A030940 (program): [ exp(8/11)*n! ].
- A030941 (program): [ exp(7/11)*n! ].
- A030942 (program): [ exp(6/11)*n! ].
- A030943 (program): a(n) = floor( exp(5/11)*n! ).
- A030944 (program): [ exp(4/11)*n! ].
- A030945 (program): [ exp(3/11)*n! ].
- A030946 (program): [ exp(2/11)*n! ].
- A030947 (program): [ exp(1/11)*n! ].
- A030948 (program): [ exp(9/10)*n! ].
- A030949 (program): [ exp(7/10)*n! ].
- A030950 (program): [ exp(3/10)*n! ].
- A030951 (program): [ exp(1/10)*n! ].
- A030954 (program): [ exp(5/9)*n! ].
- A030956 (program): [ exp(2/9)*n! ].
- A030957 (program): [ exp(1/9)*n! ].
- A030959 (program): [ exp(5/8)*n! ].
- A030960 (program): [ exp(3/8)*n! ].
- A030961 (program): [ exp(1/8)*n! ].
- A030962 (program): [ exp(6/7)*n! ].
- A030963 (program): a(n) = floor( exp(5/7)*n! ).
- A030964 (program): [ exp(4/7)*n! ].
- A030965 (program): [ exp(3/7)*n! ].
- A030966 (program): [ exp(2/7)*n! ].
- A030967 (program): [ exp(1/7)*n! ].
- A030968 (program): [ exp(5/6)*n! ].
- A030969 (program): [ exp(1/6)*n! ].
- A030970 (program): [ exp(4/5)*n! ].
- A030971 (program): [ exp(3/5)*n! ].
- A030972 (program): [ exp(2/5)*n! ].
- A030973 (program): [ exp(1/5)*n! ].
- A030974 (program): [ exp(3/4)*n! ].
- A030975 (program): [ exp(1/4)*n! ].
- A030977 (program): a(n) = floor(exp(1/3)*n!).
- A030978 (program): Maximal number of non-attacking knights on an n X n board.
- A030980 (program): Number of planted noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes, root degree 1 and no nonroot nodes of degree 1.
- A030981 (program): Number of noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes and no nonroot nodes of degree 1.
- A030982 (program): Number of noncrossing nonplanted bushes with n nodes, i.e., rooted noncrossing trees with n nodes and no nodes of degree 1.
- A030983 (program): Number of rooted noncrossing trees with n nodes such that root has degree 1 and the child of the root has degree at least 2.
- A030984 (program): 2-automorphic numbers: final digits of 2*n^2 agree with n.
- A030985 (program): 3-automorphic numbers ending in 2: final digits of 3*n^2 agree with n.
- A030986 (program): 3-automorphic numbers ending in 5: final digits of 3*n^2 agree with n.
- A030987 (program): 4-automorphic numbers: final digits of 4*n^2 agree with n.
- A030988 (program): 5-automorphic numbers: final digits of 5n^2 agree with n.
- A030989 (program): 6-automorphic numbers: final digits of 6n^2 agree with n.
- A030990 (program): 7-automorphic numbers ending in 3: final digits of 7n^2 agree with n.
- A030991 (program): 7-automorphic numbers ending in 5: final digits of 7n^2 agree with n.
- A030992 (program): 7-automorphic numbers ending in 8: final digits of 7n^2 agree with n.
- A030993 (program): 8-automorphic numbers: final digits of 8*n^2 agree with n.
- A030994 (program): 9-automorphic numbers ending in 4: final digits of 9*n^2 agree with n.
- A030995 (program): 9-automorphic numbers ending in 5: final digits of 9*n^2 agree with n.
- A031123 (program): Expansion of Sum_{m>=1} z^(m^2)/(1-z^((m+1)^2)).
- A031124 (program): Expansion of (1+z)/(1-z) - 2*Sum_{m>=1} z^(m^2)/(1-z^((m+1)^2)).
- A031131 (program): Difference between n-th prime and (n+2)-nd prime.
- A031138 (program): Numbers k such that 1^5 + 2^5 + … + k^5 is a square.
- A031164 (program): Irreducible Euler sums of weight 8 and depth 10+2n.
- A031165 (program): a(n) = prime(n+3) - prime(n).
- A031166 (program): a(n) = prime(n+4) - prime(n).
- A031167 (program): a(n) = prime(n+5) - prime(n).
- A031168 (program): a(n) = prime(n+6) - prime(n).
- A031169 (program): a(n) = prime(n+7) - prime(n).
- A031170 (program): a(n) = prime(n+8) - prime(n).
- A031171 (program): a(n) = prime(n+9) - prime(n).
- A031172 (program): a(n) = prime(n+10) - prime(n).
- A031176 (program): Periods of sum of squares of digits iterated until the sequence becomes periodic.
- A031177 (program): Unhappy numbers: numbers having period-8 2-digitized sequences.
- A031193 (program): Numbers having period-22 5-digitized sequences.
- A031215 (program): Even-indexed primes: a(n) = prime(2n).
- A031216 (program): Write primes in base 10 but interpret as if in base 11.
- A031218 (program): Largest prime power <= n.
- A031286 (program): Additive persistence: number of summations of digits needed to obtain a single digit (the additive digital root).
- A031313 (program): Position of n-th 0 in A031312.
- A031336 (program): a(n) = prime(3*n).
- A031337 (program): a(n) = prime(4*n).
- A031338 (program): a(n) = prime(5*n).
- A031339 (program): a(n) = prime(6*n).
- A031340 (program): a(n) = prime(7*n).
- A031341 (program): a(n) = prime(8*n).
- A031342 (program): a(n) = prime(9*n).
- A031343 (program): a(n) = prime(10*n).
- A031344 (program): Write primes in base 10 but interpret as if in base 12.
- A031345 (program): Write primes in base 10 but interpret as if in base 13.
- A031347 (program): Multiplicative digital root of n (keep multiplying digits of n until reaching a single digit).
- A031358 (program): Number of coincidence site lattices of index 4n+1 in lattice Z^2.
- A031359 (program): Bisection of A001615.
- A031363 (program): Positive numbers of the form x^2 + xy - y^2; or, of the form 5x^2 - y^2.
- A031368 (program): Odd-indexed primes: a(n) = prime(2n-1).
- A031369 (program): a(n) = prime(3n-1).
- A031370 (program): a(n) = prime(4n-1).
- A031371 (program): a(n) = prime(5n-1).
- A031372 (program): a(n) = prime(6*n - 1).
- A031373 (program): Primes p(7n-1).
- A031374 (program): a(n) = prime(8*n - 1).
- A031375 (program): Primes p(9n-1).
- A031376 (program): a(n) = prime(10*n - 1).
- A031377 (program): a(n) = prime(3n-2).
- A031378 (program): a(n) = prime(4*n - 2).
- A031379 (program): a(n) = prime(5*n - 2).
- A031380 (program): a(n) = prime(6*n - 2).
- A031381 (program): a(n) = prime(7*n - 2).
- A031382 (program): a(n) = prime(8*n - 2).
- A031383 (program): a(n) = prime(9*n - 2).
- A031384 (program): a(n) = prime(10*n - 2).
- A031385 (program): a(n) = prime(4*n-3).
- A031386 (program): a(n) = prime(5*n-3).
- A031387 (program): a(n) = prime(6*n-3).
- A031388 (program): a(n) = prime(7*n-3).
- A031389 (program): a(n) = prime(8*n-3).
- A031390 (program): a(n) = prime(9*n - 3).
- A031391 (program): a(n) = prime(10*n-3).
- A031392 (program): a(n) = prime(5*n-4).
- A031393 (program): a(n) = prime(6*n - 4).
- A031394 (program): a(n) = prime(7*n - 4).
- A031395 (program): a(n) = prime(8*n - 4).
- A031401 (program): Period of continued fraction for sqrt(A031400(n)).
- A031443 (program): Digitally balanced numbers: positive numbers that in base 2 have the same number of 0’s as 1’s.
- A031444 (program): Numbers whose base-2 representation has one more 0 than 1’s.
- A031445 (program): Numbers whose base-2 representation has 2 more 0’s than 1’s.
- A031446 (program): Numbers whose base-2 representation has 3 more 0’s than 1’s.
- A031447 (program): Numbers whose base-2 representation has 4 more 0’s than 1’s.
- A031448 (program): Numbers whose base-2 representation has one fewer 0’s than 1’s.
- A031449 (program): Numbers whose base-2 representation has two fewer 0’s than 1’s.
- A031450 (program): Numbers whose base-2 representation has 3 fewer 0’s than 1’s.
- A031451 (program): Numbers whose base-2 representation has 4 fewer 0’s than 1’s.
- A031452 (program): Numbers whose base-3 representation has the same number of 0’s as 2’s.
- A031453 (program): Numbers whose base-3 representation has one more 0 than 2’s.
- A031454 (program): Numbers whose base-3 representation has 2 more 0’s than 2’s.
- A031455 (program): Numbers whose base-3 representation has 3 more 0’s than 2’s.
- A031456 (program): Numbers whose base-3 representation has 4 more 0’s than 2’s.
- A031457 (program): Numbers whose base-3 representation has one fewer 0 than 2’s.
- A031458 (program): Numbers whose base-3 representation has 2 fewer 0’s than 2’s.
- A031459 (program): Numbers whose base-3 representation has 3 fewer 0’s than 2’s.
- A031460 (program): Numbers whose base-3 representation has 4 fewer 0’s than 2’s.
- A031461 (program): Numbers whose base-4 representation has the same number of 0’s as 3’s.
- A031462 (program): Numbers whose base-4 representation has one more 0 than 3’s.
- A031463 (program): Numbers whose base-4 representation has 2 more 0’s than 3’s.
- A031464 (program): Numbers whose base-4 representation has 3 more 0’s than 3’s.
- A031465 (program): Numbers whose base-4 representation has 4 more 0’s than 3’s.
- A031466 (program): Numbers whose base-4 representation has one fewer 0 than 3’s.
- A031467 (program): Numbers whose base-4 representation has 2 fewer 0’s than 3’s.
- A031468 (program): Numbers whose base-4 representation has 3 fewer 0’s than 3’s.
- A031469 (program): Numbers whose base-4 representation has 4 fewer 0’s than 3’s.
- A031470 (program): Numbers whose base-5 representation has the same number of 0’s as 4’s.
- A031471 (program): Numbers whose base-5 representation has one more 0 than 4’s.
- A031472 (program): Numbers whose base-5 representation has 2 more 0’s than 4’s.
- A031473 (program): Numbers whose base-5 representation has 3 more 0’s than 4’s.
- A031474 (program): Numbers whose base-5 representation has one fewer 0 than 4’s.
- A031475 (program): Numbers whose base-5 representation has 2 fewer 0’s than 4’s.
- A031476 (program): Numbers whose base-5 representation has 3 fewer 0’s than 4’s.
- A031477 (program): Numbers whose base-6 representation has the same number of 0’s as 5’s.
- A031478 (program): Numbers whose base-6 representation has one more 0 than 5’s.
- A031479 (program): Numbers whose base-6 representation has 2 more 0’s than 5’s.
- A031480 (program): Numbers whose base-6 representation has one fewer 0 than 5’s.
- A031481 (program): Numbers whose base-6 representation has 2 fewer 0’s than 5’s.
- A031483 (program): Numbers whose base-7 representation has one more 0 than 6’s.
- A031484 (program): Numbers whose base-7 representation has 2 more 0’s than 6’s.
- A031485 (program): Numbers whose base-7 representation has one fewer 0 than 6’s.
- A031493 (program): Numbers whose base-9 representation has one more 0 than 8’s.
- A031495 (program): Numbers whose base-9 representation has one fewer 0 than 8’s.
- A031497 (program): Numbers whose base-10 representation has one more 0 than 9’s.
- A031498 (program): Numbers whose base-10 representation has 2 more 0’s than 9’s.
- A031499 (program): Numbers whose base-10 representation has one fewer 0 than 9’s.
- A031505 (program): Upper prime of a difference of 4 between primes.
- A031506 (program): Number of consecutive integers placed in n bins under a certain packing scheme.
- A031778 (program): Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 100.
- A031876 (program): a(n) = Sum_{k=0..n} floor(k^(1/3)).
- A031878 (program): Maximal number of edges in Hamiltonian path in complete graph on n nodes.
- A031904 (program): a(n) = prime(9*n - 4).
- A031905 (program): a(n) = prime(10*n - 4).
- A031906 (program): a(n) = prime(6*n - 5).
- A031907 (program): a(n) = prime(7*n - 5).
- A031908 (program): a(n) = prime(8*n - 5).
- A031909 (program): a(n) = prime(9*n - 5).
- A031910 (program): a(n) = prime(10*n - 5).
- A031911 (program): a(n) = prime(7*n - 6).
- A031912 (program): a(n) = prime(8*n - 6).
- A031913 (program): a(n) = prime(9*n - 6).
- A031914 (program): a(n) = prime(10*n - 6).
- A031915 (program): a(n) = prime(8*n - 7).
- A031916 (program): a(n) = prime(9*n-7).
- A031917 (program): a(n) = prime(10*n-7).
- A031918 (program): a(n) = prime(9*n-8).
- A031919 (program): a(n) = prime(10*n-8).
- A031920 (program): a(n) = prime(10*n-9).
- A031921 (program): a(n) = prime(100*n).
- A031923 (program): Let r and s be consecutive Fibonacci numbers. Sequence is r^4, r^3 s, r^2 s^2, and r s^3.
- A031924 (program): Primes followed by a gap of 6, i.e., next prime is p + 6.
- A031925 (program): Upper prime of a difference of 6 between consecutive primes.
- A031926 (program): Lower prime of a difference of 8 between consecutive primes.
- A031927 (program): Upper prime of a difference of 8 between consecutive primes.
- A031928 (program): Lower prime of a difference of 10 between consecutive primes.
- A031929 (program): Upper prime of a difference of 10 between consecutive primes.
- A031930 (program): Lower prime of a difference of 12 between consecutive primes.
- A031931 (program): Upper prime of a difference of 12 between consecutive primes.
- A031932 (program): Lower prime of a pair of consecutive primes having a difference of 14.
- A031933 (program): Upper prime of a difference of 14 between consecutive primes.
- A031934 (program): Lower prime of a pair of consecutive primes having a difference of 16.
- A031935 (program): Upper prime of a difference of 16 between consecutive primes.
- A031936 (program): Lower prime of a difference of 18 between consecutive primes.
- A031937 (program): Upper prime of a difference of 18 between consecutive primes.
- A031938 (program): Lower prime of a difference of 20 between consecutive primes.
- A031939 (program): Upper prime of a difference of 20 between consecutive primes.
- A031940 (program): Length of longest legal domino snake using full set of dominoes up to [n:n].
- A031941 (program): Numbers without consecutive equal base 3 digits.
- A031942 (program): Numbers with no consecutive equal base 4 digits.
- A031943 (program): Numbers with no consecutive equal base-5 digits.
- A031946 (program): Numbers whose base-5 expansions have 5 distinct digits.
- A031954 (program): Numbers with exactly two distinct base-9 digits.
- A031964 (program): Numbers with exactly four distinct base-5 digits.
- A031970 (program): Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.
- A031971 (program): a(n) = Sum_{k=1..n} k^n.
- A031972 (program): a(n) = Sum_{k=1..n} n^k.
- A031973 (program): a(n) = Sum_{k=0..n} n^k.
- A031974 (program): 1 repeated prime(n) times.
- A031987 (program): Numbers with exactly five distinct base-10 digits.
- A031999 (program): Numbers whose base-4 digits are in nonincreasing order.
- A032031 (program): Triple factorial numbers: (3n)!!! = 3^n*n!.
- A032032 (program): Number of ways to partition n labeled elements into sets of sizes of at least 2 and order the sets.
- A032033 (program): Stirling transform of A032031.
- A032037 (program): Doubles (index 2+) under “AIJ” (ordered, indistinct, labeled) transform.
- A032069 (program): Number of reversible strings with n labeled beads of 2 colors, no palindromes of more than 1 bead.
- A032070 (program): Number of reversible strings with n labeled beads of 3 colors, no palindromes of more than 1 bead.
- A032071 (program): Number of reversible strings with n labeled beads of 4 colors, no palindromes of more than 1 bead.
- A032072 (program): Number of reversible strings with n labeled beads of 5 colors, no palindromes of more than 1 bead.
- A032085 (program): Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
- A032086 (program): Number of reversible strings with n beads of 3 colors. If more than 1 bead, not palindromic.
- A032087 (program): Number of reversible strings with n beads of 4 colors. If more than 1 bead, not palindromic.
- A032088 (program): Number of reversible strings with n beads of 5 colors. If more than 1 bead, not palindromic.
- A032089 (program): “BHK” (reversible, identity, unlabeled) transform of 1,0,1,0…(odds).
- A032090 (program): “BHK” (reversible, identity, unlabeled) transform of 0,1,1,1…
- A032091 (program): Number of reversible strings with n-1 beads of 2 colors. 4 beads are black. String is not palindromic.
- A032092 (program): Number of reversible strings with n-1 beads of 2 colors. 5 beads are black. String is not palindromic.
- A032093 (program): Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.
- A032094 (program): Number of reversible strings with n-1 beads of 2 colors. 7 beads are black. String is not palindromic.
- A032095 (program): Number of reversible strings with n-1 black beads and n-1 white beads. String is not palindromic.
- A032096 (program): “BHK” (reversible, identity, unlabeled) transform of 2,2,2,2,…
- A032097 (program): “BHK” (reversible, identity, unlabeled) transform of 2,1,1,1,…
- A032098 (program): “BHK” (reversible, identity, unlabeled) transform of 3,3,3,3,…
- A032099 (program): “BHK” (reversible, identity, unlabeled) transform of 1,2,3,4,…
- A032106 (program): Number of reversible strings with n black beads and n-1 white beads. String is not palindromic.
- A032107 (program): Number of reversible strings with n labeled beads of 2 colors.
- A032108 (program): Number of reversible strings with n labeled beads of 3 colors.
- A032109 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,1,1,1,…
- A032110 (program): “BIJ” (reversible, indistinct, labeled) transform of 0,1,1,1…
- A032111 (program): “BIJ” (reversible, indistinct, labeled) transform of 2,2,2,2…
- A032112 (program): “BIJ” (reversible, indistinct, labeled) transform of 2,1,1,1…
- A032113 (program): “BIJ” (reversible, indistinct, labeled) transform of 3,3,3,3…
- A032114 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,2,3,4,…
- A032115 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,3,5,7…
- A032119 (program): Number of labeled series-reduced dyslexic planted planar trees (root unlabeled) with n leaves.
- A032120 (program): Number of reversible strings with n beads of 3 colors.
- A032121 (program): Number of reversible strings with n beads of 4 colors.
- A032122 (program): Number of reversible strings with n beads of 5 colors.
- A032123 (program): Number of 2n-bead black-white reversible strings with n black beads.
- A032124 (program): “BIK” (reversible, indistinct, unlabeled) transform of 2,2,2,2…
- A032125 (program): “BIK” (reversible, indistinct, unlabeled) transform of 3,3,3,3…
- A032126 (program): “BIK” (reversible, indistinct, unlabeled) transform of 1,2,3,4…
- A032127 (program): “BIK” (reversible, indistinct, unlabeled) transform of 1,3,5,7…
- A032164 (program): Number of aperiodic necklaces of n beads of 6 colors; dimensions of free Lie algebras.
- A032165 (program): Number of aperiodic necklaces of n beads of 10 colors.
- A032168 (program): Number of aperiodic necklaces of n beads of 2 colors, 10 of them black.
- A032169 (program): Number of aperiodic necklaces of n beads of 2 colors, 11 of them black.
- A032179 (program): Number of necklaces with n labeled beads of 3 colors.
- A032180 (program): Number of ways to partition n labeled elements into 6 pie slices.
- A032181 (program): Number of ways to partition n labeled elements into pie slices each of at least 2 elements.
- A032182 (program): “CIJ” (necklace, indistinct, labeled) transform of 2,1,1,1…
- A032183 (program): “CIJ” (necklace, indistinct, labeled) transform of 3,3,3,3…
- A032184 (program): a(n) = 2^n*(n-1)! for n > 1, a(1) = 1.
- A032189 (program): Number of ways to partition n elements into pie slices each with an odd number of elements.
- A032190 (program): Number of cyclic compositions of n into parts >= 2.
- A032191 (program): Number of necklaces with 6 black beads and n-6 white beads.
- A032192 (program): Number of necklaces with 7 black beads and n-7 white beads.
- A032195 (program): Number of necklaces with 10 black beads and n-10 white beads.
- A032196 (program): Number of necklaces with 11 black beads and n-11 white beads.
- A032198 (program): “CIK” (necklace, indistinct, unlabeled) transform of 1,2,3,4,…
- A032246 (program): “DHK[ 5 ]” (bracelet, identity, unlabeled, 5 parts) transform of 1,1,1,1,…
- A032260 (program): Number of n X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.
- A032261 (program): Number of bracelets with n labeled beads of 3 colors.
- A032262 (program): Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.
- A032263 (program): Number of ways to partition n labeled elements into 4 pie slices allowing the pie to be turned over; number of 2-element proper antichains of an n-element set.
- A032266 (program): “DIJ” (bracelet, indistinct, labeled) transform of 2,2,2,2,…
- A032277 (program): Number of ways to partition n elements into pie slices each with an odd number of elements allowing the pie to be turned over.
- A032278 (program): Number of ways to partition n elements into pie slices each with at least 2 elements allowing the pie to be turned over.
- A032279 (program): Number of bracelets (turnover necklaces) of n beads of 2 colors, 5 of them black.
- A032282 (program): Number of bracelets (turnover necklaces) of n beads of 2 colors, 11 of them black.
- A032284 (program): “DIK” (bracelet, indistinct, unlabeled) transform of 3,3,3,3…
- A032303 (program): “EFK” (unordered, size, unlabeled) transform of 2,1,1,1,…
- A032321 (program): Number of aperiodic necklaces with n labeled beads of 2 colors.
- A032322 (program): Number of aperiodic necklaces with n labeled beads of 3 colors.
- A032323 (program): Number of aperiodic necklaces with n labeled beads of 4 colors.
- A032324 (program): Number of aperiodic necklaces with n labeled beads of 5 colors.
- A032343 (program): a(n) = 10*a(n-1)+n^2, a(0)=0.
- A032346 (program): Essentially shifts 1 place right under inverse binomial transform.
- A032347 (program): Inverse binomial transform of A032346.
- A032349 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).
- A032350 (program): Palindromic nonprime numbers.
- A032351 (program): Number of permutations of length n which avoid the patterns 2143, 1324 (smooth permutations); or avoid the patterns 1342, 2431; etc.
- A032352 (program): Numbers k such that there is no prime between 10*k and 10*k+9.
- A032357 (program): Convolution of Catalan numbers and powers of -1.
- A032358 (program): Number of iterations of phi(n) needed to reach 2.
- A032378 (program): Noncubes such that n is divisible by floor(n^(1/3)).
- A032434 (program): Triangle read by rows: last survivors of Josephus elimination process.
- A032438 (program): a(n) = n^2 - floor((n+1)/2)^2.
- A032439 (program): a(n) = Sum_{i=0..4} binomial(Fibonacci(n),i).
- A032440 (program): Sum binomial(Fibonacci(n),i); i=0..3).
- A032441 (program): a(n) = Sum_{i=0..2} binomial(Fibonacci(n),i).
- A032443 (program): a(n) = Sum_{i=0..n} binomial(2*n, i).
- A032448 (program): Smallest prime == -1 modulo prime(n).
- A032509 (program): a(n) = round(tan(Pi*(1-1/n)/2)).
- A032512 (program): Sum of the integer part of 4th roots of integers <= n.
- A032513 (program): Sum of the integer part of 5th roots of positive integers less than or equal to n.
- A032514 (program): Sum of the integer part of 3/2-th roots of integers less than n.
- A032515 (program): Sum of the integer part of 5/2-th roots of integers less than or equal to n.
- A032517 (program): Sum of the integer part of 9/2-th roots of integers less than n.
- A032518 (program): Sum of the integer part of 10/3-th roots of integers less than n.
- A032519 (program): Sum of the integer part of 11/3-th roots of integers less than n.
- A032520 (program): Sum of the integer part of 13/3-th roots of integers less than n.
- A032521 (program): Sum of the integer part of 14/3-th roots of integers less than n.
- A032525 (program): Floor( 7*n^2/2 ).
- A032526 (program): a(n) = floor(5*n^2/2).
- A032527 (program): Concentric pentagonal numbers: floor( 5*n^2 / 4 ).
- A032528 (program): Concentric hexagonal numbers: floor(3*n^2/2).
- A032532 (program): Integer part of decimal ‘base-2 looking’ numbers divided by their actual base-2 values (denominator of a(n) is n, numerator is n written in binary but read in decimal).
- A032533 (program): Numbers that, when expressed in base 2 and then interpreted in base 10, yield a multiple of the original number.
- A032536 (program): Integer part of decimal ‘base-3 looking’ numbers divided by their actual base-3 values.
- A032539 (program): Integer part of decimal ‘base-4 looking’ numbers divided by their actual base-4 values.
- A032542 (program): Integer part of decimal ‘base-5 looking’ numbers divided by their actual base-5 values.
- A032553 (program): Arrange digits of cubes in ascending order.
- A032554 (program): Arrange digits of cubes in descending order.
- A032607 (program): Concatenation of n and n + 2 or {n,n+2}.
- A032608 (program): Concatenation of n and n + 3.
- A032609 (program): Concatenation of n and n + 4 or {n,n+4}.
- A032610 (program): Concatenation of n and n + 5 or {n,n+5}.
- A032611 (program): Concatenation of n and n + 6 or {n,n+6}.
- A032612 (program): Concatenation of n and n+7.
- A032613 (program): Concatenation of n and n + 8 or {n,n+8}.
- A032614 (program): Concatenation of n and n + 9 or {n,n+9}.
- A032615 (program): a(n) = floor(n/Pi).
- A032616 (program): a(n) = floor(n^2/Pi).
- A032617 (program): Numbers k such that k concatenated with k+2 is a prime.
- A032619 (program): Numbers k such that k concatenated with k+4 is a prime.
- A032620 (program): Numbers k such that k concatenated with k+5 is a prime.
- A032621 (program): Numbers k such that k concatenated with k+6 is a prime.
- A032623 (program): Numbers k such that k concatenated with k+8 is a prime.
- A032625 (program): Primes that are concatenations of n with n + 2.
- A032627 (program): Primes that are concatenations of n with n + 4.
- A032633 (program): a(n) = floor(n^3 / Pi).
- A032634 (program): a(n) = floor(n/e).
- A032635 (program): a(n) = floor(n^2 / e).
- A032636 (program): [ n^3 / e ].
- A032664 (program): Digit ‘1’ concatenated with a(n) is a prime.
- A032665 (program): Digit ‘2’ concatenated with a(n) is a prime.
- A032666 (program): Digit ‘3’ concatenated with a(n) is a prime.
- A032667 (program): Digit ‘4’ concatenated with a(n) is a prime.
- A032668 (program): Digit ‘5’ concatenated with a(n) is a prime.
- A032669 (program): Digit ‘6’ concatenated with n is a prime.
- A032670 (program): Digit ‘7’ concatenated with a(n) is a prime.
- A032671 (program): Digit ‘8’ concatenated with a(n) is a prime.
- A032672 (program): Digit ‘9’ concatenated with a(n) is a prime.
- A032682 (program): Numbers k such that k surrounded by digit ‘1’ is a prime.
- A032683 (program): Numbers k such that k surrounded by digit ‘3’ is a prime.
- A032684 (program): Numbers k such that k surrounded by digit ‘7’ is prime.
- A032685 (program): Numbers k such that k surrounded by digit ‘9’ is a prime.
- A032702 (program): n prefixed by ‘2’ and followed by ‘1’ is a prime.
- A032703 (program): n prefixed by ‘3’ and followed by ‘1’ is a prime.
- A032704 (program): n prefixed by ‘4’ and followed by ‘1’ is prime.
- A032705 (program): Numbers k such that k prefixed by ‘5’ and followed by ‘1’ is prime.
- A032706 (program): n prefixed by ‘6’ and followed by ‘1’ is a prime.
- A032707 (program): n prefixed by ‘7’ and followed by ‘1’ is a prime.
- A032708 (program): n prefixed by ‘8’ and followed by ‘1’ is a prime.
- A032709 (program): n prefixed by ‘9’ and followed by ‘1’ is a prime.
- A032710 (program): n prefixed by ‘1’ and followed by ‘3’ is a prime.
- A032711 (program): Numbers k such that the concatenation ‘2’,k,’3’ is prime.
- A032712 (program): n prefixed by ‘4’ and followed by ‘3’ is a prime.
- A032713 (program): Numbers k such that k prefixed by ‘5’ and followed by ‘3’ is prime.
- A032714 (program): n prefixed by ‘6’ and followed by ‘3’ is a prime.
- A032715 (program): n prefixed by ‘7’ and followed by ‘3’ is a prime.
- A032716 (program): Numbers k such that k prefixed by ‘8’ and followed by ‘3’ is prime.
- A032717 (program): n prefixed by ‘9’ and followed by ‘3’ is a prime.
- A032718 (program): n prefixed by ‘1’ and followed by ‘7’ is a prime.
- A032719 (program): Numbers k such that k prefixed by ‘2’ and followed by ‘7’ is prime.
- A032720 (program): Integers that when prefixed by ‘3’ and followed by ‘7’ yield a prime.
- A032721 (program): n prefixed by ‘4’ and followed by ‘7’ is a prime.
- A032722 (program): n prefixed by ‘5’ and followed by ‘7’ is a prime.
- A032723 (program): Numbers k such that k prefixed by ‘6’ and followed by ‘7’ is a prime.
- A032724 (program): Numbers k such that k prefixed by ‘8’ and followed by ‘7’ is prime.
- A032725 (program): n prefixed by ‘9’ and followed by ‘7’ is a prime.
- A032726 (program): Numbers k such that k prefixed by ‘1’ and followed by ‘9’ is a prime.
- A032727 (program): Numbers n such that n prefixed by ‘2’ and followed by ‘9’ is prime.
- A032728 (program): n prefixed by ‘3’ and followed by ‘9’ is a prime.
- A032729 (program): Numbers n such that n prefixed by ‘4’ and followed by ‘9’ is a prime.
- A032730 (program): n prefixed by ‘5’ and followed by ‘9’ is a prime.
- A032731 (program): Numbers k such that k prefixed by ‘6’ and followed by ‘9’ is a prime.
- A032732 (program): n prefixed by ‘7’ and followed by ‘9’ is a prime.
- A032733 (program): Numbers n such that n prefixed by ‘8’ and followed by ‘9’ is prime.
- A032741 (program): a(0) = 0; for n > 0, a(n) = number of proper divisors of n (divisors of n which are less than n).
- A032742 (program): a(1) = 1; for n > 1, a(n) = largest proper divisor of n.
- A032765 (program): Floor(n(n+1)(n+2) / (n+ n+1 + n+2)), which equals floor(n(n + 2)/3).
- A032766 (program): Numbers that are congruent to 0 or 1 (mod 3).
- A032767 (program): a(n) = floor ( n(n+1)(n+2)(n+3) / (n+(n+1)+(n+2)+(n+3)) ).
- A032768 (program): Floor( n(n+1)(n+2)(n+3)(n+4) / (n+(n+1)+(n+2)+(n+3)+(n+4)) ).
- A032769 (program): Numbers that are congruent to {0, 1, 2, 4} mod 5.
- A032770 (program): Integer quotients of n(n + 1)(n + 2)(n + 3)(n + 4) / (n+(n+1)+(n+2)+(n+3)+(n+4)).
- A032771 (program): [ n(n+1)(n+2)…(n+5) / (n+(n+1)+(n+2)+…+(n+5)) ].
- A032774 (program): a(n) = floor( n*(n+1)*(n+2)*…*(n+6) / (n+(n+1)+(n+2)+…+(n+6)) ).
- A032775 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 7.
- A032776 (program): Integer quotients n(n+1)(n+2)…(n+6) / (n+(n+1)+(n+2)+…+(n+6)).
- A032777 (program): Floor( n(n+1)(n+2)…(n+7) / (n+(n+1)+(n+2)+…+(n+7)) ).
- A032778 (program): Numbers k such that k*(k+1)*(k+2)*…*(k+7) / (k+(k+1)+(k+2)+…+(k+7)) is an integer.
- A032780 (program): a(n) = n(n+1)(n+2)…(n+8) / (n+(n+1)+(n+2)+…+(n+8)).
- A032781 (program): Floor ( n(n+1)(n+2)…(n+9) / (n+(n+1)+(n+2)+…+(n+9)) ).
- A032793 (program): Numbers that are congruent to {1, 2, 4} mod 5.
- A032794 (program): Positive integers of the form n(n+1)(n+2)(n+3)(n+4)/(n+(n+1)+(n+2)+(n+3)+(n+4)) that are a multiple of n.
- A032795 (program): Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.
- A032796 (program): Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.
- A032797 (program): Numbers n such that n(n+1)(n+2)…(n+10) /(n+(n+1)+(n+2)+…+(n+10)) is a multiple of n.
- A032798 (program): Numbers such that n(n+1)(n+2)…(n+12) / (n+(n+1)+(n+2)+…+(n+12)) is a multiple of n.
- A032801 (program): Number of unordered sets a, b, c, d of distinct integers from 1..n such that a+b+c+d = 0 (mod n).
- A032803 (program): Expansion of Sum_{i>=0} q^i*theta_3^i.
- A032804 (program): Numbers whose set of base-4 digits is {2,3}.
- A032805 (program): Numbers whose set of base-5 digits is {2,3}.
- A032806 (program): Numbers whose set of base-6 digits is {2,3}.
- A032807 (program): Numbers whose set of base-7 digits is {2,3}.
- A032808 (program): Numbers whose set of base-8 digits is {2,3}.
- A032809 (program): Numbers whose set of base-9 digits is {2,3}.
- A032810 (program): Numbers using only digits 2 and 3.
- A032811 (program): Numbers whose set of base-11 digits is {2,3}.
- A032812 (program): Numbers whose set of base-12 digits is {2,3}.
- A032813 (program): Numbers whose set of base-13 digits is {2,3}.
- A032814 (program): Numbers whose set of base-14 digits is {2,3}.
- A032815 (program): Numbers whose set of base-15 digits is {2,3}.
- A032816 (program): Numbers whose set of base-16 digits is {2,3}.
- A032817 (program): Numbers whose set of base-5 digits is {1,4}.
- A032818 (program): Numbers whose set of base-6 digits is {1,4}.
- A032819 (program): Numbers whose set of base-7 digits is {1,4}.
- A032820 (program): Numbers whose set of base-8 digits is {1,4}.
- A032821 (program): Numbers whose set of base-9 digits is {1,4}.
- A032822 (program): Numbers whose set of base-10 digits is {1,4}.
- A032823 (program): Numbers whose set of base-11 digits is {1,4}.
- A032824 (program): Numbers whose set of base-12 digits is {1,4}.
- A032825 (program): Numbers whose set of base-13 digits is {1,4}.
- A032826 (program): Numbers whose set of base-14 digits is {1,4}.
- A032827 (program): Numbers whose set of base-15 digits is {1,4}.
- A032828 (program): Numbers whose set of base-16 digits is {1,4}.
- A032829 (program): Numbers whose set of base-5 digits is {3,4}.
- A032830 (program): Numbers whose set of base-6 digits is {3,4}.
- A032831 (program): Numbers whose set of base-7 digits is {3,4}.
- A032832 (program): Numbers whose set of base-8 digits is {3,4}.
- A032833 (program): Numbers whose set of base-9 digits is {3,4}.
- A032834 (program): Numbers with digits 3 and 4 only.
- A032835 (program): Numbers whose set of base-11 digits is {3,4}.
- A032836 (program): Numbers whose set of base-12 digits is {3,4}.
- A032837 (program): Numbers whose set of base-13 digits is {3,4}.
- A032838 (program): Numbers whose set of base-14 digits is {3,4}.
- A032839 (program): Numbers whose set of base-15 digits is {3,4}.
- A032840 (program): Numbers whose set of base-16 digits is {3,4}.
- A032898 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^i, d(m) > 0, has d(0) >= d(1) <= d(2) >= …
- A032908 (program): One of four 3rd-order recurring sequences for which the first derived sequence and the Galois transformed sequence coincide.
- A032911 (program): Numbers whose set of base-4 digits is a subset of {1,3}.
- A032912 (program): Numbers whose set of base-5 digits is {1,3}.
- A032913 (program): Numbers whose set of base-6 digits is {1,3}.
- A032914 (program): Numbers whose set of base-7 digits is {1,3}.
- A032915 (program): Numbers whose set of base-8 digits is {1,3}.
- A032916 (program): Numbers whose set of base-9 digits is {1,3}.
- A032917 (program): Numbers having only digits 1 and 3 in their decimal representation.
- A032918 (program): Numbers whose set of base-11 digits is {1,3}.
- A032919 (program): Numbers whose set of base-12 digits is {1,3}.
- A032920 (program): Numbers whose set of base-13 digits is {1,3}.
- A032921 (program): Numbers whose set of base-14 digits is {1,3}.
- A032922 (program): Numbers whose set of base-15 digits is {1,3}.
- A032923 (program): Numbers whose set of base-16 digits is {1,3}.
- A032924 (program): Numbers whose ternary expansion contains no 0.
- A032925 (program): Numbers whose set of base-4 digits is a subset of {1,2}.
- A032926 (program): Numbers whose set of base-5 digits is {1,2}.
- A032927 (program): Numbers whose set of base-6 digits is {1,2}.
- A032928 (program): Numbers whose set of base-7 digits is {1,2}.
- A032929 (program): Numbers whose set of base-8 digits is {1,2}.
- A032930 (program): Numbers whose set of base-9 digits is {1,2}.
- A032931 (program): Numbers whose set of base-11 digits is {1,2}.
- A032932 (program): Numbers whose set of base-12 digits is {1,2}.
- A032933 (program): Numbers whose set of base-13 digits is {1,2}.
- A032934 (program): Numbers whose set of base-14 digits is {1,2}.
- A032935 (program): Numbers whose set of base-15 digits is {1,2}.
- A032936 (program): Numbers whose set of base-16 digits is {1,2}.
- A032937 (program): Numbers k whose base-2 representation Sum_{i=0..m} d(i)*2^(m-i) has d(i)=0 for all odd i, excluding 0. Here m is the position of the leading bit of k.
- A032938 (program): Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^(m-i) has d(i)=0 for all odd i.
- A032939 (program): Numbers whose base-4 representation Sum_{i=0..m} d(i)*4^(m-i) has d(i)=0 for all odd i.
- A032940 (program): Numbers whose base-5 representation Sum_{i=0..m} d(i)*5^(m-i) has d(i)=0 for all odd i.
- A032944 (program): Numbers whose base-9 representation Sum_{i=0..m} d(i)*9^(m-i) has d(i)=0 for all odd i.
- A032952 (program): Expansion of (1+x*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
- A032956 (program): Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^(m-i) has even d(i) for all odd i.
- A032958 (program): Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^(m-i) has even d(i) for all odd i.
- A032960 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^(m-i) has even d(i) for all odd i.
- A032961 (program): Numbers whose base-11 representation Sum_{i=0..m} d(i)*11^(m-i) has even d(i) for all odd i.
- A032962 (program): Numbers whose base-12 representation Sum_{i=0..m} d(i)*12^(m-i) has even d(i) for all odd i.
- A032963 (program): Numbers whose base-13 representation Sum_{i=0..m} d(i)*13^(m-i) has even d(i) for all odd i.
- A032964 (program): Numbers whose base-14 representation Sum_{i=0..m} d(i)*14^(m-i) has even d(i) for all odd i.
- A032965 (program): Numbers whose base-15 representation Sum_{i=0..m} d(i)*15^(m-i) has even d(i) for all odd i.
- A032966 (program): Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^(m-i) has even d(i) for all odd i.
- A032973 (program): Numbers with the property that all pairs of consecutive digits differ by more than 1.
- A033015 (program): Numbers whose base-2 expansion has no run of digits with length < 2.
- A033030 (program): Derangement numbers d(n,3) where d(n,k) = k(n-1)(d(n-1,k) + d(n-2,k)), with d(0,k) = 1 and d(1,k) = 0.
- A033031 (program): Squarefree kernels of 3-smooth numbers.
- A033032 (program): Numbers all of whose base 6 digits are odd.
- A033033 (program): Numbers all of whose base 7 digits are odd.
- A033034 (program): Numbers all of whose base 8 digits are odd.
- A033035 (program): Numbers such that all base 9 digits are odd.
- A033036 (program): Numbers all of whose base 11 digits are odd.
- A033037 (program): Numbers all of whose base 12 digits are odd.
- A033038 (program): Numbers all of whose base 13 digits are odd.
- A033040 (program): Numbers all of whose base 15 digits are odd.
- A033041 (program): Numbers all of whose base 16 digits are odd.
- A033042 (program): Sums of distinct powers of 5.
- A033043 (program): Sums of distinct powers of 6.
- A033044 (program): Sums of distinct powers of 7.
- A033045 (program): Sums of distinct powers of 8.
- A033046 (program): Sums of distinct powers of 9.
- A033047 (program): Sums of distinct powers of 11.
- A033048 (program): Sums of distinct powers of 12.
- A033049 (program): Sums of distinct powers of 13.
- A033050 (program): Numbers whose set of base 14 digits is {0,1}.
- A033051 (program): Numbers whose set of base 15 digits is {0,1}.
- A033052 (program): a(1) = 1, a(2n) = 16a(n), a(2n+1) = a(2n)+1.
- A033053 (program): Numbers whose base-2 representation Sum_{i=0..m} d(i)*2^i has d(i)=1 when i != m mod 2.
- A033057 (program): Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^i has odd d(i) for all odd i.
- A033059 (program): Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^i has odd d(i) for all odd i.
- A033061 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^i has odd d(i) for all odd i.
- A033062 (program): Numbers whose base-11 representation Sum_{i=0..m} d(i)*11^i has odd d(i) for all odd i.
- A033063 (program): Numbers whose base-12 representation Sum_{i=0..m} d(i)*12^i has odd d(i) for all odd i.
- A033064 (program): Numbers whose base-13 representation Sum_{i=0..m} d(i)*13^i has odd d(i) for all odd i.
- A033065 (program): Numbers whose base-14 representation Sum_{i=0..m} d(i)*14^i has odd d(i) for all odd i.
- A033066 (program): Numbers whose base-15 representation Sum_{i=0..m} d(i)*15^i has odd d(i) for all odd i.
- A033067 (program): Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^i has odd d(i) for all odd i.
- A033093 (program): Number of 0’s when n is written in base b for 2<=b<=n+1.
- A033094 (program): Number of 0’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033095 (program): Number of 1’s when n is written in base b for 2<=b<=n+1.
- A033096 (program): Number of 1’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033097 (program): Number of 2’s when n is written in base b for 2<=b<=n+1.
- A033098 (program): Number of 2’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033099 (program): Number of 3’s when n is written in base b for 2<=b<=n+1.
- A033100 (program): Number of 3’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033101 (program): Number of 4’s when n is written in base b for 2<=b<=n+1.
- A033102 (program): Number of 4’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033103 (program): Number of 5’s when n is written in base b for 2<=b<=n+1.
- A033104 (program): Number of 5’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033105 (program): Number of 6’s when n is written in base b for 2<=b<=n+1.
- A033106 (program): Number of 6’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033107 (program): Number of 7’s when n is written in base b for 2<=b<=n+1.
- A033108 (program): Number of 7’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033109 (program): Number of 8’s when n is written in base b for 2<=b<=n+1.
- A033110 (program): Number of 8’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033111 (program): Number of 9’s when n is written in base b for 2<=b<=n+1.
- A033112 (program): Number of 9’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
- A033113 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033114 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033115 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033116 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033117 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033118 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033119 (program): Base-9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
- A033120 (program): Base-2 digits of a(n) are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033121 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033122 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033123 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033124 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033125 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033126 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033127 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
- A033128 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,1.
- A033129 (program): Base-2 digits are, in order, the first n terms of the periodic sequence with initial period [1,1,0].
- A033130 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033131 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033132 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033133 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033134 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033135 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033136 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
- A033137 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,1,0.
- A033138 (program): a(n) = floor(2^(n+2)/7).
- A033139 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033140 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033141 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033142 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033143 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033144 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033145 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
- A033146 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,0.
- A033156 (program): a(1) = 1; for m >= 2, a(n) = a(n-1) + floor(a(n-1)/(n-1)) + 2.
- A033157 (program): Begins with (1, 4); avoids 3-term arithmetic progressions.
- A033159 (program): Begins with (2, 3); avoids 3-term arithmetic progressions.
- A033160 (program): Begins with (2, 4); avoids 3-term arithmetic progressions.
- A033161 (program): Begins with (2, 5); avoids 3-term arithmetic progressions.
- A033162 (program): Begins with (3, 4); avoids 3-term arithmetic progressions.
- A033163 (program): Begins with (3, 5) and avoids 3-term arithmetic progressions.
- A033164 (program): Begins with (4, 5); avoids 3-term arithmetic progressions.
- A033168 (program): Longest arithmetic progression of primes with difference 210 and minimal initial term.
- A033171 (program): Number of days in n years (n=4 is the first leap year).
- A033172 (program): Number of days in n years (n=3 is the first leap year).
- A033173 (program): Number of days in n years (n=2 is the first leap year).
- A033174 (program): Number of days in n years (n=1 is the first leap year).
- A033175 (program): n 3’s followed by 1.
- A033182 (program): Number of pairs (p,q) such that 5*p + 6*q = n.
- A033183 (program): a(n) = number of pairs (p,q) such that 4*p + 9*q = n.
- A033184 (program): Catalan triangle A009766 transposed.
- A033190 (program): a(n) = Sum_{k=0..n} binomial(n,k) * binomial(Fibonacci(k)+1,2).
- A033191 (program): Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, … ], which is essentially binomial(Fibonacci(k) + 1, 2).
- A033192 (program): a(n) = binomial(Fibonacci(n) + 1, 2).
- A033193 (program): Binomial transform of A033192.
- A033196 (program): a(n) = n^3*Product_{p|n} (1 + 1/p).
- A033197 (program): Discriminants of quadratic number fields Q(sqrt -n) for n squarefree.
- A033198 (program): Discriminants of real quadratic number fields.
- A033199 (program): Primes of form x^2+6*y^2.
- A033200 (program): Primes congruent to {1, 3} (mod 8); or, odd primes of form x^2 + 2*y^2.
- A033203 (program): Primes p congruent to {1, 2, 3} (mod 8); or primes p of form x^2 + 2*y^2; or primes p such that x^2 = -2 has a solution mod p.
- A033205 (program): Primes of form x^2 + 5*y^2.
- A033207 (program): Primes of form x^2+7*y^2.
- A033212 (program): Primes congruent to 1 or 19 (mod 30).
- A033215 (program): Primes of form x^2+21*y^2.
- A033220 (program): Primes of form x^2+30*y^2.
- A033264 (program): Number of blocks of {1,0} in the binary expansion of n.
- A033265 (program): Number of i such that d(i) >= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
- A033270 (program): Number of odd primes <= n.
- A033271 (program): Number of odd nonprimes <= n.
- A033272 (program): Number of odd nonprimes dividing n.
- A033273 (program): Number of nonprime divisors of n.
- A033275 (program): Number of diagonal dissections of an n-gon into 3 regions.
- A033276 (program): Number of diagonal dissections of an n-gon into 4 regions.
- A033277 (program): Number of diagonal dissections of an n-gon into 5 regions.
- A033278 (program): Number of diagonal dissections of an n-gon into 6 regions.
- A033279 (program): Number of diagonal dissections of an n-gon into 7 regions.
- A033280 (program): Number of diagonal dissections of a convex (n+8)-gon into n+1 regions.
- A033281 (program): Number of diagonal dissections of a convex (n+9)-gon into n+1 regions.
- A033282 (program): Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
- A033286 (program): a(n) = n * prime(n).
- A033287 (program): First differences of A033286.
- A033291 (program): A Connell-like sequence: take the first multiple of 1, the next 2 multiples of 2, the next 3 multiples of 3, etc.
- A033292 (program): A Connell-like sequence: take 1 number = 1 (mod Q), 2 numbers = 2 (mod Q), 3 numbers = 3 (mod Q), etc., where Q = 3.
- A033293 (program): A Connell-like sequence: take 1 number = 1 (mod Q), 2 numbers = 2 (mod Q), 3 numbers = 3 (mod Q), etc., where Q = 8.
- A033296 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).
- A033297 (program): Number of ordered rooted trees with n edges such that the rightmost leaf of each subtree is at even level. Equivalently, number of Dyck paths of semilength n with no return descents of odd length.
- A033298 (program): a(n+1) = a(n) + sum of digits of a(n)^2.
- A033299 (program): Smallest safe prime ((p-1)/2 is also prime) > n.
- A033300 (program): Smallest safe prime ((p-1)/2 is also prime) > n-th prime.
- A033302 (program): Largest prime < largest prime < n.
- A033303 (program): Expansion of (1 + x)/(1 - 2*x - x^2 + x^3).
- A033304 (program): Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).
- A033305 (program): Number of permutations (p1,…,pn) such that 1 <= |pk - k| <= 2 for all k.
- A033312 (program): a(n) = n! - 1.
- A033320 (program): a(n) = floor( sqrt(2) * (3/2)^n ).
- A033321 (program): Binomial transform of Fine’s sequence A000957: 1, 0, 1, 2, 6, 18, 57, 186, …
- A033322 (program): a(n) = floor(2/n).
- A033324 (program): a(n) = floor(4/n).
- A033325 (program): a(n) = floor(5/n).
- A033326 (program): a(n) = floor(6/n).
- A033327 (program): a(n) = floor(7/n).
- A033328 (program): a(n) = floor(8/n).
- A033329 (program): a(n) = floor(9/n).
- A033330 (program): a(n) = floor(10/n).
- A033331 (program): a(n) = floor(11/n).
- A033332 (program): a(n) = floor(12/n).
- A033333 (program): a(n) = floor(13/n).
- A033334 (program): a(n) = floor(14/n).
- A033335 (program): a(n) = floor(15/n).
- A033336 (program): a(n) = floor(16/n).
- A033337 (program): a(n) = floor(17/n).
- A033338 (program): a(n) = floor(18/n).
- A033339 (program): a(n) = floor(19/n).
- A033340 (program): a(n) = floor(20/n).
- A033341 (program): a(n) = floor(21/n).
- A033342 (program): a(n) = floor(22/n).
- A033343 (program): a(n) = floor(23/n).
- A033344 (program): a(n) = floor(24/n).
- A033345 (program): a(n) = floor(25/n).
- A033346 (program): a(n) = floor(26/n).
- A033347 (program): a(n) = floor(27/n).
- A033348 (program): a(n) = floor(28/n).
- A033349 (program): a(n) = floor(29/n).
- A033350 (program): a(n) = floor(30/n).
- A033351 (program): a(n) = floor(31/n).
- A033352 (program): a(n) = floor(32/n).
- A033353 (program): a(n) = floor(33/n).
- A033354 (program): a(n) = floor(34/n).
- A033355 (program): a(n) = floor(35/n).
- A033356 (program): a(n) = floor(36/n).
- A033357 (program): a(n) = floor(37/n).
- A033358 (program): a(n) = floor(38/n).
- A033359 (program): a(n) = floor(39/n).
- A033360 (program): a(n) = floor(40/n).
- A033361 (program): a(n) = floor(41/n).
- A033362 (program): a(n) = floor(42/n).
- A033363 (program): a(n) = floor(43/n).
- A033364 (program): a(n) = floor(44/n).
- A033365 (program): a(n) = floor(45/n).
- A033366 (program): a(n) = floor(46/n).
- A033367 (program): a(n) = floor(47/n).
- A033368 (program): a(n) = floor(48/n).
- A033369 (program): a(n) = floor(49/n).
- A033370 (program): a(n) = floor(50/n).
- A033371 (program): a(n) = floor(51/n).
- A033372 (program): a(n) = floor(52/n).
- A033373 (program): a(n) = floor(53/n).
- A033374 (program): a(n) = floor(54/n).
- A033375 (program): a(n) = floor(55/n).
- A033376 (program): a(n) = floor(56/n).
- A033377 (program): a(n) = floor(57/n).
- A033378 (program): a(n) = floor(58/n).
- A033379 (program): a(n) = floor(59/n).
- A033380 (program): a(n) = floor(60/n).
- A033381 (program): a(n) = floor(61/n).
- A033382 (program): a(n) = floor(62/n).
- A033383 (program): a(n) = floor(63/n).
- A033384 (program): a(n) = floor(64/n).
- A033385 (program): a(n) = floor(65/n).
- A033386 (program): a(n) = floor(66/n).
- A033387 (program): a(n) = floor(67/n).
- A033388 (program): a(n) = floor(68/n).
- A033389 (program): a(n) = floor(69/n).
- A033390 (program): a(n) = floor(70/n).
- A033391 (program): a(n) = floor(71/n).
- A033392 (program): a(n) = floor(72/n).
- A033393 (program): a(n) = floor(73/n).
- A033394 (program): a(n) = floor(74/n).
- A033395 (program): a(n) = floor(75/n).
- A033396 (program): a(n) = floor(76/n).
- A033397 (program): a(n) = floor(77/n).
- A033398 (program): a(n) = floor(78/n).
- A033399 (program): a(n) = floor(79/n).
- A033400 (program): a(n) = floor(80/n).
- A033401 (program): a(n) = floor(81/n).
- A033402 (program): a(n) = floor(82/n).
- A033403 (program): a(n) = floor(83/n).
- A033404 (program): a(n) = floor(84/n).
- A033405 (program): a(n) = floor(85/n).
- A033406 (program): a(n) = floor(86/n).
- A033407 (program): a(n) = floor(87/n).
- A033408 (program): a(n) = floor(88/n).
- A033409 (program): a(n) = floor(89/n).
- A033410 (program): a(n) = floor(90/n).
- A033411 (program): a(n) = floor(91/n).
- A033412 (program): a(n) = floor(92/n).
- A033413 (program): a(n) = floor(93/n).
- A033414 (program): a(n) = floor(94/n).
- A033415 (program): a(n) = floor(95/n).
- A033416 (program): a(n) = floor(96/n).
- A033417 (program): a(n) = floor(97/n).
- A033418 (program): a(n) = floor(98/n).
- A033419 (program): a(n) = floor(99/n).
- A033420 (program): a(n) = floor(100/n).
- A033421 (program): a(n) = floor(1000/n).
- A033422 (program): a(n) = floor(10000/n).
- A033423 (program): a(n) = floor(10^9/n).
- A033424 (program): a(n) = floor(10^8/n).
- A033425 (program): a(n) = floor(10^7/n).
- A033426 (program): a(n) = floor(10^6/n).
- A033427 (program): a(n) = floor(10^5/n).
- A033428 (program): a(n) = 3*n^2.
- A033429 (program): a(n) = 5*n^2.
- A033430 (program): a(n) = 4*n^3.
- A033431 (program): a(n) = 2*n^3.
- A033432 (program): a(n) = floor(1000/sqrt(n)).
- A033433 (program): a(n) = floor(10000/sqrt(n)).
- A033434 (program): Third differences of Catalan numbers A000108.
- A033436 (program): a(n) = ceiling( (3*n^2 - 4)/8 ).
- A033437 (program): Number of edges in 5-partite Turán graph of order n.
- A033438 (program): Number of edges in 6-partite Turán graph of order n.
- A033439 (program): Number of edges in 7-partite Turán graph of order n.
- A033440 (program): Number of edges in 8-partite Turán graph of order n.
- A033441 (program): Number of edges in 9-partite Turán graph of order n.
- A033442 (program): Number of edges in 10-partite Turán graph of order n.
- A033443 (program): Number of edges in 11-partite Turán graph of order n.
- A033444 (program): Number of edges in 12-partite Turán graph of order n.
- A033445 (program): a(n) = (n - 1)*(n^2 + n - 1).
- A033452 (program): “STIRLING” transform of squares A000290.
- A033453 (program): “INVERT” transform of squares A000290.
- A033455 (program): Convolution of nonzero squares A000290 with themselves.
- A033456 (program): LCM-convolution of squares A000290 with themselves.
- A033457 (program): GCD-convolution of squares A000290 with themselves.
- A033461 (program): Number of partitions of n into distinct squares.
- A033462 (program): Exponential (or “EXP”) transform of squares A000290.
- A033463 (program): EXPCONV of squares A000290 with themselves.
- A033465 (program): First differences of sequence {1/(n^2+1)} (numerators).
- A033466 (program): First differences of sequence {1/(n^2+1)} (denominators).
- A033467 (program): Partial sums of sequence {1/(i^2+1): i=0..n} (numerators).
- A033468 (program): Partial sums of sequence {1/(i^2+1): i=0..n} (denominators).
- A033469 (program): Denominator of Bernoulli(2n,1/2).
- A033470 (program): Numerator of Bernoulli(2n,1/3).
- A033471 (program): Denominator of Bernoulli(2n,1/3).
- A033475 (program): Denominator of Bernoulli(2n,1/4).
- A033476 (program): Squares of primes or products of pairs of consecutive primes.
- A033477 (program): Products p^3 or p^2*q, where {p,q} are consecutive primes.
- A033478 (program): 3x+1 sequence beginning at 3.
- A033479 (program): 3x+1 sequence beginning at 9.
- A033480 (program): 3x + 1 sequence beginning at 15.
- A033481 (program): 3x+1 sequence beginning at 21.
- A033484 (program): a(n) = 3*2^n - 2.
- A033485 (program): a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.
- A033486 (program): a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.
- A033487 (program): a(n) = n*(n+1)*(n+2)*(n+3)/4.
- A033488 (program): a(n) = n*(n+1)*(n+2)*(n+3)/6.
- A033489 (program): a(1) = 1, a(n) = 2*a(n-1) + a([n/2]).
- A033490 (program): a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2.
- A033493 (program): Sum of the numbers in the trajectory of n for the 3x+1 problem.
- A033496 (program): Numbers n such that initial number is largest number in trajectory of Collatz (3x+1) problem.
- A033497 (program): a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2, a(3) = 4.
- A033504 (program): a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.
- A033505 (program): Expansion of 1/(1 - 3*x - x^2 + x^3).
- A033515 (program): Number of matchings in graph C_{3} X P_{n}.
- A033536 (program): Cubes of Catalan numbers (A000108).
- A033537 (program): a(n) = n*(2*n+5).
- A033538 (program): a(0)=1, a(1)=1, a(n) = 3*a(n-1) + a(n-2) + 1.
- A033539 (program): a(0)=1, a(1)=1, a(2)=1, a(n) = 2*a(n-1) + a(n-2) + 1.
- A033540 (program): a(n+1) = n*(a(n) + 1) for n >= 1, a(1) = 1.
- A033543 (program): Expansion of (1 - sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)).
- A033544 (program): Wiener number of n-hexagonal triangle.
- A033547 (program): Otto Haxel’s guess for magic numbers of nuclear shells.
- A033550 (program): a(n) = A005248(n) - n.
- A033551 (program): Closest integer to (Pi/4)*n^2.
- A033556 (program): a(n+1) = 2a(n) - {largest prime < a(n)}.
- A033557 (program): 2n - {largest prime < n}.
- A033558 (program): a(n) = 2n - {smallest prime > n}.
- A033559 (program): a(n) = (q - p)/2, where p is the largest prime < n and q is the smallest prime > n.
- A033560 (program): Primes p such that 4!+p is also prime.
- A033561 (program): Primes p such that 6!+p is also prime.
- A033562 (program): a(n) = 2*n^3 + 1.
- A033566 (program): a(n) = (2*n+1) * (4*n-1).
- A033567 (program): a(n) = (2*n-1)*(4*n-1).
- A033568 (program): Second pentagonal numbers with odd index: a(n) = (2*n-1)*(3*n-1).
- A033569 (program): a(n) = (2*n - 1)*(3*n + 1).
- A033570 (program): Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1).
- A033571 (program): a(n) = (2*n + 1)*(5*n + 1).
- A033572 (program): a(n) = (2*n+1)*(7*n+1).
- A033573 (program): a(n) = (2*n+1)*(9*n+1).
- A033574 (program): a(n) = (2*n+1)*(10*n+1).
- A033575 (program): a(n) = (2*n+1)*(11*n+1).
- A033576 (program): a(n) = (2*n+1)*(12*n+1).
- A033577 (program): a(n) = (3*n+1) * (4*n+1).
- A033578 (program): a(n) = (3*n - 1)*(4*n - 1).
- A033579 (program): Four times pentagonal numbers: a(n) = 2*n*(3*n-1).
- A033580 (program): Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
- A033581 (program): a(n) = 6*n^2.
- A033582 (program): a(n) = 7*n^2.
- A033583 (program): a(n) = 10*n^2.
- A033584 (program): a(n) = 11*n^2.
- A033585 (program): a(n) = 2*n*(4*n + 1).
- A033586 (program): a(n) = 4*n*(2*n + 1).
- A033587 (program): a(n) = 2*n*(4*n + 3).
- A033589 (program): a(n) = (2*n-1)*(3*n-1)*(4*n-1).
- A033590 (program): a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1).
- A033591 (program): a(n) = (2*n+1)*(3*n+1)*(4*n+1).
- A033592 (program): a(n) = (2*n+1)*(3*n+1)*(4*n+1)*(5*n+1).
- A033593 (program): a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).
- A033594 (program): a(n) = (n-1)*(2*n-1)*(3*n-1).
- A033595 (program): a(n) = (n^2-1)*(2*n^2-1).
- A033596 (program): a(n) = (n^2 - 1)*(n^2 - 3).
- A033597 (program): (nextprime(n)+prevprime(n))/2.
- A033619 (program): Undulating numbers (of form abababab… in base 10).
- A033622 (program): Good sequence of increments for Shell sort (best on big values).
- A033627 (program): 0-additive sequence: not the sum of any previous pair.
- A033633 (program): Primes modulo 19.
- A033634 (program): OddPowerSigma(n) = sum of odd power divisors of n.
- A033638 (program): Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).
- A033648 (program): Trajectory of 3 under map x->x + (x-with-digits-reversed).
- A033649 (program): Trajectory of 5 under map x->x + (x-with-digits-reversed).
- A033650 (program): Trajectory of 7 under map x –> x + (x-with-digits-reversed).
- A033651 (program): Trajectory of 9 under map x->x + (x-with-digits-reversed).
- A033652 (program): Trajectory of 13 under map x->x + (x-with-digits-reversed).
- A033653 (program): Trajectory of 15 under map x->x + (x-with-digits-reversed).
- A033654 (program): Trajectory of 17 under map x->x + (x-with-digits-reversed).
- A033655 (program): Trajectory of 19 under map x->x + (x-with-digits-reversed).
- A033656 (program): Trajectory of 21 under map x->x + (x-with-digits-reversed).
- A033657 (program): Trajectory of 23 under map x->x + (x-with-digits-reversed).
- A033658 (program): Trajectory of 25 under map x->x + (x-with-digits-reversed).
- A033659 (program): Trajectory of 27 under map x->x + (x-with-digits-reversed).
- A033660 (program): Trajectory of 29 under map x->x + (x-with-digits-reversed).
- A033661 (program): Trajectory of 31 under map x->x + (x-with-digits-reversed).
- A033662 (program): Possible digital sums of Smith numbers (conjectural).
- A033668 (program): Theta series of 4-dimensional lattice A_2 tensor A2, with det 81, minimal norm 4.
- A033669 (program): a(n) = n^6*(n^6 + 1)*(n^2 - 1).
- A033670 (program): Trajectory of 89 under map x->x + (x-with-digits-reversed).
- A033671 (program): Trajectory of 59 under map x->x + (x-with-digits-reversed).
- A033672 (program): Trajectory of 69 under map x->x + (x-with-digits-reversed).
- A033673 (program): Trajectory of 79 under map x->x + (x-with-digits-reversed).
- A033674 (program): Trajectory of 99 under map x->x + (x-with-digits-reversed).
- A033675 (program): Trajectory of 166 under map x->x + (x-with-digits-reversed).
- A033676 (program): Largest divisor of n <= sqrt(n).
- A033677 (program): Smallest divisor of n >= sqrt(n).
- A033683 (program): a(n) = 1 if n is an odd square not divisible by 3, otherwise 0.
- A033684 (program): 1 iff n is a square not divisible by 3.
- A033685 (program): Theta series of hexagonal lattice A_2 with respect to deep hole.
- A033686 (program): One-ninth of theta series of A2[hole]^2.
- A033687 (program): Theta series of hexagonal lattice A_2 with respect to deep hole divided by 3.
- A033691 (program): Minimal number of vertices in 1-1 deficient regular graph where minimal degree is 1 and maximal degree is n.
- A033713 (program): Number of zeros in numbers 1 to 999..9 (n digits).
- A033714 (program): Number of zeros in numbers 0 to 999..9 (n digits).
- A033715 (program): Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.
- A033716 (program): Number of integer solutions to the equation x^2 + 3y^2 = n.
- A033719 (program): Coefficients in expansion of theta_3(q) * theta_3(q^7) in powers of q.
- A033723 (program): Product theta3(q^d); d | 11.
- A033725 (program): Product theta3(q^d); d | 13.
- A033735 (program): Expansion of Product_{d | 23} theta_3(q^d).
- A033743 (program): Expansion of Product_{d | 31} theta_3(q^d).
- A033761 (program): Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)).
- A033762 (program): Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).
- A033763 (program): Product t2(q^d); d | 4, where t2 = theta2(q)/(2*q^(1/4)).
- A033764 (program): Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).
- A033765 (program): Product t2(q^d); d | 6, where t2 = theta2(q)/(2*q^(1/4)).
- A033767 (program): Product t2(q^d); d | 8, where t2 = theta2(q)/(2*q^(1/4)).
- A033768 (program): Product t2(q^d); d | 9, where t2 = theta2(q)/(2*q^(1/4)).
- A033770 (program): Product t2(q^d); d | 11, where t2 = theta2(q)/(2*q^(1/4)).
- A033772 (program): Product t2(q^d); d | 13, where t2 = theta2(q)/(2*q^(1/4)).
- A033775 (program): Product t2(q^d); d | 16, where t2 = theta2(q)/(2*q^(1/4)).
- A033776 (program): Product t2(q^d); d | 17, where t2 = theta2(q)/(2*q^(1/4)).
- A033777 (program): Product t2(q^d); d | 18, where t2 = theta2(q)/(2*q^(1/4)).
- A033778 (program): Product t2(q^d); d | 19, where t2 = theta2(q)/(2*q^(1/4)).
- A033782 (program): Product t2(q^d); d | 23, where t2 = theta2(q)/(2*q^(1/4)).
- A033788 (program): Product t2(q^d); d | 29, where t2 = theta2(q)/(2*q^(1/4)).
- A033790 (program): Product t2(q^d); d | 31, where t2 = theta2(q)/(2*q^(1/4)).
- A033796 (program): Product t2(q^d); d | 37, where t2 = theta2(q)/(2*q^(1/4)).
- A033800 (program): Product t2(q^d); d | 41, where t2 = theta2(q)/(2*q^(1/4)).
- A033802 (program): Product t2(q^d); d | 43, where t2 = theta2(q)/(2*q^(1/4)).
- A033806 (program): Product t2(q^d); d | 47, where t2 = theta2(q)/(2*q^(1/4)).
- A033811 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k)(A000032) for k >= 2.
- A033813 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k)(A000032) for k >= 3.
- A033814 (program): Convolution of positive integers n with Lucas numbers L(k)(A000032) for k >= 4.
- A033815 (program): Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).
- A033816 (program): a(n) = 2*n^2 + 3*n + 3.
- A033817 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -4.
- A033818 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -2.
- A033820 (program): Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
- A033822 (program): Numbers of fixed points of elements of group M24.
- A033823 (program): Numbers of fixed points of elements of group M24.
- A033824 (program): Finite sequence associated with M24.
- A033825 (program): Finite sequence associated with M24.
- A033826 (program): Critical dimensions for N-modular lattices.
- A033827 (program): Critical dimensions for N-modular lattices.
- A033831 (program): Number of numbers d dividing n such that d >= 3 and 1 <= n/d <= d-2.
- A033842 (program): Triangle of coefficients of certain polynomials (exponents in decreasing order).
- A033845 (program): Numbers n of the form 2^i*3^j, i and j >= 1.
- A033846 (program): Numbers whose prime factors are 2 and 5.
- A033860 (program): Sort-then-add sequence: a(n+1) = a(n) + sort(a(n)).
- A033868 (program): Numbers n such that 7*n-11 is prime.
- A033872 (program): Numbers k such that A033831(k) is prime.
- A033876 (program): Expansion of 1/(2*x) * (1/(1-4*x)^(3/2)-1).
- A033877 (program): Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).
- A033878 (program): Triangular array associated with Schroeder numbers.
- A033879 (program): Deficiency of n, or 2n - (sum of divisors of n).
- A033880 (program): Abundance of n, or (sum of divisors of n) - 2n.
- A033881 (program): Abundancy of n-th abundant number: sigma(k) - 2k for k such that this is > 0.
- A033882 (program): Abundancy of the abundant or perfect numbers: m = sigma(n)-2n for n such that m >= 0.
- A033883 (program): Deficiency of the deficient or perfect numbers: m = 2n - sigma(n) for n such that m >= 0.
- A033884 (program): Deficiency of n-th deficient number: 2k - sigma(k) for k such that this is > 0.
- A033885 (program): a(n) = 3*n - sum of divisors of n.
- A033887 (program): a(n) = Fibonacci(3*n+1).
- A033888 (program): a(n) = Fibonacci(4n).
- A033889 (program): a(n) = Fibonacci(4*n + 1).
- A033890 (program): a(n) = Fibonacci(4*n + 2).
- A033891 (program): a(n) = Fibonacci(4*n+3).
- A033893 (program): Sort then Add!.
- A033894 (program): Sort then Add!.
- A033895 (program): Sort then Add!.
- A033896 (program): Sort then Add!.
- A033897 (program): Sort then Add!.
- A033898 (program): Sort then Add!.
- A033899 (program): Sort then Add!.
- A033900 (program): Sort then Add!.
- A033901 (program): Sort then Add!.
- A033902 (program): Sort then Add!.
- A033903 (program): Sort then Add!.
- A033904 (program): Sort then Add!.
- A033905 (program): Sort then Add!.
- A033906 (program): Sort then Add!.
- A033907 (program): Sort then Add!.
- A033918 (program): Triangular array in which n-th row consists of the numbers 1^1, 2^2, … n^n.
- A033922 (program): Base-2 digital convolution sequence.
- A033923 (program): Base 3 digital convolution sequence.
- A033924 (program): Base 4 digital convolution sequence.
- A033925 (program): Base 5 digital convolution sequence.
- A033926 (program): Base 6 digital convolution sequence.
- A033927 (program): Base 7 digital convolution sequence.
- A033928 (program): Base 8 digital convolution sequence.
- A033929 (program): Base 9 digital convolution sequence.
- A033931 (program): a(n) = lcm(n,n+1,n+2).
- A033934 (program): (10^n+1)^2.
- A033936 (program): a(n+1) = a(n) + sum of squares of digits of a(n).
- A033937 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 3.
- A033940 (program): a(n) = 10^n mod 7.
- A033941 (program): Number of ways A002808(n) can be properly factored into 2 integers.
- A033942 (program): Positive integers with at least 3 prime factors (counted with multiplicity).
- A033946 (program): Values of n corresponding to A033945.
- A033948 (program): Numbers that have a primitive root (the multiplicative group modulo n is cyclic).
- A033949 (program): Positive integers that do not have a primitive root.
- A033950 (program): Refactorable numbers: number of divisors of k divides k. Also known as tau numbers.
- A033951 (program): Write 1,2,… in clockwise spiral; sequence gives numbers on positive x axis.
- A033954 (program): Second 10-gonal (or decagonal) numbers: n*(4*n+3).
- A033955 (program): a(n) = sum of the remainders when the n-th prime is divided by primes up to the (n-1)-th prime.
- A033956 (program): Add prime(n) to A033955.
- A033960 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 4.
- A033962 (program): Trajectory of 1 under map n->9n+1 if n odd, n->n/2 if n even
- A033963 (program): Trajectory of 1 under map n->11n+1 if n odd, n->n/2 if n even
- A033964 (program): Trajectory of 1 under map n->13n+1 if n odd, n->n/2 if n even
- A033965 (program): Trajectory of 1 under map n->17n+1 if n odd, n->n/2 if n even
- A033966 (program): Trajectory of 1 under map n->19n+1 if n odd, n->n/2 if n even
- A033967 (program): Trajectory of 1 under map n->21n+1 if n odd, n->n/2 if n even
- A033968 (program): Trajectory of 1 under map n->23n+1 if n odd, n->n/2 if n even
- A033969 (program): Trajectory of 1 under map n->25n+1 if n odd, n->n/2 if n even
- A033970 (program): Trajectory of 1 under map n->27n+1 if n odd, n->n/2 if n even
- A033971 (program): Trajectory of 1 under map n->29n+1 if n odd, n->n/2 if n even
- A033972 (program): Trajectory of 1 under map n->33n+1 if n odd, n->n/2 if n even
- A033973 (program): Trajectory of 1 under map n->35n+1 if n odd, n->n/2 if n even
- A033974 (program): Trajectory of 1 under map n->37n+1 if n odd, n->n/2 if n even
- A033975 (program): Trajectory of 1 under map n->39n+1 if n odd, n->n/2 if n even
- A033976 (program): Trajectory of 1 under map n->41n+1 if n odd, n->n/2 if n even
- A033977 (program): Trajectory of 1 under map n->43n+1 if n odd, n->n/2 if n even
- A033978 (program): Trajectory of 1 under map n->45n+1 if n odd, n->n/2 if n even
- A033979 (program): Trajectory of 1 under map n->47n+1 if n odd, n->n/2 if n even
- A033980 (program): Trajectory of 1 under map n->49n+1 if n odd, n->n/2 if n even
- A033987 (program): Numbers that are divisible by at least 4 primes (counted with multiplicity).
- A033991 (program): a(n) = n*(4*n-1).
- A033992 (program): Numbers that are divisible by exactly three different primes.
- A033993 (program): Numbers that are divisible by exactly four different primes.
- A033994 (program): a(n) = n*(n+1)*(5*n+1)/6.
- A033996 (program): 8 times triangular numbers: a(n) = 4*n*(n+1).
- A033999 (program): a(n) = (-1)^n.
- A034000 (program): One half of triple factorial numbers.
- A034001 (program): One third of triple factorial numbers.
- A034007 (program): First differences of A045891.
- A034008 (program): a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.
- A034009 (program): Convolution of A000295(n+2) (n>=0) with itself.
- A034015 (program): Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.
- A034017 (program): Numbers that are primitively represented by x^2 + xy + y^2.
- A034020 (program): Not of the form x^2 + x*y + y^2.
- A034021 (program): Numbers that are primitively but not imprimitively represented by x^2+xy+y^2.
- A034044 (program): Numbers that are primitively but not imprimitively represented by x^2+y^2+z^2.
- A034045 (program): Numbers that are imprimitively but not primitively represented by x^2+y^2+z^2.
- A034048 (program): Numbers with multiplicative digital root value 0.
- A034049 (program): Numbers with multiplicative digital root value 2.
- A034050 (program): Numbers with multiplicative digital root value 3.
- A034051 (program): Numbers with multiplicative digital root value 4.
- A034052 (program): Numbers with multiplicative digital root value 5.
- A034053 (program): Numbers with multiplicative digital root value 6.
- A034054 (program): Numbers with multiplicative digital root value 7.
- A034055 (program): Numbers with multiplicative digital root value 8.
- A034056 (program): Numbers with multiplicative digital root value 9.
- A034077 (program): Decimal part of n-th root of a(n) starts with digit 0.
- A034081 (program): Decimal part of n-th root of a(n) starts with digit 4.
- A034082 (program): a(n) = least integer m such that the part after the decimal point of the n-th root of m starts with the digit 5.
- A034084 (program): Decimal part of n-th root of a(n) starts with digit 7.
- A034085 (program): Decimal part of n-th root of a(n) starts with digit 8.
- A034095 (program): Indices of (-1)sigma perfect numbers.
- A034096 (program): Fractional part of square root of n starts with digit 0 (squares excluded).
- A034097 (program): Fractional part of square root of a(n) starts with digit 1.
- A034098 (program): Fractional part of square root of a(n) starts with digit 2.
- A034099 (program): Fractional part of square root of a(n) starts with digit 3.
- A034100 (program): Fractional part of square root of a(n) starts with digit 4.
- A034101 (program): Numbers whose fractional part of square root starts with digit 5.
- A034102 (program): Fractional part of square root of a(n) starts with digit 6.
- A034103 (program): Fractional part of square root of a(n) starts with digit 7.
- A034104 (program): Fractional part of square root of a(n) starts with digit 8.
- A034105 (program): Numbers n such that fractional part of square root of n starts with digit 9.
- A034106 (program): Fractional part of square root of n starts with 0: first term of runs (squares excluded).
- A034107 (program): Fractional part of square root of a(n) starts with 1: first term of runs.
- A034108 (program): Fractional part of square root of a(n) starts with 2: first term of runs.
- A034109 (program): Fractional part of square root of a(n) starts with 3: first term of runs.
- A034110 (program): Fractional part of square root of a(n) starts with 4: first term of runs.
- A034111 (program): Fractional part of square root of a(n) starts with 5: first term of runs.
- A034112 (program): Fractional part of square root of a(n) starts with 6: first term of runs.
- A034113 (program): Fractional part of square root of a(n) starts with 7: first term of runs.
- A034114 (program): Fractional part of square root of a(n) starts with 8: first term of runs.
- A034115 (program): Fractional part of square root of a(n) starts with 9: first term of runs.
- A034116 (program): Fractional part of cube root of a(n) starts with digit 0 (cubes excluded).
- A034117 (program): Fractional part of cube root of a(n) starts with digit 1.
- A034118 (program): Fractional part of cube root of a(n) starts with digit 2.
- A034119 (program): Fractional part of cube root of a(n) starts with digit 3.
- A034120 (program): Fractional part of cube root of a(n) starts with digit 4.
- A034121 (program): Fractional part of cube root of a(n) starts with digit 5.
- A034122 (program): Fractional part of cube root of a(n) starts with digit 6.
- A034123 (program): Fractional part of cube root of a(n) starts with digit 7.
- A034124 (program): Numbers whose fractional part of the cube root starts with digit 8.
- A034125 (program): Decimal part of cube root of n starts with digit 9.
- A034126 (program): Decimal part of cube root of a(n) starts with 0: first term of runs (cubes excluded).
- A034127 (program): Decimal part of cube root of a(n) starts with 1: first term of runs.
- A034128 (program): Decimal part of cube root of a(n) starts with 2: first term of runs.
- A034129 (program): Decimal part of cube root of a(n) starts with 3: first term of runs.
- A034130 (program): Decimal part of cube root of a(n) starts with 4: first term of runs.
- A034131 (program): Decimal part of cube root of a(n) starts with 5: first term of runs.
- A034132 (program): Decimal part of cube root of a(n) starts with 6: first term of runs.
- A034133 (program): Decimal part of cube root of a(n) starts with 7: first term of runs.
- A034134 (program): Decimal part of cube root of a(n) starts with 8: first term of runs.
- A034135 (program): Decimal part of cube root of n starts with 9: first term of runs.
- A034164 (program): Related to triple factorial numbers 2*A034000(n+1).
- A034166 (program): Maximum length of ‘zig-zag’ self avoiding walk on an n X n lattice from a corner to opposite one.
- A034171 (program): Related to triple factorial numbers A007559(n+1).
- A034176 (program): One third of quartic factorial numbers.
- A034177 (program): a(n) is the n-th quartic factorial number divided by 4.
- A034178 (program): Number of solutions to n = a^2 - b^2, a > b >= 0.
- A034182 (program): Number of not-necessarily-symmetric n X 2 crossword puzzle grids.
- A034188 (program): Number of binary codes of length 3 with n words.
- A034198 (program): Number of binary codes (not necessarily linear) of length n with 3 words.
- A034214 (program): Number of ternary codes of length 2 with n words.
- A034223 (program): Number of ternary codes (not necessarily linear) of length n with 3 words.
- A034255 (program): Related to quartic factorial numbers A007696.
- A034256 (program): Expansion of 2 - (1 - 16*x)^(1/4), related to quartic factorial numbers A034176.
- A034257 (program): Maximal discrete supergroups of Gamma_0(n).
- A034261 (program): Infinite square array f(a,b) = C(a+b,b+1)*(a*b+a+1)/(b+2), a, b >= 0, read by antidiagonals. Equivalently, triangular array T(n,k) = f(k,n-k), 0 <= k <= n, read by rows.
- A034262 (program): a(n) = n^3 + n.
- A034263 (program): a(n) = binomial(n+4,4)*(4*n+5)/5.
- A034264 (program): a(n)=f(n,4) where f is given in A034261.
- A034265 (program): a(n) = binomial(n+6,6)*(6*n+7)/7.
- A034266 (program): Partial sums of A027818.
- A034267 (program): a(n)=f(n,n) where f is given in A034261.
- A034268 (program): a(n) = LCM_{k=1..n} (2^k - 1).
- A034269 (program): a(n) = f(n,n+2) where f is given in A034261.
- A034270 (program): f(n,n+3) where f is given in A034261.
- A034271 (program): a(n)=f(n,n+4) where f is given in A034261.
- A034272 (program): a(n)=f(n,n+5) where f is given in A034261.
- A034273 (program): a(n) = binomial(2*n+6,n+7)*(n^2+7*n+1)/(n+8) = f(n,n+6) where f is given in A034261.
- A034274 (program): a(n)=f(n,n-1) where f is given in A034261.
- A034275 (program): a(n)=f(n,n-2) where f is given in A034261.
- A034293 (program): Numbers n such that 2^n does not contain the digit 2 (probably finite).
- A034299 (program): Alternating sum transform (PSumSIGN) of A000975.
- A034300 (program): a(n) = n-th quintic factorial number divided by 3.
- A034301 (program): a(n) = n-th quintic factorial number divided by 4.
- A034323 (program): a(n) = n-th quintic factorial number divided by 2.
- A034324 (program): a(n) = (n-1)*(n-2)*(n-3) + n.
- A034325 (program): a(n) is the n-th quintic factorial number divided by 5.
- A034326 (program): Hours struck by a clock.
- A034329 (program): Number of matroids: column 3 of A034327.
- A034333 (program): Number of matroids: column 3 of A034328.
- A034379 (program): Expansion of 1/(1-x)^2/(1-x^2)/(1-x^3)/(1-x^5)/(1-x^8).
- A034381 (program): Number of labeled cyclic groups.
- A034385 (program): Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.
- A034386 (program): Primorial numbers (second definition): n# = product of primes <= n.
- A034387 (program): Sum of primes <= n.
- A034405 (program): Let f(x) = (Pi - 2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1).
- A034428 (program): E.g.f.: 1 - (1-x)*(tan(x) + sec(x)).
- A034430 (program): Convolution of A001147 (double factorial numbers) with itself.
- A034444 (program): a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).
- A034448 (program): usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).
- A034460 (program): a(n) = usigma(n) - n, where usigma(n) = sum of unitary divisors of n (A034448).
- A034470 (program): Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
- A034472 (program): a(n) = 3^n + 1.
- A034474 (program): a(n) = 5^n + 1.
- A034478 (program): a(n) = (5^n + 1)/2.
- A034488 (program): Sum of n-th powers of divisors of 6.
- A034491 (program): 7^n + 1.
- A034494 (program): a(n) = (7^n+1)/2.
- A034496 (program): Sum of n-th powers of divisors of 8.
- A034513 (program): a(n) = 1^n + 3^n + 9^n.
- A034517 (program): Sum of n-th powers of divisors of 10.
- A034524 (program): 11^n + 1.
- A034583 (program): Dimension of an irreducible R-module for Clifford algebra Cl_n.
- A034584 (program): Radon-Hurwitz numbers: log_2 of dimension of an irreducible R-module for Clifford algebra Cl_n.
- A034585 (program): Dimension of an irreducible Z_2 graded H-module for Clifford algebra Cl_n.
- A034586 (program): Log_2 of dimension of an irreducible Z_2 graded H-module for Clifford algebra Cl_n.
- A034602 (program): Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).
- A034659 (program): a(n) = (11^n + 1)/2.
- A034660 (program): Sum of n-th powers of divisors of 12.
- A034661 (program): Sum of n-th powers of divisors of 18.
- A034662 (program): Sum of n-th powers of divisors of 20.
- A034663 (program): Sum of n-th powers of divisors of 21.
- A034664 (program): Sum of n-th powers of divisors of 24.
- A034665 (program): Sum of n-th powers of divisors of 32.
- A034666 (program): Sum of n-th powers of divisors of 36.
- A034667 (program): Sum of n-th powers of divisors of 40.
- A034668 (program): Sum of n-th powers of divisors of 48.
- A034669 (program): Sum of n-th powers of divisors of 56.
- A034671 (program): Sum of n-th powers of divisors of 72.
- A034672 (program): Sum of n-th powers of divisors of 96.
- A034673 (program): Sum of n-th powers of divisors of 120.
- A034674 (program): Sum of n-th powers of divisors of 128.
- A034675 (program): Sum of n-th powers of divisors of 144.
- A034676 (program): Sum of squares of unitary divisors of n.
- A034677 (program): Sum of cubes of unitary divisors of n.
- A034678 (program): Sum of fourth powers of unitary divisors.
- A034679 (program): Sum of fifth powers of unitary divisors.
- A034680 (program): Sum of sixth powers of unitary divisors.
- A034681 (program): Sum of seventh powers of unitary divisors.
- A034682 (program): Sum of eighth powers of unitary divisors.
- A034683 (program): Unitary abundant numbers: numbers k such that usigma(k) > 2*k.
- A034684 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = min { p_i^e_i }.
- A034687 (program): Related to quintic factorial numbers A008548.
- A034688 (program): Expansion of (1-25*x)^(-1/5), related to quintic factorial numbers A008548.
- A034689 (program): a(n) = n-th sextic factorial number divided by 2.
- A034690 (program): Sum of digits of all the divisors of n.
- A034691 (program): Euler transform of powers of 2 [1,2,4,8,16,…].
- A034692 (program): a(n+1) = smallest number that is not the sum of a(n) or fewer terms of a(1),…,a(n).
- A034693 (program): Smallest k such that k*n+1 is prime.
- A034694 (program): Smallest prime == 1 (mod n).
- A034695 (program): Tau_6 (the 6th Piltz divisor function), the number of ordered 6-factorizations of n; Dirichlet convolution of number-of-divisors function (A000005) with A007426.
- A034697 (program): a(1)=1, a(n)= 1 + Sum a(p), p prime, p | n-1.
- A034699 (program): Largest prime power factor of n.
- A034701 (program): a(n) is the smallest number not of the form a(i) (1<=i<=n-1) or a(i)+a(n-1) (1<=i<=n-2).
- A034702 (program): a(n+1) is the smallest number not of the form a(i), a(i) + a(n-1), or |a(i) - a(n-1)|.
- A034706 (program): Numbers which are sums of consecutive triangular numbers.
- A034709 (program): Numbers divisible by their last digit.
- A034713 (program): Dirichlet convolution of powers of 2 (2,4,8,…) with themselves.
- A034714 (program): Dirichlet convolution of squares with themselves.
- A034715 (program): Dirichlet convolution of triangular numbers with themselves.
- A034718 (program): Dirichlet convolution of b_n=n with b_n with b_n.
- A034719 (program): Dirichlet convolution of powers of 3 (3,9,27,…) with themselves.
- A034720 (program): Number of different words that can be formed from an n X n grid of letters, reading horizontally, vertically or diagonally.
- A034721 (program): a(n) = (10*n^3 - 9*n^2 + 2*n)/3 + 1.
- A034723 (program): a(n) is the n-th sextic factorial number divided by 3.
- A034724 (program): a(n) = n-th sextic factorial number divided by 4.
- A034729 (program): a(n) = Sum_{ k, k|n } 2^(k-1).
- A034730 (program): Dirichlet convolution of b_n=1 with c_n=3^(n-1).
- A034731 (program): Dirichlet convolution of b_n=1 with Catalan numbers.
- A034732 (program): Dirichlet convolution of b_n=1 with Bell numbers.
- A034733 (program): Dirichlet convolution of b_n=2^(n-1) with itself.
- A034734 (program): Dirichlet convolution of b_n=2^(n-1) with Fibonacci numbers.
- A034735 (program): Dirichlet convolution of b_n=2^(n-1) with c_n=3^(n-1).
- A034737 (program): Dirichlet convolution of b_n=2^(n-1) with sigma(n).
- A034738 (program): Dirichlet convolution of b_n = 2^(n-1) with phi(n).
- A034741 (program): Dirichlet convolution of mu(n) with 3^(n-1).
- A034745 (program): Dirichlet convolution of Fibonacci numbers with 3^(n-1).
- A034747 (program): Dirichlet convolution of Fibonacci numbers with sigma(n).
- A034748 (program): Dirichlet convolution of Fibonacci numbers with phi(n).
- A034751 (program): Dirichlet convolution of 3^(n-1) with itself.
- A034753 (program): Dirichlet convolution of 3^(n-1) with sigma(n).
- A034754 (program): Dirichlet convolution of 3^(n-1) with phi(n).
- A034760 (program): Dirichlet convolution of primes (with 1) with phi(n).
- A034761 (program): Dirichlet convolution of sigma(n) with itself.
- A034762 (program): Dirichlet convolution of primes (with 1) with sigma(n).
- A034764 (program): Dirichlet convolution of sigma(n) with Catalan numbers.
- A034765 (program): Dirichlet convolution of sigma(n) with Bell numbers.
- A034766 (program): Dirichlet convolution of phi(n) with Catalan numbers.
- A034767 (program): Dirichlet convolution of phi(n) with Bell numbers.
- A034771 (program): Dirichlet convolution of d(n) (# of divisors) with b_n=2^(n-1).
- A034772 (program): Dirichlet convolution of d(n) (number of divisors) with Fibonacci numbers.
- A034773 (program): Dirichlet convolution of d(n) (number of divisors of n) with primes (with 1).
- A034774 (program): Dirichlet convolution of d(n) (# of divisors) with Catalan numbers.
- A034775 (program): Dirichlet convolution of d(n) (# of divisors) with Bell numbers.
- A034777 (program): Dirichlet convolution of [ 1,1,1,… ] with Ramanujan numbers (A000594).
- A034780 (program): Numbers k such that A034693(k) = 4.
- A034782 (program): Numbers n such that A034693(n) = 3: 3n + 1 is prime, but neither n + 1 nor 2n + 1.
- A034783 (program): Numbers k such that A034693(k) = 6.
- A034784 (program): Numbers n such that A034693(n) = 2.
- A034785 (program): a(n) = 2^(n-th prime).
- A034787 (program): a(n) = n-th sextic factorial number divided by 5.
- A034788 (program): a(n) is the n-th sextic factorial number divided by 6.
- A034789 (program): Related to sextic factorial numbers A008542.
- A034793 (program): a(1)=1; thereafter a(n+1) is the least k > a(n) such that k is a square mod a(i) for all i<= n.
- A034803 (program): Consider the sequence of 4-tuples {0,a,b,c} (c>=a+b; a,b,c>0)) which have the smallest integer ‘c’ required to reach {k,k,k,k} in n steps under map {r,s,t,u}->{|r-s|,|s-t|,|t-u|,|u-r|}. This sequence gives the second term ‘a’ of these quadruples.
- A034804 (program): Consider the sequence of 4-tuples {0,a,b,c} (c>=a+b; a,b,c>0)) which have the smallest integer ‘c’ required to reach {k,k,k,k} in n steps under map {r,s,t,u}->{|r-s|,|s-t|,|t-u|,|u-r|}. This sequence gives the third term ‘b’ of these quadruples.
- A034806 (program): Number of distinct sets of 2 numbers > 1 such that their product is between n^2 and (n+1)^2.
- A034807 (program): Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.
- A034822 (program): Numbers n such that there are no palindromic squares of length n.
- A034827 (program): a(n) = 2*binomial(n,4).
- A034828 (program): a(n) = floor(n^2/4)*(n/2).
- A034829 (program): a(n) = n-th sept-factorial number divided by 2.
- A034830 (program): a(n) = n-th sept-factorial number divided by 3.
- A034831 (program): a(n) = n-th sept-factorial number divided by 4.
- A034832 (program): a(n) = n-th sept-factorial number divided by 5.
- A034833 (program): a(n) = n-th sept-factorial number divided by 6.
- A034834 (program): One seventh of sept-factorial numbers.
- A034835 (program): Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.
- A034836 (program): Number of ways to write n as n = x*y*z with 1 <= x <= y <= z.
- A034839 (program): Triangular array formed by taking every other term of each row of Pascal’s triangle.
- A034840 (program): Concatenation of 3 or more numbers in arithmetic progression.
- A034841 (program): a(n) = (n^2)! / (n!)^n.
- A034846 (program): a(n) = P(n,6) = 1+6*K(n,6)=1+6*A034783(n). P(n,6) are special primes of 6k+1. The relevant values of k are given by A034783.
- A034847 (program): a(n) = 1 + 4*A034780(n).
- A034848 (program): a(n) = 1 + 3*A034782(n).
- A034849 (program): a(n) = 1 + 2*A034784(n).
- A034850 (program): Triangular array formed by taking every other term of Pascal’s triangle.
- A034851 (program): Rows of Losanitsch’s triangle T(n, k), n >= 0, 0 <= k <= n.
- A034852 (program): Rows of (Pascal’s triangle - Losanitsch’s triangle) (n >= 0, k >= 0).
- A034856 (program): a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.
- A034857 (program): a(n) = C(n+2,3) + 2*C(n,2) + 2*(n-2).
- A034858 (program): a(n) = C(n+3,4) + 3*C(n+1,3) + 5*C(n-1,2) + 7*n - 15.
- A034860 (program): a(n) = n!*(2*n-5)/2.
- A034865 (program): a(n) = n!*(n-4)/2.
- A034866 (program): a(n) = n!*(n-4)/2, n > 4, and a(4) = 4.
- A034867 (program): Triangle of odd-numbered terms in rows of Pascal’s triangle.
- A034868 (program): Left half of Pascal’s triangle.
- A034869 (program): Right half of Pascal’s triangle.
- A034870 (program): Even-numbered rows of Pascal’s triangle.
- A034871 (program): Odd-numbered rows of Pascal’s triangle.
- A034872 (program): Central column of Losanitsch’s triangle A034851.
- A034874 (program): a(1) = 1; for n >= 2, a(n) = n times the reverse of a(n-1).
- A034877 (program): Rows of (Pascal’s triangle - Losanitsch’s triangle) (n >= 0, k >= 0).
- A034879 (program): a(n) = product of factorials of digits of a(n-1).
- A034886 (program): Number of digits in n!.
- A034887 (program): Number of digits in 2^n.
- A034888 (program): Number of digits in 3^n.
- A034891 (program): Number of different products of partitions of n; number of partitions of n into prime parts (1 included); number of distinct orders of Abelian subgroups of symmetric group S_n.
- A034896 (program): Number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
- A034899 (program): Euler transform of powers of 2 [ 2,4,8,16,… ].
- A034904 (program): Related to sept-factorial numbers A045754.
- A034908 (program): One half of octo-factorial numbers.
- A034909 (program): One third of octo-factorial numbers.
- A034910 (program): One quarter of octo-factorial numbers.
- A034911 (program): One fifth of octo-factorial numbers.
- A034912 (program): One sixth of octo-factorial numbers.
- A034928 (program): Triangle of ballot numbers.
- A034930 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 8.
- A034931 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 4.
- A034932 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 16.
- A034934 (program): Numbers k such that (3*k + 1)/2 is prime.
- A034936 (program): Numbers k such that 3*k + 4 is prime.
- A034937 (program): Primes p of the form 6k-1 such that 2*p + 3 is prime.
- A034938 (program): Primes p such that (p-3)/2 is a prime of the form 6k-1.
- A034939 (program): a(n) is smallest number such that a(n)^2 + 1 is divisible by 5^n.
- A034940 (program): Number of rooted labeled triangular cacti with 2n+1 nodes (n triangles).
- A034941 (program): Number of labeled triangular cacti with 2n+1 nodes (n triangles).
- A034942 (program): Binomial transform of A002054.
- A034943 (program): Binomial transform of Padovan sequence A000931.
- A034947 (program): Jacobi (or Kronecker) symbol (-1/n).
- A034948 (program): Decimal expansion of 1/9801.
- A034952 (program): Expansion of eta(16z)^4*eta(4z)^2.
- A034953 (program): Triangular numbers (A000217) with prime indices.
- A034954 (program): Odd triangular numbers with prime indices.
- A034955 (program): Even triangular numbers with prime indices.
- A034956 (program): Divide natural numbers in groups with prime(n) elements and add together.
- A034957 (program): Divide natural numbers in groups with prime(n) elements and add together.
- A034959 (program): Divide even numbers into groups with prime(n) elements and add together.
- A034960 (program): Divide odd numbers into groups with prime(n) elements and add together.
- A034961 (program): Sums of three consecutive primes.
- A034962 (program): Primes that are the sum of three consecutive primes.
- A034963 (program): Sums of four consecutive primes.
- A034964 (program): Sums of five consecutive primes.
- A034967 (program): Sum of digits of numbers between 0 and (10^n)-1.
- A034968 (program): Minimal number of factorials that add to n.
- A034971 (program): a(n) = floor(E_(n+1)/E_(n)) where E_n is n-th Euler number (see A028296 and A000364).
- A034972 (program): a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or “Zag” number (see A000182).
- A034973 (program): Number of distinct prime factors in central binomial coefficients C(n, floor(n/2)), the terms of A001405.
- A034974 (program): Number of divisors of binomial(n, floor(n/2)), the terms of A001405.
- A034975 (program): One seventh of octo-factorial numbers.
- A034976 (program): One eighth of octo-factorial numbers.
- A034977 (program): Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.
- A034996 (program): Related to octo-factorial numbers A045755.
- A034998 (program): Expansion of Product (1+q^(2k-1))^(-8)*(1+q^(4k))^(-8), k=1..inf.
- A034999 (program): Number of ways to cut a 2 X n rectangle into rectangles with integer sides.
- A035004 (program): Number of divisors of the n-th nonprime.
- A035005 (program): Number of possible queen moves on an n X n chessboard.
- A035006 (program): Number of possible rook moves on an n X n chessboard.
- A035008 (program): Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.
- A035009 (program): STIRLING transform of [1,1,2,4,8,16,32,…].
- A035011 (program): A006318(n) - 1.
- A035012 (program): One half of 9-factorial numbers.
- A035013 (program): One third of 9-factorial numbers.
- A035014 (program): a(n) contains n digits (either ‘3’ or ‘4’) and is divisible by 2^n.
- A035016 (program): Fourier coefficients of E_{0,4}.
- A035017 (program): One quarter of 9-factorial numbers.
- A035018 (program): One fifth of 9-factorial numbers.
- A035019 (program): Sizes of successive shells in hexagonal (or A_2) lattice.
- A035020 (program): One sixth of 9-factorial numbers.
- A035021 (program): One seventh of 9-factorial numbers.
- A035022 (program): One eighth of 9-factorial numbers.
- A035023 (program): One ninth of 9-factorial numbers.
- A035024 (program): Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.
- A035026 (program): Number of times that i and 2n-i are both prime, for i = 1, …, 2n-1.
- A035028 (program): First differences of A002002.
- A035029 (program): a(n) = Sum_{k=0..n} (k+1) * Sum_{j=0..n} 2^j*binomial(n,j)*binomial(n-k,j).
- A035032 (program): For n >= 6, max( prevprime(n), 2*prevprime(floor(n/2))).
- A035033 (program): Numbers n such that n <= d(n)^2, where d() = number of divisors (A000005).
- A035035 (program): Numbers k such that k > d(k)^2, where d(k) is the number of divisors of k.
- A035038 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,5).
- A035039 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,6).
- A035040 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,7).
- A035041 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,8).
- A035043 (program): Replace any decimal digit ‘1’ with ‘2’ and vice versa.
- A035044 (program): Exchange 2 and 3.
- A035045 (program): Inverse binomial transform of A002054.
- A035047 (program): Denominators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
- A035048 (program): Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
- A035051 (program): Number of labeled rooted connected graphs where every block is a complete graph.
- A035057 (program): Numbers n such that 2^n does not contain the digit 1 (probably finite).
- A035058 (program): Numbers k such that 2^k does not contain the digit 3 (probably finite).
- A035059 (program): Numbers k such that 2^k does not contain the digit 4 (probably finite).
- A035060 (program): Numbers k such that 2^k does not contain the digit 5 (probably finite).
- A035061 (program): Numbers n such that 2^n does not contain the digit 6 (probably finite).
- A035063 (program): Numbers n such that 2^n does not contain the digit 8 (probably finite).
- A035069 (program): a(n) is root of square starting with digit 2: first term of runs.
- A035070 (program): a(n) is root of square starting with digit 3: first term of runs.
- A035071 (program): a(n) = ceiling(sqrt(4*10^n)).
- A035072 (program): a(n) is root of square starting with digit 5: first term of runs.
- A035073 (program): a(n) is root of square starting with digit 6: first term of runs.
- A035074 (program): a(n) is root of square starting with digit 7: first term of runs.
- A035075 (program): a(n) = ceiling(sqrt(8*10^n)).
- A035076 (program): a(n) is root of square starting with digit 9: first term of runs.
- A035089 (program): Smallest prime of form 2^n*k + 1.
- A035091 (program): Smallest prime == 1 mod (n^2).
- A035092 (program): Smallest k such that (n^2)*k + 1 is prime.
- A035095 (program): Smallest prime congruent to 1 (mod prime(n)).
- A035096 (program): a(n) is the smallest k such that prime(n)*k+1 is prime.
- A035097 (program): Related to 9-factorial numbers A045756.
- A035098 (program): Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, …, 1, 2.
- A035099 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = 40.
- A035100 (program): Number of bits in binary expansion of n-th prime.
- A035101 (program): E.g.f. x*(c(x/2)-1)/(1-2*x), where c(x) = g.f. for Catalan numbers A000108.
- A035103 (program): Number of 0’s in binary representation of n-th prime.
- A035104 (program): First differences give (essentially) A028242.
- A035105 (program): a(n) = LCM of Fibonacci sequence {F_1,…,F_n}.
- A035106 (program): 1, together with numbers of the form k*(k+1) or k*(k+2), k > 0.
- A035107 (program): First differences give (essentially) A028242.
- A035109 (program): Numerators in expansion of a certain Dirichlet series.
- A035116 (program): a(n) = tau(n)^2, where tau(n) = A000005(n).
- A035118 (program): Fourier coefficients of (normalized Delta)^3.
- A035119 (program): Related to A045720 and A035101.
- A035143 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -47.
- A035145 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -45.
- A035146 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -44.
- A035147 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -43.
- A035150 (program): Fourier coefficients of (normalized Delta)^4.
- A035154 (program): a(n) = Sum_{d|n} Kronecker(-36, d).
- A035156 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -34.
- A035159 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -31.
- A035160 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -30.
- A035162 (program): Number of positive odd solutions to equation x^2 + 7y^2 = 8n.
- A035164 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -26.
- A035165 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -25.
- A035167 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -23.
- A035168 (program): a(n) = Sum_{d|n} Kronecker(-22, d).
- A035170 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -20.
- A035171 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -19.
- A035172 (program): a(n) = Sum_{d|n} Kronecker(-18, d).
- A035174 (program): Ramanujan’s tau function (or tau numbers (A000594)) for 2^n.
- A035175 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -15.
- A035178 (program): a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).
- A035179 (program): a(n) = Sum_{d|n} Kronecker(-11, d).
- A035180 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -10.
- A035181 (program): a(n) = Sum_{d|n} Kronecker(-9, d).
- A035182 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -7.
- A035183 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -5.
- A035184 (program): a(n) = Sum_{d|n} Kronecker(-1, d).
- A035185 (program): Number of divisors of n == 1 or 7 (mod 8) minus number of divisors of n == 3 or 5 (mod 8).
- A035186 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 3.
- A035187 (program): Sum over divisors d of n of Kronecker symbol (5|d).
- A035188 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 6.
- A035190 (program): Fourier coefficients of (normalized Delta)^5.
- A035191 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.
- A035192 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 10.
- A035194 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 12.
- A035195 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 13.
- A035199 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 17.
- A035200 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 18.
- A035202 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.
- A035203 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 21.
- A035204 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 22.
- A035207 (program): Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 25.
- A035208 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 26.
- A035211 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.
- A035214 (program): 2 followed by a run of n 1’s.
- A035216 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 34.
- A035218 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 36.
- A035219 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.
- A035223 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 41.
- A035227 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 45.
- A035233 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.
- A035235 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -31.
- A035240 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -23 (A035167).
- A035243 (program): Positive numbers of the form x^2+xy+5y^2 (discriminant -19).
- A035246 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -12.
- A035247 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -11.
- A035248 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -7 (A035182).
- A035249 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -5.
- A035250 (program): Number of primes between n and 2n (inclusive).
- A035251 (program): Positive numbers of the form x^2 - 2y^2 with integers x, y.
- A035252 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 3.
- A035253 (program): Second differences are 2,2,1,2,1,1,2,1,1,1,2,1,1,1,1,2,1,1,1,1,1,2,.. (A035214).
- A035254 (program): First differences of A035253.
- A035256 (program): Positive integers of the form x^2+3xy-y^2.
- A035258 (program): Positive integers of the form 2x^2+xy-2y^2 (discriminant 17).
- A035259 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 20.
- A035260 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 21.
- A035262 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 26.
- A035263 (program): Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).
- A035264 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.
- A035265 (program): One half of deca-factorial numbers.
- A035267 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 37.
- A035269 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 41.
- A035272 (program): One third of deca-factorial numbers.
- A035273 (program): One quarter of deca-factorial numbers.
- A035274 (program): One fifth of deca-factorial numbers.
- A035275 (program): One sixth of deca-factorial numbers.
- A035276 (program): One seventh of deca-factorial numbers.
- A035277 (program): One eighth of deca-factorial numbers.
- A035278 (program): One ninth of deca-factorial numbers.
- A035279 (program): One tenth of deca-factorial numbers.
- A035286 (program): Number of ways to place a non-attacking white and black king on n X n chessboard.
- A035287 (program): Number of ways to place a non-attacking white and black rook on n X n chessboard.
- A035288 (program): Number of ways to place a non-attacking white and black bishop on n X n chessboard.
- A035289 (program): Number of ways to place a non-attacking white and black knight on n X n chessboard.
- A035290 (program): Number of ways to place a non-attacking white and black pawn on n X n chessboard.
- A035291 (program): Number of ways to place a non-attacking white and black queen on n X n chessboard.
- A035292 (program): Number of similar sublattices of Z^4 of index n^2.
- A035294 (program): Number of ways to partition 2n into distinct positive integers.
- A035295 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..3*n), n=0..inf ).
- A035296 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..4*n), n=0..inf ).
- A035297 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..5*n), n=0..inf ).
- A035298 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..6*n), n=0..inf ).
- A035299 (program): Minimum square grid needed to fit English words for 1…n crossword style.
- A035302 (program): a(n+1)=2a(n)-4a(n-1)+4a(n-2).
- A035303 (program): Divisors of 3600.
- A035308 (program): Expansion of 1/(1-100*x)^(1/10), related to deca-factorial numbers A045757.
- A035316 (program): Sum of the square divisors of n.
- A035317 (program): Pascal-like triangle associated with A000670.
- A035319 (program): Number of rooted maps of genus n with one vertex and one face; the maps are considered on orientable surfaces and contain 2n edges.
- A035321 (program): Sum of composite divisors of n that are not primes nor prime powers.
- A035322 (program): Sum of composite divisors of n that are less than n and are not primes nor prime powers.
- A035323 (program): Related to deca-factorial numbers A045757.
- A035324 (program): A convolution triangle of numbers, generalizing Pascal’s triangle A007318.
- A035327 (program): Write n in binary, interchange 0’s and 1’s, convert back to decimal.
- A035328 (program): a(n) = n*(2*n-1)*(2*n+1).
- A035329 (program): a(n) = n*(2*n+5)*(2*n+7).
- A035330 (program): 5-fold convolution of A001700(n), n >= 0.
- A035332 (program): Smallest number not the concatenation of consecutive earlier terms.
- A035336 (program): a(n) = 2*floor(n*phi) + n - 1, where phi = (1+sqrt(5))/2.
- A035337 (program): Third column of Wythoff array.
- A035338 (program): 4th column of Wythoff array.
- A035339 (program): 5th column of Wythoff array.
- A035340 (program): 6th column of Wythoff array.
- A035344 (program): Expansion of 1/((1 - x)*(1 - 4*x + 2 * x^2)).
- A035360 (program): Number of partitions of n into parts 3k or 3k+1.
- A035361 (program): Number of partitions of n into parts 3k or 3k+2.
- A035363 (program): Number of partitions of n into even parts.
- A035376 (program): Number of partitions of n into parts 6k or 6k+2.
- A035377 (program): Number of partitions of n into parts 6k or 6k+3.
- A035382 (program): Number of partitions of n into parts congruent to 1 mod 3.
- A035385 (program): Number of partitions of n into parts 6k+2 or 6k+4.
- A035386 (program): Number of partitions of n into parts congruent to 2 mod 3.
- A035430 (program): Number of partitions of n into parts 7k+1 or 7k+6.
- A035444 (program): Number of partitions of n into parts 4k.
- A035451 (program): Number of partitions of n into parts congruent to 1 mod 4.
- A035457 (program): Number of partitions of n into parts of the form 4*k + 2.
- A035462 (program): Number of partitions of n into parts 4k-1.
- A035471 (program): Coordination sequence for lattice D*_4 (with edges defined by l_1 norm = 1).
- A035472 (program): Coordination sequence for lattice D*_6 (with edges defined by l_1 norm = 1).
- A035487 (program): Second column of Stolarsky array.
- A035488 (program): 3rd column of Stolarsky array.
- A035492 (program): Position of card 1 after n-th shuffle in Guy’s shuffling problem (A035485).
- A035508 (program): a(n) = Fibonacci(2*n+2) - 1.
- A035513 (program): Wythoff array read by antidiagonals.
- A035520 (program): Fourth column of triangle A035342; related to A045894.
- A035522 (program): Reverse and add (in binary) - written in base 10.
- A035523 (program): Reverse and add (in base 3).
- A035524 (program): Reverse and add (in base 4).
- A035526 (program): Reverse and add (in binary).
- A035530 (program): Binomial transform of A003603.
- A035531 (program): a(n) = A000120(n) + A001221(n) - 1.
- A035597 (program): Number of points of L1 norm 3 in cubic lattice Z^n.
- A035598 (program): Number of points of L1 norm 4 in cubic lattice Z^n.
- A035599 (program): Number of points of L1 norm 5 in cubic lattice Z^n.
- A035600 (program): Number of points of L1 norm 6 in cubic lattice Z^n.
- A035601 (program): Number of points of L1 norm 7 in cubic lattice Z^n.
- A035602 (program): Number of points of L1 norm 8 in cubic lattice Z^n.
- A035603 (program): Number of points of L1 norm 9 in cubic lattice Z^n.
- A035604 (program): Number of points of L1 norm 10 in cubic lattice Z^n.
- A035605 (program): Number of points of L1 norm 11 in cubic lattice Z^n.
- A035606 (program): Number of points of L1 norm 12 in cubic lattice Z^n.
- A035607 (program): Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).
- A035608 (program): Expansion of x*(1 + 3*x)/((1 + x)*(1 - x)^3).
- A035610 (program): G.f.: 3/(1 + 2*sqrt(1-12*x)).
- A035612 (program): Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.
- A035614 (program): Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1.
- A035622 (program): Number of partitions of n into parts 4k and 4k+2 with at least one part of each type.
- A035706 (program): Coordination sequence for 11-dimensional cubic lattice.
- A035707 (program): Coordination sequence for 12-dimensional cubic lattice.
- A035708 (program): Coordination sequence for 13-dimensional cubic lattice.
- A035709 (program): Coordination sequence for 14-dimensional cubic lattice.
- A035710 (program): Coordination sequence for 15-dimensional cubic lattice.
- A035711 (program): Coordination sequence for 16-dimensional cubic lattice.
- A035712 (program): Coordination sequence for 17-dimensional cubic lattice.
- A035713 (program): Coordination sequence for 18-dimensional cubic lattice.
- A035714 (program): Coordination sequence for 19-dimensional cubic lattice.
- A035715 (program): Coordination sequence for 20-dimensional cubic lattice.
- A035716 (program): Coordination sequence for 21-dimensional cubic lattice.
- A035717 (program): Coordination sequence for 22-dimensional cubic lattice.
- A035718 (program): Coordination sequence for 23-dimensional cubic lattice.
- A035719 (program): Coordination sequence for 24-dimensional cubic lattice.
- A035720 (program): Coordination sequence for 25-dimensional cubic lattice.
- A035721 (program): Coordination sequence for 26-dimensional cubic lattice.
- A035722 (program): Coordination sequence for 27-dimensional cubic lattice.
- A035723 (program): Coordination sequence for 28-dimensional cubic lattice.
- A035724 (program): Coordination sequence for 29-dimensional cubic lattice.
- A035725 (program): Coordination sequence for 30-dimensional cubic lattice.
- A035726 (program): Coordination sequence for 31-dimensional cubic lattice.
- A035727 (program): Coordination sequence for 32-dimensional cubic lattice.
- A035728 (program): Coordination sequence for 33-dimensional cubic lattice.
- A035729 (program): Coordination sequence for 34-dimensional cubic lattice.
- A035730 (program): Coordination sequence for 35-dimensional cubic lattice.
- A035731 (program): Coordination sequence for 36-dimensional cubic lattice.
- A035732 (program): Coordination sequence for 37-dimensional cubic lattice.
- A035733 (program): Coordination sequence for 38-dimensional cubic lattice.
- A035734 (program): Coordination sequence for 39-dimensional cubic lattice.
- A035735 (program): Coordination sequence for 40-dimensional cubic lattice.
- A035736 (program): Coordination sequence for 41-dimensional cubic lattice.
- A035737 (program): Coordination sequence for 42-dimensional cubic lattice.
- A035738 (program): Coordination sequence for 43-dimensional cubic lattice.
- A035739 (program): Coordination sequence for 44-dimensional cubic lattice.
- A035740 (program): Coordination sequence for 45-dimensional cubic lattice.
- A035741 (program): Coordination sequence for 46-dimensional cubic lattice.
- A035742 (program): Coordination sequence for 47-dimensional cubic lattice.
- A035743 (program): Coordination sequence for 48-dimensional cubic lattice.
- A035744 (program): Coordination sequence for 49-dimensional cubic lattice.
- A035745 (program): Coordination sequence for 50-dimensional cubic lattice.
- A035746 (program): Coordination sequence for C_9 lattice.
- A035747 (program): Coordination sequence for C_10 lattice.
- A035748 (program): Coordination sequence for C_11 lattice.
- A035749 (program): Coordination sequence for C_12 lattice.
- A035750 (program): Coordination sequence for C_13 lattice.
- A035751 (program): Coordination sequence for C_14 lattice.
- A035752 (program): Coordination sequence for C_15 lattice.
- A035753 (program): Coordination sequence for C_16 lattice.
- A035754 (program): Coordination sequence for C_17 lattice.
- A035755 (program): Coordination sequence for C_18 lattice.
- A035756 (program): Coordination sequence for C_19 lattice.
- A035757 (program): Coordination sequence for C_20 lattice.
- A035758 (program): Coordination sequence for C_21 lattice.
- A035759 (program): Coordination sequence for C_22 lattice.
- A035760 (program): Coordination sequence for C_23 lattice.
- A035761 (program): Coordination sequence for C_24 lattice.
- A035762 (program): Coordination sequence for C_25 lattice.
- A035763 (program): Coordination sequence for C_26 lattice.
- A035764 (program): Coordination sequence for C_27 lattice.
- A035765 (program): Coordination sequence for C_28 lattice.
- A035766 (program): Coordination sequence for C_29 lattice.
- A035767 (program): Coordination sequence for C_30 lattice.
- A035768 (program): Coordination sequence for C_31 lattice.
- A035769 (program): Coordination sequence for C_32 lattice.
- A035770 (program): Coordination sequence for C_33 lattice.
- A035771 (program): Coordination sequence for C_34 lattice.
- A035772 (program): Coordination sequence for C_35 lattice.
- A035773 (program): Coordination sequence for C_36 lattice.
- A035774 (program): Coordination sequence for C_37 lattice.
- A035775 (program): Coordination sequence for C_38 lattice.
- A035776 (program): Coordination sequence for C_39 lattice.
- A035777 (program): Coordination sequence for C_40 lattice.
- A035778 (program): Coordination sequence for C_41 lattice.
- A035779 (program): Coordination sequence for C_42 lattice.
- A035780 (program): Coordination sequence for C_43 lattice.
- A035781 (program): Coordination sequence for C_44 lattice.
- A035782 (program): Coordination sequence for C_45 lattice.
- A035783 (program): Coordination sequence for C_46 lattice.
- A035784 (program): Coordination sequence for C_47 lattice.
- A035785 (program): Coordination sequence for C_48 lattice.
- A035786 (program): Coordination sequence for C_49 lattice.
- A035787 (program): Coordination sequence for C_50 lattice.
- A035802 (program): Coordination sequence for lattice D*_34 (with edges defined by l_1 norm = 1).
- A035803 (program): Coordination sequence for lattice D*_36 (with edges defined by l_1 norm = 1).
- A035804 (program): Coordination sequence for lattice D*_38 (with edges defined by l_1 norm = 1).
- A035807 (program): Coordination sequence for lattice D*_44 (with edges defined by l_1 norm = 1).
- A035808 (program): Coordination sequence for lattice D*_46 (with edges defined by l_1 norm = 1).
- A035809 (program): Coordination sequence for lattice D*_48 (with edges defined by l_1 norm = 1).
- A035810 (program): Coordination sequence for lattice D*_50 (with edges defined by l_1 norm = 1).
- A035811 (program): Coordination sequence for lattice D*_52 (with edges defined by l_1 norm = 1).
- A035812 (program): Coordination sequence for lattice D*_54 (with edges defined by l_1 norm = 1).
- A035813 (program): Coordination sequence for lattice D*_56 (with edges defined by l_1 norm = 1).
- A035814 (program): Coordination sequence for lattice D*_58 (with edges defined by l_1 norm = 1).
- A035815 (program): Coordination sequence for lattice D*_60 (with edges defined by l_1 norm = 1).
- A035816 (program): Coordination sequence for lattice D*_62 (with edges defined by l_1 norm = 1).
- A035817 (program): Coordination sequence for lattice D*_64 (with edges defined by l_1 norm = 1).
- A035818 (program): Coordination sequence for lattice D*_66 (with edges defined by l_1 norm = 1).
- A035819 (program): Coordination sequence for lattice D*_68 (with edges defined by l_1 norm = 1).
- A035820 (program): Coordination sequence for lattice D*_70 (with edges defined by l_1 norm = 1).
- A035821 (program): Coordination sequence for lattice D*_72 (with edges defined by l_1 norm = 1).
- A035822 (program): Coordination sequence for lattice D*_74 (with edges defined by l_1 norm = 1).
- A035823 (program): Coordination sequence for lattice D*_76 (with edges defined by l_1 norm = 1).
- A035824 (program): Coordination sequence for lattice D*_78 (with edges defined by l_1 norm = 1).
- A035825 (program): Coordination sequence for lattice D*_80 (with edges defined by l_1 norm = 1).
- A035826 (program): Coordination sequence for lattice D*_82 (with edges defined by l_1 norm = 1).
- A035827 (program): Coordination sequence for lattice D*_84 (with edges defined by l_1 norm = 1).
- A035828 (program): Coordination sequence for lattice D*_86 (with edges defined by l_1 norm = 1).
- A035829 (program): Coordination sequence for lattice D*_88 (with edges defined by l_1 norm = 1).
- A035830 (program): Coordination sequence for lattice D*_90 (with edges defined by l_1 norm = 1).
- A035831 (program): Coordination sequence for lattice D*_92 (with edges defined by l_1 norm = 1).
- A035832 (program): Coordination sequence for lattice D*_94 (with edges defined by l_1 norm = 1).
- A035833 (program): Coordination sequence for lattice D*_96 (with edges defined by l_1 norm = 1).
- A035834 (program): Coordination sequence for lattice D*_98 (with edges defined by l_1 norm = 1).
- A035835 (program): Coordination sequence for lattice D*_100 (with edges defined by l_1 norm = 1).
- A035837 (program): Coordination sequence for A_11 lattice.
- A035838 (program): Coordination sequence for A_12 lattice.
- A035839 (program): Coordination sequence for A_13 lattice.
- A035840 (program): Coordination sequence for A_14 lattice.
- A035841 (program): Coordination sequence for A_15 lattice.
- A035842 (program): Coordination sequence for A_16 lattice.
- A035843 (program): Coordination sequence for A_17 lattice.
- A035844 (program): Coordination sequence for A_18 lattice.
- A035845 (program): Coordination sequence for A_19 lattice.
- A035846 (program): Coordination sequence for A_20 lattice.
- A035847 (program): Coordination sequence for A_21 lattice.
- A035848 (program): Coordination sequence for A_22 lattice.
- A035849 (program): Coordination sequence for A_23 lattice.
- A035850 (program): Coordination sequence for A_24 lattice.
- A035851 (program): Coordination sequence for A_25 lattice.
- A035852 (program): Coordination sequence for A_26 lattice.
- A035853 (program): Coordination sequence for A_27 lattice.
- A035854 (program): Coordination sequence for A_28 lattice.
- A035855 (program): Coordination sequence for A_29 lattice.
- A035856 (program): Coordination sequence for A_30 lattice.
- A035857 (program): Coordination sequence for A_31 lattice.
- A035858 (program): Coordination sequence for A_32 lattice.
- A035859 (program): Coordination sequence for A_33 lattice.
- A035860 (program): Coordination sequence for A_34 lattice.
- A035861 (program): Coordination sequence for A_35 lattice.
- A035862 (program): Coordination sequence for A_36 lattice.
- A035863 (program): Coordination sequence for A_37 lattice.
- A035864 (program): Coordination sequence for A_38 lattice.
- A035865 (program): Coordination sequence for A_39 lattice.
- A035866 (program): Coordination sequence for A_40 lattice.
- A035867 (program): Coordination sequence for A_41 lattice.
- A035868 (program): Coordination sequence for A_42 lattice.
- A035869 (program): Coordination sequence for A_43 lattice.
- A035870 (program): Coordination sequence for A_44 lattice.
- A035871 (program): Coordination sequence for A_45 lattice.
- A035872 (program): Coordination sequence for A_46 lattice.
- A035873 (program): Coordination sequence for A_47 lattice.
- A035874 (program): Coordination sequence for A_48 lattice.
- A035875 (program): Coordination sequence for A_49 lattice.
- A035876 (program): Coordination sequence for A_50 lattice.
- A035877 (program): Number of points of l_1 norm n in the “diamond” lattice D^+_2, i. e. the rectangular lattice generated by vectors (1, 1) and (-1/2, 1/2).
- A035927 (program): One less than number of n-multisets chosen from a 10-set.
- A035928 (program): Numbers n such that BCR(n) = n, where BCR = binary-complement-and-reverse = take one’s complement then reverse bit order.
- A035929 (program): Number of Dyck n-paths starting U^mD^m (an m-pyramid), followed by a pyramid-free Dyck path.
- A035936 (program): Number of squares in (n^3, (n+1)^3 ].
- A035943 (program): Number of partitions of n into parts not of the form 9k, 9k+4 or 9k-4. Also number of partitions with at most 3 parts of size 1 and differences between parts at distance 3 are greater than 1.
- A035959 (program): Number of partitions of n in which no parts are multiples of 5.
- A036015 (program): Number of partitions of n into parts not of form 4k+2, 8k, 8k+1 or 8k-1.
- A036016 (program): Number of partitions of n into parts not of form 4k+2, 8k, 8k+3 or 8k-3.
- A036018 (program): Number of partitions of n into parts not of form 4k+2, 12k, 12k+3 or 12k-3.
- A036026 (program): Number of partitions of n into parts not of forms 4*k+2, 20*k, 20*k+5 or 20*k+15.
- A036042 (program): k appears partition(k) times.
- A036044 (program): BCR(n): write in binary, complement, reverse.
- A036068 (program): Expansion of (-1+1/(1-3*x)^3)/(9*x).
- A036069 (program): Denominator of rational part of Haar measure on Grassmannian space G(n,1).
- A036070 (program): Expansion of (-1+1/(1-4*x)^4)/(16*x); related to A038846.
- A036071 (program): Expansion of 1/(1-5*x)^5.
- A036083 (program): Expansion of (-1+1/(1-5*x)^5)/(25*x); related to A036071.
- A036084 (program): Expansion of 1/(1-6*x)^6.
- A036085 (program): Centered cube numbers: (n+1)^7 + n^7.
- A036086 (program): Centered cube numbers: a(n) = (n+1)^8+n^8.
- A036087 (program): Centered cube numbers: a(n) = (n+1)^9 + n^9.
- A036088 (program): Centered cube numbers: (n+1)^10 + n^10.
- A036089 (program): Centered cube numbers: (n+1)^11 + n^11.
- A036090 (program): Centered cube numbers: (n+1)^12 + n^12.
- A036091 (program): Centered cube numbers: (n+1)^13+n^13.
- A036092 (program): Centered cube numbers: a(n) = (n+1)^14 + n^14.
- A036093 (program): Centered cube numbers: (n+1)^15 + n^15.
- A036094 (program): Centered cube numbers: (n+1)^16 + n^16.
- A036095 (program): Centered cube numbers: a(n) = (n+1)^17 + n^17.
- A036096 (program): Centered cube numbers: (n+1)^18 + n^18.
- A036097 (program): Centered cube numbers: (n+1)^19+n^19.
- A036098 (program): Centered cube numbers: a(n) = (n+1)^20 + n^20.
- A036099 (program): Centered cube numbers: (n+1)^21 + n^21.
- A036100 (program): Centered cube numbers: (n+1)^22 + n^22.
- A036101 (program): Centered cube numbers: (n+1)^23 + n^23.
- A036102 (program): Centered cube numbers: (n+1)^24 + n^24.
- A036116 (program): Numbers n such that the number of distinct primes dividing n is a square.
- A036117 (program): a(n) = 2^n mod 11.
- A036118 (program): a(n) = 2^n mod 13.
- A036119 (program): a(n) = 3^n mod 17.
- A036120 (program): a(n) = 2^n mod 19.
- A036121 (program): 5^n mod 23.
- A036122 (program): a(n) = 2^n mod 29.
- A036123 (program): a(n) = 3^n mod 31.
- A036124 (program): a(n) = 2^n mod 37.
- A036125 (program): a(n) = 6^n mod 41.
- A036126 (program): a(n) = 3^n mod 43.
- A036127 (program): a(n) = 5^n mod 47.
- A036128 (program): a(n) = 2^n mod 53.
- A036129 (program): a(n) = 2^n mod 59.
- A036130 (program): a(n) = 2^n mod 61.
- A036131 (program): a(n) = 2^n mod 67.
- A036132 (program): a(n) = 7^n mod 71.
- A036133 (program): a(n) = 5^n mod 73.
- A036134 (program): a(n) = 3^n mod 79.
- A036135 (program): a(n) = 2^n mod 83.
- A036136 (program): a(n) = 3^n mod 89.
- A036137 (program): a(n) = 5^n mod 97.
- A036138 (program): a(n) = 2^n mod 101.
- A036139 (program): a(n) = 5^n mod 103.
- A036140 (program): a(n) = 2^n mod 107.
- A036141 (program): a(n) = 6^n mod 109.
- A036142 (program): 3^n mod 113.
- A036143 (program): a(n) = 3^n mod 127.
- A036144 (program): a(n) = 2^n mod 131.
- A036145 (program): 3^n mod 137.
- A036146 (program): a(n) = 2^n mod 139.
- A036147 (program): a(n) = 2^n mod 149.
- A036148 (program): 6^n mod 151.
- A036149 (program): 5^n mod 157.
- A036150 (program): a(n) = 2^n mod 163.
- A036151 (program): 5^n mod 167.
- A036152 (program): a(n) = 2^n mod 173.
- A036153 (program): a(n) = 2^n mod 179.
- A036154 (program): a(n) = 2^n mod 181.
- A036155 (program): 19^n mod 191.
- A036156 (program): 5^n mod 193.
- A036157 (program): a(n) = 2^n mod 197.
- A036158 (program): 3^n mod 199.
- A036159 (program): a(n) = 2^n mod 211.
- A036160 (program): a(n) = 3^n mod 223.
- A036161 (program): a(n) = 2^n mod 227.
- A036162 (program): a(n) = 6^n mod 229.
- A036165 (program): Log base 2 (n) mod 29.
- A036167 (program): Log base 2 (n) mod 37.
- A036171 (program): Log base 2 (n) mod 53.
- A036172 (program): Log base 2 (n) mod 59.
- A036173 (program): Log base 2 (n) mod 61.
- A036174 (program): Log base 2 (n) mod 67.
- A036178 (program): Log base 2 (n) mod 83.
- A036181 (program): Log base 2 (n) mod 101.
- A036183 (program): Log base 2 (n) mod 107.
- A036187 (program): Log base 2 (n) mod 131.
- A036189 (program): Log base 2 (n) mod 139.
- A036190 (program): Log base 2 (n) mod 149.
- A036193 (program): Log base 2 (n) mod 163.
- A036195 (program): Log base 2 (n) mod 173.
- A036196 (program): Log base 2 (n) mod 179.
- A036197 (program): Log base 2 (n) mod 181.
- A036200 (program): Log base 2 (n) mod 197.
- A036202 (program): Log base 2 (n) mod 211.
- A036204 (program): Log base 2 (n) mod 227.
- A036211 (program): Successive digits of even numbers.
- A036213 (program): Duplicating binary multipliers; i.e., n+1 1-bits placed 2n bits from each other.
- A036215 (program): Binary reversal of 3^n
- A036216 (program): Expansion of 1/(1 - 3*x)^4; 4-fold convolution of A000244 (powers of 3).
- A036217 (program): Expansion of 1/(1-3*x)^5; 5-fold convolution of A000244 (powers of 3).
- A036218 (program): Hours recorded by a 24-hour clock.
- A036219 (program): Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
- A036220 (program): Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).
- A036221 (program): Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).
- A036222 (program): Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
- A036223 (program): Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).
- A036224 (program): Expansion of (-1+1/(1-6*x)^6)/(36*x); related to A036084.
- A036226 (program): Expansion of 1/(1-7*x)^7.
- A036227 (program): a(1) = 20; a(n+1) = a(n) + sum of decimal digits of a(n).
- A036228 (program): a(1) = 31; a(n+1) = a(n) + sum of decimal digits of a(n).
- A036230 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 110.
- A036231 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 121.
- A036232 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 211.
- A036234 (program): Number of primes <= n, if 1 is counted as a prime.
- A036238 (program): Triangle of numbers a(r,j) = j*(j+1) mod r+2, r>=1, j=1..r.
- A036239 (program): Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.
- A036240 (program): Number of 3-way interactions when 3 subsets of power set on {1..n} are chosen at random; number of Boolean functions of n variables and rank 3 from Post class F(8,inf).
- A036242 (program): Numerator of fraction equal to the continued fraction [0,2,4,…2n].
- A036243 (program): Denominator of fraction equal to the continued fraction [ 0, 2, 4, …2n ].
- A036244 (program): Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, …(2n-1)].
- A036245 (program): Numerator of fraction equal to the continued fraction [ 0, 1, 4, …, n^2 ].
- A036246 (program): CONTINUANT transform of squares 1, 4, 9, …
- A036247 (program): Numerator of fraction equal to the continued fraction [ 2, 3, 5, …prime(n) ].
- A036248 (program): Denominator of fraction equal to the continued fraction [ 2, 3, 5, …, prime(n) ].
- A036253 (program): Numerator of fraction equal to the continued fraction [ 3, 1, 4, 1, 5… ] (first n digits of Pi).
- A036254 (program): Denominator of fraction equal to the continued fraction [ 3, 1, 4, 1, 5… ] (first n digits of Pi).
- A036255 (program): Number of inequivalent strings of 2n+1 digits, when 2 strings are equivalent if turning 1 upside down gives the other.
- A036256 (program): a(n) = Sum_{i=0..n} binomial(i,floor(i/2)).
- A036257 (program): Number of inequivalent strings of 2n digits, when 2 strings are equivalent if turning 1 upside down gives the other.
- A036259 (program): Numbers k such that the multiplicative order of 2 modulo k is odd.
- A036263 (program): Second differences of primes.
- A036264 (program): Third differences of primes.
- A036265 (program): 4th differences of primes.
- A036266 (program): 5th differences of primes.
- A036267 (program): 6th differences of primes.
- A036268 (program): 7th differences of primes.
- A036269 (program): 8th differences of primes.
- A036276 (program): a(n) = A001864(n)/2.
- A036278 (program): Denominators in Taylor series for cot x.
- A036279 (program): Denominators in Taylor series for tan(x).
- A036280 (program): Numerators in Taylor series for x * cosec(x).
- A036282 (program): Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.
- A036283 (program): Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.
- A036288 (program): a(n) = 1 + integer log of n: if the prime factorization of n is n = Product (p_j^k_j) then a(n) = 1 + Sum (p_j * k_j) (cf. A001414).
- A036289 (program): a(n) = n*2^n.
- A036290 (program): a(n) = n*3^n.
- A036291 (program): a(n) = n*5^n.
- A036292 (program): a(n) = n*6^n.
- A036293 (program): a(n) = n * 7^n.
- A036294 (program): a(n) = n * 8^n.
- A036295 (program): Numerator of Sum i/2^i, i=1..n.
- A036296 (program): Denominator of Sum i/2^i, i=1..n.
- A036301 (program): Numbers whose sum of even digits and sum of odd digits are equal.
- A036311 (program): Composite numbers whose prime factors contain no digits other than 2 and 5.
- A036326 (program): Composite numbers n such that juxtaposition of prime factors of n has length 2.
- A036329 (program): Composite numbers n such that juxtaposition of prime factors of n has length 5.
- A036330 (program): Composite numbers n such that juxtaposition of prime factors of n has length 6.
- A036331 (program): Composite numbers n such that juxtaposition of prime factors of n has length 7.
- A036332 (program): Composite numbers n such that juxtaposition of prime factors of n has length 8.
- A036338 (program): Composites whose digit length is equal to their number of prime factors (counted with multiplicity).
- A036347 (program): Parity of n and its sum of prime factors differs (counted with multiplicity).
- A036348 (program): Parity of ‘even number’ and its sum of prime factors differs (counted with multiplicity).
- A036349 (program): Numbers whose sum of prime factors (taken with multiplicity) is even.
- A036350 (program): Composite numbers such that the sum of the prime factors is odd (counted with multiplicity).
- A036353 (program): Square pentagonal numbers.
- A036354 (program): Heptagonal square numbers.
- A036360 (program): Number of labeled connected functional digraphs.
- A036361 (program): Number of labeled 2-trees with n nodes.
- A036363 (program): Line-labeled 2-trees with n nodes.
- A036371 (program): Number of ternary rooted trees with n nodes and height at most 3.
- A036377 (program): Floor[concatenation of seven consecutive numbers from n to n+6 divided by 7].
- A036404 (program): a(n) = ceiling(n^2/5).
- A036405 (program): a(n) = ceiling(n^2/7).
- A036406 (program): a(n) = ceiling(n^2/8).
- A036407 (program): a(n) = ceiling(n^2/9).
- A036408 (program): a(n) = ceiling(n^2/10).
- A036409 (program): a(n) = ceiling(n^2/11).
- A036410 (program): G.f.: (1+x^6)/((1-x)*(1-x^3)*(1-x^4)).
- A036411 (program): 9-gonal square numbers.
- A036415 (program): Values of n for which there are no empty intervals when fractional part(m*phi) for m = 1, …, n is plotted along [ 0, 1 ] subdivided into n equal regions.
- A036428 (program): Square octagonal numbers.
- A036430 (program): Number of iterations needed to reach 1 under the map n -> Omega(n).
- A036431 (program): a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.
- A036434 (program): Integers which cannot be written as k+tau(k) for some k.
- A036435 (program): Digits are nonzero squares.
- A036436 (program): Numbers whose number of divisors is a square.
- A036438 (program): Integers which can be written as m*tau(m) for some m, where tau = A000005.
- A036439 (program): a(n) = a(n-1) + prime(n-1), with a(1)=2.
- A036441 (program): a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.
- A036442 (program): a(n) = 2^((n-1)*(n+2)/2).
- A036443 (program): Number of ternary rooted trees with n nodes and height exactly 3.
- A036447 (program): Double and reverse digits.
- A036450 (program): a(n) = d(d(d(n))), the 3rd iterate of the number-of-divisors function with an initial value of n.
- A036452 (program): a(n) = d(d(d(d(n)))), the 4th iterate of number-of-divisors function with initial value of n.
- A036453 (program): a(n) = d(d(d(d(d(n))))), the 5th iterate of the number-of-divisors function d = A000005, with initial value n.
- A036454 (program): Prime powers with special exponents: q^(p-1) where p > 2 and q are prime numbers.
- A036455 (program): Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.
- A036456 (program): Numbers k for which exactly 4 applications of A000005 are needed to reach 2.
- A036457 (program): Numbers k for which exactly 5 applications of A000005 are needed to reach 2.
- A036458 (program): For all n, if d is recursively applied to a(n) exactly 6 times then the fixed point of d-iteration is just reached.
- A036459 (program): Number of iterations required to reach stationary value when repeatedly applying d, the number of divisors function (A000005).
- A036461 (program): Number of 1 digits in base 3 representation of 2^n.
- A036464 (program): Number of ways to place two nonattacking queens on an n X n board.
- A036467 (program): a(n) + a(n-1) = n-th prime.
- A036469 (program): Partial sums of A000009 (partitions into distinct parts).
- A036486 (program): a(n) = ceiling((n^3)/2).
- A036487 (program): a(n) = floor((n^3)/2).
- A036488 (program): Nearest integer to n^(5/2).
- A036489 (program): Nearest integer to n^(7/2).
- A036494 (program): Nearest integer to n^(9/2).
- A036495 (program): Nearest integer to n^(11/2).
- A036496 (program): Number of lines that intersect the first n points on a spiral on a triangular lattice. The spiral starts at (0,0), goes to (1,0) and (1/2, sqrt(3)/2) and continues counterclockwise.
- A036497 (program): Number of partitions of n into distinct primes (counting 1 as a prime).
- A036498 (program): Numbers of the form m*(6*m-1) and m*(6*m+1), where m is an integer.
- A036499 (program): Numbers of the form k*(k+1)/6 for k = 2 or 3 modulo 6.
- A036500 (program): Number of inequivalent cyclic Hadamard difference sets with parameters (2^n-1, 2^(n-1)-1, 2^(n-2)-1).
- A036501 (program): Number of inequivalent Golomb rulers with n marks and shortest length.
- A036502 (program): Numerator of n^(n-2)/n!.
- A036503 (program): Denominator of n^(n-2)/n!.
- A036504 (program): Numerator of n^(n-1)/n!.
- A036505 (program): Numerator of (n+1)^n/n!.
- A036507 (program): Smallest square containing exactly n 0’s.
- A036537 (program): Numbers whose number of divisors is a power of 2.
- A036541 (program): Deficit of central binomial coefficients in terms of number of prime factors: a(n) shows how many fewer prime factors the n-th central binomial coefficient has than n!.
- A036542 (program): a(n) = T(n, n), array T given by A047858.
- A036543 (program): a(n) = T(3,n), array T given by A048471.
- A036544 (program): a(n) = (2*(1 + n + (((10^n-1)/9) - n)/9)).
- A036545 (program): a(n) = T(4,n), array T given by A048471.
- A036546 (program): a(n) = T(5,n), array T given by A048471.
- A036547 (program): a(n) = T(6,n), array T given by A048471.
- A036548 (program): a(n) = T(7,n), array T given by A048471.
- A036549 (program): a(n) = T(8,n), array T given by A048471.
- A036550 (program): a(n) = T(0,n) + T(1,n-1) + … + T(n,0), array T given by A048471.
- A036551 (program): a(n) = 2^(n-1)*(3^n-1) + 1.
- A036552 (program): List of pairs (m,2m) where m is the least unused positive number.
- A036553 (program): Phi(prime(n))-prime(phi(n)).
- A036554 (program): Numbers whose binary representation ends in an odd number of zeros.
- A036555 (program): Hamming weight of 3n: number of 1’s in binary expansion of 3n.
- A036556 (program): Integers which when multiplied by 3 have an odd number of 1’s in their binary expansion (cf. A000069).
- A036557 (program): Number of multiples of 3 in 0..2^n-1 with an even sum of base-2 digits.
- A036561 (program): Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.
- A036562 (program): a(n) = 4^(n+1) + 3*2^n + 1.
- A036563 (program): a(n) = 2^n - 3.
- A036564 (program): a(n) = 2^n - 45 with n>5, a(5)=1.
- A036565 (program): Triangle of numbers in which i-th row is {2^(i-j)*7^j, 0<=j<=i}; i >= 0.
- A036571 (program): Binary packing of Connell sequence (shifted once right).
- A036572 (program): Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.
- A036573 (program): Size of maximal triangulation of an n-antiprism with regular polygonal base.
- A036576 (program): a(n) is the least number not of the form floor(k^2/n).
- A036577 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036578 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036579 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036580 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036581 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036582 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036583 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036584 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036585 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036586 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
- A036587 (program): Number of binary rooted trees with n nodes and height at most 4.
- A036603 (program): a(n) = n! in binary.
- A036604 (program): Sorting numbers: minimal number of comparisons needed to sort n elements.
- A036605 (program): a(n) = a(n-2) + 2*a(n-3) + a(n-4).
- A036659 (program): Product of n with sum of next n consecutive integers.
- A036666 (program): Numbers k such that 5*k + 1 is a square.
- A036668 (program): Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.
- A036679 (program): a(n) = n^n - n!.
- A036681 (program): T(n+2,2) with T as in A036355.
- A036682 (program): T(n+3,3) with T as in A036355.
- A036683 (program): T(n+4,4) with T as in A036355.
- A036684 (program): T(n+5,5) with T as in A036355.
- A036689 (program): Product of a prime and the previous number.
- A036690 (program): Product of a prime and the following number.
- A036691 (program): Compositorial numbers: product of first n composite numbers.
- A036693 (program): Number of Gaussian integers z = a + bi satisfying n-1 < |z| <= n.
- A036694 (program): a(n) = (1/4)*A036693(n) for n >= 1.
- A036695 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, b>=0.
- A036696 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, b>=0.
- A036697 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, b>=0.
- A036698 (program): a(n) is the number of Gaussian integers z=a+bi satisfying |z|<=n, a>0, b>=0.
- A036700 (program): Number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<a.
- A036701 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, 0<=b<a.
- A036702 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<=a.
- A036703 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, 0<=b<=a.
- A036704 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2.
- A036705 (program): Number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2.
- A036706 (program): a(n)=number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2, a>0, b>=0.
- A036707 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, b>=0.
- A036708 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, b>=0.
- A036709 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, b>=0.
- A036710 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, b>=0.
- A036711 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>0, b>=0.
- A036713 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, 0<=b<a.
- A036714 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, 0<=b<a.
- A036715 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, 0<=b<=a.
- A036716 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, 0<=b<=a.
- A036739 (program): a(n) = (n!)^n+1.
- A036740 (program): a(n) = (n!)^n.
- A036741 (program): Values increase, Roman numerals increase lexicographically.
- A036746 (program): Numbers with “long” representations in Roman notation: given by last n letters from …MMMDCCCLXXXVIII.
- A036758 (program): Number of edge-rooted tree-like octagonal systems.
- A036762 (program): The integer values of x/d(x) in order of magnitude of x in A033950.
- A036765 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= three.
- A036766 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= four.
- A036767 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.
- A036768 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= six.
- A036769 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= seven.
- A036770 (program): Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).
- A036771 (program): Number of labeled rooted trees with a degree constraint: ((3*n)!/(6^n)) * binomial(3*n + 1, n).
- A036774 (program): Number of labeled rooted unordered binary trees (each node has out-degree <= 2).
- A036781 (program): a(n) = n + Sum_{k=0..n} k!.
- A036782 (program): a(n) = n - 1 + Sum_{j=0..n} j!.
- A036785 (program): Numbers divisible by the squares of two distinct primes.
- A036789 (program): a(n) = Sum_{i=0..n} floor((2*i + 2)/(n - i + 1)).
- A036795 (program): Integers that can be decomposed into sums of different Fibonacci numbers of even argument.
- A036796 (program): Integers that can be decomposed into sums of different Fibonacci numbers of odd argument.
- A036799 (program): a(n) = 2 + 2^(n+1)*(n-1).
- A036800 (program): a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).
- A036820 (program): Number of partitions satisfying (cn(2,5) = cn(3,5) = 0).
- A036826 (program): a(n) = A036800(n)/2.
- A036827 (program): a(n) = 26 + 2^(n+1)*(-13 +9*n -3*n^2 +n^3).
- A036828 (program): A036827/2.
- A036829 (program): a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).
- A036830 (program): Schoenheim bound L_1(n,n-4,n-5).
- A036837 (program): Schoenheim bound L_1(n,n-5,n-6).
- A036839 (program): RATS(n): Reverse Add Then Sort the digits.
- A036843 (program): Floor(X/Y), where X = concatenation of the triangular numbers and Y = concatenation of natural numbers.
- A036844 (program): Numbers k such that k / sopfr(k) is an integer, where sopfr = sum-of-prime-factors, A001414.
- A036878 (program): a(n) = p^(p-1) where p = prime(n).
- A036879 (program): If n = (p_1)^(m_1)…(p_k)^(m_k) then a(n) = (p_1)^((p_1)^(m_1) - 1)…(p_k)((p_k)^(m_k) - 1).
- A036896 (program): Odd refactorable numbers.
- A036897 (program): Square root of odd refactorable numbers.
- A036907 (program): Square refactorable numbers.
- A036908 (program): Number of different compact source directed animals with 1 point on the bottom line.
- A036909 (program): a(n) = (2/3) * 4^n * binomial(3*n, n).
- A036910 (program): a(n) = (binomial(4*n, 2*n) + binomial(2*n, n)^2)/2.
- A036911 (program): a(n) = (binomial(4*n, 2*n) + (-1)^n*binomial(2*n, n)^2)/2.
- A036914 (program): a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4.
- A036915 (program): a(n) = Sum_{k=0..n} C(2*n-2*k,n-k)^2 * C(2*n,k)^2.
- A036916 (program): a(n) = Sum_{k=0..n} binomial(2*n-2*k,n-k)^2 * binomial(n,k)^2.
- A036917 (program): a(n) = (16*(n-1/2)*(2*n^2-2*n+1)*a(n-1)-256*(n-1)^3*a(n-2))/n^3.
- A036918 (program): a(n) = floor(e*(n-1)*(n-1)!)).
- A036919 (program): A036918/2.
- A036952 (program): Numbers whose binary expansion is a decimal prime.
- A036953 (program): Primes containing only digits from the set {0, 1, 2}.
- A036954 (program): Primes with digits in {0,1,2} taken as base 3 and converted to base 10.
- A036955 (program): Numbers whose base-4 representation is the decimal representation of a prime.
- A036956 (program): Primes containing only digits from the set (0,1,2,3,4).
- A036957 (program): Primes with digits (0,…,4) taken as base 5 and converted to base 10.
- A036958 (program): Primes containing only digits from the set (0,1,2,3,4,5).
- A036959 (program): Primes with digits (0,…,5) taken as base 6 and converted to base 10.
- A036960 (program): Primes containing only digits from the set (0,1,2,3,4,5,6).
- A036961 (program): Primes with digits (0,…,6) taken as base 7 and converted to base 10.
- A036962 (program): Primes containing only digits from the set (0,1,2,3,4,5,6,7).
- A036963 (program): Primes with digits (0,…,7) taken as base 8 and converted to base 10.
- A036964 (program): Primes with digits (0,…,8) taken as base 9 and converted to base 10.
- A036973 (program): (7*n^3+4*n^2+4*n)*binomial(2*n,n)/30.
- A036975 (program): Lengths of Golay complementary sequences.
- A036982 (program): a(n)=[ a*a(n-1)+b ]/p^r, where a=2.001, b=3.2, p=2 and p^r is the highest power of p dividing [ a*a(n-1)+b ].
- A036987 (program): Fredholm-Rueppel sequence.
- A036988 (program): Has simplest possible tree complexity of all transcendental sequences.
- A036989 (program): Read binary expansion of n from the right; keep track of the excess of 1’s over 0’s that have been seen so far; sequence gives 1 + maximum(excess of 1’s over 0’s).
- A036990 (program): Numbers n such that, in the binary expansion of n, reading from right to left, the number of 1’s never exceeds the number of 0’s.
- A036993 (program): Numbers n with property that reading from right to left in the binary expansion of n, the number of 0’s always stays ahead of the number of 1’s.
- A036997 (program): Number of composite numbers <= n and relatively prime to n.
- A036999 (program): Restricted permutations.
- A037009 (program): Consider an n X n board with a knight’s path, not necessarily closed, that visits every square exactly once; number the squares [ 1..n^2 ] along the path; a(n) = maximal number of prime numbered squares that can be attacked by a queen.
- A037011 (program): Baum-Sweet cubic sequence.
- A037012 (program): Triangle read by rows; row 0 is 0; the n-th row for n>0 contains the coefficients in the expansion of (1-x)*(1+x)^(n-1).
- A037019 (program): Let n = p_1*p_2*…*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 2^(p_1 - 1)*3^(p_2 - 1)*…*A000040(k)^(p_k - 1).
- A037020 (program): Numbers whose sum of proper (or aliquot) divisors is a prime.
- A037027 (program): Skew Fibonacci-Pascal triangle read by rows.
- A037029 (program): Primes of the form 666*n + 1.
- A037030 (program): Numbers n such that 666*n + 1 is prime.
- A037031 (program): Number of combinations of n objects taken pi(n) at a time.
- A037034 (program): Least k such that 4*n*k-1 is a prime.
- A037037 (program): Number of primes between n and 3n.
- A037038 (program): Number of primes between n and 4n+1.
- A037039 (program): Least k such that 4*n*k+1 is a prime.
- A037040 (program): Number of odd nonprimes < (2n+1)^2.
- A037048 (program): Number of pairs {i,j}, i>1, j>1, such that ij < n^2.
- A037072 (program): Squares which are the sum of twin prime pairs.
- A037073 (program): Numbers k such that (6*k)^2 is the sum of a twin prime pair.
- A037074 (program): Numbers that are the product of a pair of twin primes.
- A037078 (program): In ternary expansion of n, reading from right to left, digits occur in order …,0,1,2,0,1,2,…
- A037079 (program): In ternary expansion of n, reading from left to right, digits occur in order …,0,1,2,0,1,2,…
- A037080 (program): In ternary expansion of n, reading from right to left, successive runs of the digits occur in order …,0,1,2,0,1,2,…
- A037081 (program): In ternary expansion of n, reading from left to right, successive runs of the digits occur in order …,0,1,2,0,1,2,…
- A037085 (program): Beatty sequence for Pi^2.
- A037086 (program): Beatty sequence for sqrt(Pi).
- A037087 (program): Beatty sequence for e^(1/e).
- A037095 (program): “Sloping binary representation” of powers of 3 (A000244), slope = -1.
- A037101 (program): Trajectory of 3 under map n->7n+1 if n odd, n->n/2 if n even.
- A037102 (program): Trajectory of 3 under map n->9n+1 if n odd, n->n/2 if n even.
- A037103 (program): Trajectory of 3 under map n->11n+1 if n odd, n->n/2 if n even
- A037104 (program): Trajectory of 3 under map n->13n+1 if n odd, n->n/2 if n even
- A037105 (program): Trajectory of 3 under map n->15n+1 if n odd, n->n/2 if n even
- A037106 (program): Trajectory of 3 under map n->17n+1 if n odd, n->n/2 if n even
- A037107 (program): Trajectory of 3 under map n->19n+1 if n odd, n->n/2 if n even
- A037108 (program): Trajectory of 3 under map n->21n+1 if n odd, n->n/2 if n even
- A037109 (program): Trajectory of 3 under map n->23n+1 if n odd, n->n/2 if n even
- A037110 (program): Trajectory of 3 under map n->25n+1 if n odd, n->n/2 if n even
- A037111 (program): Trajectory of 3 under map n->27n+1 if n odd, n->n/2 if n even
- A037112 (program): Trajectory of 3 under map n->29n+1 if n odd, n->n/2 if n even
- A037113 (program): Trajectory of 3 under map n->31n+1 if n odd, n->n/2 if n even.
- A037114 (program): Trajectory of 3 under map n->33n+1 if n odd, n->n/2 if n even
- A037115 (program): Trajectory of 3 under map n->35n+1 if n odd, n->n/2 if n even
- A037116 (program): Trajectory of 3 under map n->37n+1 if n odd, n->n/2 if n even
- A037117 (program): Trajectory of 3 under map n->39n+1 if n odd, n->n/2 if n even
- A037118 (program): Trajectory of 3 under map n->41n+1 if n odd, n->n/2 if n even
- A037119 (program): Trajectory of 3 under map n->43n+1 if n odd, n->n/2 if n even
- A037120 (program): Trajectory of 3 under map n->45n+1 if n odd, n->n/2 if n even
- A037121 (program): Trajectory of 3 under map n -> 47n+1 if n odd, n->n/2 if n even.
- A037122 (program): Trajectory of 3 under map n->49n+1 if n odd, n->n/2 if n even
- A037123 (program): a(n) = a(n-1) + sum of digits of n.
- A037124 (program): Numbers that contain only one nonzero digit.
- A037125 (program): Irregular triangle: row n is 1, 2, 3, 4, .., prime(n).
- A037126 (program): Triangle T(n,k) = prime(k) for k = 1..n.
- A037140 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= 5.
- A037141 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= -5, with F(-n)=(-1)^(n+1)*F(n);.
- A037143 (program): Numbers with at most 2 prime factors (counted with multiplicity).
- A037144 (program): Numbers with at most 3 prime factors (counted with multiplicity).
- A037145 (program): Expansion of 1/((1-x^2)(1-x^3)…(1-x^6)).
- A037147 (program): Denominators of Fourier coefficients of Eisenstein series of degree 2 and weight 10 when evaluated at Gram(A_2)*z.
- A037156 (program): a(n) = 10^n*(10^n+1)/2.
- A037157 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= 6.
- A037158 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= -7, with F(-n)=(-1)^(n+1)*F(n).
- A037165 (program): a(n) = prime(n)*prime(n+1) - prime(n) - prime(n+1).
- A037166 (program): Prime(n)*prime(n+1)-prime(n).
- A037167 (program): Prime(n)*prime(n+1)-prime(n+1).
- A037168 (program): a(n) = 2*prime(n) - 2.
- A037169 (program): a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).
- A037178 (program): Longest cycle when squaring modulo n-th prime.
- A037182 (program): a(n) = 10^n*(10^n-1) / 2.
- A037184 (program): Functional digraphs with 1 node not in the image.
- A037202 (program): Number of lines in Pratt certificate for n-th prime.
- A037205 (program): a(n) = (n+1)^n - 1.
- A037213 (program): Expansion of Sum_{n>=0} n*q^(n^2).
- A037223 (program): Number of solutions to non-attacking rooks problem on n X n board that are invariant under 180-degree rotation.
- A037224 (program): Number of permutations p of {1,2,3…,n} that are fixed points under the operation of first reversing p, then taking the inverse.
- A037225 (program): a(n) = phi(2n+1).
- A037227 (program): If n = 2^m*k, k odd, then a(n) = 2*m+1.
- A037228 (program): a(n) = phi(n) - pi(n).
- A037229 (program): n such that pi(n) >= phi(n).
- A037235 (program): a(n) = n*(2*n^2 - 3*n + 4)/3.
- A037236 (program): Expansion of (3+2*x^2)/(1-x)^4.
- A037237 (program): Expansion of (3 + x^2) / (1 - x)^4.
- A037238 (program): x -> 5x - 1 if x odd, else x -> x/2.
- A037239 (program): Numerator of Pi^(2n)/(GAMMA(2n)*(1-2^(-2n))*Zeta(2n)); = 8*(highest power of 2 dividing n).
- A037240 (program): Molien series for 3-D group X1.
- A037244 (program): Base 100 expansion of Pi.
- A037248 (program): a(n) = n^6*(n^2 - 1)*(n^6 - 1).
- A037250 (program): a(n) = n^2*(n^2 + 1)*(n-1).
- A037251 (program): a(n) = n^3*(n^3 + 1)*(n-1).
- A037253 (program): n^12*(n^8+n^4+1)*(n^6-1)*(n^2-1).
- A037254 (program): Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.
- A037255 (program): For n weights, number of combinations when limited to two weights per pan.
- A037256 (program): a(n) = n!*Sum_{i=0..n-1} (n-i)*(-2)^i/(i+1)!.
- A037270 (program): a(n) = n^2*(n^2 + 1)/2.
- A037281 (program): Number of iterations of transformation in A037280 needed to reach 1 or a prime, or -1 if no such number exists.
- A037301 (program): Numbers whose base-2 and base-3 expansions have the same digit sum.
- A037308 (program): Numbers whose base-2 and base-10 expansions have the same digit sum.
- A037314 (program): Numbers whose base-3 and base-9 expansions have the same digit sum.
- A037315 (program): Numbers whose base-3 and base-10 expansions have the same digit sum.
- A037341 (program): Numbers whose base-2 and base-7 expansions have no digits in common.
- A037342 (program): Numbers whose base-2 and base-8 expansions have no digits in common.
- A037350 (program): Numbers whose base-3 and base-9 expansions have no digits in common.
- A037445 (program): Number of infinitary divisors (or i-divisors) of n.
- A037449 (program): Discriminant of quadratic field Q(sqrt(n)).
- A037450 (program): Numbers which are one less than a perfect square that cannot otherwise be written as a power.
- A037451 (program): a(n) = Fibonacci(n) * Fibonacci(2*n).
- A037453 (program): Positive numbers whose base-5 representation contains no 3 or 4.
- A037454 (program): a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*3^i is the base 3 representation of n.
- A037455 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
- A037456 (program): a(n)=Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
- A037458 (program): a(1)=1; for n > 1, a(n) = n - a(n-floor(sqrt(n))).
- A037459 (program): Sum{d(i)*5^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037460 (program): a(n) = Sum{d(i)*6^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037461 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037462 (program): a(n) = Sum_{i = 0..m} d(i)*8^i, where Sum_{i = 0..m} d(i)*4^i is the base 4 representation of n.
- A037463 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037464 (program): Bisection of A076605.
- A037465 (program): Sum{d(i)*6^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037466 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037467 (program): Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037468 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037470 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037471 (program): a(n)=Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037472 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037474 (program): a(n) = Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
- A037475 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
- A037477 (program): a(n) = Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
- A037479 (program): a(n)=Sum{d(i)*10^i: i=0,1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is the base 9 representation of n.
- A037480 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037481 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037482 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037483 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037484 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037485 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037486 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
- A037487 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2.
- A037488 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037489 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037490 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037491 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037492 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037493 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037494 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
- A037495 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1.
- A037496 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037497 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037498 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037499 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037500 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037501 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037502 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
- A037503 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,2.
- A037504 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037505 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037506 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037507 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037508 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037509 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037510 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
- A037511 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,0.
- A037512 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037513 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037514 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037515 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037516 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037517 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037518 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
- A037519 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,1.
- A037520 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037521 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 2, 1, 0.
- A037522 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037523 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037524 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037525 (program): Base-8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037526 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
- A037527 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,0.
- A037528 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037529 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037530 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037531 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037532 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037533 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037534 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
- A037535 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,1,2.
- A037536 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037537 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037538 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037539 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037540 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037541 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037542 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
- A037543 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,1.
- A037544 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037545 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037546 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037547 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037548 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037549 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037550 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
- A037551 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,2.
- A037552 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037553 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037554 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037555 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037556 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037557 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037558 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
- A037559 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,1.
- A037560 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037561 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037562 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037563 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037564 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037565 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037566 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
- A037567 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,2,1.
- A037568 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037569 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037570 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037571 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037572 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037573 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037574 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
- A037575 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,2.
- A037576 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037577 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037578 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037579 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037580 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037581 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
- A037582 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3.
- A037583 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037584 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037585 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037586 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037587 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037588 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
- A037589 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1.
- A037590 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037591 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037592 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037593 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037594 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037595 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037596 (program): Numbers written in base 4 whose digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
- A037597 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037598 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037599 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037600 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037601 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037602 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
- A037603 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,0.
- A037604 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037605 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037606 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037607 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037608 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037609 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
- A037610 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3.
- A037611 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037612 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037613 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037614 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037615 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037616 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
- A037617 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,2.
- A037618 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037619 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037620 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037621 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037622 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037623 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
- A037624 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,3.
- A037625 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037626 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037627 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037628 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037629 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037630 (program): Base-9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
- A037631 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,0.
- A037632 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037633 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037634 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037635 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037636 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037637 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
- A037638 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,3.
- A037639 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037640 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037641 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037642 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037643 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037644 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
- A037645 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,1.
- A037646 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037647 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037648 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037649 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037650 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037651 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
- A037652 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,1.
- A037653 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037654 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037655 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037656 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037657 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037658 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
- A037659 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,2.
- A037660 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037661 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037662 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037663 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037664 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037665 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
- A037666 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,0.
- A037667 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037668 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037669 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037670 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037671 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037672 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
- A037673 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,0.
- A037674 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037675 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037676 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037677 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037678 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037679 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037680 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,2,3.
- A037681 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037682 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037683 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037684 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037685 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037686 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037687 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,3,2.
- A037688 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037689 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037690 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037691 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037692 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037693 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037694 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,0,3.
- A037695 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037696 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037697 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037698 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037699 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037700 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037701 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3,0.
- A037702 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037703 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037704 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037705 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037706 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037707 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037708 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,0,2.
- A037709 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037710 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037711 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037712 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037713 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037714 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037715 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,2,0.
- A037716 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037717 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037718 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037719 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037720 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037721 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037722 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,1,3.
- A037723 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037724 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037725 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037726 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037727 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037728 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037729 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,3,1.
- A037730 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037731 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037732 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037733 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037734 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037735 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037736 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,0,3.
- A037737 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037738 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037739 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037740 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037741 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037742 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037743 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,3,0.
- A037744 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037745 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037746 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037747 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037748 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037749 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037750 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,0,1.
- A037751 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037752 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037753 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037754 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037755 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037756 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037757 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,1,0.
- A037758 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037759 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037760 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037761 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037762 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037763 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037764 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,1,2.
- A037765 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037766 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037767 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037768 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037769 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037770 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037771 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,2,1.
- A037772 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037773 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037774 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037775 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037776 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037777 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037778 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,0,2.
- A037779 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037780 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037781 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037782 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037783 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037784 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037785 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,2,0.
- A037786 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037787 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037788 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037789 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037790 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037791 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037792 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,0,1.
- A037793 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037794 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037795 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037796 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037797 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037798 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037799 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,1,0.
- A037800 (program): Number of occurrences of 01 in the binary expansion of n.
- A037801 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
- A037802 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is base 4 representation of n.
- A037803 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037804 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037806 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
- A037808 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
- A037809 (program): Number of i such that d(i) <= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
- A037810 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
- A037811 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037812 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037813 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037815 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
- A037816 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
- A037817 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
- A037818 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*3^i: i=0,1,….,m} is base 3 representation of n.
- A037819 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*4^i: i=0,1,….,m} is base 4 representation of n.
- A037820 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*5^i: i=0,1,….,m} is base 5 representation of n.
- A037821 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*6^i: i=0,1,….,m} is base 6 representation of n.
- A037822 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*7^i: i=0,1,….,m} is base 7 representation of n.
- A037823 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*8^i: i=0,1,….,m} is base 8 representation of n.
- A037824 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*9^i: i=0,1,….,m} is base 9 representation of n.
- A037825 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*10^i: i=0,1,….,m} is base 10 representation of n.
- A037826 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
- A037827 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is base 4 representation of n.
- A037828 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is base 5 representation of n.
- A037829 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is base 6 representation of n.
- A037831 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is base 8 representation of n.
- A037832 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
- A037833 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
- A037834 (program): a(n) = Sum_{i=1..m} |d(i) - d(i-1)|, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
- A037835 (program): Sum{|d(i)-d(i-1)|: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
- A037836 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
- A037837 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037838 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037839 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
- A037840 (program): a(n)=Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
- A037841 (program): a(n)=Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is the base 9 representation of n.
- A037844 (program): Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
- A037845 (program): a(n) = Sum_{i=1..m, d(i)<d(i-1)} d(i-1)-d(i), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
- A037846 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
- A037847 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
- A037848 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
- A037849 (program): a(n) = Sum_{d(i) < d(i-1), i=1..m} (d(i-1) - d(i)), where Sum{d(i)*8^i: i=0,1,…,m} is the base-8 representation of n.
- A037852 (program): Number of normal subgroups of dihedral group with 2n elements.
- A037853 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
- A037854 (program): Sum_{i=1..m, d(i)>d(i-1)} d(i)-d(i-1), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
- A037855 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is base 5 representation of n.
- A037856 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is base 6 representation of n.
- A037857 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is base 7 representation of n.
- A037858 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is base 8 representation of n.
- A037859 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
- A037860 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
- A037861 (program): (Number of 0’s) - (number of 1’s) in the base-2 representation of n.
- A037862 (program): a(n)=(number of digits <=1)-(number of digits >1) in base 3 representation of n.
- A037863 (program): a(n)=(number of digits <=1)-(number of digits >1) in base 4 representation of n.
- A037864 (program): a(n)=(number of digits <=2)-(number of digits >2) in base 5 representation of n.
- A037865 (program): a(n)=(number of digits <=2)-(number of digits >2) in base 6 representation of n.
- A037866 (program): a(n)=(number of digits <=3)-(number of digits >3) in base 7 representation of n.
- A037867 (program): a(n)=(number of digits <=3)-(number of digits >3) in base 8 representation of n.
- A037868 (program): a(n)=(number of digits <=4)-(number of digits >4) in base 9 representation of n.
- A037869 (program): a(n) = (number of digits <=4)-(number of digits >4) in base 10 representation of n.
- A037870 (program): a(n) = (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*2^i} is base 2 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037873 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*5^i} is base 5 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037874 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*6^i} is base 6 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037875 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*7^i} is base 7 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037876 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*8^i} is base 8 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037877 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*9^i} is base-9 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037878 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*10^i} is base 10 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
- A037879 (program): a(n) = (1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*2^i} is the base-2 representation of n and {e(i)} are digits {d(i)} in nondecreasing order.
- A037882 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*5^i) is the base 5 representation of n and e(i) are the digits d(i) in nondecreasing order.
- A037883 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*6^i) is the base 6 representation of n and e(i) are the digits d(i) in nondecreasing order.
- A037884 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*7^i) is the base 7 representation of n and e(i) are the digits d(i) in nondecreasing order.
- A037885 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*8^i) is the base 8 representation of n and e(i) are the digits d(i) in nondecreasing order.
- A037887 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*10^i) is the base 10 representation of n and e(i) are the digits d(i) in nondecreasing order.
- A037888 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*2^i} is base 2 representation of n and e(i) are digits d(i) in reverse order.
- A037891 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*5^i} is the base 5 representation of n and e(i) are the digits d(i) in reverse order.
- A037892 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*6^i} is the base 6 representation of n and e(i) are the digits d(i) in reverse order.
- A037895 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*9^i} is the base 9 representation of n and e(i) are the digits d(i) in reverse order.
- A037896 (program): Primes of the form k^4 + 1.
- A037897 (program): (Greatest base 3 digit of n)-(least base 3 digit of n).
- A037898 (program): a(n)=(greatest base 4 digit of n)-(least base 4 digit of n).
- A037899 (program): a(n)=(greatest base 5 digit of n)-(least base 5 digit of n).
- A037900 (program): (greatest base 6 digit of n)-(least base 6 digit of n).
- A037901 (program): a(n)=(greatest base 7 digit of n)-(least base 7 digit of n).
- A037902 (program): a(n)=(greatest base 8 digit of n)-(least base 8 digit of n).
- A037904 (program): Greatest digit of n - least digit of n.
- A037905 (program): a(n) = 9 - (floor(n*Pi) mod 9).
- A037906 (program): Number of i such that |d(i) - d(i-1)| = 1, where Sum_{i=0..m} d(i)*3^i is the base-3 representation of n.
- A037915 (program): a(n) = floor((3*n + 4)/4).
- A037916 (program): Concatenate exponents in prime factorization of n.
- A037942 (program): Numbers of the form x^2 + y^2 with x >= 0, y >= 0, gcd(x,y)=1, with multiplicity.
- A037943 (program): Smallest Fibonacci number that has n as a factor, divided by n.
- A037951 (program): a(n) = binomial(n, floor((n-3)/2)).
- A037952 (program): a(n) = binomial(n, floor((n-1)/2)).
- A037953 (program): a(n) = binomial(n, floor((n-5)/2)).
- A037954 (program): a(n) = binomial(n, floor((n-7)/2)).
- A037955 (program): a(n) = binomial(n, floor(n/2)-1).
- A037956 (program): a(n) = binomial(n, floor((n-4)/2)).
- A037957 (program): a(n) = binomial(n, floor((n-6)/2)).
- A037958 (program): a(n) = binomial(n, floor((n-8)/2)).
- A037959 (program): a(n) = n^2*(n+1)*(n+2)!/48.
- A037960 (program): a(n) = n*(3*n+1)*(n+2)!/24.
- A037961 (program): a(n) = n^2*(n+1)*(n+3)!/48.
- A037962 (program): a(n) = n*(15*n^3 + 30*n^2 + 5*n - 2)*(n+4)!/5760.
- A037963 (program): a(n) = n^2*(n+1)*(3*n^2 + 7*n - 2)*(n+5)!/11520.
- A037964 (program): a(n) = (1/2)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n,n)).
- A037965 (program): a(n) = n*binomial(2*n-2, n-1).
- A037966 (program): a(n) = n^2*binomial(2*n-2, n-1).
- A037967 (program): a(n) = (binomial(2*n, n)^2 + binomial(2*n, n))/2.
- A037969 (program): Numbers whose maximal base-2 run length is 2.
- A037970 (program): Numbers whose maximal base-2 run length is 3.
- A037971 (program): Numbers whose maximal base-2 run length is 4.
- A037972 (program): a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2.
- A037976 (program): a(n) = (1/4)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2).
- A037980 (program): a(n) = (1/16)*( binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2 ).
- A037985 (program): Numbers whose maximal base 6 run length is 2.
- A037988 (program): Critical values in Conway’s game of one-dimensional phutball.
- A037992 (program): Smallest number with 2^n divisors.
- A037993 (program): Numbers whose maximal base-8 run length is 2.
- A038024 (program): Number of k’s such that A002034(k) = n.
- A038033 (program): a(n) = A000166(n-1)*n*(n-1).
- A038039 (program): a(n) = Sum_{d|n} (2^d*3^(n/d)).
- A038040 (program): a(n) = n*d(n), where d(n) = number of divisors of n (A000005).
- A038048 (program): a(n) = (n-1)! * sigma(n).
- A038049 (program): Number of labeled rooted trees with 2-colored leaves.
- A038050 (program): Number of labeled rooted trees with 3-colored leaves.
- A038051 (program): G.f.: B(x/(1-x)) where B is g.f. of A000169.
- A038053 (program): Number of labeled planted trees with 2-colored leaves.
- A038054 (program): Number of labeled trees with 2-colored leaves.
- A038057 (program): a(n) = 2^n*n^(n-1).
- A038058 (program): Number of labeled trees with 2-colored nodes.
- A038061 (program): a(n) = 3^n*n^(n-1).
- A038062 (program): Number of labeled trees with 3-colored nodes.
- A038082 (program): Number of n-node rooted identity trees of height at most 3.
- A038094 (program): Number of rooted graphs on n labeled nodes where the root has degree 2.
- A038096 (program): Number of rooted graphs on n labeled nodes where the root has degree 3.
- A038107 (program): Number of primes < n^2.
- A038108 (program): Number of prime pairs {p,q}, such that pq < n^2.
- A038109 (program): Divisible exactly by the square of a prime.
- A038110 (program): Numerator of frequency of integers with smallest divisor prime(n).
- A038111 (program): Denominator of density of integers with smallest prime factor prime(n).
- A038112 (program): a(n) = T(2n,n), where T(n,k) is in A037027.
- A038121 (program): E.g.f.: (1 + 15*x + (45/2)*x^2 + (5/2)*x^3)/(1 - 2*x)^(13/2).
- A038123 (program): Beatty sequence for Feigenbaum’s constant.
- A038124 (program): Beatty sequence for Brun’s constant.
- A038125 (program): a(n) = Sum_{k=0..n} (k-n)^k.
- A038127 (program): a(n) = floor(n*2^sqrt(2)).
- A038128 (program): Beatty sequence for Euler’s constant (A001620).
- A038129 (program): Beatty sequence for cube root of 2.
- A038130 (program): Beatty sequence for 2*Pi.
- A038137 (program): Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027.
- A038138 (program): Order of n (mod 7).
- A038139 (program): Order of n (mod 9).
- A038146 (program): Number of n-celled helicenes with peri-fragments.
- A038149 (program): a(n) = max T(n,k), with T as in A037027.
- A038151 (program): Bilateral directed animals in first and 8th octants.
- A038152 (program): Beatty sequence for e^Pi.
- A038154 (program): a(n) = n! * Sum_{k=0..n-2} 1/k!.
- A038155 (program): a(n) = (n!/2) * Sum_{k=0..n-2} 1/k!.
- A038156 (program): a(n) = n! * Sum_{k=1..n-1} 1/k!.
- A038157 (program): a(n) = n! * Sum_{k=1..n-2} 1/k!.
- A038158 (program): a(n) = (n!/2)*Sum(1/k!, k=1..n-2).
- A038159 (program): a(n) = n*a(n-1) + 1, a(0) = 2.
- A038161 (program): (A038590-1)/6.
- A038163 (program): G.f.: 1/((1-x)*(1-x^2))^3.
- A038164 (program): G.f.: 1/((1-x)*(1-x^2))^4.
- A038165 (program): G.f.: 1/((1-x)*(1-x^2))^5.
- A038166 (program): G.f.: 1/((1-x)*(1-x^2))^6.
- A038167 (program): G.f.: x*(1+3*x+x^2)/((1-x^2)^2*(1-x^5)).
- A038179 (program): Result of second stage of sieve of Eratosthenes (after eliminating multiples of 2 and 3).
- A038183 (program): One-dimensional cellular automaton ‘sigma-minus’ (Rule 90): 000,001,010,011,100,101,110,111 -> 0,1,0,1,1,0,1,0.
- A038184 (program): State of one-dimensional cellular automaton ‘sigma’ (Rule 150): 000,001,010,011,100,101,110,111 -> 0,1,1,0,1,0,0,1 at generation n, converted to a decimal number.
- A038185 (program): One-dimensional cellular automaton ‘sigma’ (Rule 150).
- A038187 (program): Numbers other than powers of 10 that are coprime to the sum of their digits.
- A038189 (program): Bit to left of least significant 1-bit in binary expansion of n.
- A038190 (program): Pagoda sequence: a(0) = b(n)-b(n-2) mod 3, where b(n) = A038189(n).
- A038191 (program): A034166/2.
- A038192 (program): Bisection of A001317.
- A038194 (program): Iterated sum-of-digits of n-th prime; or digital root of n-th prime; or n-th prime modulo 9.
- A038195 (program): Triangle read by rows: T(n,k) (n >= 2, 0 <= k <= n) = number of over-all crude totals of unbranched k-5-catapolyheptagons.
- A038196 (program): 3-wave sequence starting with 1, 1, 1.
- A038199 (program): Row sums of triangle T(m,n) = number of solutions to 1 <= a(1) < a(2) < … < a(m) <= n, where gcd(a(1), a(2), …, a(m), n) = 1, in A020921.
- A038200 (program): Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
- A038205 (program): Number of derangements of n where minimal cycle size is at least 3.
- A038207 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).
- A038208 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^i.
- A038210 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*4^j.
- A038212 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*6^j.
- A038213 (program): Top line of 3-wave sequence A038196, also bisection of A006356.
- A038214 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*8^j.
- A038215 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*9^j.
- A038216 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*10^j.
- A038217 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*11^j.
- A038218 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*12^j (with i, j >= 0).
- A038220 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.
- A038221 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.
- A038222 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*4^j.
- A038223 (program): Bottom line of 3-wave sequence A038196, also bisection of A006356.
- A038224 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*6^j.
- A038225 (program): Top line of 4-wave sequence A038197, also bisection of A006357.
- A038226 (program): Triangle read by rows: (i,j)-th entry is binomial(i,j)*3^(i-j)*8^j.
- A038227 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*9^j.
- A038228 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*10^j.
- A038229 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*11^j.
- A038230 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*12^j.
- A038231 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).
- A038232 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*2^j.
- A038233 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*3^j.
- A038234 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*4^j.
- A038235 (program): Bottom line of 4-wave sequence A038197, also bisection of A006357.
- A038236 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*6^j.
- A038237 (program): Second line of 4-wave sequence A038197.
- A038238 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*8^j.
- A038239 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*9^j.
- A038240 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*10^j.
- A038241 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*11^j.
- A038242 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*12^j.
- A038243 (program): Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
- A038244 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*2^j.
- A038245 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*3^j.
- A038246 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*4^j.
- A038247 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*5^j.
- A038248 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*6^j.
- A038249 (program): Third line of 4-wave sequence A038197.
- A038250 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*8^j.
- A038251 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*9^j.
- A038252 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*10^j.
- A038253 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*11^j.
- A038254 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*12^j.
- A038255 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).
- A038256 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*2^j.
- A038257 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*3^j.
- A038258 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*4^j.
- A038259 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*5^j.
- A038260 (program): Triangle read by rows: T(n,k) = binomial(n,k)*6^(n-k)*6^k, 0<=k<=n.
- A038261 (program): First line of 5-wave sequence A038201, also bisection of A006358.
- A038262 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*8^j.
- A038263 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*9^j.
- A038264 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*10^j.
- A038265 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*11^j.
- A038266 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*12^j.
- A038268 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*2^j.
- A038269 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*3^j.
- A038270 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*4^j.
- A038271 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*5^j.
- A038272 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*6^j.
- A038273 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*7^j.
- A038274 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*8^j.
- A038275 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*9^j.
- A038276 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*10^j.
- A038277 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*11^j.
- A038278 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*12^j.
- A038279 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*1^j.
- A038280 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*2^j.
- A038281 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*3^j.
- A038282 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*4^j.
- A038283 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*5^j.
- A038284 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*6^j.
- A038285 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*7^j.
- A038286 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*8^j.
- A038287 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*9^j.
- A038288 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*10^j.
- A038289 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*11^j.
- A038290 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*12^j.
- A038291 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.
- A038292 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*2^j.
- A038293 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*3^j.
- A038294 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*4^j.
- A038295 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*5^j.
- A038296 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*6^j.
- A038297 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*7^j.
- A038298 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*8^j.
- A038299 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*9^j.
- A038300 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*10^j.
- A038301 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*11^j.
- A038302 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*12^j.
- A038303 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*1^j.
- A038304 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*2^j.
- A038305 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*3^j.
- A038306 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*4^j.
- A038307 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*5^j.
- A038308 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*6^j.
- A038309 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*7^j.
- A038310 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*8^j.
- A038311 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*9^j.
- A038312 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*10^j.
- A038313 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*11^j.
- A038314 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*12^j.
- A038315 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*1^j.
- A038316 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*2^j.
- A038317 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*3^j.
- A038318 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*4^j.
- A038319 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*5^j.
- A038320 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*6^j.
- A038321 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*7^j.
- A038322 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*8^j.
- A038323 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*9^j.
- A038324 (program): Triangle read by rows whose (i,j)-th entry is binomial(i,j)*11^(i-j)*10^j.
- A038325 (program): Triangle read by rows whose (i,j)-th entry is binomial(i,j)*11^(i-j)*11^j.
- A038326 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*12^j.
- A038327 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*1^j.
- A038328 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*2^j.
- A038329 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*3^j.
- A038330 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*4^j.
- A038331 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*5^j.
- A038332 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*6^j.
- A038333 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*7^j.
- A038334 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*8^j.
- A038335 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*9^j.
- A038336 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*10^j.
- A038337 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*11^j.
- A038338 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*12^j.
- A038339 (program): Bottom line of 5-wave sequence A038201, also bisection of A006358.
- A038342 (program): G.f.: 1/(1 - 3 x - 3 x^2 + 4 x^3 + x^4 - x^5).
- A038346 (program): Sum of first n primes of form 4k+1.
- A038347 (program): Sum of first n primes of form 4k-1.
- A038348 (program): Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).
- A038349 (program): Partial sums of primes congruent to 1 mod 6.
- A038350 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 4’s.
- A038352 (program): Numbers whose base-6 representation has the same nonzero number of 2’s and 3’s.
- A038353 (program): Numbers whose base-6 representation has the same nonzero number of 2’s and 4’s.
- A038355 (program): Numbers whose base-6 representation has the same nonzero number of 3’s and 4’s.
- A038360 (program): Ranks of certain relations among Euler sums of weight n.
- A038361 (program): Partial sums of primes congruent to 5 mod 6.
- A038364 (program): Numbers n such that n = (product of digits of n) + (sum of digits of n).
- A038374 (program): Length of longest contiguous block of 1’s in binary expansion of n.
- A038376 (program): a(n) = (n-3)*A006918(n)/2.
- A038377 (program): Number of odd nonprimes <= (2n+1)^2.
- A038378 (program): Integers which have more distinct digits than any smaller number.
- A038387 (program): a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.
- A038388 (program): Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives G values.
- A038389 (program): Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives A values.
- A038390 (program): Bisection of A028289.
- A038391 (program): Expansion of (x^3+2*x+1) / ((x-1)^4*(x^2+x+1)^2).
- A038395 (program): Concatenation of the first n odd numbers in reverse order.
- A038396 (program): Concatenate first n even numbers in reverse order.
- A038397 (program): Concatenate first n squares in reverse order.
- A038398 (program): Concatenate first n cubes in reverse order.
- A038408 (program): Coordination sequence for Zeolite Code DFT.
- A038444 (program): Sums of 2 distinct powers of 10.
- A038446 (program): Sums of 4 distinct powers of 10.
- A038447 (program): Sums of 5 distinct powers of 10.
- A038448 (program): Sums of 6 distinct powers of 10.
- A038449 (program): Sums of 7 distinct powers of 10.
- A038450 (program): Sums of 8 distinct powers of 10.
- A038453 (program): Sums of 11 distinct powers of 10.
- A038454 (program): Sums of 12 distinct powers of 10.
- A038457 (program): |First digit-last digit| for triangular numbers.
- A038459 (program): A sequence for measuring seconds: read it aloud.
- A038461 (program): Sums of 10 distinct powers of 2.
- A038462 (program): Sums of 11 distinct powers of 2.
- A038463 (program): Sums of 12 distinct powers of 2.
- A038464 (program): Sums of 2 distinct powers of 3.
- A038465 (program): Sums of 3 distinct powers of 3.
- A038466 (program): Sums of 4 distinct powers of 3.
- A038467 (program): Sums of 5 distinct powers of 3.
- A038468 (program): Sums of 6 distinct powers of 3.
- A038469 (program): Sums of 7 distinct powers of 3.
- A038470 (program): Sums of 2 distinct powers of 4.
- A038471 (program): Sums of 3 distinct powers of 4.
- A038472 (program): Sums of 4 distinct powers of 4.
- A038473 (program): Sums of 5 distinct powers of 4.
- A038474 (program): Sums of two distinct powers of 5.
- A038475 (program): Sums of 3 distinct powers of 5.
- A038476 (program): Sums of 4 distinct powers of 5.
- A038477 (program): Sums of 5 distinct powers of 5.
- A038478 (program): Sums of 2 distinct powers of 6.
- A038479 (program): Sums of 3 distinct powers of 6.
- A038480 (program): Sums of 4 distinct powers of 6.
- A038481 (program): Sums of 2 distinct powers of 7.
- A038482 (program): Sums of 3 distinct powers of 7.
- A038483 (program): Sums of 4 distinct powers of 7.
- A038484 (program): Sums of 2 distinct powers of 8.
- A038485 (program): Sums of 3 distinct powers of 8.
- A038486 (program): Sums of 4 distinct powers of 8.
- A038487 (program): Sums of two distinct powers of 9.
- A038488 (program): Sums of 3 distinct powers of 9.
- A038489 (program): Sums of 4 distinct powers of 9.
- A038490 (program): Sums of 2 distinct powers of 11.
- A038491 (program): Sums of 3 distinct powers of 11.
- A038492 (program): Sums of 2 distinct powers of 12.
- A038493 (program): Sums of 3 distinct powers of 12.
- A038500 (program): Highest power of 3 dividing n.
- A038502 (program): Remove 3’s from n.
- A038503 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at “n choose 0”.
- A038504 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at “n choose 1”.
- A038505 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at binomial(n,2).
- A038506 (program): Floor of decimal expansion of n read as if it were “base e”.
- A038507 (program): a(n) = n! + 1.
- A038508 (program): Expansion of (1-2*x-x^2)/((1-2*x)*(1-2*x+2*x^2)).
- A038509 (program): Composite numbers congruent to +-1 mod 6.
- A038510 (program): Composite numbers with smallest prime factor >= 7.
- A038511 (program): Composite numbers with smallest prime factor >= 11.
- A038512 (program): Nonprime numbers with smallest prime factor >= 13.
- A038513 (program): Numbers with three not necessarily distinct prime factors with smallest prime >=5.
- A038518 (program): Number of elements of GF(2^n) with trace 0 and subtrace 0.
- A038519 (program): Number of elements of GF(2^n) with trace 0 and subtrace 1.
- A038520 (program): Number of elements of GF(2^n) with trace 1 and subtrace 0.
- A038521 (program): Number of elements of GF(2^n) with trace 1 and subtrace 1.
- A038529 (program): n-th prime - n-th composite.
- A038530 (program): Concatenate n-th prime and n-th composite.
- A038533 (program): Denominator of coefficients of both EllipticK/Pi and EllipticE/Pi.
- A038534 (program): Numerators of coefficients of EllipticK/Pi.
- A038535 (program): Numerators of coefficients of EllipticE/Pi.
- A038536 (program): Odd values of n > 1 for which there are n-hyperperfect numbers.
- A038538 (program): Number of semisimple rings with n elements.
- A038544 (program): a(n) = Sum_{i=0..10^n} i^3.
- A038548 (program): Number of divisors of n that are at most sqrt(n).
- A038550 (program): Products of an odd prime and a power of two (sorted).
- A038554 (program): Derivative of n: write n in binary, replace each pair of adjacent bits with their mod 2 sum (a(0)=a(1)=0 by convention). Also n XOR (n shift 1).
- A038555 (program): Derivative of n in base 3.
- A038556 (program): Periodic derivative of n.
- A038558 (program): Smallest number with derivative n.
- A038559 (program): a(n) = 2*A040027(n-1) + Bell(n), where Bell = A000110.
- A038560 (program): Binomial recurrence coefficients.
- A038561 (program): Left-hand border of triangle A046937.
- A038566 (program): Numerators in canonical bijection from positive integers to positive rationals <= 1: arrange fractions by increasing denominator then by increasing numerator.
- A038567 (program): Denominators in canonical bijection from positive integers to positive rationals <= 1.
- A038570 (program): Second derivative of n.
- A038571 (program): Number of times n must be differentiated to reach 0.
- A038572 (program): a(n) = n rotated one binary place to the right.
- A038573 (program): a(n) = 2^A000120(n) - 1.
- A038574 (program): Write n in ternary, sort digits into increasing order.
- A038576 (program): CONTINUANT transform of {phi(n)}, 1, 1, 2, 2, 4, 2, .. (A002088).
- A038577 (program): Number of self-avoiding walks of length n from origin in strip Z X {0,1}.
- A038580 (program): Primes with indices that are primes with prime indices.
- A038585 (program): Write n in binary, delete 0’s.
- A038586 (program): Write n in ternary then sort the digits.
- A038587 (program): Sizes of successive clusters in hexagonal lattice A_2 centered at deep hole.
- A038589 (program): Sizes of successive clusters in hexagonal lattice A_2 centered at lattice point.
- A038590 (program): Sizes of clusters in hexagonal lattice A_2 centered at lattice point.
- A038599 (program): Numbers k such that k^3 - 2 is prime.
- A038600 (program): Primes of the form n^3 - 2.
- A038602 (program): One half of convolution of central binomial coefficients A000984(n) with A000984(n+2), n >= 0.
- A038603 (program): Primes not containing the digit ‘1’.
- A038604 (program): Primes not containing the digit ‘2’.
- A038605 (program): a(n) = floor( prime(n)/n ).
- A038608 (program): a(n) = n*(-1)^n.
- A038609 (program): Numbers that are the sum of 2 different primes.
- A038610 (program): Least common multiple of integers less than and prime to n.
- A038611 (program): Primes not containing the digit ‘3’.
- A038612 (program): Primes not containing the digit ‘4’.
- A038613 (program): Primes not containing the digit ‘5’.
- A038614 (program): Primes not containing the digit ‘6’.
- A038615 (program): Primes not containing the digit ‘7’.
- A038616 (program): Primes not containing digit ‘8’.
- A038617 (program): Primes not containing the digit ‘9’.
- A038618 (program): Primes not containing the decimal digit 0, a.k.a. zeroless or zerofree primes.
- A038622 (program): Triangular array that counts rooted polyominoes.
- A038629 (program): Convolution of Catalan numbers A000108 with Catalan numbers but C(0)=1 replaced by 3.
- A038663 (program): [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +…, F_n=Fibonacci numbers.
- A038665 (program): Convolution of A007054 (super ballot numbers) with A000984 (central binomial coefficients).
- A038668 (program): a(n)=[ n/3 ] + [ n/4 ] + [ n/7 ] + [ n/11 ] + [ n/18 ] + [ n/29 ] + [ n/47 ] + [ n/76 ] + [ n/123 ] + [ n/199 ]… (using Lucas numbers A000204).
- A038669 (program): [ n/2 ]+[ n/3 ]+[ n/4 ]+[ n/7 ]+[ n/11 ]+[ n/18 ]+[ n/29 ]+[ n/47 ]+[ n/76 ]+[ n/123 ]+[ n/199 ]+… (using Lucas numbers A000032).
- A038671 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x5^2 = n.
- A038674 (program): A finite series from the lyrics of La Farolera, a Latin American traditional children’s song.
- A038675 (program): Triangle read by rows: T(n,k)=A(n,k)*binomial(n+k-1,n), where A(n,k) are the Eulerian numbers (A008292).
- A038679 (program): Convolution of A007054 (Super ballot numbers) with A000302 (powers of 4).
- A038683 (program): Seventh powers ending nontrivially in a nonzero seventh power.
- A038685 (program): Ninth powers ending nontrivially in a nonzero ninth power.
- A038686 (program): Tenth powers ending nontrivially in a nonzero tenth power.
- A038687 (program): Concatenate i >= 1 and j >= 1, then sort.
- A038694 (program): Smallest odd number with n prime factors all of different number of decimal digits.
- A038697 (program): Convolution of A000917 with A000984 (central binomial coefficients).
- A038698 (program): Surfeit of 4k-1 primes over 4k+1 primes, beginning with prime 2.
- A038699 (program): Smallest prime of form n*2^m-1, m >= 0, or 0 if no such prime exists.
- A038700 (program): Smallest prime == -1 (mod n).
- A038702 (program): Prime(n)^2 mod prime(n-1).
- A038707 (program): a(n) = floor(n*(n+1/2)/2).
- A038709 (program): a(n) = floor(n*(n+1/2)/4).
- A038712 (program): Let k be the exponent of highest power of 2 dividing n (A007814); a(n) = 2^(k+1)-1.
- A038713 (program): a(n) = n XOR (n-1), i.e., nim-sum of sequential pairs, written in binary.
- A038714 (program): Pronic numbers repeated 4 times; a(n) = floor(n/4) * ceiling((n+1)/4).
- A038715 (program): a(n) = floor(n/4)*ceiling((n+2)/4).
- A038716 (program): a(n) = floor(n/4)*ceiling((n+3)/4).
- A038718 (program): Number of permutations P of {1,2,…,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,…,n-1.
- A038719 (program): Triangle T(n,k) (0 <= k <= n) giving number of chains of length k in partially ordered set formed from subsets of n-set by inclusion.
- A038720 (program): a(n) = (n+3)*n!/2.
- A038721 (program): k=2 column of A038719.
- A038722 (program): Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,2,3,4,… .
- A038723 (program): a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=4.
- A038725 (program): a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=2.
- A038730 (program): Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i).
- A038731 (program): Number of columns in all directed column-convex polyominoes of area n+1.
- A038732 (program): T(n,n-3), array T as in A038730.
- A038733 (program): T(n,n-4), array T as in A038730.
- A038734 (program): T(n,n-5), array T as in A038730.
- A038735 (program): T(n,n-6), array T as in A038730.
- A038736 (program): T(3*n + 1, n + 1), array T as in A038792.
- A038737 (program): T(n,n-2), array T as in A038792.
- A038738 (program): Path-counting array T(i,j) obtained from array t in A038792 by T(i,j)=t(2i+1,j).
- A038739 (program): T(n,n-2), array T as in A038738.
- A038740 (program): T(n,n-3), array T as in A038738.
- A038741 (program): T(n,n-4), array T as in A038738.
- A038742 (program): T(n,n-5), array T as in A038738.
- A038743 (program): T(n,n-6), array T as in A038738.
- A038744 (program): T(2n,n), array T as in A038738.
- A038753 (program): Nonprime partition numbers.
- A038754 (program): a(2n) = 3^n, a(2n+1) = 2*3^n.
- A038758 (program): Number of ways of covering a 2n X 2n lattice by 2n^2 dominoes with exactly 4 horizontal (or vertical) dominoes.
- A038759 (program): a(n) = ceiling(sqrt(n))*floor(sqrt(n)).
- A038760 (program): a(n) = n - floor(sqrt(n)) * ceiling(sqrt(n)).
- A038761 (program): a(n) = 6*a(n-1)-a(n-2), n >= 2, a(0)=1, a(1)=9.
- A038762 (program): a(n) = 6*a(n-1) - a(n-2) for n >= 2, with a(0)=3, a(1)=13.
- A038763 (program): Triangular matrix arising in enumeration of catafusenes, read by rows.
- A038764 (program): a(n) = (9*n^2 + 3*n + 2)/2.
- A038765 (program): Next-to-last diagonal of A024462.
- A038779 (program): An intermediate sequence for nonisomorphic circulant directed p^2-graphs, indexed by odd primes p.
- A038780 (program): An intermediate sequence for counting nonisomorphic circulant directed p^2-graphs, indexed by odd primes p.
- A038783 (program): An intermediate sequence for nonisomorphic circulant undirected p^2-graphs, indexed by odd primes p.
- A038784 (program): An intermediate sequence for nonisomorphic circulant undirected p^2-graphs, indexed by odd primes p.
- A038788 (program): Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.
- A038791 (program): An intermediate sequence for nonisomorphic circulant p^2-tournaments, indexed by odd primes p.
- A038792 (program): Rectangular array defined by T(i,1) = T(1,j) = 1 for i >= 1 and j >= 1; T(i,j) = max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)) for i >= 2, j >= 2, read by antidiagonals.
- A038793 (program): T(n,n-3), array T as in A038792.
- A038794 (program): T(n,n-4), array T as in A038792.
- A038795 (program): T(n,n-5), array T as in A038792.
- A038796 (program): T(n,n-6), array T as in A038792.
- A038797 (program): T(n+4,n), array T as in A038792.
- A038798 (program): T(2n+5,n), array T as in A038792.
- A038799 (program): T(2n+6,n), array T as in A038792.
- A038800 (program): Number of primes between 10n and 10n+9.
- A038801 (program): Number of primes less than 10n.
- A038802 (program): Factor 2n+1 = (2^m1)*(3^m2)*(5^m3)*…; a(n) = number of initial zero exponents.
- A038806 (program): Convolution of A008549 with A000302 (powers of 4).
- A038809 (program): a(n) is the number of ways to write n in bases 2-10 such that the digit k-1 appears in the representation in base k.
- A038812 (program): Number of primes less than 1000n.
- A038822 (program): Number of primes between 100n and 100n+99.
- A038835 (program): Partial sums of A008443.
- A038836 (program): Convolution of Catalan numbers {1,2,5,14,…} with A002802 (5-fold convoluted central binomial coefficients).
- A038838 (program): Numbers that are divisible by the square of an odd prime.
- A038845 (program): 3-fold convolution of A000302 (powers of 4).
- A038846 (program): 4-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^4.
- A038865 (program): (n+3)^3 - n^3.
- A038866 (program): (n+4)^3 - n^3.
- A038867 (program): (n+5)^3 - n^3.
- A038869 (program): Primes p such that both p-2 and 2p-1 are prime.
- A038872 (program): Primes congruent to {0, 1, 4} mod 5.
- A038873 (program): Primes p such that 2 is a square mod p; or, primes congruent to {1, 2, 7} mod 8.
- A038874 (program): Primes p such that 3 is a square mod p.
- A038875 (program): Primes p with legendre(3,p) = -1.
- A038876 (program): Primes p such that 6 is a square mod p.
- A038877 (program): Primes p such that 6 is not a square mod p.
- A038893 (program): Odd primes p such that 21 is a square mod p.
- A038901 (program): Primes p such that 29 is a square mod p.
- A038902 (program): Primes p such that 29 is not a square mod p.
- A038920 (program): Primes p such that 41 is not a square mod p.
- A038989 (program): Expansion of (1 - x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
- A038990 (program): Expansion of (1-x-x^2+2*x^3) / ((1-x)*(1+x)*(1-3*x+x^2)).
- A038991 (program): Number of sublattices of index n in generic 4-dimensional lattice.
- A038992 (program): Sublattices of index n in generic 5-dimensional lattice.
- A038993 (program): Sublattices of index n in generic 6-dimensional lattice.
- A039000 (program): Numbers whose base-3 representation has the same number of 0’s and 1’s.
- A039001 (program): Numbers whose base-3 representation has the same number of 1’s and 2’s.
- A039004 (program): Numbers whose base-4 representation has the same number of 1’s and 2’s.
- A039006 (program): Numbers whose base-4 representation has the same number of 2’s and 3’s.
- A039007 (program): Numbers whose base-5 representation has the same number of 0’s and 1’s.
- A039008 (program): Numbers whose base-5 representation has the same number of 0’s and 2’s.
- A039009 (program): Numbers whose base-5 representation has the same number of 0’s and 3’s.
- A039010 (program): Numbers whose base-5 representation has the same number of 1’s and 2’s.
- A039011 (program): Numbers whose base-5 representation has the same number of 1’s and 3’s.
- A039012 (program): Numbers whose base-5 representation has the same number of 1’s and 4’s.
- A039013 (program): Numbers whose base-5 representation has the same number of 2’s and 3’s.
- A039014 (program): Numbers whose base-5 representation has the same number of 2’s and 4’s.
- A039015 (program): Numbers whose base-5 representation has the same number of 3’s and 4’s.
- A039016 (program): Numbers whose base-6 representation has the same number of 0’s and 1’s.
- A039020 (program): Numbers whose base-6 representation has the same number of 1’s and 2’s.
- A039021 (program): Numbers whose base-6 representation has the same number of 1’s and 3’s.
- A039022 (program): Numbers whose base-6 representation has the same number of 1’s and 4’s.
- A039024 (program): Numbers whose base-6 representation has the same number of 2’s and 3’s.
- A039025 (program): Numbers whose base-6 representation has the same number of 2’s and 4’s.
- A039027 (program): Numbers whose base-6 representation has the same number of 3’s and 4’s.
- A039112 (program): Numbers whose base-10 representation has the same number of 0’s and 1’s.
- A039156 (program): Numbers whose base-11 representation has the same number of 0’s and 1’s.
- A039163 (program): Numbers whose base-11 representation has the same number of 0’s and 8’s.
- A039164 (program): Numbers whose base-11 representation has the same number of 0’s and 9’s.
- A039206 (program): Numbers whose base-11 representation has the same number of 7’s and 10’s.
- A039207 (program): Numbers whose base-11 representation has the same number of 8’s and 9’s.
- A039208 (program): Numbers whose base-11 representation has the same number of 8’s and 10’s.
- A039209 (program): Numbers whose base-11 representation has the same number of 9’s and 10’s.
- A039210 (program): Numbers whose base-12 representation has the same number of 0’s and 1’s.
- A039218 (program): Numbers whose base-12 representation has the same number of 0’s and 9’s.
- A039265 (program): Numbers whose base-12 representation has the same number of 7’s and 8’s.
- A039267 (program): Numbers whose base-12 representation has the same number of 7’s and 10’s.
- A039269 (program): Numbers whose base-12 representation has the same number of 8’s and 9’s.
- A039271 (program): Numbers whose base-12 representation has the same number of 8’s and 11’s.
- A039272 (program): Numbers whose base-12 representation has the same number of 9’s and 10’s.
- A039274 (program): Numbers whose base-12 representation has the same number of 10’s and 11’s.
- A039276 (program): Numbers whose base-3 representation has the same nonzero number of 0’s and 2’s.
- A039277 (program): Numbers whose base-4 representation has the same nonzero number of 0’s and 1’s.
- A039280 (program): Numbers whose base-4 representation has the same nonzero number of 1’s and 2’s.
- A039283 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 1’s.
- A039284 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 2’s.
- A039285 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 3’s.
- A039286 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 4’s.
- A039287 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 2’s.
- A039288 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 3’s.
- A039289 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 4’s.
- A039290 (program): Numbers whose base-5 representation has the same nonzero number of 2’s and 3’s.
- A039291 (program): Numbers whose base-5 representation has the same nonzero number of 2’s and 4’s.
- A039292 (program): Numbers whose base-5 representation has the same nonzero number of 3’s and 4’s.
- A039297 (program): Numbers whose base-6 representation has the same nonzero number of 0’s and 5’s.
- A039298 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 2’s.
- A039299 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 3’s.
- A039300 (program): Number of distinct quadratic residues mod 3^n.
- A039301 (program): Number of distinct quadratic residues mod 4^n.
- A039302 (program): Number of distinct quadratic residues mod 5^n.
- A039304 (program): Number of distinct quadratic residues mod 7^n.
- A039305 (program): Number of distinct quadratic residues mod 8^n.
- A039306 (program): Number of distinct quadratic residues mod 9^n.
- A039307 (program): Numbers whose base-6 representation has the same nonzero number of 4’s and 5’s.
- A039564 (program): Numbers whose base-5 representation has the same number of 0’s, 1’s and 3’s.
- A039569 (program): Numbers whose base-5 representation has the same number of 1’s, 2’s and 3’s.
- A039571 (program): Numbers whose base-5 representation has the same number of 1’s, 3’s and 4’s.
- A039592 (program): Numbers whose base-6 representation has the same number of 3’s, 4’s and 5’s.
- A039593 (program): Number of unitary divisors of central binomial coefficients.
- A039597 (program): Triangle read by rows: T(n,k) = number of 2 X inf arrays [ n, n1, n2, …; k, k1, k2,… ] with n>=n1>n2>…>=0, k>=k1>k2…>=0, n>k, n1>k1, …; n >= 1, k >= 0. Note that once ni or ki = 0, the strict inequalities become equalities (constant 0 thereafter).
- A039598 (program): Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan’s triangle.
- A039599 (program): Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
- A039619 (program): Second column of Jabotinsky-triangle A038455 related to A006963.
- A039623 (program): a(n) = n^2*(n^2+3)/4.
- A039634 (program): Fixed point of “n -> n/2 or (n-1)/2 until result is prime”.
- A039635 (program): Fixed point of “n -> n/2 or (n+1)/2 until result is prime”.
- A039636 (program): Number of steps to fixed point of “n -> n/2 or (n-1)/2 until result is prime”.
- A039637 (program): Number of steps to fixed point of “n -> n/2 or (n+1)/2 until result is prime”.
- A039638 (program): Fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)-1.
- A039639 (program): Fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)+1.
- A039640 (program): Fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)-1.
- A039641 (program): Fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)+1.
- A039642 (program): Number of steps to fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)-1.
- A039643 (program): Number of steps to fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)+1.
- A039644 (program): Number of steps to fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)-1.
- A039645 (program): Number of steps to fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)+1.
- A039647 (program): Related to A000032 (Lucas numbers): (n-1)!*L(n).
- A039649 (program): a(n) = phi(n)+1.
- A039650 (program): Prime reached by iterating f(x) = phi(x)+1 on n.
- A039651 (program): Number of iterations of f(x) = phi(x)+1 on n required to reach a prime.
- A039653 (program): a(0) = 0; for n > 0, a(n) = sigma(n)-1.
- A039654 (program): a(n) = prime reached by iterating f(x) = sigma(x)-1 starting at n, or -1 if no prime is ever reached.
- A039658 (program): Related to enumeration of edge-rooted catafusenes.
- A039660 (program): Related to enumeration of edge-rooted catafusenes.
- A039685 (program): Numbers m such that m^2 ends in 444.
- A039689 (program): Numbers k such that phi(k) + 1 is not a prime.
- A039696 (program): If n = Product (p_j^k_j) then a(n) = Product (p_j) + Product (k_j).
- A039697 (program): a(n) = Sum(p_j) * Sum(k_j) where n = Product(p_j^k_j).
- A039698 (program): Numbers k such that phi(k) + 1 is prime.
- A039701 (program): a(n) = n-th prime modulo 3.
- A039702 (program): a(n) = n-th prime modulo 4.
- A039703 (program): a(n) = n-th prime modulo 5.
- A039704 (program): a(n) = n-th prime modulo 6.
- A039705 (program): a(n) = n-th prime modulo 7.
- A039706 (program): a(n) = n-th prime modulo 8.
- A039708 (program): a(n) = min{m: Sum_{x=0..m} binomial(n,x) >= 0.95*2^n}.
- A039709 (program): a(n) = n-th prime modulo 11.
- A039710 (program): a(n) = n-th prime modulo 12.
- A039711 (program): Primes mod 13.
- A039712 (program): a(n) = n-th prime modulo 14.
- A039713 (program): a(n) = n-th prime modulo 15.
- A039714 (program): a(n) = n-th prime modulo 16.
- A039715 (program): Primes modulo 17.
- A039716 (program): a(n) = prime(n)!.
- A039717 (program): Row sums of convolution triangle A030523.
- A039720 (program): Period of n-countdown club-passing juggling pattern.
- A039721 (program): a(1) = 1, a(m+1) = 2*Sum_{k=1..floor((m+1)/2)} a(m+1-k).
- A039722 (program): a(1) = 1, a(m+1) = 2*Sum_{k=1..floor((m+1)/2)} a(k).
- A039724 (program): a(n) is the negabinary expansion of n, that is, the expansion of n in base -2.
- A039725 (program): Even abundant numbers divided by 2.
- A039727 (program): [ Even numbers in the sequence generated by b(n)=|b(n-1)+2b(n-2)-n| ], divided by 2.
- A039731 (program): a(n)=MAX{p(n) mod q, where prime q < p(n)=n-th prime}.
- A039732 (program): a(n)=(1/2)*s(n+1), s=A039731.
- A039733 (program): a(n)=k such that prime(k) is the prime q<prime(n) for which (prime(n) mod q) is maximal.
- A039734 (program): a(n)=the prime q<prime(n) for which (prime(n) mod q) is maximal.
- A039736 (program): a(n) = number of primes q<p having (p mod q) = 2, where p = n-th prime.
- A039737 (program): a(n)=number of primes q<p having (p mod q)=3, where p=n-th prime.
- A039739 (program): a(n)=2*q-prime(n), where q is the prime < p(n) for which (prime(n) mod q) is maximal.
- A039745 (program): Diameter of symmetric group S_n when generated by (1,2) and (1,2,3,…,n).
- A039746 (program): Row sums of triangle A049375.
- A039769 (program): Composite integers k such that gcd(phi(k), k - 1) > 1.
- A039770 (program): Numbers k such that phi(k) is a perfect square.
- A039772 (program): Even numbers k such that phi(k) and k-1 are distinct and have a common factor > 1.
- A039787 (program): Primes p such that p-1 is squarefree.
- A039790 (program): Prime numbers prefixed with a ‘1’.
- A039819 (program): Number of divisors of n-th refactorable number (A033950(n)).
- A039823 (program): a(n) = ceiling( (n^2 + n + 2)/4 ).
- A039824 (program): Number of different coefficient values in expansion of Product (1+q^1+q^3…+q^(2i-1)), i=1 to n.
- A039825 (program): a(n) = floor((n^2 + n + 8) / 4).
- A039827 (program): Number of different coefficient values in expansion of Product (1+q^i+q^(2i)), i=1 to n.
- A039830 (program): Number of different coefficient values in expansion of Product (1-q^1+q^2-..+(-q)^i), i=1 to n.
- A039834 (program): a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1) = 1; or Fibonacci numbers (A000045) extended to negative indices.
- A039835 (program): Indices of triangular numbers which are also heptagonal.
- A039897 (program): Number of partitions satisfying 0 < cn(2,5) + cn(3,5).
- A039899 (program): Number of partitions satisfying 0 < cn(0,5) + cn(2,5) + cn(3,5).
- A039900 (program): Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).
- A039905 (program): Number of partitions with at most one part divisible by 5.
- A039912 (program): Triangle related to number of compositions of n into relatively prime summands.
- A039913 (program): Triangular “Fibonacci array”.
- A039914 (program): Smallest k>1 such that k(p-1)-1 is divisible by p^2, p=n-th prime.
- A039915 (program): Smallest k such that k(p-1)-1 is positive and divisible by p where p = n-th prime.
- A039916 (program): Concatenation of the decimal digits of Pi-3.
- A039918 (program): Partial sums of decimal digits of Pi (ignoring the initial 3).
- A039919 (program): Related to enumeration of edge-rooted catafusenes.
- A039920 (program): Concatenation of the first n decimal digits of e-2.
- A039936 (program): Smallest k for which k, 2k, … nk all contain the digit 5.
- A039941 (program): Alternately add and multiply.
- A039948 (program): A triangle related to A000045 (Fibonacci numbers).
- A039949 (program): Primes of the form 30n - 13.
- A039955 (program): Squarefree numbers congruent to 1 (mod 4).
- A039956 (program): Even squarefree numbers.
- A039957 (program): Squarefree numbers congruent to 3 mod 4.
- A039960 (program): For n >= 2, a(n) = largest value of k such that n^k is <= n! (a(0) = a(1) = 1 by convention).
- A039961 (program): Triangle of coefficients in a Fibonacci-like sequence of polynomials.
- A039963 (program): The period-doubling sequence A035263 repeated.
- A039964 (program): Motzkin numbers A001006 read mod 3.
- A039965 (program): An example of a d-perfect sequence.
- A039966 (program): a(0) = 1; thereafter a(3n+2) = 0, a(3n) = a(3n+1) = a(n).
- A039968 (program): An example of a d-perfect sequence.
- A039969 (program): An example of a d-perfect sequence: a(n) = Catalan(n) mod 3.
- A039970 (program): An example of a d-perfect sequence: a(2*n) = 0, a(2*n+1) = Catalan(n) mod 3.
- A039971 (program): An example of a d-perfect sequence.
- A039972 (program): An example of a d-perfect sequence: a(n) = A007317(n) mod 3.
- A039973 (program): An example of a d-perfect sequence: a(2*n) = 0, a(2*n-1) = A039965(n).
- A039974 (program): An example of a d-perfect sequence.
- A039975 (program): An example of a d-perfect sequence: a(n) = A006318(n-1) mod 3.
- A039976 (program): An example of a d-perfect sequence.
- A039977 (program): An example of a d-perfect sequence.
- A039978 (program): An example of a d-perfect sequence.
- A039979 (program): An example of a d-perfect sequence.
- A039980 (program): An example of a d-perfect sequence.
- A039981 (program): An example of a d-perfect sequence.
- A039982 (program): Let phi denote the morphism 0 -> 11, 1 -> 10. This sequence is the limit S(oo) where S(0) = 1; S(n+1) = 1.phi(S(n)).
- A039983 (program): An example of a d-perfect sequence.
- A039984 (program): An example of a d-perfect sequence.
- A039985 (program): An example of a d-perfect sequence.
- A039991 (program): Triangle of coefficients of cos(x)^n in polynomial for cos(nx).
- A040000 (program): a(0)=1; a(n)=2 for n >= 1.
- A040001 (program): 1 followed by {1, 2} repeated.
- A040002 (program): Continued fraction for sqrt(5).
- A040003 (program): Continued fraction for sqrt(6).
- A040005 (program): Continued fraction for sqrt(8).
- A040006 (program): Continued fraction for sqrt(10).
- A040007 (program): Continued fraction for sqrt(11).
- A040008 (program): Continued fraction for sqrt(12).
- A040011 (program): Continued fraction for sqrt(15).
- A040012 (program): Continued fraction for sqrt(17).
- A040013 (program): Continued fraction for sqrt(18).
- A040015 (program): Continued fraction for sqrt(20).
- A040019 (program): Continued fraction for sqrt(24).
- A040020 (program): Continued fraction for sqrt(26).
- A040021 (program): Continued fraction for sqrt(27).
- A040022 (program): Continued fraction for sqrt(28).
- A040024 (program): Continued fraction for sqrt(30).
- A040027 (program): The Gould numbers.
- A040029 (program): Continued fraction for sqrt(35).
- A040030 (program): Continued fraction for sqrt(37).
- A040031 (program): Continued fraction for sqrt(38).
- A040032 (program): Continued fraction for sqrt(39).
- A040033 (program): Continued fraction for sqrt(40).
- A040035 (program): Continued fraction for sqrt(42).
- A040037 (program): Continued fraction for sqrt(44).
- A040039 (program): First differences of A033485; also A033485 with terms repeated.
- A040040 (program): Average of twin prime pairs (A014574), divided by 2. Equivalently, 2*a(n)-1 and 2*a(n)+1 are primes.
- A040041 (program): Continued fraction for sqrt(48).
- A040042 (program): Continued fraction for sqrt(50) = 5*sqrt(2).
- A040043 (program): Continued fraction for sqrt(51).
- A040048 (program): Continued fraction for sqrt(56).
- A040051 (program): Parity of partition function A000041.
- A040052 (program): Continued fraction for sqrt(60).
- A040053 (program): a(n) is 1 if and only if Ramanujan’s tau(n) > 0.
- A040055 (program): Continued fraction for sqrt(63).
- A040056 (program): Continued fraction for sqrt(65).
- A040057 (program): Continued fraction for sqrt(66).
- A040059 (program): Continued fraction for sqrt(68).
- A040063 (program): Continued fraction for sqrt(72).
- A040071 (program): Continued fraction for sqrt(80).
- A040072 (program): Continued fraction for sqrt(82).
- A040073 (program): Continued fraction for sqrt(83).
- A040074 (program): Continued fraction for sqrt(84).
- A040075 (program): 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
- A040077 (program): Continued fraction for sqrt(87).
- A040080 (program): Continued fraction for sqrt(90).
- A040081 (program): Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists.
- A040090 (program): Continued fraction for sqrt(101).
- A040091 (program): Continued fraction for sqrt(102).
- A040093 (program): Continued fraction for sqrt(104).
- A040094 (program): Continued fraction for sqrt(105).
- A040099 (program): Continued fraction for sqrt(110).
- A040104 (program): First ten consecutive primes which are emirps.
- A040109 (program): Continued fraction for sqrt(120).
- A040110 (program): Continued fraction for sqrt(122).
- A040111 (program): Continued fraction for sqrt(123).
- A040116 (program): Primes p such that x^4 = 9 has a solution mod p.
- A040117 (program): Primes congruent to 5 (mod 12). Also primes p such that x^4 = 9 has no solution mod p.
- A040118 (program): Continued fraction for sqrt(130).
- A040120 (program): Continued fraction for sqrt(132).
- A040131 (program): Continued fraction for sqrt(143).
- A040132 (program): Continued fraction for sqrt(145).
- A040133 (program): Continued fraction for sqrt(146).
- A040134 (program): Continued fraction for sqrt(147).
- A040135 (program): Continued fraction for sqrt(148).
- A040137 (program): Continued fraction for sqrt(150).
- A040139 (program): Continued fraction for sqrt(152).
- A040142 (program): Continued fraction for sqrt(155).
- A040143 (program): Continued fraction for sqrt(156).
- A040151 (program): Continued fraction for sqrt(164).
- A040155 (program): Continued fraction for sqrt(168).
- A040156 (program): Continued fraction for sqrt(170).
- A040157 (program): Continued fraction for sqrt(171).
- A040163 (program): a(n) is the absolute value of (the first digit of n minus the last digit of n).
- A040164 (program): |First digit - last digit| for n-th prime.
- A040166 (program): Continued fraction for sqrt(180).
- A040168 (program): Continued fraction for sqrt(182).
- A040181 (program): Continued fraction for sqrt(195).
- A040182 (program): Continued fraction for sqrt(197).
- A040183 (program): Continued fraction for sqrt(198).
- A040185 (program): Continued fraction for sqrt(200).
- A040188 (program): Continued fraction for sqrt(203).
- A040189 (program): Continued fraction for sqrt(204).
- A040192 (program): Continued fraction for sqrt(207).
- A040193 (program): Continued fraction for sqrt(208).
- A040195 (program): Continued fraction for sqrt(210).
- A040200 (program): Continued fraction for sqrt(215).
- A040201 (program): Continued fraction for sqrt(216).
- A040203 (program): Continued fraction for sqrt(218).
- A040204 (program): Continued fraction for sqrt(219).
- A040205 (program): Continued fraction for sqrt(220).
- A040206 (program): Continued fraction for sqrt(221).
- A040207 (program): Continued fraction for sqrt(222).
- A040208 (program): Continued fraction for sqrt(223).
- A040209 (program): Continued fraction for sqrt(224).
- A040210 (program): Continued fraction for sqrt(226).
- A040211 (program): Continued fraction for sqrt(227).
- A040212 (program): Continued fraction for sqrt(228).
- A040213 (program): Continued fraction for sqrt(229).
- A040214 (program): Continued fraction for sqrt(230).
- A040215 (program): Continued fraction for sqrt(231).
- A040216 (program): Continued fraction for sqrt(232).
- A040219 (program): Continued fraction for sqrt(235).
- A040221 (program): Continued fraction for sqrt(237).
- A040222 (program): Continued fraction for sqrt(238).
- A040224 (program): Continued fraction for sqrt(240).
- A040227 (program): Continued fraction for sqrt(243).
- A040229 (program): Continued fraction for sqrt(245).
- A040232 (program): Continued fraction for sqrt(248).
- A040236 (program): Continued fraction for sqrt(252).
- A040238 (program): Continued fraction for sqrt(254).
- A040239 (program): Continued fraction for sqrt(255).
- A040240 (program): Continued fraction for sqrt(257).
- A040241 (program): Continued fraction for sqrt(258).
- A040243 (program): Continued fraction for sqrt(260).
- A040247 (program): Continued fraction for sqrt(264).
- A040249 (program): Continued fraction for sqrt(266).
- A040250 (program): Continued fraction for sqrt(267).
- A040252 (program): Continued fraction for sqrt(269).
- A040253 (program): Continued fraction for sqrt(270).
- A040255 (program): Continued fraction for sqrt(272).
- A040256 (program): Continued fraction for sqrt(273).
- A040258 (program): Continued fraction for sqrt(275).
- A040259 (program): Continued fraction for sqrt(276).
- A040261 (program): Continued fraction for sqrt(278).
- A040262 (program): Continued fraction for sqrt(279).
- A040263 (program): Continued fraction for sqrt(280).
- A040265 (program): Continued fraction for sqrt(282).
- A040268 (program): Continued fraction for sqrt(285).
- A040270 (program): Continued fraction for sqrt(287).
- A040271 (program): Continued fraction for sqrt(288).
- A040272 (program): Continued fraction for sqrt(290).
- A040273 (program): Continued fraction for sqrt(291).
- A040275 (program): Continued fraction for sqrt(293).
- A040276 (program): Continued fraction for sqrt(294).
- A040278 (program): Continued fraction for sqrt(296).
- A040281 (program): Continued fraction for sqrt(299).
- A040282 (program): Continued fraction for sqrt(300).
- A040285 (program): Continued fraction for sqrt(303).
- A040287 (program): Continued fraction for sqrt(305).
- A040288 (program): Continued fraction for sqrt(306).
- A040290 (program): Continued fraction for sqrt(308).
- A040294 (program): Continued fraction for sqrt(312).
- A040296 (program): Continued fraction for sqrt(314).
- A040297 (program): Continued fraction for sqrt(315).
- A040298 (program): Continued fraction for sqrt(316).
- A040300 (program): Continued fraction for sqrt(318).
- A040302 (program): Continued fraction for sqrt(320).
- A040303 (program): Continued fraction for sqrt(321).
- A040304 (program): Continued fraction for sqrt(322).
- A040305 (program): Continued fraction for sqrt(323).
- A040306 (program): Continued fraction for sqrt(325).
- A040307 (program): Continued fraction for sqrt(326).
- A040308 (program): Continued fraction for sqrt(327).
- A040309 (program): Continued fraction for sqrt(328).
- A040311 (program): Continued fraction for sqrt(330).
- A040313 (program): Continued fraction for sqrt(332).
- A040314 (program): Continued fraction for sqrt(333).
- A040316 (program): Continued fraction for sqrt(335).
- A040317 (program): Continued fraction for sqrt(336).
- A040319 (program): Continued fraction for sqrt(338).
- A040323 (program): Continued fraction for sqrt(342).
- A040327 (program): Continued fraction for sqrt(346).
- A040329 (program): Continued fraction for sqrt(348).
- A040331 (program): Continued fraction for sqrt(350).
- A040335 (program): Continued fraction for sqrt(354).
- A040338 (program): Continued fraction for sqrt(357).
- A040340 (program): Continued fraction for sqrt(359).
- A040341 (program): Continued fraction for sqrt(360).
- A040342 (program): Continued fraction for sqrt(362).
- A040343 (program): Continued fraction for sqrt(363).
- A040345 (program): Continued fraction for sqrt(365).
- A040348 (program): Continued fraction for sqrt(368).
- A040350 (program): Continued fraction for sqrt(370).
- A040351 (program): Continued fraction for sqrt(371).
- A040353 (program): Continued fraction for sqrt(373).
- A040354 (program): Continued fraction for sqrt(374).
- A040357 (program): Continued fraction for sqrt(377).
- A040360 (program): Continued fraction for sqrt(380).
- A040361 (program): Continued fraction for sqrt(381).
- A040363 (program): Continued fraction for sqrt(383).
- A040364 (program): Continued fraction for sqrt(384).
- A040367 (program): Continued fraction for sqrt(387).
- A040369 (program): Continued fraction for sqrt(389).
- A040370 (program): Continued fraction for sqrt(390).
- A040372 (program): Continued fraction for sqrt(392).
- A040375 (program): Continued fraction for sqrt(395).
- A040376 (program): Continued fraction for sqrt(396).
- A040378 (program): Continued fraction for sqrt(398).
- A040379 (program): Continued fraction for sqrt(399).
- A040380 (program): Continued fraction for sqrt(401).
- A040381 (program): Continued fraction for sqrt(402).
- A040383 (program): Continued fraction for sqrt(404).
- A040384 (program): Continued fraction for sqrt(405).
- A040386 (program): Continued fraction for sqrt(407).
- A040387 (program): Continued fraction for sqrt(408).
- A040389 (program): Continued fraction for sqrt(410).
- A040395 (program): Continued fraction for sqrt(416).
- A040397 (program): Continued fraction for sqrt(418).
- A040399 (program): Continued fraction for sqrt(420).
- A040402 (program): Continued fraction for sqrt(423).
- A040404 (program): Continued fraction for sqrt(425).
- A040406 (program): Continued fraction for sqrt(427).
- A040413 (program): Continued fraction for sqrt(434).
- A040414 (program): Continued fraction for sqrt(435).
- A040416 (program): Continued fraction for sqrt(437).
- A040417 (program): Continued fraction for sqrt(438).
- A040418 (program): Continued fraction for sqrt(439).
- A040419 (program): Continued fraction for sqrt(440).
- A040420 (program): Continued fraction for sqrt(442).
- A040421 (program): Continued fraction for sqrt(443).
- A040422 (program): Continued fraction for sqrt(444).
- A040423 (program): Continued fraction for sqrt(445).
- A040425 (program): Continued fraction for sqrt(447).
- A040426 (program): Continued fraction for sqrt(448).
- A040429 (program): Continued fraction for sqrt(451).
- A040431 (program): Continued fraction for sqrt(453).
- A040433 (program): Continued fraction for sqrt(455).
- A040434 (program): Continued fraction for sqrt(456).
- A040436 (program): Continued fraction for sqrt(458).
- A040437 (program): Continued fraction for sqrt(459).
- A040440 (program): Continued fraction for sqrt(462).
- A040446 (program): Continued fraction for sqrt(468).
- A040447 (program): Continued fraction for sqrt(469).
- A040448 (program): Continued fraction for sqrt(470).
- A040451 (program): Continued fraction for sqrt(473).
- A040458 (program): Continued fraction for sqrt(480).
- A040460 (program): Continued fraction for sqrt(482).
- A040461 (program): Continued fraction for sqrt(483).
- A040462 (program): Continued fraction for sqrt(485).
- A040463 (program): Continued fraction for sqrt(486).
- A040465 (program): Continued fraction for sqrt(488).
- A040469 (program): Continued fraction for sqrt(492).
- A040472 (program): Continued fraction for sqrt(495).
- A040475 (program): Continued fraction for sqrt(498).
- A040476 (program): Continued fraction for sqrt(499).
- A040480 (program): Continued fraction for sqrt(503).
- A040481 (program): Continued fraction for sqrt(504).
- A040482 (program): Continued fraction for sqrt(505).
- A040483 (program): Continued fraction for sqrt(506).
- A040484 (program): Continued fraction for sqrt(507).
- A040487 (program): Continued fraction for sqrt(510).
- A040491 (program): Continued fraction for sqrt(514).
- A040495 (program): Continued fraction for sqrt(518).
- A040497 (program): Continued fraction for sqrt(520).
- A040502 (program): Continued fraction for sqrt(525).
- A040504 (program): Continued fraction for sqrt(527).
- A040505 (program): Continued fraction for sqrt(528).
- A040506 (program): Continued fraction for sqrt(530).
- A040507 (program): Continued fraction for sqrt(531).
- A040509 (program): Continued fraction for sqrt(533).
- A040515 (program): Continued fraction for sqrt(539).
- A040520 (program): Continued fraction for sqrt(544).
- A040521 (program): Continued fraction for sqrt(545).
- A040522 (program): Continued fraction for sqrt(546).
- A040527 (program): Continued fraction for sqrt(551).
- A040528 (program): Continued fraction for sqrt(552).
- A040531 (program): Continued fraction for sqrt(555).
- A040533 (program): Continued fraction for sqrt(557).
- A040534 (program): Continued fraction for sqrt(558).
- A040536 (program): Continued fraction for sqrt(560).
- A040539 (program): Continued fraction for sqrt(563).
- A040540 (program): Continued fraction for sqrt(564).
- A040543 (program): Continued fraction for sqrt(567).
- A040544 (program): Continued fraction for sqrt(568).
- A040546 (program): Continued fraction for sqrt(570).
- A040548 (program): Continued fraction for sqrt(572).
- A040549 (program): Continued fraction for sqrt(573).
- A040550 (program): Continued fraction for sqrt(574).
- A040551 (program): Continued fraction for sqrt(575).
- A040552 (program): Continued fraction for sqrt(577).
- A040553 (program): Continued fraction for sqrt(578).
- A040554 (program): Continued fraction for sqrt(579).
- A040555 (program): Continued fraction for sqrt(580).
- A040557 (program): Continued fraction for sqrt(582).
- A040559 (program): Continued fraction for sqrt(584).
- A040563 (program): Continued fraction for sqrt(588).
- A040565 (program): Continued fraction for sqrt(590).
- A040567 (program): Continued fraction for sqrt(592).
- A040575 (program): Continued fraction for sqrt(600).
- A040577 (program): Continued fraction for sqrt(602).
- A040583 (program): Continued fraction for sqrt(608).
- A040587 (program): Continued fraction for sqrt(612).
- A040590 (program): Continued fraction for sqrt(615).
- A040593 (program): Continued fraction for sqrt(618).
- A040595 (program): Continued fraction for sqrt(620).
- A040596 (program): Continued fraction for sqrt(621).
- A040598 (program): Continued fraction for sqrt(623).
- A040599 (program): Continued fraction for sqrt(624).
- A040600 (program): Continued fraction for sqrt(626).
- A040601 (program): Continued fraction for sqrt(627).
- A040603 (program): Continued fraction for sqrt(629).
- A040604 (program): Continued fraction for sqrt(630).
- A040606 (program): Continued fraction for sqrt(632).
- A040609 (program): Continued fraction for sqrt(635).
- A040616 (program): Continued fraction for sqrt(642).
- A040619 (program): Continued fraction for sqrt(645).
- A040620 (program): Continued fraction for sqrt(646).
- A040622 (program): Continued fraction for sqrt(648).
- A040624 (program): Continued fraction for sqrt(650).
- A040625 (program): Continued fraction for sqrt(651).
- A040630 (program): Continued fraction for sqrt(656).
- A040632 (program): Continued fraction for sqrt(658).
- A040633 (program): Continued fraction for sqrt(659).
- A040634 (program): Continued fraction for sqrt(660).
- A040637 (program): Continued fraction for sqrt(663).
- A040646 (program): Continued fraction for sqrt(672).
- A040648 (program): Continued fraction for sqrt(674).
- A040649 (program): Continued fraction for sqrt(675).
- A040650 (program): Continued fraction for sqrt(677).
- A040651 (program): Continued fraction for sqrt(678).
- A040653 (program): Continued fraction for sqrt(680).
- A040657 (program): Continued fraction for sqrt(684).
- A040662 (program): Continued fraction for sqrt(689).
- A040663 (program): Continued fraction for sqrt(690).
- A040668 (program): Continued fraction for sqrt(695).
- A040669 (program): Continued fraction for sqrt(696).
- A040670 (program): Continued fraction for sqrt(697).
- A040674 (program): Continued fraction for sqrt(701).
- A040675 (program): Continued fraction for sqrt(702).
- A040677 (program): Continued fraction for sqrt(704).
- A040679 (program): Continued fraction for sqrt(706).
- A040680 (program): Continued fraction for sqrt(707).
- A040681 (program): Continued fraction for sqrt(708).
- A040683 (program): Continued fraction for sqrt(710).
- A040684 (program): Continued fraction for sqrt(711).
- A040685 (program): Continued fraction for sqrt(712).
- A040693 (program): Continued fraction for sqrt(720).
- A040696 (program): Continued fraction for sqrt(723).
- A040698 (program): Continued fraction for sqrt(725).
- A040699 (program): Continued fraction for sqrt(726).
- A040700 (program): Continued fraction for sqrt(727).
- A040701 (program): Continued fraction for sqrt(728).
- A040702 (program): Continued fraction for sqrt(730).
- A040703 (program): Continued fraction for sqrt(731).
- A040704 (program): Continued fraction for sqrt(732).
- A040705 (program): Continued fraction for sqrt(733).
- A040707 (program): Continued fraction for sqrt(735).
- A040710 (program): Continued fraction for sqrt(738).
- A040712 (program): Continued fraction for sqrt(740).
- A040713 (program): Continued fraction for sqrt(741).
- A040719 (program): Continued fraction for sqrt(747).
- A040724 (program): Continued fraction for sqrt(752).
- A040727 (program): Continued fraction for sqrt(755).
- A040728 (program): Continued fraction for sqrt(756).
- A040731 (program): Continued fraction for sqrt(759).
- A040733 (program): Continued fraction for sqrt(761).
- A040734 (program): Continued fraction for sqrt(762).
- A040737 (program): Continued fraction for sqrt(765).
- A040740 (program): Continued fraction for sqrt(768).
- A040742 (program): Continued fraction for sqrt(770).
- A040748 (program): Continued fraction for sqrt(776).
- A040749 (program): Continued fraction for sqrt(777).
- A040752 (program): Continued fraction for sqrt(780).
- A040754 (program): Continued fraction for sqrt(782).
- A040755 (program): Continued fraction for sqrt(783).
- A040756 (program): Continued fraction for sqrt(785).
- A040757 (program): Continued fraction for sqrt(786).
- A040759 (program): Continued fraction for sqrt(788).
- A040762 (program): Continued fraction for sqrt(791).
- A040763 (program): Continued fraction for sqrt(792).
- A040764 (program): Continued fraction for sqrt(793).
- A040766 (program): Continued fraction for sqrt(795).
- A040769 (program): Continued fraction for sqrt(798).
- A040770 (program): Continued fraction for sqrt(799).
- A040771 (program): Continued fraction for sqrt(800).
- A040774 (program): Continued fraction for sqrt(803).
- A040783 (program): Continued fraction for sqrt(812).
- A040784 (program): Continued fraction for sqrt(813).
- A040787 (program): Continued fraction for sqrt(816).
- A040788 (program): Continued fraction for sqrt(817).
- A040789 (program): Continued fraction for sqrt(818).
- A040790 (program): Continued fraction for sqrt(819).
- A040793 (program): Continued fraction for sqrt(822).
- A040799 (program): Continued fraction for sqrt(828).
- A040808 (program): Continued fraction for sqrt(837).
- A040810 (program): Continued fraction for sqrt(839).
- A040811 (program): Continued fraction for sqrt(840).
- A040812 (program): Continued fraction for sqrt(842).
- A040813 (program): Continued fraction for sqrt(843).
- A040815 (program): Continued fraction for sqrt(845).
- A040820 (program): Continued fraction for sqrt(850).
- A040825 (program): Continued fraction for sqrt(855).
- A040828 (program): Continued fraction for sqrt(858).
- A040830 (program): Continued fraction for sqrt(860).
- A040836 (program): Continued fraction for sqrt(866).
- A040837 (program): Continued fraction for sqrt(867).
- A040840 (program): Continued fraction for sqrt(870).
- A040844 (program): Continued fraction for sqrt(874).
- A040846 (program): Continued fraction for sqrt(876).
- A040850 (program): Continued fraction for sqrt(880).
- A040854 (program): Continued fraction for sqrt(884).
- A040855 (program): Continued fraction for sqrt(885).
- A040858 (program): Continued fraction for sqrt(888).
- A040860 (program): Continued fraction for sqrt(890).
- A040864 (program): Continued fraction for sqrt(894).
- A040865 (program): Continued fraction for sqrt(895).
- A040866 (program): Continued fraction for sqrt(896).
- A040867 (program): Continued fraction for sqrt(897).
- A040868 (program): Continued fraction for sqrt(898).
- A040869 (program): Continued fraction for sqrt(899).
- A040870 (program): Continued fraction for sqrt(901).
- A040871 (program): Continued fraction for sqrt(902).
- A040872 (program): Continued fraction for sqrt(903).
- A040873 (program): Continued fraction for sqrt(904).
- A040874 (program): Continued fraction for sqrt(905).
- A040875 (program): Continued fraction for sqrt(906).
- A040877 (program): Continued fraction for sqrt(908).
- A040879 (program): Continued fraction for sqrt(910).
- A040881 (program): Continued fraction for sqrt(912).
- A040883 (program): Continued fraction for sqrt(914).
- A040884 (program): Continued fraction for sqrt(915).
- A040887 (program): Continued fraction for sqrt(918).
- A040889 (program): Continued fraction for sqrt(920).
- A040892 (program): Continued fraction for sqrt(923).
- A040893 (program): Continued fraction for sqrt(924).
- A040894 (program): Continued fraction for sqrt(925).
- A040899 (program): Continued fraction for sqrt(930).
- A040904 (program): Continued fraction for sqrt(935).
- A040905 (program): Continued fraction for sqrt(936).
- A040909 (program): Continued fraction for sqrt(940).
- A040912 (program): Continued fraction for sqrt(943).
- A040917 (program): Continued fraction for sqrt(948).
- A040921 (program): Continued fraction for sqrt(952).
- A040926 (program): Continued fraction for sqrt(957).
- A040928 (program): Continued fraction for sqrt(959).
- A040929 (program): Continued fraction for sqrt(960).
- A040930 (program): Continued fraction for sqrt(962).
- A040931 (program): Continued fraction for sqrt(963).
- A040933 (program): Continued fraction for sqrt(965).
- A040936 (program): Continued fraction for sqrt(968).
- A040941 (program): Continued fraction for sqrt(973).
- A040943 (program): Continued fraction for sqrt(975).
- A040950 (program): Continued fraction for sqrt(982).
- A040953 (program): Continued fraction for sqrt(985).
- A040954 (program): Continued fraction for sqrt(986).
- A040955 (program): Continued fraction for sqrt(987).
- A040958 (program): Continued fraction for sqrt(990).
- A040960 (program): Continued fraction for sqrt(992).
- A040961 (program): Continued fraction for sqrt(993).
- A040962 (program): Continued fraction for sqrt(994).
- A040976 (program): a(n) = prime(n) - 2.
- A040977 (program): a(n) = binomial(n+5,5)*(n+3)/3.
- A040997 (program): Absolute value of first digit of n minus sum of other digits of n.
- A041000 (program): If decimal expansion of n-th prime is x1 x2 … xk, sort the xi into nonincreasing order, y1 y2 … yk; then a(n) = |y1-y2-y3…-yk|.
- A041001 (program): Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).
- A041005 (program): Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.
- A041006 (program): Numerators of continued fraction convergents to sqrt(6).
- A041007 (program): Denominators of continued fraction convergents to sqrt(6).
- A041008 (program): Numerators of continued fraction convergents to sqrt(7).
- A041009 (program): Denominators of continued fraction convergents to sqrt(7).
- A041010 (program): Numerators of continued fraction convergents to sqrt(8).
- A041011 (program): Denominators of continued fraction convergents to sqrt(8).
- A041014 (program): Numerators of continued fraction convergents to sqrt(11).
- A041015 (program): Denominators of continued fraction convergents to sqrt(11).
- A041016 (program): Numerators of continued fraction convergents to sqrt(12).
- A041017 (program): Denominators of continued fraction convergents to sqrt(12).
- A041018 (program): Numerators of continued fraction convergents to sqrt(13).
- A041019 (program): Denominators of continued fraction convergents to sqrt(13).
- A041020 (program): Numerators of continued fraction convergents to sqrt(14).
- A041021 (program): Denominators of continued fraction convergents to sqrt(14).
- A041022 (program): Numerators of continued fraction convergents to sqrt(15).
- A041023 (program): Denominators of continued fraction convergents to sqrt(15).
- A041024 (program): Numerators of continued fraction convergents to sqrt(17).
- A041025 (program): Denominators of continued fraction convergents to sqrt(17).
- A041026 (program): Numerators of continued fraction convergents to sqrt(18).
- A041027 (program): Denominators of continued fraction convergents to sqrt(18).
- A041028 (program): Numerators of continued fraction convergents to sqrt(19).
- A041029 (program): Denominators of continued fraction convergents to sqrt(19).
- A041030 (program): Numerators of continued fraction convergents to sqrt(20).
- A041031 (program): Denominators of continued fraction convergents to sqrt(20).
- A041032 (program): Numerators of continued fraction convergents to sqrt(21).
- A041033 (program): Denominators of continued fraction convergents to sqrt(21).
- A041034 (program): Numerators of continued fraction convergents to sqrt(22).
- A041035 (program): Denominators of continued fraction convergents to sqrt(22).
- A041036 (program): Numerators of continued fraction convergents to sqrt(23).
- A041037 (program): Denominators of continued fraction convergents to sqrt(23).
- A041038 (program): Numerators of continued fraction convergents to sqrt(24).
- A041039 (program): Denominators of continued fraction convergents to sqrt(24).
- A041040 (program): Numerators of continued fraction convergents to sqrt(26).
- A041041 (program): Denominators of continued fraction convergents to sqrt(26).
- A041042 (program): Numerators of continued fraction convergents to sqrt(27).
- A041043 (program): Denominators of continued fraction convergents to sqrt(27).
- A041044 (program): Numerators of continued fraction convergents to sqrt(28).
- A041045 (program): Denominators of continued fraction convergents to sqrt(28).
- A041046 (program): Numerators of continued fraction convergents to sqrt(29).
- A041047 (program): Denominators of continued fraction convergents to sqrt(29).
- A041048 (program): Numerators of continued fraction convergents to sqrt(30).
- A041049 (program): Denominators of continued fraction convergents to sqrt(30).
- A041050 (program): Numerators of continued fraction convergents to sqrt(31).
- A041051 (program): Denominators of continued fraction convergents to sqrt(31).
- A041052 (program): Numerators of continued fraction convergents to sqrt(32).
- A041053 (program): Denominators of continued fraction convergents to sqrt(32).
- A041054 (program): Numerators of continued fraction convergents to sqrt(33).
- A041055 (program): Denominators of continued fraction convergents to sqrt(33).
- A041056 (program): Numerators of continued fraction convergents to sqrt(34).
- A041057 (program): Denominators of continued fraction convergents to sqrt(34).
- A041058 (program): Numerators of continued fraction convergents to sqrt(35).
- A041059 (program): Denominators of continued fraction convergents to sqrt(35).
- A041060 (program): Numerators of continued fraction convergents to sqrt(37).
- A041061 (program): Denominators of continued fraction convergents to sqrt(37).
- A041062 (program): Numerators of continued fraction convergents to sqrt(38).
- A041063 (program): Denominators of continued fraction convergents to sqrt(38).
- A041064 (program): Numerators of continued fraction convergents to sqrt(39).
- A041065 (program): Denominators of continued fraction convergents to sqrt(39).
- A041066 (program): Numerators of continued fraction convergents to sqrt(40).
- A041067 (program): Denominators of continued fraction convergents to sqrt(40).
- A041068 (program): Numerators of continued fraction convergents to sqrt(41).
- A041069 (program): Denominators of continued fraction convergents to sqrt(41).
- A041070 (program): Numerators of continued fraction convergents to sqrt(42).
- A041071 (program): Denominators of continued fraction convergents to sqrt(42).
- A041074 (program): Numerators of continued fraction convergents to sqrt(44).
- A041075 (program): Denominators of continued fraction convergents to sqrt(44).
- A041076 (program): Numerators of continued fraction convergents to sqrt(45).
- A041077 (program): Denominators of continued fraction convergents to sqrt(45).
- A041080 (program): Numerators of continued fraction convergents to sqrt(47).
- A041081 (program): Denominators of continued fraction convergents to sqrt(47).
- A041082 (program): Numerators of continued fraction convergents to sqrt(48).
- A041083 (program): Denominators of continued fraction convergents to sqrt(48).
- A041084 (program): Numerators of continued fraction convergents to sqrt(50).
- A041085 (program): Denominators of continued fraction convergents to sqrt(50).
- A041086 (program): Numerators of continued fraction convergents to sqrt(51).
- A041087 (program): Denominators of continued fraction convergents to sqrt(51).
- A041088 (program): Numerators of continued fraction convergents to sqrt(52).
- A041089 (program): Denominators of continued fraction convergents to sqrt(52).
- A041090 (program): Numerators of continued fraction convergents to sqrt(53).
- A041091 (program): Denominators of continued fraction convergents to sqrt(53).
- A041092 (program): Numerators of continued fraction convergents to sqrt(54).
- A041093 (program): Denominators of continued fraction convergents to sqrt(54).
- A041094 (program): Numerators of continued fraction convergents to sqrt(55).
- A041095 (program): Denominators of continued fraction convergents to sqrt(55).
- A041096 (program): Numerators of continued fraction convergents to sqrt(56).
- A041097 (program): Denominators of continued fraction convergents to sqrt(56).
- A041098 (program): Numerators of continued fraction convergents to sqrt(57).
- A041099 (program): Denominators of continued fraction convergents to sqrt(57).
- A041100 (program): Numerators of continued fraction convergents to sqrt(58).
- A041101 (program): Denominators of continued fraction convergents to sqrt(58).
- A041102 (program): Numerators of continued fraction convergents to sqrt(59).
- A041103 (program): Denominators of continued fraction convergents to sqrt(59).
- A041104 (program): Numerators of continued fraction convergents to sqrt(60).
- A041105 (program): Denominators of continued fraction convergents to sqrt(60).
- A041108 (program): Numerators of continued fraction convergents to sqrt(62).
- A041109 (program): Denominators of continued fraction convergents to sqrt(62).
- A041110 (program): Numerators of continued fraction convergents to sqrt(63).
- A041111 (program): Denominators of continued fraction convergents to sqrt(63).
- A041112 (program): Numerators of continued fraction convergents to sqrt(65).
- A041113 (program): Denominators of continued fraction convergents to sqrt(65).
- A041114 (program): Numerators of continued fraction convergents to sqrt(66).
- A041115 (program): Denominators of continued fraction convergents to sqrt(66).
- A041118 (program): Numerators of continued fraction convergents to sqrt(68).
- A041119 (program): Denominators of continued fraction convergents to sqrt(68).
- A041120 (program): Numerators of continued fraction convergents to sqrt(69).
- A041121 (program): Denominators of continued fraction convergents to sqrt(69).
- A041122 (program): Numerators of continued fraction convergents to sqrt(70).
- A041123 (program): Denominators of continued fraction convergents to sqrt(70).
- A041124 (program): Numerators of continued fraction convergents to sqrt(71).
- A041125 (program): Denominators of continued fraction convergents to sqrt(71).
- A041126 (program): Numerators of continued fraction convergents to sqrt(72).
- A041127 (program): Denominators of continued fraction convergents to sqrt(72).
- A041130 (program): Numerators of continued fraction convergents to sqrt(74).
- A041131 (program): Denominators of continued fraction convergents to sqrt(74).
- A041132 (program): Numerators of continued fraction convergents to sqrt(75).
- A041133 (program): Denominators of continued fraction convergents to sqrt(75).
- A041136 (program): Numerators of continued fraction convergents to sqrt(77).
- A041137 (program): Denominators of continued fraction convergents to sqrt(77).
- A041138 (program): Numerators of continued fraction convergents to sqrt(78).
- A041139 (program): Denominators of continued fraction convergents to sqrt(78).
- A041140 (program): Numerators of continued fraction convergents to sqrt(79).
- A041141 (program): Denominators of continued fraction convergents to sqrt(79).
- A041142 (program): Numerators of continued fraction convergents to sqrt(80).
- A041143 (program): Denominators of continued fraction convergents to sqrt(80).
- A041144 (program): Numerators of continued fraction convergents to sqrt(82).
- A041145 (program): Denominators of continued fraction convergents to sqrt(82).
- A041146 (program): Numerators of continued fraction convergents to sqrt(83).
- A041147 (program): Denominators of continued fraction convergents to sqrt(83).
- A041148 (program): Numerators of continued fraction convergents to sqrt(84).
- A041149 (program): Denominators of continued fraction convergents to sqrt(84).
- A041150 (program): Numerators of continued fraction convergents to sqrt(85).
- A041151 (program): Denominators of continued fraction convergents to sqrt(85).
- A041154 (program): Numerators of continued fraction convergents to sqrt(87).
- A041155 (program): Denominators of continued fraction convergents to sqrt(87).
- A041156 (program): Numerators of continued fraction convergents to sqrt(88).
- A041157 (program): Denominators of continued fraction convergents to sqrt(88).
- A041158 (program): Numerators of continued fraction convergents to sqrt(89).
- A041159 (program): Denominators of continued fraction convergents to sqrt(89).
- A041160 (program): Numerators of continued fraction convergents to sqrt(90).
- A041161 (program): Denominators of continued fraction convergents to sqrt(90).
- A041162 (program): Numerators of continued fraction convergents to sqrt(91).
- A041163 (program): Denominators of continued fraction convergents to sqrt(91).
- A041164 (program): Numerators of continued fraction convergents to sqrt(92).
- A041165 (program): Denominators of continued fraction convergents to sqrt(92).
- A041166 (program): Numerators of continued fraction convergents to sqrt(93).
- A041167 (program): Denominators of continued fraction convergents to sqrt(93).
- A041170 (program): Numerators of continued fraction convergents to sqrt(95).
- A041171 (program): Denominators of continued fraction convergents to sqrt(95).
- A041172 (program): Numerators of continued fraction convergents to sqrt(96).
- A041173 (program): Denominators of continued fraction convergents to sqrt(96).
- A041176 (program): Numerators of continued fraction convergents to sqrt(98).
- A041177 (program): Denominators of continued fraction convergents to sqrt(98).
- A041178 (program): Numerators of continued fraction convergents to sqrt(99).
- A041179 (program): Denominators of continued fraction convergents to sqrt(99).
- A041180 (program): Numerators of continued fraction convergents to sqrt(101).
- A041181 (program): Denominators of continued fraction convergents to sqrt(101).
- A041182 (program): Numerators of continued fraction convergents to sqrt(102).
- A041183 (program): Denominators of continued fraction convergents to sqrt(102).
- A041186 (program): Numerators of continued fraction convergents to sqrt(104).
- A041187 (program): Denominators of continued fraction convergents to sqrt(104).
- A041188 (program): Numerators of continued fraction convergents to sqrt(105).
- A041189 (program): Denominators of continued fraction convergents to sqrt(105).
- A041192 (program): Numerators of continued fraction convergents to sqrt(107).
- A041193 (program): Denominators of continued fraction convergents to sqrt(107).
- A041194 (program): Numerators of continued fraction convergents to sqrt(108).
- A041195 (program): Denominators of continued fraction convergents to sqrt(108).
- A041198 (program): Numerators of continued fraction convergents to sqrt(110).
- A041199 (program): Denominators of continued fraction convergents to sqrt(110).
- A041200 (program): Numerators of continued fraction convergents to sqrt(111).
- A041201 (program): Denominators of continued fraction convergents to sqrt(111).
- A041202 (program): Numerators of continued fraction convergents to sqrt(112).
- A041203 (program): Denominators of continued fraction convergents to sqrt(112).
- A041204 (program): Numerators of continued fraction convergents to sqrt(113).
- A041205 (program): Denominators of continued fraction convergents to sqrt(113).
- A041206 (program): Numerators of continued fraction convergents to sqrt(114).
- A041207 (program): Denominators of continued fraction convergents to sqrt(114).
- A041208 (program): Numerators of continued fraction convergents to sqrt(115).
- A041209 (program): Denominators of continued fraction convergents to sqrt(115).
- A041212 (program): Numerators of continued fraction convergents to sqrt(117).
- A041213 (program): Denominators of continued fraction convergents to sqrt(117).
- A041214 (program): Numerators of continued fraction convergents to sqrt(118).
- A041215 (program): Denominators of continued fraction convergents to sqrt(118).
- A041216 (program): Numerators of continued fraction convergents to sqrt(119).
- A041217 (program): Denominators of continued fraction convergents to sqrt(119).
- A041218 (program): Numerators of continued fraction convergents to sqrt(120).
- A041219 (program): Denominators of continued fraction convergents to sqrt(120).
- A041220 (program): Numerators of continued fraction convergents to sqrt(122).
- A041221 (program): Denominators of continued fraction convergents to sqrt(122).
- A041222 (program): Numerators of continued fraction convergents to sqrt(123).
- A041223 (program): Denominators of continued fraction convergents to sqrt(123).
- A041226 (program): Numerators of continued fraction convergents to sqrt(125).
- A041227 (program): Denominators of continued fraction convergents to sqrt(125).
- A041228 (program): Numerators of continued fraction convergents to sqrt(126).
- A041229 (program): Denominators of continued fraction convergents to sqrt(126).
- A041232 (program): Numerators of continued fraction convergents to sqrt(128).
- A041233 (program): Denominators of continued fraction convergents to sqrt(128).
- A041236 (program): Numerators of continued fraction convergents to sqrt(130).
- A041237 (program): Denominators of continued fraction convergents to sqrt(130).
- A041238 (program): Numerators of continued fraction convergents to sqrt(131).
- A041239 (program): Denominators of continued fraction convergents to sqrt(131).
- A041240 (program): Numerators of continued fraction convergents to sqrt(132).
- A041241 (program): Denominators of continued fraction convergents to sqrt(132).
- A041246 (program): Numerators of continued fraction convergents to sqrt(135).
- A041247 (program): Denominators of continued fraction convergents to sqrt(135).
- A041248 (program): Numerators of continued fraction convergents to sqrt(136).
- A041249 (program): Denominators of continued fraction convergents to sqrt(136).
- A041250 (program): Numerators of continued fraction convergents to sqrt(137).
- A041251 (program): Denominators of continued fraction convergents to sqrt(137).
- A041252 (program): Numerators of continued fraction convergents to sqrt(138).
- A041253 (program): Denominators of continued fraction convergents to sqrt(138).
- A041256 (program): Numerators of continued fraction convergents to sqrt(140).
- A041257 (program): Denominators of continued fraction convergents to sqrt(140).
- A041258 (program): Numerators of continued fraction convergents to sqrt(141).
- A041259 (program): Denominators of continued fraction convergents to sqrt(141).
- A041260 (program): Numerators of continued fraction convergents to sqrt(142).
- A041261 (program): Denominators of continued fraction convergents to sqrt(142).
- A041262 (program): Numerators of continued fraction convergents to sqrt(143).
- A041263 (program): Denominators of continued fraction convergents to sqrt(143).
- A041264 (program): Numerators of continued fraction convergents to sqrt(145).
- A041265 (program): Denominators of continued fraction convergents to sqrt(145).
- A041266 (program): Numerators of continued fraction convergents to sqrt(146).
- A041267 (program): Denominators of continued fraction convergents to sqrt(146).
- A041268 (program): Numerators of continued fraction convergents to sqrt(147).
- A041269 (program): Denominators of continued fraction convergents to sqrt(147).
- A041270 (program): Numerators of continued fraction convergents to sqrt(148).
- A041271 (program): Denominators of continued fraction convergents to sqrt(148).
- A041274 (program): Numerators of continued fraction convergents to sqrt(150).
- A041275 (program): Denominators of continued fraction convergents to sqrt(150).
- A041278 (program): Numerators of continued fraction convergents to sqrt(152).
- A041279 (program): Denominators of continued fraction convergents to sqrt(152).
- A041280 (program): Numerators of continued fraction convergents to sqrt(153).
- A041281 (program): Denominators of continued fraction convergents to sqrt(153).
- A041284 (program): Numerators of continued fraction convergents to sqrt(155).
- A041285 (program): Denominators of continued fraction convergents to sqrt(155).
- A041286 (program): Numerators of continued fraction convergents to sqrt(156).
- A041287 (program): Denominators of continued fraction convergents to sqrt(156).
- A041290 (program): Numerators of continued fraction convergents to sqrt(158).
- A041291 (program): Denominators of continued fraction convergents to sqrt(158).
- A041292 (program): Numerators of continued fraction convergents to sqrt(159).
- A041293 (program): Denominators of continued fraction convergents to sqrt(159).
- A041294 (program): Numerators of continued fraction convergents to sqrt(160).
- A041295 (program): Denominators of continued fraction convergents to sqrt(160).
- A041298 (program): Numerators of continued fraction convergents to sqrt(162).
- A041302 (program): Numerators of continued fraction convergents to sqrt(164).
- A041303 (program): Denominators of continued fraction convergents to sqrt(164).
- A041304 (program): Numerators of continued fraction convergents to sqrt(165).
- A041305 (program): Denominators of continued fraction convergents to sqrt(165).
- A041308 (program): Numerators of continued fraction convergents to sqrt(167).
- A041309 (program): Denominators of continued fraction convergents to sqrt(167).
- A041310 (program): Numerators of continued fraction convergents to sqrt(168).
- A041311 (program): Denominators of continued fraction convergents to sqrt(168).
- A041312 (program): Numerators of continued fraction convergents to sqrt(170).
- A041313 (program): Denominators of continued fraction convergents to sqrt(170).
- A041314 (program): Numerators of continued fraction convergents to sqrt(171).
- A041315 (program): Denominators of continued fraction convergents to sqrt(171).
- A041318 (program): Numerators of continued fraction convergents to sqrt(173).
- A041319 (program): Denominators of continued fraction convergents to sqrt(173).
- A041320 (program): Numerators of continued fraction convergents to sqrt(174).
- A041321 (program): Denominators of continued fraction convergents to sqrt(174).
- A041322 (program): Numerators of continued fraction convergents to sqrt(175).
- A041323 (program): Denominators of continued fraction convergents to sqrt(175).
- A041324 (program): Numerators of continued fraction convergents to sqrt(176).
- A041325 (program): Denominators of continued fraction convergents to sqrt(176).
- A041326 (program): Numerators of continued fraction convergents to sqrt(177).
- A041327 (program): Denominators of continued fraction convergents to sqrt(177).
- A041328 (program): Numerators of continued fraction convergents to sqrt(178).
- A041329 (program): Denominators of continued fraction convergents to sqrt(178).
- A041332 (program): Numerators of continued fraction convergents to sqrt(180).
- A041333 (program): Denominators of continued fraction convergents to sqrt(180).
- A041336 (program): Numerators of continued fraction convergents to sqrt(182).
- A041337 (program): Denominators of continued fraction convergents to sqrt(182).
- A041338 (program): Numerators of continued fraction convergents to sqrt(183).
- A041339 (program): Denominators of continued fraction convergents to sqrt(183).
- A041342 (program): Numerators of continued fraction convergents to sqrt(185).
- A041343 (program): Denominators of continued fraction convergents to sqrt(185).
- A041346 (program): Numerators of continued fraction convergents to sqrt(187).
- A041347 (program): Denominators of continued fraction convergents to sqrt(187).
- A041348 (program): Numerators of continued fraction convergents to sqrt(188).
- A041349 (program): Denominators of continued fraction convergents to sqrt(188).
- A041350 (program): Numerators of continued fraction convergents to sqrt(189).
- A041351 (program): Denominators of continued fraction convergents to sqrt(189).
- A041356 (program): Numerators of continued fraction convergents to sqrt(192).
- A041357 (program): Denominators of continued fraction convergents to sqrt(192).
- A041360 (program): Numerators of continued fraction convergents to sqrt(194).
- A041361 (program): Denominators of continued fraction convergents to sqrt(194).
- A041362 (program): Numerators of continued fraction convergents to sqrt(195).
- A041363 (program): Denominators of continued fraction convergents to sqrt(195).
- A041364 (program): Numerators of continued fraction convergents to sqrt(197).
- A041365 (program): Denominators of continued fraction convergents to sqrt(197).
- A041366 (program): Numerators of continued fraction convergents to sqrt(198).
- A041367 (program): Denominators of continued fraction convergents to sqrt(198).
- A041370 (program): Numerators of continued fraction convergents to sqrt(200).
- A041371 (program): Denominators of continued fraction convergents to sqrt(200).
- A041376 (program): Numerators of continued fraction convergents to sqrt(203).
- A041377 (program): Denominators of continued fraction convergents to sqrt(203).
- A041378 (program): Numerators of continued fraction convergents to sqrt(204).
- A041379 (program): Denominators of continued fraction convergents to sqrt(204).
- A041384 (program): Numerators of continued fraction convergents to sqrt(207).
- A041385 (program): Denominators of continued fraction convergents to sqrt(207).
- A041386 (program): Numerators of continued fraction convergents to sqrt(208).
- A041387 (program): Denominators of continued fraction convergents to sqrt(208).
- A041390 (program): Numerators of continued fraction convergents to sqrt(210).
- A041391 (program): Denominators of continued fraction convergents to sqrt(210).
- A041400 (program): Numerators of continued fraction convergents to sqrt(215).
- A041401 (program): Denominators of continued fraction convergents to sqrt(215).
- A041402 (program): Numerators of continued fraction convergents to sqrt(216).
- A041403 (program): Denominators of continued fraction convergents to sqrt(216).
- A041406 (program): Numerators of continued fraction convergents to sqrt(218).
- A041407 (program): Denominators of continued fraction convergents to sqrt(218).
- A041408 (program): Numerators of continued fraction convergents to sqrt(219).
- A041409 (program): Denominators of continued fraction convergents to sqrt(219).
- A041410 (program): Numerators of continued fraction convergents to sqrt(220).
- A041411 (program): Denominators of continued fraction convergents to sqrt(220).
- A041412 (program): Numerators of continued fraction convergents to sqrt(221).
- A041413 (program): Denominators of continued fraction convergents to sqrt(221).
- A041414 (program): Numerators of continued fraction convergents to sqrt(222).
- A041415 (program): Denominators of continued fraction convergents to sqrt(222).
- A041416 (program): Numerators of continued fraction convergents to sqrt(223).
- A041417 (program): Denominators of continued fraction convergents to sqrt(223).
- A041418 (program): Numerators of continued fraction convergents to sqrt(224).
- A041419 (program): Denominators of continued fraction convergents to sqrt(224).
- A041420 (program): Numerators of continued fraction convergents to sqrt(226).
- A041421 (program): Denominators of continued fraction convergents to sqrt(226).
- A041422 (program): Numerators of continued fraction convergents to sqrt(227).
- A041423 (program): Denominators of continued fraction convergents to sqrt(227).
- A041424 (program): Numerators of continued fraction convergents to sqrt(228).
- A041425 (program): Denominators of continued fraction convergents to sqrt(228).
- A041426 (program): Numerators of continued fraction convergents to sqrt(229).
- A041427 (program): Denominators of continued fraction convergents to sqrt(229).
- A041428 (program): Numerators of continued fraction convergents to sqrt(230).
- A041429 (program): Denominators of continued fraction convergents to sqrt(230).
- A041430 (program): Numerators of continued fraction convergents to sqrt(231).
- A041431 (program): Denominators of continued fraction convergents to sqrt(231).
- A041432 (program): Numerators of continued fraction convergents to sqrt(232).
- A041433 (program): Denominators of continued fraction convergents to sqrt(232).
- A041438 (program): Numerators of continued fraction convergents to sqrt(235).
- A041439 (program): Denominators of continued fraction convergents to sqrt(235).
- A041442 (program): Numerators of continued fraction convergents to sqrt(237).
- A041443 (program): Denominators of continued fraction convergents to sqrt(237).
- A041444 (program): Numerators of continued fraction convergents to sqrt(238).
- A041445 (program): Denominators of continued fraction convergents to sqrt(238).
- A041448 (program): Numerators of continued fraction convergents to sqrt(240).
- A041449 (program): Denominators of continued fraction convergents to sqrt(240).
- A041454 (program): Numerators of continued fraction convergents to sqrt(243).
- A041455 (program): Denominators of continued fraction convergents to sqrt(243).
- A041458 (program): Numerators of continued fraction convergents to sqrt(245).
- A041459 (program): Denominators of continued fraction convergents to sqrt(245).
- A041464 (program): Numerators of continued fraction convergents to sqrt(248).
- A041465 (program): Denominators of continued fraction convergents to sqrt(248).
- A041472 (program): Numerators of continued fraction convergents to sqrt(252).
- A041473 (program): Denominators of continued fraction convergents to sqrt(252).
- A041476 (program): Numerators of continued fraction convergents to sqrt(254).
- A041477 (program): Denominators of continued fraction convergents to sqrt(254).
- A041478 (program): Numerators of continued fraction convergents to sqrt(255).
- A041479 (program): Denominators of continued fraction convergents to sqrt(255).
- A041480 (program): Numerators of continued fraction convergents to sqrt(257).
- A041481 (program): Denominators of continued fraction convergents to sqrt(257).
- A041482 (program): Numerators of continued fraction convergents to sqrt(258).
- A041483 (program): Denominators of continued fraction convergents to sqrt(258).
- A041486 (program): Numerators of continued fraction convergents to sqrt(260).
- A041487 (program): Denominators of continued fraction convergents to sqrt(260).
- A041494 (program): Numerators of continued fraction convergents to sqrt(264).
- A041495 (program): Denominators of continued fraction convergents to sqrt(264).
- A041498 (program): Numerators of continued fraction convergents to sqrt(266).
- A041499 (program): Denominators of continued fraction convergents to sqrt(266).
- A041500 (program): Numerators of continued fraction convergents to sqrt(267).
- A041501 (program): Denominators of continued fraction convergents to sqrt(267).
- A041504 (program): Numerators of continued fraction convergents to sqrt(269).
- A041505 (program): Denominators of continued fraction convergents to sqrt(269).
- A041506 (program): Numerators of continued fraction convergents to sqrt(270).
- A041507 (program): Denominators of continued fraction convergents to sqrt(270).
- A041510 (program): Numerators of continued fraction convergents to sqrt(272).
- A041511 (program): Denominators of continued fraction convergents to sqrt(272).
- A041512 (program): Numerators of continued fraction convergents to sqrt(273).
- A041513 (program): Denominators of continued fraction convergents to sqrt(273).
- A041516 (program): Numerators of continued fraction convergents to sqrt(275).
- A041517 (program): Denominators of continued fraction convergents to sqrt(275).
- A041518 (program): Numerators of continued fraction convergents to sqrt(276).
- A041519 (program): Denominators of continued fraction convergents to sqrt(276).
- A041522 (program): Numerators of continued fraction convergents to sqrt(278).
- A041523 (program): Denominators of continued fraction convergents to sqrt(278).
- A041524 (program): Numerators of continued fraction convergents to sqrt(279).
- A041525 (program): Denominators of continued fraction convergents to sqrt(279).
- A041526 (program): Numerators of continued fraction convergents to sqrt(280).
- A041527 (program): Denominators of continued fraction convergents to sqrt(280).
- A041530 (program): Numerators of continued fraction convergents to sqrt(282).
- A041531 (program): Denominators of continued fraction convergents to sqrt(282).
- A041536 (program): Numerators of continued fraction convergents to sqrt(285).
- A041537 (program): Denominators of continued fraction convergents to sqrt(285).
- A041540 (program): Numerators of continued fraction convergents to sqrt(287).
- A041541 (program): Denominators of continued fraction convergents to sqrt(287).
- A041542 (program): Numerators of continued fraction convergents to sqrt(288).
- A041543 (program): Denominators of continued fraction convergents to sqrt(288).
- A041544 (program): Numerators of continued fraction convergents to sqrt(290).
- A041545 (program): Denominators of continued fraction convergents to sqrt(290).
- A041546 (program): Numerators of continued fraction convergents to sqrt(291).
- A041547 (program): Denominators of continued fraction convergents to sqrt(291).
- A041550 (program): Numerators of continued fraction convergents to sqrt(293).
- A041551 (program): Denominators of continued fraction convergents to sqrt(293).
- A041552 (program): Numerators of continued fraction convergents to sqrt(294).
- A041553 (program): Denominators of continued fraction convergents to sqrt(294).
- A041556 (program): Numerators of continued fraction convergents to sqrt(296).
- A041557 (program): Denominators of continued fraction convergents to sqrt(296).
- A041562 (program): Numerators of continued fraction convergents to sqrt(299).
- A041563 (program): Denominators of continued fraction convergents to sqrt(299).
- A041564 (program): Numerators of continued fraction convergents to sqrt(300).
- A041565 (program): Denominators of continued fraction convergents to sqrt(300).
- A041570 (program): Numerators of continued fraction convergents to sqrt(303).
- A041571 (program): Denominators of continued fraction convergents to sqrt(303).
- A041574 (program): Numerators of continued fraction convergents to sqrt(305).
- A041575 (program): Denominators of continued fraction convergents to sqrt(305).
- A041576 (program): Numerators of continued fraction convergents to sqrt(306).
- A041577 (program): Denominators of continued fraction convergents to sqrt(306).
- A041580 (program): Numerators of continued fraction convergents to sqrt(308).
- A041581 (program): Denominators of continued fraction convergents to sqrt(308).
- A041588 (program): Numerators of continued fraction convergents to sqrt(312).
- A041589 (program): Denominators of continued fraction convergents to sqrt(312).
- A041592 (program): Numerators of continued fraction convergents to sqrt(314).
- A041593 (program): Denominators of continued fraction convergents to sqrt(314).
- A041594 (program): Numerators of continued fraction convergents to sqrt(315).
- A041595 (program): Denominators of continued fraction convergents to sqrt(315).
- A041596 (program): Numerators of continued fraction convergents to sqrt(316).
- A041597 (program): Denominators of continued fraction convergents to sqrt(316).
- A041600 (program): Numerators of continued fraction convergents to sqrt(318).
- A041601 (program): Denominators of continued fraction convergents to sqrt(318).
- A041604 (program): Numerators of continued fraction convergents to sqrt(320).
- A041605 (program): Denominators of continued fraction convergents to sqrt(320).
- A041606 (program): Numerators of continued fraction convergents to sqrt(321).
- A041607 (program): Denominators of continued fraction convergents to sqrt(321).
- A041608 (program): Numerators of continued fraction convergents to sqrt(322).
- A041609 (program): Denominators of continued fraction convergents to sqrt(322).
- A041610 (program): Numerators of continued fraction convergents to sqrt(323).
- A041611 (program): Denominators of continued fraction convergents to sqrt(323).
- A041612 (program): Numerators of continued fraction convergents to sqrt(325).
- A041613 (program): Denominators of continued fraction convergents to sqrt(325).
- A041614 (program): Numerators of continued fraction convergents to sqrt(326).
- A041615 (program): Denominators of continued fraction convergents to sqrt(326).
- A041616 (program): Numerators of continued fraction convergents to sqrt(327).
- A041617 (program): Denominators of continued fraction convergents to sqrt(327).
- A041618 (program): Numerators of continued fraction convergents to sqrt(328).
- A041619 (program): Denominators of continued fraction convergents to sqrt(328).
- A041622 (program): Numerators of continued fraction convergents to sqrt(330).
- A041623 (program): Denominators of continued fraction convergents to sqrt(330).
- A041626 (program): Numerators of continued fraction convergents to sqrt(332).
- A041627 (program): Denominators of continued fraction convergents to sqrt(332).
- A041628 (program): Numerators of continued fraction convergents to sqrt(333).
- A041629 (program): Denominators of continued fraction convergents to sqrt(333).
- A041632 (program): Numerators of continued fraction convergents to sqrt(335).
- A041633 (program): Denominators of continued fraction convergents to sqrt(335).
- A041634 (program): Numerators of continued fraction convergents to sqrt(336).
- A041635 (program): Denominators of continued fraction convergents to sqrt(336).
- A041638 (program): Numerators of continued fraction convergents to sqrt(338).
- A041639 (program): Denominators of continued fraction convergents to sqrt(338).
- A041646 (program): Numerators of continued fraction convergents to sqrt(342).
- A041647 (program): Denominators of continued fraction convergents to sqrt(342).
- A041654 (program): Numerators of continued fraction convergents to sqrt(346).
- A041655 (program): Denominators of continued fraction convergents to sqrt(346).
- A041658 (program): Numerators of continued fraction convergents to sqrt(348).
- A041659 (program): Denominators of continued fraction convergents to sqrt(348).
- A041662 (program): Numerators of continued fraction convergents to sqrt(350).
- A041663 (program): Denominators of continued fraction convergents to sqrt(350).
- A041670 (program): Numerators of continued fraction convergents to sqrt(354).
- A041671 (program): Denominators of continued fraction convergents to sqrt(354).
- A041676 (program): Numerators of continued fraction convergents to sqrt(357).
- A041677 (program): Denominators of continued fraction convergents to sqrt(357).
- A041680 (program): Numerators of continued fraction convergents to sqrt(359).
- A041681 (program): Denominators of continued fraction convergents to sqrt(359).
- A041682 (program): Numerators of continued fraction convergents to sqrt(360).
- A041683 (program): Denominators of continued fraction convergents to sqrt(360).
- A041684 (program): Numerators of continued fraction convergents to sqrt(362).
- A041685 (program): Denominators of continued fraction convergents to sqrt(362).
- A041686 (program): Numerators of continued fraction convergents to sqrt(363).
- A041687 (program): Denominators of continued fraction convergents to sqrt(363).
- A041690 (program): Numerators of continued fraction convergents to sqrt(365).
- A041691 (program): Denominators of continued fraction convergents to sqrt(365).
- A041696 (program): Numerators of continued fraction convergents to sqrt(368).
- A041697 (program): Denominators of continued fraction convergents to sqrt(368).
- A041700 (program): Numerators of continued fraction convergents to sqrt(370).
- A041701 (program): Denominators of continued fraction convergents to sqrt(370).
- A041702 (program): Numerators of continued fraction convergents to sqrt(371).
- A041703 (program): Denominators of continued fraction convergents to sqrt(371).
- A041706 (program): Numerators of continued fraction convergents to sqrt(373).
- A041707 (program): Denominators of continued fraction convergents to sqrt(373).
- A041708 (program): Numerators of continued fraction convergents to sqrt(374).
- A041709 (program): Denominators of continued fraction convergents to sqrt(374).
- A041714 (program): Numerators of continued fraction convergents to sqrt(377).
- A041715 (program): Denominators of continued fraction convergents to sqrt(377).
- A041720 (program): Numerators of continued fraction convergents to sqrt(380).
- A041721 (program): Denominators of continued fraction convergents to sqrt(380).
- A041722 (program): Numerators of continued fraction convergents to sqrt(381).
- A041723 (program): Denominators of continued fraction convergents to sqrt(381).
- A041726 (program): Numerators of continued fraction convergents to sqrt(383).
- A041727 (program): Denominators of continued fraction convergents to sqrt(383).
- A041728 (program): Numerators of continued fraction convergents to sqrt(384).
- A041729 (program): Denominators of continued fraction convergents to sqrt(384).
- A041734 (program): Numerators of continued fraction convergents to sqrt(387).
- A041735 (program): Denominators of continued fraction convergents to sqrt(387).
- A041738 (program): Numerators of continued fraction convergents to sqrt(389).
- A041739 (program): Denominators of continued fraction convergents to sqrt(389).
- A041740 (program): Numerators of continued fraction convergents to sqrt(390).
- A041741 (program): Denominators of continued fraction convergents to sqrt(390).
- A041744 (program): Numerators of continued fraction convergents to sqrt(392).
- A041745 (program): Denominators of continued fraction convergents to sqrt(392).
- A041750 (program): Numerators of continued fraction convergents to sqrt(395).
- A041751 (program): Denominators of continued fraction convergents to sqrt(395).
- A041752 (program): Numerators of continued fraction convergents to sqrt(396).
- A041753 (program): Denominators of continued fraction convergents to sqrt(396).
- A041756 (program): Numerators of continued fraction convergents to sqrt(398).
- A041757 (program): Denominators of continued fraction convergents to sqrt(398).
- A041758 (program): Numerators of continued fraction convergents to sqrt(399).
- A041759 (program): Denominators of continued fraction convergents to sqrt(399).
- A041760 (program): Numerators of continued fraction convergents to sqrt(401).
- A041761 (program): Denominators of continued fraction convergents to sqrt(401).
- A041762 (program): Numerators of continued fraction convergents to sqrt(402).
- A041763 (program): Denominators of continued fraction convergents to sqrt(402).
- A041766 (program): Numerators of continued fraction convergents to sqrt(404).
- A041767 (program): Denominators of continued fraction convergents to sqrt(404).
- A041768 (program): Numerators of continued fraction convergents to sqrt(405).
- A041769 (program): Denominators of continued fraction convergents to sqrt(405).
- A041772 (program): Numerators of continued fraction convergents to sqrt(407).
- A041773 (program): Denominators of continued fraction convergents to sqrt(407).
- A041774 (program): Numerators of continued fraction convergents to sqrt(408).
- A041775 (program): Denominators of continued fraction convergents to sqrt(408).
- A041778 (program): Numerators of continued fraction convergents to sqrt(410).
- A041779 (program): Denominators of continued fraction convergents to sqrt(410).
- A041790 (program): Numerators of continued fraction convergents to sqrt(416).
- A041791 (program): Denominators of continued fraction convergents to sqrt(416).
- A041794 (program): Numerators of continued fraction convergents to sqrt(418).
- A041795 (program): Denominators of continued fraction convergents to sqrt(418).
- A041798 (program): Numerators of continued fraction convergents to sqrt(420).
- A041799 (program): Denominators of continued fraction convergents to sqrt(420).
- A041804 (program): Numerators of continued fraction convergents to sqrt(423).
- A041805 (program): Denominators of continued fraction convergents to sqrt(423).
- A041808 (program): Numerators of continued fraction convergents to sqrt(425).
- A041809 (program): Denominators of continued fraction convergents to sqrt(425).
- A041812 (program): Numerators of continued fraction convergents to sqrt(427).
- A041813 (program): Denominators of continued fraction convergents to sqrt(427).
- A041826 (program): Numerators of continued fraction convergents to sqrt(434).
- A041827 (program): Denominators of continued fraction convergents to sqrt(434).
- A041828 (program): Numerators of continued fraction convergents to sqrt(435).
- A041829 (program): Denominators of continued fraction convergents to sqrt(435).
- A041832 (program): Numerators of continued fraction convergents to sqrt(437).
- A041833 (program): Denominators of continued fraction convergents to sqrt(437).
- A041834 (program): Numerators of continued fraction convergents to sqrt(438).
- A041835 (program): Denominators of continued fraction convergents to sqrt(438).
- A041836 (program): Numerators of continued fraction convergents to sqrt(439).
- A041837 (program): Denominators of continued fraction convergents to sqrt(439).
- A041838 (program): Numerators of continued fraction convergents to sqrt(440).
- A041839 (program): Denominators of continued fraction convergents to sqrt(440).
- A041840 (program): Numerators of continued fraction convergents to sqrt(442).
- A041841 (program): Denominators of continued fraction convergents to sqrt(442).
- A041842 (program): Numerators of continued fraction convergents to sqrt(443).
- A041843 (program): Denominators of continued fraction convergents to sqrt(443).
- A041844 (program): Numerators of continued fraction convergents to sqrt(444).
- A041845 (program): Denominators of continued fraction convergents to sqrt(444).
- A041846 (program): Numerators of continued fraction convergents to sqrt(445).
- A041847 (program): Denominators of continued fraction convergents to sqrt(445).
- A041850 (program): Numerators of continued fraction convergents to sqrt(447).
- A041851 (program): Denominators of continued fraction convergents to sqrt(447).
- A041852 (program): Numerators of continued fraction convergents to sqrt(448).
- A041853 (program): Denominators of continued fraction convergents to sqrt(448).
- A041858 (program): Numerators of continued fraction convergents to sqrt(451).
- A041859 (program): Denominators of continued fraction convergents to sqrt(451).
- A041862 (program): Numerators of continued fraction convergents to sqrt(453).
- A041863 (program): Denominators of continued fraction convergents to sqrt(453).
- A041866 (program): Numerators of continued fraction convergents to sqrt(455).
- A041867 (program): Denominators of continued fraction convergents to sqrt(455).
- A041868 (program): Numerators of continued fraction convergents to sqrt(456).
- A041869 (program): Denominators of continued fraction convergents to sqrt(456).
- A041872 (program): Numerators of continued fraction convergents to sqrt(458).
- A041873 (program): Denominators of continued fraction convergents to sqrt(458).
- A041874 (program): Numerators of continued fraction convergents to sqrt(459).
- A041875 (program): Denominators of continued fraction convergents to sqrt(459).
- A041880 (program): Numerators of continued fraction convergents to sqrt(462).
- A041881 (program): Denominators of continued fraction convergents to sqrt(462).
- A041892 (program): Numerators of continued fraction convergents to sqrt(468).
- A041893 (program): Denominators of continued fraction convergents to sqrt(468).
- A041894 (program): Numerators of continued fraction convergents to sqrt(469).
- A041895 (program): Denominators of continued fraction convergents to sqrt(469).
- A041896 (program): Numerators of continued fraction convergents to sqrt(470).
- A041897 (program): Denominators of continued fraction convergents to sqrt(470).
- A041902 (program): Numerators of continued fraction convergents to sqrt(473).
- A041903 (program): Denominators of continued fraction convergents to sqrt(473).
- A041916 (program): Numerators of continued fraction convergents to sqrt(480).
- A041917 (program): Denominators of continued fraction convergents to sqrt(480).
- A041920 (program): Numerators of continued fraction convergents to sqrt(482).
- A041921 (program): Denominators of continued fraction convergents to sqrt(482).
- A041922 (program): Numerators of continued fraction convergents to sqrt(483).
- A041923 (program): Denominators of continued fraction convergents to sqrt(483).
- A041924 (program): Numerators of continued fraction convergents to sqrt(485).
- A041925 (program): Denominators of continued fraction convergents to sqrt(485).
- A041926 (program): Numerators of continued fraction convergents to sqrt(486).
- A041927 (program): Denominators of continued fraction convergents to sqrt(486).
- A041930 (program): Numerators of continued fraction convergents to sqrt(488).
- A041931 (program): Denominators of continued fraction convergents to sqrt(488).
- A041938 (program): Numerators of continued fraction convergents to sqrt(492).
- A041939 (program): Denominators of continued fraction convergents to sqrt(492).
- A041944 (program): Numerators of continued fraction convergents to sqrt(495).
- A041945 (program): Denominators of continued fraction convergents to sqrt(495).
- A041950 (program): Numerators of continued fraction convergents to sqrt(498).
- A041951 (program): Denominators of continued fraction convergents to sqrt(498).
- A041952 (program): Numerators of continued fraction convergents to sqrt(499).
- A041953 (program): Denominators of continued fraction convergents to sqrt(499).
- A041960 (program): Numerators of continued fraction convergents to sqrt(503).
- A041961 (program): Denominators of continued fraction convergents to sqrt(503).
- A041962 (program): Numerators of continued fraction convergents to sqrt(504).
- A041963 (program): Denominators of continued fraction convergents to sqrt(504).
- A041964 (program): Numerators of continued fraction convergents to sqrt(505).
- A041965 (program): Denominators of continued fraction convergents to sqrt(505).
- A041966 (program): Numerators of continued fraction convergents to sqrt(506).
- A041967 (program): Denominators of continued fraction convergents to sqrt(506).
- A041968 (program): Numerators of continued fraction convergents to sqrt(507).
- A041969 (program): Denominators of continued fraction convergents to sqrt(507).
- A041974 (program): Numerators of continued fraction convergents to sqrt(510).
- A041975 (program): Denominators of continued fraction convergents to sqrt(510).
- A041982 (program): Numerators of continued fraction convergents to sqrt(514).
- A041983 (program): Denominators of continued fraction convergents to sqrt(514).
- A041990 (program): Numerators of continued fraction convergents to sqrt(518).
- A041991 (program): Denominators of continued fraction convergents to sqrt(518).
- A041994 (program): Numerators of continued fraction convergents to sqrt(520).
- A041995 (program): Denominators of continued fraction convergents to sqrt(520).
- A042004 (program): Numerators of continued fraction convergents to sqrt(525).
- A042005 (program): Denominators of continued fraction convergents to sqrt(525).
- A042008 (program): Numerators of continued fraction convergents to sqrt(527).
- A042009 (program): Denominators of continued fraction convergents to sqrt(527).
- A042010 (program): Numerators of continued fraction convergents to sqrt(528).
- A042011 (program): Denominators of continued fraction convergents to sqrt(528).
- A042012 (program): Numerators of continued fraction convergents to sqrt(530).
- A042013 (program): Denominators of continued fraction convergents to sqrt(530).
- A042014 (program): Numerators of continued fraction convergents to sqrt(531).
- A042015 (program): Denominators of continued fraction convergents to sqrt(531).
- A042018 (program): Numerators of continued fraction convergents to sqrt(533).
- A042019 (program): Denominators of continued fraction convergents to sqrt(533).
- A042030 (program): Numerators of continued fraction convergents to sqrt(539).
- A042031 (program): Denominators of continued fraction convergents to sqrt(539).
- A042040 (program): Numerators of continued fraction convergents to sqrt(544).
- A042041 (program): Denominators of continued fraction convergents to sqrt(544).
- A042042 (program): Numerators of continued fraction convergents to sqrt(545).
- A042043 (program): Denominators of continued fraction convergents to sqrt(545).
- A042044 (program): Numerators of continued fraction convergents to sqrt(546).
- A042045 (program): Denominators of continued fraction convergents to sqrt(546).
- A042054 (program): Numerators of continued fraction convergents to sqrt(551).
- A042055 (program): Denominators of continued fraction convergents to sqrt(551).
- A042056 (program): Numerators of continued fraction convergents to sqrt(552).
- A042057 (program): Denominators of continued fraction convergents to sqrt(552).
- A042062 (program): Numerators of continued fraction convergents to sqrt(555).
- A042063 (program): Denominators of continued fraction convergents to sqrt(555).
- A042066 (program): Numerators of continued fraction convergents to sqrt(557).
- A042067 (program): Denominators of continued fraction convergents to sqrt(557).
- A042068 (program): Numerators of continued fraction convergents to sqrt(558).
- A042069 (program): Denominators of continued fraction convergents to sqrt(558).
- A042072 (program): Numerators of continued fraction convergents to sqrt(560).
- A042073 (program): Denominators of continued fraction convergents to sqrt(560).
- A042078 (program): Numerators of continued fraction convergents to sqrt(563).
- A042079 (program): Denominators of continued fraction convergents to sqrt(563).
- A042080 (program): Numerators of continued fraction convergents to sqrt(564).
- A042081 (program): Denominators of continued fraction convergents to sqrt(564).
- A042086 (program): Numerators of continued fraction convergents to sqrt(567).
- A042087 (program): Denominators of continued fraction convergents to sqrt(567).
- A042088 (program): Numerators of continued fraction convergents to sqrt(568).
- A042089 (program): Denominators of continued fraction convergents to sqrt(568).
- A042092 (program): Numerators of continued fraction convergents to sqrt(570).
- A042093 (program): Denominators of continued fraction convergents to sqrt(570).
- A042096 (program): Numerators of continued fraction convergents to sqrt(572).
- A042097 (program): Denominators of continued fraction convergents to sqrt(572).
- A042098 (program): Numerators of continued fraction convergents to sqrt(573).
- A042099 (program): Denominators of continued fraction convergents to sqrt(573).
- A042100 (program): Numerators of continued fraction convergents to sqrt(574).
- A042101 (program): Denominators of continued fraction convergents to sqrt(574).
- A042102 (program): Numerators of continued fraction convergents to sqrt(575).
- A042103 (program): Denominators of continued fraction convergents to sqrt(575).
- A042104 (program): Numerators of continued fraction convergents to sqrt(577).
- A042105 (program): Denominators of continued fraction convergents to sqrt(577).
- A042106 (program): Numerators of continued fraction convergents to sqrt(578).
- A042107 (program): Denominators of continued fraction convergents to sqrt(578).
- A042108 (program): Numerators of continued fraction convergents to sqrt(579).
- A042109 (program): Denominators of continued fraction convergents to sqrt(579).
- A042110 (program): Numerators of continued fraction convergents to sqrt(580).
- A042111 (program): Denominators of continued fraction convergents to sqrt(580).
- A042114 (program): Numerators of continued fraction convergents to sqrt(582).
- A042115 (program): Denominators of continued fraction convergents to sqrt(582).
- A042118 (program): Numerators of continued fraction convergents to sqrt(584).
- A042119 (program): Denominators of continued fraction convergents to sqrt(584).
- A042126 (program): Numerators of continued fraction convergents to sqrt(588).
- A042127 (program): Denominators of continued fraction convergents to sqrt(588).
- A042130 (program): Numerators of continued fraction convergents to sqrt(590).
- A042131 (program): Denominators of continued fraction convergents to sqrt(590).
- A042134 (program): Numerators of continued fraction convergents to sqrt(592).
- A042135 (program): Denominators of continued fraction convergents to sqrt(592).
- A042150 (program): Numerators of continued fraction convergents to sqrt(600).
- A042151 (program): Denominators of continued fraction convergents to sqrt(600).
- A042154 (program): Numerators of continued fraction convergents to sqrt(602).
- A042155 (program): Denominators of continued fraction convergents to sqrt(602).
- A042166 (program): Numerators of continued fraction convergents to sqrt(608).
- A042167 (program): Denominators of continued fraction convergents to sqrt(608).
- A042174 (program): Numerators of continued fraction convergents to sqrt(612).
- A042175 (program): Denominators of continued fraction convergents to sqrt(612).
- A042180 (program): Numerators of continued fraction convergents to sqrt(615).
- A042181 (program): Denominators of continued fraction convergents to sqrt(615).
- A042186 (program): Numerators of continued fraction convergents to sqrt(618).
- A042187 (program): Denominators of continued fraction convergents to sqrt(618).
- A042190 (program): Numerators of continued fraction convergents to sqrt(620).
- A042191 (program): Denominators of continued fraction convergents to sqrt(620).
- A042192 (program): Numerators of continued fraction convergents to sqrt(621).
- A042193 (program): Denominators of continued fraction convergents to sqrt(621).
- A042196 (program): Numerators of continued fraction convergents to sqrt(623).
- A042197 (program): Denominators of continued fraction convergents to sqrt(623).
- A042198 (program): Numerators of continued fraction convergents to sqrt(624).
- A042199 (program): Denominators of continued fraction convergents to sqrt(624).
- A042200 (program): Numerators of continued fraction convergents to sqrt(626).
- A042201 (program): Denominators of continued fraction convergents to sqrt(626).
- A042202 (program): Numerators of continued fraction convergents to sqrt(627).
- A042203 (program): Denominators of continued fraction convergents to sqrt(627).
- A042206 (program): Numerators of continued fraction convergents to sqrt(629).
- A042207 (program): Denominators of continued fraction convergents to sqrt(629).
- A042208 (program): Numerators of continued fraction convergents to sqrt(630).
- A042209 (program): Denominators of continued fraction convergents to sqrt(630).
- A042212 (program): Numerators of continued fraction convergents to sqrt(632).
- A042213 (program): Denominators of continued fraction convergents to sqrt(632).
- A042218 (program): Numerators of continued fraction convergents to sqrt(635).
- A042219 (program): Denominators of continued fraction convergents to sqrt(635).
- A042232 (program): Numerators of continued fraction convergents to sqrt(642).
- A042233 (program): Denominators of continued fraction convergents to sqrt(642).
- A042238 (program): Numerators of continued fraction convergents to sqrt(645).
- A042239 (program): Denominators of continued fraction convergents to sqrt(645).
- A042240 (program): Numerators of continued fraction convergents to sqrt(646).
- A042241 (program): Denominators of continued fraction convergents to sqrt(646).
- A042244 (program): Numerators of continued fraction convergents to sqrt(648).
- A042245 (program): Denominators of continued fraction convergents to sqrt(648).
- A042248 (program): Numerators of continued fraction convergents to sqrt(650).
- A042249 (program): Denominators of continued fraction convergents to sqrt(650).
- A042250 (program): Numerators of continued fraction convergents to sqrt(651).
- A042251 (program): Denominators of continued fraction convergents to sqrt(651).
- A042260 (program): Numerators of continued fraction convergents to sqrt(656).
- A042261 (program): Denominators of continued fraction convergents to sqrt(656).
- A042264 (program): Numerators of continued fraction convergents to sqrt(658).
- A042265 (program): Denominators of continued fraction convergents to sqrt(658).
- A042266 (program): Numerators of continued fraction convergents to sqrt(659).
- A042267 (program): Denominators of continued fraction convergents to sqrt(659).
- A042268 (program): Numerators of continued fraction convergents to sqrt(660).
- A042269 (program): Denominators of continued fraction convergents to sqrt(660).
- A042274 (program): Numerators of continued fraction convergents to sqrt(663).
- A042275 (program): Denominators of continued fraction convergents to sqrt(663).
- A042292 (program): Numerators of continued fraction convergents to sqrt(672).
- A042293 (program): Denominators of continued fraction convergents to sqrt(672).
- A042296 (program): Numerators of continued fraction convergents to sqrt(674).
- A042297 (program): Denominators of continued fraction convergents to sqrt(674).
- A042298 (program): Numerators of continued fraction convergents to sqrt(675).
- A042299 (program): Denominators of continued fraction convergents to sqrt(675).
- A042300 (program): Numerators of continued fraction convergents to sqrt(677).
- A042301 (program): Denominators of continued fraction convergents to sqrt(677).
- A042302 (program): Numerators of continued fraction convergents to sqrt(678).
- A042303 (program): Denominators of continued fraction convergents to sqrt(678).
- A042306 (program): Numerators of continued fraction convergents to sqrt(680).
- A042307 (program): Denominators of continued fraction convergents to sqrt(680).
- A042314 (program): Numerators of continued fraction convergents to sqrt(684).
- A042315 (program): Denominators of continued fraction convergents to sqrt(684).
- A042324 (program): Numerators of continued fraction convergents to sqrt(689).
- A042325 (program): Denominators of continued fraction convergents to sqrt(689).
- A042326 (program): Numerators of continued fraction convergents to sqrt(690).
- A042327 (program): Denominators of continued fraction convergents to sqrt(690).
- A042336 (program): Numerators of continued fraction convergents to sqrt(695).
- A042337 (program): Denominators of continued fraction convergents to sqrt(695).
- A042338 (program): Numerators of continued fraction convergents to sqrt(696).
- A042339 (program): Denominators of continued fraction convergents to sqrt(696).
- A042340 (program): Numerators of continued fraction convergents to sqrt(697).
- A042341 (program): Denominators of continued fraction convergents to sqrt(697).
- A042348 (program): Numerators of continued fraction convergents to sqrt(701).
- A042349 (program): Denominators of continued fraction convergents to sqrt(701).
- A042350 (program): Numerators of continued fraction convergents to sqrt(702).
- A042351 (program): Denominators of continued fraction convergents to sqrt(702).
- A042354 (program): Numerators of continued fraction convergents to sqrt(704).
- A042355 (program): Denominators of continued fraction convergents to sqrt(704).
- A042358 (program): Numerators of continued fraction convergents to sqrt(706).
- A042359 (program): Denominators of continued fraction convergents to sqrt(706).
- A042360 (program): Numerators of continued fraction convergents to sqrt(707).
- A042361 (program): Denominators of continued fraction convergents to sqrt(707).
- A042362 (program): Numerators of continued fraction convergents to sqrt(708).
- A042363 (program): Denominators of continued fraction convergents to sqrt(708).
- A042366 (program): Numerators of continued fraction convergents to sqrt(710).
- A042367 (program): Denominators of continued fraction convergents to sqrt(710).
- A042368 (program): Numerators of continued fraction convergents to sqrt(711).
- A042369 (program): Denominators of continued fraction convergents to sqrt(711).
- A042370 (program): Numerators of continued fraction convergents to sqrt(712).
- A042371 (program): Denominators of continued fraction convergents to sqrt(712).
- A042386 (program): Numerators of continued fraction convergents to sqrt(720).
- A042387 (program): Denominators of continued fraction convergents to sqrt(720).
- A042392 (program): Numerators of continued fraction convergents to sqrt(723).
- A042393 (program): Denominators of continued fraction convergents to sqrt(723).
- A042396 (program): Numerators of continued fraction convergents to sqrt(725).
- A042397 (program): Denominators of continued fraction convergents to sqrt(725).
- A042398 (program): Numerators of continued fraction convergents to sqrt(726).
- A042399 (program): Denominators of continued fraction convergents to sqrt(726).
- A042400 (program): Numerators of continued fraction convergents to sqrt(727).
- A042401 (program): Denominators of continued fraction convergents to sqrt(727).
- A042402 (program): Numerators of continued fraction convergents to sqrt(728).
- A042403 (program): Denominators of continued fraction convergents to sqrt(728).
- A042404 (program): Numerators of continued fraction convergents to sqrt(730).
- A042405 (program): Denominators of continued fraction convergents to sqrt(730).
- A042406 (program): Numerators of continued fraction convergents to sqrt(731).
- A042407 (program): Denominators of continued fraction convergents to sqrt(731).
- A042408 (program): Numerators of continued fraction convergents to sqrt(732).
- A042409 (program): Denominators of continued fraction convergents to sqrt(732).
- A042410 (program): Numerators of continued fraction convergents to sqrt(733).
- A042411 (program): Denominators of continued fraction convergents to sqrt(733).
- A042414 (program): Numerators of continued fraction convergents to sqrt(735).
- A042415 (program): Denominators of continued fraction convergents to sqrt(735).
- A042420 (program): Numerators of continued fraction convergents to sqrt(738).
- A042421 (program): Denominators of continued fraction convergents to sqrt(738).
- A042424 (program): Numerators of continued fraction convergents to sqrt(740).
- A042425 (program): Denominators of continued fraction convergents to sqrt(740).
- A042426 (program): Numerators of continued fraction convergents to sqrt(741).
- A042427 (program): Denominators of continued fraction convergents to sqrt(741).
- A042438 (program): Numerators of continued fraction convergents to sqrt(747).
- A042439 (program): Denominators of continued fraction convergents to sqrt(747).
- A042448 (program): Numerators of continued fraction convergents to sqrt(752).
- A042449 (program): Denominators of continued fraction convergents to sqrt(752).
- A042454 (program): Numerators of continued fraction convergents to sqrt(755).
- A042455 (program): Denominators of continued fraction convergents to sqrt(755).
- A042456 (program): Numerators of continued fraction convergents to sqrt(756).
- A042457 (program): Denominators of continued fraction convergents to sqrt(756).
- A042462 (program): Numerators of continued fraction convergents to sqrt(759).
- A042463 (program): Denominators of continued fraction convergents to sqrt(759).
- A042466 (program): Numerators of continued fraction convergents to sqrt(761).
- A042467 (program): Denominators of continued fraction convergents to sqrt(761).
- A042468 (program): Numerators of continued fraction convergents to sqrt(762).
- A042469 (program): Denominators of continued fraction convergents to sqrt(762).
- A042474 (program): Numerators of continued fraction convergents to sqrt(765).
- A042475 (program): Denominators of continued fraction convergents to sqrt(765).
- A042480 (program): Numerators of continued fraction convergents to sqrt(768).
- A042481 (program): Denominators of continued fraction convergents to sqrt(768).
- A042484 (program): Numerators of continued fraction convergents to sqrt(770).
- A042485 (program): Denominators of continued fraction convergents to sqrt(770).
- A042496 (program): Numerators of continued fraction convergents to sqrt(776).
- A042497 (program): Denominators of continued fraction convergents to sqrt(776).
- A042498 (program): Numerators of continued fraction convergents to sqrt(777).
- A042499 (program): Denominators of continued fraction convergents to sqrt(777).
- A042504 (program): Numerators of continued fraction convergents to sqrt(780).
- A042505 (program): Denominators of continued fraction convergents to sqrt(780).
- A042508 (program): Numerators of continued fraction convergents to sqrt(782).
- A042509 (program): Denominators of continued fraction convergents to sqrt(782).
- A042510 (program): Numerators of continued fraction convergents to sqrt(783).
- A042511 (program): Denominators of continued fraction convergents to sqrt(783).
- A042512 (program): Numerators of continued fraction convergents to sqrt(785).
- A042513 (program): Denominators of continued fraction convergents to sqrt(785).
- A042514 (program): Numerators of continued fraction convergents to sqrt(786).
- A042515 (program): Denominators of continued fraction convergents to sqrt(786).
- A042518 (program): Numerators of continued fraction convergents to sqrt(788).
- A042519 (program): Denominators of continued fraction convergents to sqrt(788).
- A042524 (program): Numerators of continued fraction convergents to sqrt(791).
- A042525 (program): Denominators of continued fraction convergents to sqrt(791).
- A042526 (program): Numerators of continued fraction convergents to sqrt(792).
- A042527 (program): Denominators of continued fraction convergents to sqrt(792).
- A042528 (program): Numerators of continued fraction convergents to sqrt(793).
- A042529 (program): Denominators of continued fraction convergents to sqrt(793).
- A042532 (program): Numerators of continued fraction convergents to sqrt(795).
- A042533 (program): Denominators of continued fraction convergents to sqrt(795).
- A042538 (program): Numerators of continued fraction convergents to sqrt(798).
- A042539 (program): Denominators of continued fraction convergents to sqrt(798).
- A042540 (program): Numerators of continued fraction convergents to sqrt(799).
- A042541 (program): Denominators of continued fraction convergents to sqrt(799).
- A042542 (program): Numerators of continued fraction convergents to sqrt(800).
- A042543 (program): Denominators of continued fraction convergents to sqrt(800).
- A042548 (program): Numerators of continued fraction convergents to sqrt(803).
- A042549 (program): Denominators of continued fraction convergents to sqrt(803).
- A042566 (program): Numerators of continued fraction convergents to sqrt(812).
- A042567 (program): Denominators of continued fraction convergents to sqrt(812).
- A042568 (program): Numerators of continued fraction convergents to sqrt(813).
- A042569 (program): Denominators of continued fraction convergents to sqrt(813).
- A042574 (program): Numerators of continued fraction convergents to sqrt(816).
- A042575 (program): Denominators of continued fraction convergents to sqrt(816).
- A042576 (program): Numerators of continued fraction convergents to sqrt(817).
- A042577 (program): Denominators of continued fraction convergents to sqrt(817).
- A042578 (program): Numerators of continued fraction convergents to sqrt(818).
- A042579 (program): Denominators of continued fraction convergents to sqrt(818).
- A042580 (program): Numerators of continued fraction convergents to sqrt(819).
- A042581 (program): Denominators of continued fraction convergents to sqrt(819).
- A042586 (program): Numerators of continued fraction convergents to sqrt(822).
- A042587 (program): Denominators of continued fraction convergents to sqrt(822).
- A042598 (program): Numerators of continued fraction convergents to sqrt(828).
- A042599 (program): Denominators of continued fraction convergents to sqrt(828).
- A042616 (program): Numerators of continued fraction convergents to sqrt(837).
- A042617 (program): Denominators of continued fraction convergents to sqrt(837).
- A042620 (program): Numerators of continued fraction convergents to sqrt(839).
- A042621 (program): Denominators of continued fraction convergents to sqrt(839).
- A042622 (program): Numerators of continued fraction convergents to sqrt(840).
- A042623 (program): Denominators of continued fraction convergents to sqrt(840).
- A042624 (program): Numerators of continued fraction convergents to sqrt(842).
- A042625 (program): Denominators of continued fraction convergents to sqrt(842).
- A042626 (program): Numerators of continued fraction convergents to sqrt(843).
- A042627 (program): Denominators of continued fraction convergents to sqrt(843).
- A042630 (program): Numerators of continued fraction convergents to sqrt(845).
- A042631 (program): Denominators of continued fraction convergents to sqrt(845).
- A042640 (program): Numerators of continued fraction convergents to sqrt(850).
- A042641 (program): Denominators of continued fraction convergents to sqrt(850).
- A042650 (program): Numerators of continued fraction convergents to sqrt(855).
- A042651 (program): Denominators of continued fraction convergents to sqrt(855).
- A042656 (program): Numerators of continued fraction convergents to sqrt(858).
- A042657 (program): Denominators of continued fraction convergents to sqrt(858).
- A042660 (program): Numerators of continued fraction convergents to sqrt(860).
- A042661 (program): Denominators of continued fraction convergents to sqrt(860).
- A042672 (program): Numerators of continued fraction convergents to sqrt(866).
- A042673 (program): Denominators of continued fraction convergents to sqrt(866).
- A042674 (program): Numerators of continued fraction convergents to sqrt(867).
- A042675 (program): Denominators of continued fraction convergents to sqrt(867).
- A042680 (program): Numerators of continued fraction convergents to sqrt(870).
- A042681 (program): Denominators of continued fraction convergents to sqrt(870).
- A042688 (program): Numerators of continued fraction convergents to sqrt(874).
- A042689 (program): Denominators of continued fraction convergents to sqrt(874).
- A042692 (program): Numerators of continued fraction convergents to sqrt(876).
- A042693 (program): Denominators of continued fraction convergents to sqrt(876).
- A042700 (program): Numerators of continued fraction convergents to sqrt(880).
- A042701 (program): Denominators of continued fraction convergents to sqrt(880).
- A042708 (program): Numerators of continued fraction convergents to sqrt(884).
- A042709 (program): Denominators of continued fraction convergents to sqrt(884).
- A042710 (program): Numerators of continued fraction convergents to sqrt(885).
- A042711 (program): Denominators of continued fraction convergents to sqrt(885).
- A042716 (program): Numerators of continued fraction convergents to sqrt(888).
- A042717 (program): Denominators of continued fraction convergents to sqrt(888).
- A042720 (program): Numerators of continued fraction convergents to sqrt(890).
- A042721 (program): Denominators of continued fraction convergents to sqrt(890).
- A042728 (program): Numerators of continued fraction convergents to sqrt(894).
- A042729 (program): Denominators of continued fraction convergents to sqrt(894).
- A042730 (program): Numerators of continued fraction convergents to sqrt(895).
- A042731 (program): Denominators of continued fraction convergents to sqrt(895).
- A042732 (program): Numerators of continued fraction convergents to sqrt(896).
- A042733 (program): Denominators of continued fraction convergents to sqrt(896).
- A042734 (program): Numerators of continued fraction convergents to sqrt(897).
- A042735 (program): Denominators of continued fraction convergents to sqrt(897).
- A042736 (program): Numerators of continued fraction convergents to sqrt(898).
- A042737 (program): Denominators of continued fraction convergents to sqrt(898).
- A042738 (program): Numerators of continued fraction convergents to sqrt(899).
- A042739 (program): Denominators of continued fraction convergents to sqrt(899).
- A042740 (program): Numerators of continued fraction convergents to sqrt(901).
- A042741 (program): Denominators of continued fraction convergents to sqrt(901).
- A042742 (program): Numerators of continued fraction convergents to sqrt(902).
- A042743 (program): Denominators of continued fraction convergents to sqrt(902).
- A042744 (program): Numerators of continued fraction convergents to sqrt(903).
- A042745 (program): Denominators of continued fraction convergents to sqrt(903).
- A042746 (program): Numerators of continued fraction convergents to sqrt(904).
- A042747 (program): Denominators of continued fraction convergents to sqrt(904).
- A042748 (program): Numerators of continued fraction convergents to sqrt(905).
- A042749 (program): Denominators of continued fraction convergents to sqrt(905).
- A042750 (program): Numerators of continued fraction convergents to sqrt(906).
- A042751 (program): Denominators of continued fraction convergents to sqrt(906).
- A042754 (program): Numerators of continued fraction convergents to sqrt(908).
- A042755 (program): Denominators of continued fraction convergents to sqrt(908).
- A042758 (program): Numerators of continued fraction convergents to sqrt(910).
- A042759 (program): Denominators of continued fraction convergents to sqrt(910).
- A042762 (program): Numerators of continued fraction convergents to sqrt(912).
- A042763 (program): Denominators of continued fraction convergents to sqrt(912).
- A042766 (program): Numerators of continued fraction convergents to sqrt(914).
- A042767 (program): Denominators of continued fraction convergents to sqrt(914).
- A042768 (program): Numerators of continued fraction convergents to sqrt(915).
- A042769 (program): Denominators of continued fraction convergents to sqrt(915).
- A042774 (program): Numerators of continued fraction convergents to sqrt(918).
- A042775 (program): Denominators of continued fraction convergents to sqrt(918).
- A042778 (program): Numerators of continued fraction convergents to sqrt(920).
- A042779 (program): Denominators of continued fraction convergents to sqrt(920).
- A042784 (program): Numerators of continued fraction convergents to sqrt(923).
- A042785 (program): Denominators of continued fraction convergents to sqrt(923).
- A042786 (program): Numerators of continued fraction convergents to sqrt(924).
- A042787 (program): Denominators of continued fraction convergents to sqrt(924).
- A042788 (program): Numerators of continued fraction convergents to sqrt(925).
- A042789 (program): Denominators of continued fraction convergents to sqrt(925).
- A042798 (program): Numerators of continued fraction convergents to sqrt(930).
- A042799 (program): Denominators of continued fraction convergents to sqrt(930).
- A042808 (program): Numerators of continued fraction convergents to sqrt(935).
- A042809 (program): Denominators of continued fraction convergents to sqrt(935).
- A042810 (program): Numerators of continued fraction convergents to sqrt(936).
- A042811 (program): Denominators of continued fraction convergents to sqrt(936).
- A042818 (program): Numerators of continued fraction convergents to sqrt(940).
- A042819 (program): Denominators of continued fraction convergents to sqrt(940).
- A042824 (program): Numerators of continued fraction convergents to sqrt(943).
- A042825 (program): Denominators of continued fraction convergents to sqrt(943).
- A042834 (program): Numerators of continued fraction convergents to sqrt(948).
- A042835 (program): Denominators of continued fraction convergents to sqrt(948).
- A042842 (program): Numerators of continued fraction convergents to sqrt(952).
- A042843 (program): Denominators of continued fraction convergents to sqrt(952).
- A042852 (program): Numerators of continued fraction convergents to sqrt(957).
- A042853 (program): Denominators of continued fraction convergents to sqrt(957).
- A042856 (program): Numerators of continued fraction convergents to sqrt(959).
- A042857 (program): Denominators of continued fraction convergents to sqrt(959).
- A042858 (program): Numerators of continued fraction convergents to sqrt(960).
- A042859 (program): Denominators of continued fraction convergents to sqrt(960).
- A042860 (program): Numerators of continued fraction convergents to sqrt(962).
- A042861 (program): Denominators of continued fraction convergents to sqrt(962).
- A042862 (program): Numerators of continued fraction convergents to sqrt(963).
- A042863 (program): Denominators of continued fraction convergents to sqrt(963).
- A042866 (program): Numerators of continued fraction convergents to sqrt(965).
- A042867 (program): Denominators of continued fraction convergents to sqrt(965).
- A042872 (program): Numerators of continued fraction convergents to sqrt(968).
- A042873 (program): Denominators of continued fraction convergents to sqrt(968).
- A042882 (program): Numerators of continued fraction convergents to sqrt(973).
- A042883 (program): Denominators of continued fraction convergents to sqrt(973).
- A042886 (program): Numerators of continued fraction convergents to sqrt(975).
- A042887 (program): Denominators of continued fraction convergents to sqrt(975).
- A042900 (program): Numerators of continued fraction convergents to sqrt(982).
- A042901 (program): Denominators of continued fraction convergents to sqrt(982).
- A042906 (program): Numerators of continued fraction convergents to sqrt(985).
- A042907 (program): Denominators of continued fraction convergents to sqrt(985).
- A042908 (program): Numerators of continued fraction convergents to sqrt(986).
- A042909 (program): Denominators of continued fraction convergents to sqrt(986).
- A042910 (program): Numerators of continued fraction convergents to sqrt(987).
- A042911 (program): Denominators of continued fraction convergents to sqrt(987).
- A042916 (program): Numerators of continued fraction convergents to sqrt(990).
- A042917 (program): Denominators of continued fraction convergents to sqrt(990).
- A042920 (program): Numerators of continued fraction convergents to sqrt(992).
- A042921 (program): Denominators of continued fraction convergents to sqrt(992).
- A042922 (program): Numerators of continued fraction convergents to sqrt(993).
- A042923 (program): Denominators of continued fraction convergents to sqrt(993).
- A042924 (program): Numerators of continued fraction convergents to sqrt(994).
- A042925 (program): Denominators of continued fraction convergents to sqrt(994).
- A042939 (program): Absolute values between digits of primes.
- A042940 (program): Convolution of Catalan numbers A000108(n+1), n >= 0, with A038846.
- A042941 (program): Convolution of Catalan numbers A000108 with A038845.
- A042948 (program): Numbers congruent to 0 or 1 (mod 4).
- A042950 (program): Row sums of the Lucas triangle A029635.
- A042951 (program): The sequence e when b=[ 0,1,1,1,1,… ].
- A042962 (program): The sequence e when b=[ 1,0,1,0,1,0,1,0,… ].
- A042963 (program): Numbers congruent to 1 or 2 mod 4.
- A042964 (program): Numbers that are congruent to {2, 3} mod 4.
- A042965 (program): Nonnegative integers not congruent to 2 mod 4.
- A042968 (program): Numbers not divisible by 4.
- A042970 (program): a(n) = binomial(n, floor(n/2)) mod n.
- A042971 (program): a(n) = (C(2n, n)/2 - (2^(n-1) + ((n+1) mod 2)*C(n-1, n/2-1)))/2.
- A042974 (program): n 1’s followed by a 2.
- A042984 (program): Number of n-dimensional partitions of 6.
- A042985 (program): Convolution of A000108 (Catalan numbers) with A038846.
- A042986 (program): Primes congruent to {0, 1, 2, 3} mod 5.
- A042987 (program): Primes congruent to {2, 3, 5, 7} mod 8.
- A042988 (program): Primes not congruent to -1 (mod 7).
- A042989 (program): Primes congruent to {0, 2, 3, 4, 5} mod 7.
- A042990 (program): Primes not congruent to 4 (mod 7).
- A042991 (program): Primes congruent to {0, 2, 3, 4} (mod 5).
- A042992 (program): Primes congruent to {0, 2, 3, 5, 6} (mod 7).
- A042993 (program): Primes congruent to {0, 2, 3} mod 5.
- A042994 (program): Primes congruent to {0, 1, 2, 3, 5} (mod 7).
- A042995 (program): Primes congruent to {0, 2, 3, 5} (mod 7).
- A042996 (program): Numbers k such that binomial(k, floor(k/2)) is divisible by k.
- A042997 (program): Primes congruent to {2, 3, 4, 5, 6} (mod 7).
- A042998 (program): Primes congruent to {1, 2, 3, 5} (mod 8).
- A042999 (program): Primes congruent to {2, 3, 5} (mod 8).
- A043000 (program): Number of digits in all base-b representations of n, for 2 <= b <= n.
- A043001 (program): Base-3 palindromes that start with 1.
- A043002 (program): Base-3 palindromes that start with 2.
- A043003 (program): Base-4 palindromes that start with 1.
- A043004 (program): Base-4 palindromes that start with 2.
- A043005 (program): Base-4 palindromes that start with 3.
- A043006 (program): Base-5 palindromes that start with 1.
- A043007 (program): Base-5 palindromes that start with 2.
- A043008 (program): Base-5 palindromes that start with 3.
- A043009 (program): Base-5 palindromes that start with 4.
- A043010 (program): Base-6 palindromes that start with 1.
- A043011 (program): Base-6 palindromes that start with 2.
- A043012 (program): Base-6 palindromes that start with 3.
- A043013 (program): Base-6 palindromes that start with 4.
- A043014 (program): Base-6 palindromes that start with 5.
- A043036 (program): Base 10 palindromes that start with 1.
- A043037 (program): Base-10 palindromes that start with 2.
- A043038 (program): Base-10 palindromes that starts with 3.
- A043039 (program): Palindromes that start with 4.
- A043040 (program): Numbers that are palindromic and divisible by 5.
- A043041 (program): Base-10 palindromes that start with 6.
- A043042 (program): Base-10 palindromes that start with 7.
- A043043 (program): Base 10 palindromes that start with 8.
- A043044 (program): Palindromes that start with 9.
- A043045 (program): a(n)=(s(n)+2)/3, where s(n)=n-th base 3 palindrome that starts with 1.
- A043046 (program): a(n) = (s(n)+1)/3, where s(n) = n-th base 3 palindrome that starts with 2.
- A043047 (program): a(n) = (s(n)+3)/4, where s(n) is the n-th base-4 palindrome that starts with 1 (A043003).
- A043048 (program): a(n)=(s(n)+2)/4, where s(n)=n-th base 4 palindrome that starts with 2.
- A043049 (program): a(n)=(s(n)+1)/4, where s(n)=n-th base 4 palindrome that starts with 3.
- A043050 (program): a(n)=(s(n)+4)/5, where s(n)=n-th base 5 palindrome that starts with 1.
- A043051 (program): a(n)=(s(n)+3)/5, where s(n)=n-th base 5 palindrome that starts with 2.
- A043052 (program): a(n)=(s(n)+2)/5, where s(n)=n-th base 5 palindrome that starts with 3.
- A043053 (program): a(n)=(s(n)+1)/5, where s(n)=n-th base 5 palindrome that starts with 4.
- A043054 (program): a(n)=(s(n)+5)/6, where s(n)=n-th base 6 palindrome that starts with 1.
- A043055 (program): a(n)=(s(n)+4)/6, where s(n)=n-th base 6 palindrome that starts with 2.
- A043056 (program): a(n)=(s(n)+3)/6, where s(n)=n-th base 6 palindrome that starts with 3.
- A043057 (program): a(n)=(s(n)+2)/6, where s(n)=n-th base 6 palindrome that starts with 4.
- A043058 (program): a(n)=(s(n)+1)/6, where s(n)=n-th base 6 palindrome that starts with 5.
- A043080 (program): a(n)=(s(n)+9)/10, where s(n)=n-th base 10 palindrome that starts with 1.
- A043081 (program): a(n)=(s(n)+8)/10, where s(n)=n-th base 10 palindrome that starts with 2.
- A043082 (program): (s(n)+7)/10, where s(n)=n-th base 10 palindrome that starts with 3.
- A043083 (program): a(n)=(s(n)+6)/10, where s(n)=n-th base 10 palindrome that starts with 4.
- A043084 (program): a(n)=(s(n)+5)/10, where s(n)=n-th base 10 palindrome that starts with 5.
- A043085 (program): a(n)=(s(n)+4)/10, where s(n)=n-th base 10 palindrome that starts with 6.
- A043086 (program): a(n)=(s(n)+3)/10, where s(n)=n-th base 10 palindrome that starts with 7.
- A043087 (program): (s(n)+2)/10, where s(n)=n-th base 10 palindrome that starts with 8.
- A043088 (program): (s(n)+1)/10, where s(n)=n-th base 10 palindrome that starts with 9.
- A043089 (program): Every string of 2 consecutive base-3 digits contains exactly 2 distinct numbers.
- A043090 (program): Every string of 2 consecutive base 4 digits contains exactly 2 distinct numbers.
- A043091 (program): Every string of 2 consecutive base 5 digits contains exactly 2 distinct numbers.
- A043092 (program): Numbers in which every string of 2 consecutive base 6 digits contains exactly 2 distinct numbers.
- A043093 (program): Every string of 2 consecutive base 7 digits contains exactly 2 distinct numbers.
- A043094 (program): Every string of 2 consecutive base 8 digits contains exactly 2 distinct numbers.
- A043119 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-6 representation of k but not of k-1.
- A043134 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-7 representation of k but not of k-1.
- A043155 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-8 representation of k but not of k-1.
- A043220 (program): Numbers k such that 0 and 5 occur juxtaposed in the base-10 representation of k but not of k-1.
- A043261 (program): Sum of the binary digits of the n-th base-2 palindrome.
- A043262 (program): Sum of digits of n-th base 3 palindrome.
- A043263 (program): Sum of the digits of the n-th base 4 palindrome.
- A043264 (program): Sum of the digits of the n-th base 5 palindrome.
- A043265 (program): Sum of the digits of the n-th base 6 palindrome.
- A043266 (program): Sum of the digits of the n-th base 7 palindrome.
- A043267 (program): Sum of the digits of the n-th base 8 palindrome.
- A043268 (program): Sum of digits of n-th base 9 palindrome.
- A043269 (program): Sum of the digits of n-th base 10 palindrome.
- A043276 (program): a(n) = maximal run length in base-2 representation of n.
- A043279 (program): Maximal run length in base 5 representation of n.
- A043280 (program): Maximal run length in base 6 representation of n.
- A043282 (program): Maximal run length in base 8 representation of n.
- A043285 (program): Maximal run length in base 11 representation of n.
- A043286 (program): Maximal run length in base 12 representation of n.
- A043291 (program): Every run length in base 2 is 2.
- A043294 (program): Sum of digits of binomial(2n,n).
- A043296 (program): Sum of digits of denominator of Bernoulli number B(2n).
- A043299 (program): Numerator of L(n) = (Sum_{k=1..n} k^n)/(Sum_{k=1..n-1} k^n).
- A043300 (program): Denominator of L(n) = (Sum_{k=1..n} k^n)/(Sum_{k=1..n-1} k^n).
- A043301 (program): a(n) = 2^n*Sum_{k=0..n} (n+k)!/((n-k)!*k!*4^k).
- A043302 (program): Triangular table of 2^n *(n+k)! / ((n-k)! * k! * 4^k).
- A043303 (program): Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
- A043306 (program): Sum of all digits in all base-b representations for n, for 2 <= b <= n.
- A043313 (program): a(n)=A033007(n)/10.
- A043314 (program): a(n)=A033008(n)/11.
- A043316 (program): a(n)=s(n)/13, where s=A033010.
- A043321 (program): Numbers having one 0 in base 3.
- A043322 (program): Numbers having two 0’s in base 3.
- A043323 (program): Numbers having three 0’s in base 3.
- A043324 (program): Numbers having four 0’s in base 3.
- A043326 (program): Numbers k such that k is a product of two different primes and k-2 is prime.
- A043333 (program): Numbers having one 0 in base 4.
- A043336 (program): Numbers having four 0’s in base 4.
- A043340 (program): Numbers having four 1’s in base 4.
- A043344 (program): Numbers having four 2’s in base 4.
- A043348 (program): Numbers having four 3’s in base 4.
- A043349 (program): Numbers having one 0 in base 5.
- A043352 (program): Numbers having four 0’s in base 5.
- A043356 (program): Numbers having four 1’s in base 5.
- A043360 (program): Numbers having four 2’s in base 5.
- A043364 (program): Numbers having four 3’s in base 5.
- A043368 (program): Numbers having four 4’s in base 5.
- A043369 (program): Numbers having one 0 in base 6.
- A043370 (program): Numbers having two 0’s in base 6.
- A043371 (program): Numbers having three 0’s in base 6.
- A043372 (program): Numbers having four 0’s in base 6.
- A043373 (program): Numbers having one 1 in base 6.
- A043374 (program): Numbers having two 1’s in base 6.
- A043375 (program): Numbers having three 1’s in base 6.
- A043376 (program): Numbers having four 1’s in base 6.
- A043377 (program): Numbers having one 2 in base 6.
- A043378 (program): Numbers having two 2’s in base 6.
- A043379 (program): Numbers having three 2’s in base 6.
- A043380 (program): Numbers having four 2’s in base 6.
- A043381 (program): Numbers having one 3 in base 6.
- A043382 (program): Numbers having two 3’s in base 6.
- A043383 (program): Numbers having three 3’s in base 6.
- A043384 (program): Numbers having four 3’s in base 6.
- A043385 (program): Numbers having one 4 in base 6.
- A043386 (program): Numbers having two 4’s in base 6.
- A043387 (program): Numbers having three 4’s in base 6.
- A043388 (program): Numbers having four 4’s in base 6.
- A043389 (program): Numbers having one 5 in base 6.
- A043390 (program): Numbers having two 5’s in base 6.
- A043391 (program): Numbers having three 5’s in base 6.
- A043392 (program): Numbers having four 5’s in base 6.
- A043393 (program): Numbers having one 0 in base 7.
- A043394 (program): Numbers having two 0’s in base 7.
- A043395 (program): Numbers having three 0’s in base 7.
- A043396 (program): Numbers having four 0’s in base 7.
- A043397 (program): Numbers having one 1 in base 7.
- A043398 (program): Numbers having two 1’s in base 7.
- A043399 (program): Numbers having three 1’s in base 7.
- A043400 (program): Numbers having four 1’s in base 7.
- A043401 (program): Numbers having one 2 in base 7.
- A043402 (program): Numbers having two 2’s in base 7.
- A043403 (program): Numbers having three 2’s in base 7.
- A043404 (program): Numbers having four 2’s in base 7.
- A043405 (program): Numbers having one 3 in base 7.
- A043406 (program): Numbers having two 3’s in base 7.
- A043407 (program): Numbers having three 3’s in base 7.
- A043408 (program): Numbers having four 3’s in base 7.
- A043409 (program): Numbers having one 4 in base 7.
- A043410 (program): Numbers having two 4’s in base 7.
- A043411 (program): Numbers having three 4’s in base 7.
- A043412 (program): Numbers having four 4’s in base 7.
- A043413 (program): Numbers having one 5 in base 7.
- A043414 (program): Numbers having two 5’s in base 7.
- A043415 (program): Numbers having three 5’s in base 7.
- A043416 (program): Numbers having four 5’s in base 7.
- A043417 (program): Numbers having one 6 in base 7.
- A043418 (program): Numbers having two 6’s in base 7.
- A043419 (program): Numbers having three 6’s in base 7.
- A043420 (program): Numbers having four 6’s in base 7.
- A043421 (program): Numbers having one 0 in base 8.
- A043422 (program): Numbers having two 0’s in base 8.
- A043423 (program): Numbers having three 0’s in base 8.
- A043424 (program): Numbers having four 0’s in base 8.
- A043425 (program): Numbers having one 1 in base 8.
- A043426 (program): Numbers having two 1’s in base 8.
- A043427 (program): Numbers having three 1’s in base 8.
- A043428 (program): Numbers having four 1’s in base 8.
- A043429 (program): Numbers having one 2 in base 8.
- A043430 (program): Numbers having two 2’s in base 8.
- A043431 (program): Numbers having three 2’s in base 8.
- A043432 (program): Numbers having four 2’s in base 8.
- A043433 (program): Numbers having one 3 in base 8.
- A043434 (program): Numbers having two 3’s in base 8.
- A043435 (program): Numbers having three 3’s in base 8.
- A043436 (program): Numbers having four 3’s in base 8.
- A043437 (program): Numbers having one 4 in base 8.
- A043438 (program): Numbers having two 4’s in base 8.
- A043439 (program): Numbers having three 4’s in base 8.
- A043440 (program): Numbers having four 4’s in base 8.
- A043441 (program): Numbers having one 5 in base 8.
- A043442 (program): Numbers having two 5’s in base 8.
- A043443 (program): Numbers having three 5’s in base 8.
- A043444 (program): Numbers having four 5’s in base 8.
- A043445 (program): Numbers having one 6 in base 8.
- A043446 (program): Numbers having two 6’s in base 8.
- A043447 (program): Numbers having three 6’s in base 8.
- A043448 (program): Numbers having four 6’s in base 8.
- A043449 (program): Numbers having one 7 in base 8.
- A043450 (program): Numbers having two 7’s in base 8.
- A043451 (program): Numbers having three 7’s in base 8.
- A043452 (program): Numbers having four 7’s in base 8.
- A043453 (program): Numbers having one 0 in base 9.
- A043454 (program): Numbers having two 0’s in base 9.
- A043455 (program): Numbers having three 0’s in base 9.
- A043456 (program): Numbers having four 0’s in base 9.
- A043457 (program): Numbers having one 1 in base 9.
- A043458 (program): Numbers having two 1’s in base 9.
- A043459 (program): Numbers having three 1’s in base 9.
- A043460 (program): Numbers having four 1’s in base 9.
- A043461 (program): Numbers having one 2 in base 9.
- A043462 (program): Numbers having two 2’s in base 9.
- A043463 (program): Numbers having three 2’s in base 9.
- A043464 (program): Numbers having four 2’s in base 9.
- A043465 (program): Numbers having one 3 in base 9.
- A043466 (program): Numbers having two 3’s in base 9.
- A043467 (program): Numbers having three 3’s in base 9.
- A043468 (program): Numbers having four 3’s in base 9.
- A043469 (program): Numbers having one 4 in base 9.
- A043470 (program): Numbers having two 4’s in base 9.
- A043471 (program): Numbers having three 4’s in base 9.
- A043472 (program): Numbers having four 4’s in base 9.
- A043473 (program): Numbers having one 5 in base 9.
- A043474 (program): Numbers having two 5’s in base 9.
- A043475 (program): Numbers having three 5’s in base 9.
- A043476 (program): Numbers having four 5’s in base 9.
- A043477 (program): Numbers having one 6 in base 9.
- A043478 (program): Numbers having two 6’s in base 9.
- A043479 (program): Numbers having three 6’s in base 9.
- A043480 (program): Numbers having four 6’s in base 9.
- A043481 (program): Numbers having one 7 in base 9.
- A043482 (program): Numbers having two 7’s in base 9.
- A043483 (program): Numbers having three 7’s in base 9.
- A043484 (program): Numbers having four 7’s in base 9.
- A043485 (program): Numbers having one 8 in base 9.
- A043486 (program): Numbers having two 8’s in base 9.
- A043487 (program): Numbers having three 8’s in base 9.
- A043488 (program): Numbers having four 8’s in base 9.
- A043489 (program): Numbers having one 0 in base 10.
- A043490 (program): Numbers having two 0’s in base 10.
- A043491 (program): Numbers having three 0’s in base 10.
- A043492 (program): Numbers having four 0’s in base 10.
- A043493 (program): Numbers that contain a single 1.
- A043494 (program): Numbers having two 1’s in base 10.
- A043495 (program): Numbers having three 1’s in base 10.
- A043496 (program): Numbers having four 1’s in base 10.
- A043497 (program): Numbers having one 2 in base 10.
- A043498 (program): Numbers having two 2’s in base 10.
- A043499 (program): Numbers having three 2’s in base 10.
- A043500 (program): Numbers having four 2’s in base 10.
- A043501 (program): Numbers having one 3 in base 10.
- A043502 (program): Numbers having two 3’s in base 10.
- A043503 (program): Numbers having three 3’s in base 10.
- A043504 (program): Numbers having four 3’s in base 10.
- A043505 (program): Numbers having one 4 in base 10.
- A043506 (program): Numbers having two 4’s in base 10.
- A043507 (program): Numbers having three 4’s in base 10.
- A043508 (program): Numbers having four 4’s in base 10.
- A043509 (program): Numbers having exactly one 5 in base 10.
- A043510 (program): Numbers having two 5’s in base 10.
- A043511 (program): Numbers having three 5’s in base 10.
- A043512 (program): Numbers having four 5’s in base 10.
- A043513 (program): Numbers having one 6 in base 10.
- A043514 (program): Numbers having two 6’s in base 10.
- A043515 (program): Numbers having three 6’s in base 10.
- A043516 (program): Numbers having four 6’s in base 10.
- A043517 (program): Numbers having one 7 in base 10.
- A043518 (program): Numbers having two 7’s in base 10.
- A043519 (program): Numbers having three 7’s in base 10.
- A043520 (program): Numbers having four 7’s in base 10.
- A043521 (program): Numbers having one 8 in base 10.
- A043522 (program): Numbers having two 8’s in base 10.
- A043523 (program): Numbers having three 8’s in base 10.
- A043524 (program): Numbers having four 8’s in base 10.
- A043525 (program): Numbers having one 9 in base 10.
- A043526 (program): Numbers having two 9’s in base 10.
- A043527 (program): Numbers having three 9’s in base 10.
- A043528 (program): Numbers having four 9’s in base 10.
- A043529 (program): Number of distinct base-2 digits of n.
- A043537 (program): Number of distinct base-10 digits of n.
- A043538 (program): Number of distinct base-11 digits of n.
- A043540 (program): Number of distinct base-13 digits of n.
- A043543 (program): Number of distinct base-16 digits of n.
- A043545 (program): (Maximal base-2 digit of n) - (minimal base-2 digit of n).
- A043547 (program): Odd numbers interspersed with double the previous odd number.
- A043548 (program): Least separator of first n Egyptian fractions; i.e., least k for which the integers floor(k/m) for m=1,2,…,n are distinct.
- A043553 (program): Row sums of convolution triangle A030524.
- A043555 (program): Number of runs in base-3 representation of n.
- A043556 (program): Number of runs in base-4 representation of n.
- A043557 (program): Number of runs in base-5 representation of n.
- A043558 (program): Number of runs in base-6 representation of n.
- A043560 (program): Number of runs in base-8 representation of n.
- A043563 (program): Number of runs in base-11 representation of n.
- A043564 (program): Number of runs in base-12 representation of n.
- A043565 (program): Number of runs in base-13 representation of n.
- A043566 (program): Number of runs in base-14 representation of n.
- A043569 (program): Numbers whose base-2 representation has exactly 2 runs.
- A043570 (program): Numbers whose base-2 representation has exactly 3 runs.
- A043571 (program): Numbers whose base-2 representation has exactly 4 runs.
- A043572 (program): Numbers whose base-2 representation has exactly 5 runs.
- A043573 (program): Numbers whose base-2 representation has exactly 6 runs.
- A043574 (program): Numbers whose base-2 representation has exactly 7 runs.
- A043575 (program): Numbers whose base-2 representation has exactly 8 runs.
- A043576 (program): Numbers whose base-2 representation has exactly 9 runs.
- A043577 (program): Numbers whose base-2 representation has exactly 10 runs.
- A043578 (program): Numbers whose base-2 representation has exactly 11 runs.
- A043579 (program): Numbers whose base-2 representation has exactly 12 runs.
- A043580 (program): Numbers whose base-2 representation has exactly 13 runs.
- A043581 (program): Numbers whose base-2 representation has exactly 14 runs.
- A043582 (program): Numbers whose base-3 representation has exactly 2 runs.
- A043583 (program): Numbers whose base-3 representation has exactly 3 runs.
- A043584 (program): Numbers whose base-3 representation has exactly 4 runs.
- A043585 (program): Numbers whose base-3 representation has exactly 5 runs.
- A043586 (program): Numbers whose base-3 representation has exactly 6 runs.
- A043587 (program): Numbers whose base-3 representation has exactly 7 runs.
- A043588 (program): Numbers whose base-3 representation has exactly 8 runs.
- A043589 (program): Numbers whose base-3 representation has exactly 9 runs.
- A043590 (program): Numbers whose base-3 representation has exactly 10 runs.
- A043591 (program): Numbers whose base-3 representation has exactly 11 runs.
- A043592 (program): Numbers whose base-3 representation has exactly 12 runs.
- A043593 (program): Numbers whose base-4 representation has exactly 2 runs.
- A043594 (program): Numbers whose base-4 representation has exactly 3 runs.
- A043595 (program): Numbers whose base-4 representation has exactly 4 runs.
- A043596 (program): Numbers whose base-4 representation has exactly 5 runs.
- A043597 (program): Numbers whose base-4 representation has exactly 6 runs.
- A043598 (program): Numbers whose base-4 representation has exactly 7 runs.
- A043599 (program): Numbers whose base-4 representation has exactly 8 runs.
- A043600 (program): Numbers whose base-4 representation has exactly 9 runs.
- A043601 (program): Numbers whose base-4 representation has exactly 10 runs.
- A043602 (program): Numbers whose base-5 representation has exactly 2 runs.
- A043603 (program): Numbers whose base-5 representation has exactly 3 runs.
- A043604 (program): Numbers whose base-5 representation has exactly 4 runs.
- A043605 (program): Numbers whose base-5 representation has exactly 5 runs.
- A043606 (program): Numbers whose base-5 representation has exactly 6 runs.
- A043607 (program): Numbers whose base-5 representation has exactly 7 runs.
- A043608 (program): Numbers whose base-5 representation has exactly 8 runs.
- A043609 (program): Numbers whose base-5 representation has exactly 9 runs.
- A043610 (program): Numbers whose base-6 representation has exactly 2 runs.
- A043611 (program): Numbers whose base-6 representation has exactly 3 runs.
- A043612 (program): Numbers whose base-6 representation has exactly 4 runs.
- A043613 (program): Numbers whose base-6 representation has exactly 5 runs.
- A043614 (program): Numbers whose base-6 representation has exactly 6 runs.
- A043615 (program): Numbers whose base-6 representation has exactly 7 runs.
- A043616 (program): Numbers whose base-6 representation has exactly 8 runs.
- A043620 (program): Numbers whose base-7 representation has exactly 5 runs.
- A043621 (program): Numbers whose base-7 representation has exactly 6 runs.
- A043622 (program): Numbers whose base-7 representation has exactly 7 runs.
- A043623 (program): Numbers whose base-7 representation has exactly 8 runs.
- A043624 (program): Numbers whose base-8 representation has exactly 2 runs.
- A043625 (program): Numbers whose base-8 representation has exactly 3 runs.
- A043626 (program): Numbers whose base-8 representation has exactly 4 runs.
- A043627 (program): Numbers whose base-8 representation has exactly 5 runs.
- A043628 (program): Numbers whose base-8 representation has exactly 6 runs.
- A043629 (program): Numbers whose base-8 representation has exactly 7 runs.
- A043630 (program): Numbers whose base-8 representation has exactly 8 runs.
- A043632 (program): Numbers whose base-9 representation has exactly 3 runs.
- A043633 (program): Numbers whose base-9 representation has exactly 4 runs.
- A043634 (program): Numbers whose base-9 representation has exactly 5 runs.
- A043635 (program): Numbers whose base-9 representation has exactly 6 runs.
- A043636 (program): Numbers whose base-9 representation has exactly 7 runs.
- A043637 (program): Numbers whose base-9 representation has exactly 8 runs.
- A043639 (program): Numbers whose base-10 representation has exactly 3 runs.
- A043640 (program): Numbers whose base-10 representation has exactly 4 runs.
- A043641 (program): Numbers whose base-10 representation has exactly 5 runs.
- A043642 (program): Numbers whose base-10 representation has exactly 6 runs.
- A043643 (program): Numbers whose base-10 representation has exactly 7 runs.
- A043644 (program): Numbers whose base-10 representation has exactly 8 runs.
- A043645 (program): Numbers whose base-11 representation has exactly 2 runs.
- A043647 (program): Numbers whose base-11 representation has exactly 4 runs.
- A043648 (program): Numbers whose base-11 representation has exactly 5 runs.
- A043649 (program): Numbers whose base-11 representation has exactly 6 runs.
- A043650 (program): Numbers whose base-11 representation has exactly 7 runs.
- A043651 (program): Numbers whose base-12 representation has exactly 2 runs.
- A043652 (program): Numbers whose base-12 representation has exactly 3 runs.
- A043653 (program): Numbers whose base-12 representation has exactly 4 runs.
- A043654 (program): Numbers whose base-12 representation has exactly 5 runs.
- A043655 (program): Numbers whose base-12 representation has exactly 6 runs.
- A043656 (program): Numbers whose base-12 representation has exactly 7 runs.
- A043657 (program): Numbers whose base-13 representation has exactly 2 runs.
- A043659 (program): Numbers whose base-13 representation has exactly 4 runs.
- A043661 (program): Numbers whose base-13 representation has exactly 6 runs.
- A043662 (program): Numbers whose base-13 representation has exactly 7 runs.
- A043663 (program): Numbers whose base-14 representation has exactly 2 runs.
- A043665 (program): Numbers whose base-14 representation has exactly 4 runs.
- A043667 (program): Numbers whose base-14 representation has exactly 6 runs.
- A043668 (program): Numbers whose base-14 representation has exactly 7 runs.
- A043669 (program): Numbers whose base-15 representation has exactly 2 runs.
- A043671 (program): Numbers whose base-15 representation has exactly 4 runs.
- A043672 (program): Numbers whose base-15 representation has exactly 5 runs.
- A043673 (program): Numbers whose base-15 representation has exactly 6 runs.
- A043674 (program): Numbers whose base-15 representation has exactly 7 runs.
- A043675 (program): Numbers whose base-16 representation has exactly 2 runs.
- A043677 (program): Numbers whose base-16 representation has exactly 4 runs.
- A043678 (program): Numbers whose base-16 representation has exactly 5 runs.
- A043679 (program): Numbers whose base-16 representation has exactly 6 runs.
- A043680 (program): Numbers whose base-16 representation has exactly 7 runs.
- A043682 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 4 runs).
- A043683 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 6 runs).
- A043684 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 8 runs).
- A043685 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 10 runs).
- A043686 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 12 runs).
- A043687 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 3 runs.
- A043688 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 5 runs.
- A043689 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 7 runs.
- A043690 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 9 runs.
- A043691 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 11 runs.
- A043692 (program): Numbers whose base-3 representation has an even number of runs.
- A043693 (program): Numbers whose base-4 representation has an even number of runs.
- A043694 (program): Numbers whose base-5 representation has an even number of runs.
- A043695 (program): Numbers whose base-6 representation has an even number of runs.
- A043697 (program): Numbers whose base-8 representation has an even number of runs.
- A043698 (program): Numbers whose base-9 representation has an even number of runs.
- A043699 (program): a(n)= A000129(n)*A000129(2*n) where A000129(n) are the Pell numbers.
- A043700 (program): Numbers whose base-11 representation has an even number of runs.
- A043701 (program): Numbers whose base-12 representation has an even number of runs.
- A043702 (program): Numbers whose base-13 representation has an even number of runs.
- A043703 (program): Numbers whose base-14 representation has an even number of runs.
- A043704 (program): Numbers whose base-15 representation has an even number of runs.
- A043705 (program): Numbers whose base-16 representation has an even number of runs.
- A043706 (program): Numbers whose base-3 representation has an odd number of runs.
- A043707 (program): Numbers whose base-4 representation has an odd number of runs.
- A043708 (program): Numbers whose base-5 representation has an odd number of runs.
- A043709 (program): Numbers whose base-6 representation has an odd number of runs.
- A043711 (program): Numbers whose base-8 representation has an odd number of runs.
- A043721 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 3.
- A043722 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 3.
- A043723 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 3.
- A043724 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 4.
- A043725 (program): Numbers n such that number of runs in base 2 representation of n is congruent to 1 mod 4.
- A043726 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 4.
- A043727 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 4.
- A043728 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 5.
- A043729 (program): Numbers n such that number of runs in base 2 representation of n is congruent to 1 mod 5.
- A043730 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 5.
- A043731 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 5.
- A043732 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 5.
- A043733 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 6.
- A043734 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 6.
- A043735 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 6.
- A043736 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 6.
- A043737 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 6.
- A043738 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 6.
- A043739 (program): Number of runs in the base 2 representation of n is congruent to 0 mod 7.
- A043740 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 7.
- A043741 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 7.
- A043742 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 7.
- A043743 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 7.
- A043744 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 7.
- A043745 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 7.
- A043746 (program): Number of runs in the base 2 representation of n is congruent to 0 mod 8.
- A043747 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 8.
- A043748 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 8.
- A043749 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 8.
- A043750 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 8.
- A043751 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 8.
- A043752 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 8.
- A043753 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 8.
- A043755 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 9.
- A043756 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 9.
- A043757 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 9.
- A043758 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 9.
- A043759 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 9.
- A043760 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 9.
- A043761 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 9.
- A043762 (program): Number of runs in the base 2 representation of n is congruent to 8 mod 9.
- A043763 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 10.
- A043764 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 10.
- A043765 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 10.
- A043766 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 10.
- A043767 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 10.
- A043768 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 10.
- A043769 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 10.
- A043770 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 10.
- A043771 (program): Number of runs in the base 2 representation of n is congruent to 8 mod 10.
- A043773 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 3.
- A043774 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 3.
- A043775 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 3.
- A043776 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 4.
- A043777 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 4.
- A043778 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 4.
- A043779 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 4.
- A043780 (program): Number of runs in the base 3 representation of n is congruent to 0 mod 5.
- A043781 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 5.
- A043782 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 5.
- A043783 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 5.
- A043784 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 5.
- A043785 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 6.
- A043787 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 6.
- A043788 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 6.
- A043789 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 6.
- A043790 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 6.
- A043791 (program): Numbers whose number of runs in base 3 is congruent to 0 (mod 7).
- A043793 (program): Numbers whose number of runs in base 3 is congruent to 2 (mod 7).
- A043794 (program): Numbers whose number of runs in base 3 is congruent to 3 (mod 7).
- A043795 (program): Numbers whose number of runs in base 3 is congruent to 4 (mod 7).
- A043796 (program): Numbers whose number of runs in base 3 is congruent to 5 (mod 7).
- A043797 (program): Numbers whose number of runs in base 3 is congruent to 6 (mod 7).
- A043798 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 8.
- A043800 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 8.
- A043801 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 8.
- A043802 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 8.
- A043803 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 8.
- A043804 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 8.
- A043805 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 8.
- A043806 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 9.
- A043808 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 9.
- A043809 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 9.
- A043810 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 9.
- A043811 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 9.
- A043812 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 9.
- A043813 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 9.
- A043814 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 8 mod 9.
- A043815 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 10.
- A043817 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 10.
- A043818 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 10.
- A043819 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 10.
- A043820 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 10.
- A043821 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 10.
- A043822 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 10.
- A043823 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 8 mod 10.
- A043824 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 9 mod 10.
- A043825 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 3.
- A043826 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 3.
- A043827 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 3.
- A043828 (program): Number of runs in the base 4 representation of n is congruent to 0 mod 4.
- A043829 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 4.
- A043830 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 4.
- A043831 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 4.
- A043832 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 5.
- A043833 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 5.
- A043834 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 5.
- A043835 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 5.
- A043836 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 5.
- A043837 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 6.
- A043838 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 6.
- A043839 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 6.
- A043840 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 6.
- A043841 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 6.
- A043842 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 6.
- A043843 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 7.
- A043845 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 7.
- A043846 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 7.
- A043847 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 7.
- A043848 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 7.
- A043849 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 7.
- A043850 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 8.
- A043852 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 8.
- A043853 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 8.
- A043854 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 8.
- A043855 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 8.
- A043856 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 8.
- A043857 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 7 mod 8.
- A043858 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 9.
- A043861 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 9.
- A043862 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 9.
- A043863 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 9.
- A043864 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 9.
- A043865 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 7 mod 9.
- A043866 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 8 mod 9.
- A043867 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 10.
- A043869 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 10.
- A043870 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 10.
- A043871 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 10.
- A043872 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 10.
- A043873 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 10.
- A043874 (program): Numbers k such that the number of runs in the base-4 representation of k is congruent to 7 (mod 10).
- A043875 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 8 mod 10.
- A043876 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 9 mod 10.
- A043914 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-7 representation of k but not of k+1.
- A043953 (program): Numbers k such that 3 and 7 occur juxtaposed in the base-8 representation of k but not of k+1.
- A044030 (program): Numbers k such that 4 and 9 occur juxtaposed in the base-10 representation of k but not of k+1.
- A044042 (program): Primes congruent to {1, 2, 3, 4, 5} (mod 7).
- A044051 (program): a(n) = (s(n)+1)/2, where s=A006995 (base-2 palindromes).
- A044052 (program): Numbers n such that string 0,0 occurs in the base 3 representation of n but not of n-1.
- A044057 (program): Numbers n such that string 1,2 occurs in the base 3 representation of n but not of n-1.
- A044061 (program): Numbers n such that string 0,0 occurs in the base 4 representation of n but not of n-1.
- A044077 (program): Numbers n such that string 0,0 occurs in the base 5 representation of n but not of n-1.
- A044089 (program): Numbers n such that string 2,2 occurs in the base 5 representation of n but not of n-1.
- A044095 (program): Numbers n such that string 3,3 occurs in the base 5 representation of n but not of n-1.
- A044096 (program): Numbers n such that string 3,4 occurs in the base 5 representation of n but not of n-1.
- A044102 (program): Multiples of 36.
- A044103 (program): Numbers n such that string 0,1 occurs in the base 6 representation of n but not of n-1.
- A044104 (program): Numbers n such that string 0,2 occurs in the base 6 representation of n but not of n-1.
- A044105 (program): Numbers n such that string 0,3 occurs in the base 6 representation of n but not of n-1.
- A044106 (program): Numbers n such that string 0,4 occurs in the base 6 representation of n but not of n-1.
- A044107 (program): Numbers n such that string 0,5 occurs in the base 6 representation of n but not of n-1.
- A044114 (program): Numbers n such that string 2,0 occurs in the base 6 representation of n but not of n-1.
- A044131 (program): Numbers n such that string 4,5 occurs in the base 6 representation of n but not of n-1.
- A044138 (program): Numbers n such that string 0,0 occurs in the base 7 representation of n but not of n-1.
- A044139 (program): Numbers n such that string 0,1 occurs in the base 7 representation of n but not of n-1.
- A044140 (program): Numbers k such that substring “02” occurs in the base-7 representation of k but not of k-1.
- A044141 (program): Numbers n such that string 0,3 occurs in the base 7 representation of n but not of n-1.
- A044142 (program): Numbers n such that string 0,4 occurs in the base 7 representation of n but not of n-1.
- A044143 (program): Numbers n such that string 0,5 occurs in the base 7 representation of n but not of n-1.
- A044144 (program): Numbers n such that string 0,6 occurs in the base 7 representation of n but not of n-1.
- A044146 (program): Numbers n such that string 1,1 occurs in the base 7 representation of n but not of n-1.
- A044154 (program): Numbers n such that string 2,2 occurs in the base 7 representation of n but not of n-1.
- A044162 (program): Numbers n such that string 3,3 occurs in the base 7 representation of n but not of n-1.
- A044170 (program): Numbers n such that string 4,4 occurs in the base 7 representation of n but not of n-1.
- A044175 (program): Numbers n such that string 5,2 occurs in the base 7 representation of n but not of n-1.
- A044176 (program): Numbers n such that string 5,3 occurs in the base 7 representation of n but not of n-1.
- A044177 (program): Numbers n such that string 5,4 occurs in the base 7 representation of n but not of n-1.
- A044178 (program): Numbers n such that string 5,5 occurs in the base 7 representation of n but not of n-1.
- A044179 (program): Numbers n such that string 5,6 occurs in the base 7 representation of n but not of n-1.
- A044180 (program): Numbers n such that string 6,0 occurs in the base 7 representation of n but not of n-1.
- A044181 (program): Numbers n such that string 6,1 occurs in the base 7 representation of n but not of n-1.
- A044182 (program): Numbers n such that string 6,2 occurs in the base 7 representation of n but not of n-1.
- A044183 (program): Numbers n such that string 6,3 occurs in the base 7 representation of n but not of n-1.
- A044184 (program): Numbers n such that string 6,4 occurs in the base 7 representation of n but not of n-1.
- A044185 (program): Numbers n such that string 6,5 occurs in the base 7 representation of n but not of n-1.
- A044186 (program): Numbers n such that string 6,6 occurs in the base 7 representation of n but not of n-1.
- A044187 (program): Numbers n such that string 0,0 occurs in the base 8 representation of n but not of n-1.
- A044188 (program): Numbers n such that string 0,1 occurs in the base 8 representation of n but not of n-1.
- A044189 (program): Numbers n such that string 0,2 occurs in the base 8 representation of n but not of n-1.
- A044190 (program): Numbers n such that string 0,3 occurs in the base 8 representation of n but not of n-1.
- A044191 (program): Numbers n such that string 0,4 occurs in the base 8 representation of n but not of n-1.
- A044192 (program): Numbers n such that string 0,5 occurs in the base 8 representation of n but not of n-1.
- A044193 (program): Numbers n such that string 0,6 occurs in the base 8 representation of n but not of n-1.
- A044194 (program): Numbers n such that string 0,7 occurs in the base 8 representation of n but not of n-1.
- A044219 (program): Numbers n such that string 4,0 occurs in the base 8 representation of n but not of n-1.
- A044224 (program): Numbers n such that string 4,5 occurs in the base 8 representation of n but not of n-1.
- A044225 (program): Numbers n such that string 4,6 occurs in the base 8 representation of n but not of n-1.
- A044226 (program): Numbers n such that string 4,7 occurs in the base 8 representation of n but not of n-1.
- A044227 (program): Numbers n such that string 5,0 occurs in the base 8 representation of n but not of n-1.
- A044228 (program): Numbers n such that string 5,1 occurs in the base 8 representation of n but not of n-1.
- A044229 (program): Numbers n such that string 5,2 occurs in the base 8 representation of n but not of n-1.
- A044230 (program): Numbers n such that string 5,3 occurs in the base 8 representation of n but not of n-1.
- A044231 (program): Numbers n such that string 5,4 occurs in the base 8 representation of n but not of n-1.
- A044232 (program): Numbers n such that string 5,5 occurs in the base 8 representation of n but not of n-1.
- A044233 (program): Numbers n such that string 5,6 occurs in the base 8 representation of n but not of n-1.
- A044235 (program): Numbers n such that string 6,0 occurs in the base 8 representation of n but not of n-1.
- A044236 (program): Numbers n such that string 6,1 occurs in the base 8 representation of n but not of n-1.
- A044237 (program): Numbers n such that string 6,2 occurs in the base 8 representation of n but not of n-1.
- A044238 (program): Numbers n such that string 6,3 occurs in the base 8 representation of n but not of n-1.
- A044239 (program): Numbers n such that string 6,4 occurs in the base 8 representation of n but not of n-1.
- A044240 (program): Numbers n such that string 6,5 occurs in the base 8 representation of n but not of n-1.
- A044241 (program): Numbers n such that string 6,6 occurs in the base 8 representation of n but not of n-1.
- A044242 (program): Numbers n such that string 6,7 occurs in the base 8 representation of n but not of n-1.
- A044243 (program): Numbers n such that string 7,0 occurs in the base 8 representation of n but not of n-1.
- A044244 (program): Numbers n such that string 7,1 occurs in the base 8 representation of n but not of n-1.
- A044245 (program): Numbers n such that string 7,2 occurs in the base 8 representation of n but not of n-1.
- A044246 (program): Numbers n such that string 7,3 occurs in the base 8 representation of n but not of n-1.
- A044248 (program): Numbers n such that string 7,5 occurs in the base 8 representation of n but not of n-1.
- A044249 (program): Numbers n such that string 7,6 occurs in the base 8 representation of n but not of n-1.
- A044251 (program): Numbers n such that string 0,0 occurs in the base 9 representation of n but not of n-1.
- A044252 (program): Numbers n such that string 0,1 occurs in the base 9 representation of n but not of n-1.
- A044253 (program): Numbers n such that string 0,2 occurs in the base 9 representation of n but not of n-1.
- A044254 (program): Numbers n such that string 0,3 occurs in the base 9 representation of n but not of n-1.
- A044255 (program): Numbers n such that string 0,4 occurs in the base 9 representation of n but not of n-1.
- A044256 (program): Numbers n such that string 0,5 occurs in the base 9 representation of n but not of n-1.
- A044257 (program): Numbers n such that string 0,6 occurs in the base 9 representation of n but not of n-1.
- A044258 (program): Numbers n such that string 0,7 occurs in the base 9 representation of n but not of n-1.
- A044259 (program): Numbers n such that string 0,8 occurs in the base 9 representation of n but not of n-1.
- A044261 (program): Numbers n such that string 1,1 occurs in the base 9 representation of n but not of n-1.
- A044271 (program): Numbers n such that string 2,2 occurs in the base 9 representation of n but not of n-1.
- A044286 (program): Numbers n such that string 3,8 occurs in the base 9 representation of n but not of n-1.
- A044287 (program): Numbers n such that string 4,0 occurs in the base 9 representation of n but not of n-1.
- A044288 (program): Numbers n such that string 4,1 occurs in the base 9 representation of n but not of n-1.
- A044289 (program): Numbers n such that string 4,2 occurs in the base 9 representation of n but not of n-1.
- A044290 (program): Numbers n such that string 4,3 occurs in the base 9 representation of n but not of n-1.
- A044291 (program): Numbers n such that string 4,4 occurs in the base 9 representation of n but not of n-1.
- A044292 (program): Numbers n such that string 4,5 occurs in the base 9 representation of n but not of n-1.
- A044293 (program): Numbers n such that string 4,6 occurs in the base 9 representation of n but not of n-1.
- A044294 (program): Numbers n such that string 4,7 occurs in the base 9 representation of n but not of n-1.
- A044295 (program): Numbers n such that string 4,8 occurs in the base 9 representation of n but not of n-1.
- A044296 (program): Numbers n such that string 5,0 occurs in the base 9 representation of n but not of n-1.
- A044297 (program): Numbers n such that string 5,1 occurs in the base 9 representation of n but not of n-1.
- A044298 (program): Numbers n such that string 5,2 occurs in the base 9 representation of n but not of n-1.
- A044299 (program): Numbers n such that string 5,3 occurs in the base 9 representation of n but not of n-1.
- A044300 (program): Numbers n such that string 5,4 occurs in the base 9 representation of n but not of n-1.
- A044301 (program): Numbers n such that string 5,5 occurs in the base 9 representation of n but not of n-1.
- A044302 (program): Numbers n such that string 5,6 occurs in the base 9 representation of n but not of n-1.
- A044303 (program): Numbers n such that string 5,7 occurs in the base 9 representation of n but not of n-1.
- A044304 (program): Numbers n such that string 5,8 occurs in the base 9 representation of n but not of n-1.
- A044306 (program): Numbers n such that string 6,1 occurs in the base 9 representation of n but not of n-1.
- A044307 (program): Numbers n such that string 6,2 occurs in the base 9 representation of n but not of n-1.
- A044308 (program): Numbers n such that string 6,3 occurs in the base 9 representation of n but not of n-1.
- A044309 (program): Numbers n such that string 6,4 occurs in the base 9 representation of n but not of n-1.
- A044310 (program): Numbers n such that string 6,5 occurs in the base 9 representation of n but not of n-1.
- A044311 (program): Numbers n such that string 6,6 occurs in the base 9 representation of n but not of n-1.
- A044313 (program): Numbers n such that string 6,8 occurs in the base 9 representation of n but not of n-1.
- A044314 (program): Numbers n such that string 7,0 occurs in the base 9 representation of n but not of n-1.
- A044315 (program): Numbers n such that string 7,1 occurs in the base 9 representation of n but not of n-1.
- A044317 (program): Numbers n such that string 7,3 occurs in the base 9 representation of n but not of n-1.
- A044318 (program): Numbers n such that string 7,4 occurs in the base 9 representation of n but not of n-1.
- A044319 (program): Numbers n such that string 7,5 occurs in the base 9 representation of n but not of n-1.
- A044320 (program): Numbers n such that string 7,6 occurs in the base 9 representation of n but not of n-1.
- A044321 (program): Numbers n such that string 7,7 occurs in the base 9 representation of n but not of n-1.
- A044322 (program): Numbers n such that the string 7,8 occurs in the base 9 representation of n but not of n-1.
- A044323 (program): Numbers n such that string 8,0 occurs in the base 9 representation of n but not of n-1.
- A044324 (program): Numbers n such that string 8,1 occurs in the base 9 representation of n but not of n-1.
- A044325 (program): Numbers n such that string 8,2 occurs in the base 9 representation of n but not of n-1.
- A044326 (program): Numbers n such that string 8,3 occurs in the base 9 representation of n but not of n-1.
- A044327 (program): Numbers n such that string 8,4 occurs in the base 9 representation of n but not of n-1.
- A044328 (program): Numbers n such that string 8,5 occurs in the base 9 representation of n but not of n-1.
- A044329 (program): Numbers n such that string 8,6 occurs in the base 9 representation of n but not of n-1.
- A044331 (program): Numbers n such that string 8,8 occurs in the base 9 representation of n but not of n-1.
- A044332 (program): Numbers n such that string 0,0 occurs in the base 10 representation of n but not of n-1.
- A044333 (program): Numbers n such that string 0,1 occurs in the base 10 representation of n but not of n-1.
- A044334 (program): Numbers n such that string 0,2 occurs in the base 10 representation of n but not of n-1.
- A044335 (program): Numbers n such that string 0,3 occurs in the base 10 representation of n but not of n-1.
- A044336 (program): Numbers n such that string 0,4 occurs in the base 10 representation of n but not of n-1.
- A044337 (program): Numbers n such that string 0,5 occurs in the base 10 representation of n but not of n-1.
- A044338 (program): Numbers n such that string 0,6 occurs in the base 10 representation of n but not of n-1.
- A044339 (program): Numbers n such that string 0,7 occurs in the base 10 representation of n but not of n-1.
- A044340 (program): Numbers n such that string 0,8 occurs in the base 10 representation of n but not of n-1.
- A044341 (program): Numbers n such that string 0,9 occurs in the base 10 representation of n but not of n-1.
- A044352 (program): Numbers n such that string 2,0 occurs in the base 10 representation of n but not of n-1.
- A044367 (program): Numbers n such that string 3,5 occurs in the base 10 representation of n but not of n-1.
- A044368 (program): Numbers n such that string 3,6 occurs in the base 10 representation of n but not of n-1.
- A044369 (program): Numbers n such that string 3,7 occurs in the base 10 representation of n but not of n-1.
- A044370 (program): Numbers n such that string 3,8 occurs in the base 10 representation of n but not of n-1.
- A044371 (program): Numbers n such that string 3,9 occurs in the base 10 representation of n but not of n-1.
- A044372 (program): Numbers n such that string 4,0 occurs in the base 10 representation of n but not of n-1.
- A044373 (program): Numbers n such that string 4,1 occurs in the base 10 representation of n but not of n-1.
- A044374 (program): Numbers n such that string 4,2 occurs in the base 10 representation of n but not of n-1.
- A044375 (program): Numbers n such that string 4,3 occurs in the base 10 representation of n but not of n-1.
- A044376 (program): Numbers n such that string 4,4 occurs in the base 10 representation of n but not of n-1.
- A044378 (program): Numbers n such that string 4,6 occurs in the base 10 representation of n but not of n-1.
- A044379 (program): Numbers n such that string 4,7 occurs in the base 10 representation of n but not of n-1.
- A044380 (program): Numbers n such that string 4,8 occurs in the base 10 representation of n but not of n-1.
- A044381 (program): Numbers n such that string 4,9 occurs in the base 10 representation of n but not of n-1.
- A044382 (program): Numbers n such that string 5,0 occurs in the base 10 representation of n but not of n-1.
- A044383 (program): Numbers n such that string 5,1 occurs in the base 10 representation of n but not of n-1.
- A044384 (program): Numbers n such that string 5,2 occurs in the base 10 representation of n but not of n-1.
- A044385 (program): Numbers n such that string 5,3 occurs in the base 10 representation of n but not of n-1.
- A044386 (program): Numbers n such that string 5,4 occurs in the base 10 representation of n but not of n-1.
- A044387 (program): Numbers n such that string 5,5 occurs in the base 10 representation of n but not of n-1.
- A044388 (program): Numbers n such that string 5,6 occurs in the base 10 representation of n but not of n-1.
- A044389 (program): Numbers n such that string 5,7 occurs in the base 10 representation of n but not of n-1.
- A044390 (program): Numbers n such that string 5,8 occurs in the base 10 representation of n but not of n-1.
- A044391 (program): Numbers n such that string 5,9 occurs in the base 10 representation of n but not of n-1.
- A044392 (program): Numbers n such that string 6,0 occurs in the base 10 representation of n but not of n-1.
- A044393 (program): Numbers n such that string 6,1 occurs in the base 10 representation of n but not of n-1.
- A044394 (program): Numbers n such that string 6,2 occurs in the base 10 representation of n but not of n-1.
- A044395 (program): Numbers n such that string 6,3 occurs in the base 10 representation of n but not of n-1.
- A044396 (program): Numbers n such that string 6,4 occurs in the base 10 representation of n but not of n-1.
- A044397 (program): Numbers n such that string 6,5 occurs in the base 10 representation of n but not of n-1.
- A044398 (program): Numbers n such that string 6,6 occurs in the base 10 representation of n but not of n-1.
- A044399 (program): Numbers n such that string 6,7 occurs in the base 10 representation of n but not of n-1.
- A044400 (program): Numbers n such that string 6,8 occurs in the base 10 representation of n but not of n-1.
- A044401 (program): Numbers n such that string 6,9 occurs in the base 10 representation of n but not of n-1.
- A044402 (program): Numbers n such that string 7,0 occurs in the base 10 representation of n but not of n-1.
- A044403 (program): Numbers n such that string 7,1 occurs in the base 10 representation of n but not of n-1.
- A044404 (program): Numbers n such that string 7,2 occurs in the base 10 representation of n but not of n-1.
- A044405 (program): Numbers n such that string 7,3 occurs in the base 10 representation of n but not of n-1.
- A044406 (program): Numbers n such that string 7,4 occurs in the base 10 representation of n but not of n-1.
- A044407 (program): Numbers n such that string 7,5 occurs in the base 10 representation of n but not of n-1.
- A044408 (program): Numbers n such that string 7,6 occurs in the base 10 representation of n but not of n-1.
- A044409 (program): Numbers n such that string 7,7 occurs in the base 10 representation of n but not of n-1.
- A044410 (program): Numbers n such that string 7,8 occurs in the base 10 representation of n but not of n-1.
- A044411 (program): Numbers n such that string 7,9 occurs in the base 10 representation of n but not of n-1.
- A044412 (program): Numbers n such that string 8,0 occurs in the base 10 representation of n but not of n-1.
- A044413 (program): Numbers n such that string 8,1 occurs in the base 10 representation of n but not of n-1.
- A044414 (program): Numbers n such that string 8,2 occurs in the base 10 representation of n but not of n-1.
- A044415 (program): Numbers n such that string 8,3 occurs in the base 10 representation of n but not of n-1.
- A044416 (program): Numbers n such that string ‘84’ occurs in the base 10 representation of n but not of n-1.
- A044417 (program): Numbers n such that string 8,5 occurs in the base 10 representation of n but not of n-1.
- A044418 (program): Numbers n such that string 8,6 occurs in the base 10 representation of n but not of n-1.
- A044419 (program): Numbers n such that string 8,7 occurs in the base 10 representation of n but not of n-1.
- A044420 (program): Numbers n such that string 8,8 occurs in the base 10 representation of n but not of n-1.
- A044421 (program): Numbers n such that string 8,9 occurs in the base 10 representation of n but not of n-1.
- A044422 (program): Numbers n such that string 9,0 occurs in the base 10 representation of n but not of n-1.
- A044423 (program): Numbers n such that string 9,1 occurs in the base 10 representation of n but not of n-1.
- A044424 (program): Numbers n such that string 9,2 occurs in the base 10 representation of n but not of n-1.
- A044425 (program): Numbers n such that string 9,3 occurs in the base 10 representation of n but not of n-1.
- A044426 (program): Numbers n such that string 9,4 occurs in the base 10 representation of n but not of n-1.
- A044427 (program): Numbers n such that string 9,5 occurs in the base 10 representation of n but not of n-1.
- A044428 (program): Numbers n such that string 9,6 occurs in the base 10 representation of n but not of n-1.
- A044429 (program): Numbers n such that string 9,7 occurs in the base 10 representation of n but not of n-1.
- A044430 (program): Numbers n such that string 9,8 occurs in the base 10 representation of n but not of n-1.
- A044431 (program): Numbers n such that string 9,9 occurs in the base 10 representation of n but not of n-1.
- A044432 (program): a(n) is the number whose base-2 representation is d(0)d(1)…d(n), where d=A005614 (the infinite Fibonacci word).
- A044436 (program): Numbers n such that string 1,0 occurs in the base 3 representation of n but not of n+1.
- A044438 (program): Numbers n such that string 1,2 occurs in the base 3 representation of n but not of n+1.
- A044441 (program): Numbers n such that string 2,2 occurs in the base 3 representation of n but not of n+1.
- A044457 (program): Numbers n such that string 3,3 occurs in the base 4 representation of n but not of n+1.
- A044463 (program): Numbers n such that string 1,0 occurs in the base 5 representation of n but not of n+1.
- A044470 (program): Numbers n such that string 2,2 occurs in the base 5 representation of n but not of n+1.
- A044476 (program): Numbers n such that string 3,3 occurs in the base 5 representation of n but not of n+1.
- A044484 (program): Numbers n such that string 0,1 occurs in the base 6 representation of n but not of n+1.
- A044485 (program): Numbers n such that string 0,2 occurs in the base 6 representation of n but not of n+1.
- A044486 (program): Numbers n such that string 0,3 occurs in the base 6 representation of n but not of n+1.
- A044487 (program): Numbers n such that string 0,4 occurs in the base 6 representation of n but not of n+1.
- A044488 (program): Numbers n such that string 0,5 occurs in the base 6 representation of n but not of n+1.
- A044489 (program): Numbers n such that string 1,0 occurs in the base 6 representation of n but not of n+1.
- A044494 (program): Numbers n such that string 1,5 occurs in the base 6 representation of n but not of n+1.
- A044506 (program): Numbers n such that string 3,5 occurs in the base 6 representation of n but not of n+1.
- A044518 (program): Numbers k such that the string 5,5 occurs in the base-6 representation of k but not of k+1.
- A044520 (program): Numbers n such that string 0,1 occurs in the base 7 representation of n but not of n+1.
- A044521 (program): Numbers n such that string 0,2 occurs in the base 7 representation of n but not of n+1.
- A044522 (program): Numbers n such that string 0,3 occurs in the base 7 representation of n but not of n+1.
- A044523 (program): Numbers n such that string 0,4 occurs in the base 7 representation of n but not of n+1.
- A044525 (program): Numbers n such that string 0,6 occurs in the base 7 representation of n but not of n+1.
- A044526 (program): Numbers n such that string 1,0 occurs in the base 7 representation of n but not of n+1.
- A044527 (program): Numbers n such that string 1,1 occurs in the base 7 representation of n but not of n+1.
- A044535 (program): Numbers n such that string 2,2 occurs in the base 7 representation of n but not of n+1.
- A044543 (program): Numbers n such that string 3,3 occurs in the base 7 representation of n but not of n+1.
- A044551 (program): Numbers n such that string 4,4 occurs in the base 7 representation of n but not of n+1.
- A044556 (program): Numbers n such that string 5,2 occurs in the base 7 representation of n but not of n+1.
- A044557 (program): Numbers n such that string 5,3 occurs in the base 7 representation of n but not of n+1.
- A044558 (program): Numbers n such that string 5,4 occurs in the base 7 representation of n but not of n+1.
- A044559 (program): Numbers n such that string 5,5 occurs in the base 7 representation of n but not of n+1.
- A044560 (program): Numbers n such that string 5,6 occurs in the base 7 representation of n but not of n+1.
- A044561 (program): Numbers n such that string 6,0 occurs in the base 7 representation of n but not of n+1.
- A044562 (program): Numbers n such that string 6,1 occurs in the base 7 representation of n but not of n+1.
- A044563 (program): Numbers n such that string 6,2 occurs in the base 7 representation of n but not of n+1.
- A044564 (program): Numbers n such that string 6,3 occurs in the base 7 representation of n but not of n+1.
- A044565 (program): Numbers n such that string 6,4 occurs in the base 7 representation of n but not of n+1.
- A044566 (program): Numbers n such that string 6,5 occurs in the base 7 representation of n but not of n+1.
- A044568 (program): Numbers n such that string 0,0 occurs in the base 8 representation of n but not of n+1.
- A044569 (program): Numbers n such that string 0,1 occurs in the base 8 representation of n but not of n+1.
- A044570 (program): Numbers n such that string 0,2 occurs in the base 8 representation of n but not of n+1.
- A044571 (program): Numbers n such that string 0,3 occurs in the base 8 representation of n but not of n+1.
- A044573 (program): Numbers n such that string 0,5 occurs in the base 8 representation of n but not of n+1.
- A044574 (program): Numbers n such that string 0,6 occurs in the base 8 representation of n but not of n+1.
- A044575 (program): Numbers n such that string 0,7 occurs in the base 8 representation of n but not of n+1.
- A044576 (program): Numbers n such that string 1,0 occurs in the base 8 representation of n but not of n+1.
- A044599 (program): Numbers n such that string 3,7 occurs in the base 8 representation of n but not of n+1.
- A044605 (program): Numbers n such that string 4,5 occurs in the base 8 representation of n but not of n+1.
- A044606 (program): Numbers n such that string 4,6 occurs in the base 8 representation of n but not of n+1.
- A044607 (program): Numbers n such that string 4,7 occurs in the base 8 representation of n but not of n+1.
- A044608 (program): Numbers n such that string 5,0 occurs in the base 8 representation of n but not of n+1.
- A044609 (program): Numbers n such that string 5,1 occurs in the base 8 representation of n but not of n+1.
- A044610 (program): Numbers n such that string 5,2 occurs in the base 8 representation of n but not of n+1.
- A044611 (program): Numbers n such that string 5,3 occurs in the base 8 representation of n but not of n+1.
- A044612 (program): Numbers n such that string 5,4 occurs in the base 8 representation of n but not of n+1.
- A044613 (program): Numbers n such that string 5,5 occurs in the base 8 representation of n but not of n+1.
- A044614 (program): Numbers n such that string 5,6 occurs in the base 8 representation of n but not of n+1.
- A044615 (program): Numbers n such that string 5,7 occurs in the base 8 representation of n but not of n+1.
- A044616 (program): Numbers n such that string 6,0 occurs in the base 8 representation of n but not of n+1.
- A044617 (program): Numbers n such that string 6,1 occurs in the base 8 representation of n but not of n+1.
- A044618 (program): Numbers n such that string 6,2 occurs in the base 8 representation of n but not of n+1.
- A044619 (program): Numbers n such that string 6,3 occurs in the base 8 representation of n but not of n+1.
- A044620 (program): Numbers n such that string 6,4 occurs in the base 8 representation of n but not of n+1.
- A044621 (program): Numbers n such that string 6,5 occurs in the base 8 representation of n but not of n+1.
- A044622 (program): Numbers n such that string 6,6 occurs in the base 8 representation of n but not of n+1.
- A044623 (program): Numbers n such that string 6,7 occurs in the base 8 representation of n but not of n+1.
- A044624 (program): Numbers n such that string 7,0 occurs in the base 8 representation of n but not of n+1.
- A044625 (program): Numbers n such that string 7,1 occurs in the base 8 representation of n but not of n+1.
- A044626 (program): Numbers n such that string 7,2 occurs in the base 8 representation of n but not of n+1.
- A044627 (program): Numbers n such that string 7,3 occurs in the base 8 representation of n but not of n+1.
- A044628 (program): Numbers n such that string 7,4 occurs in the base 8 representation of n but not of n+1.
- A044629 (program): Numbers n such that string 7,5 occurs in the base 8 representation of n but not of n+1.
- A044630 (program): Numbers n such that string 7,6 occurs in the base 8 representation of n but not of n+1.
- A044632 (program): Numbers n such that string 0,0 occurs in the base 9 representation of n but not of n+1.
- A044633 (program): Numbers n such that string 0,1 occurs in the base 9 representation of n but not of n+1.
- A044634 (program): Numbers n such that string 0,2 occurs in the base 9 representation of n but not of n+1.
- A044635 (program): Numbers n such that string 0,3 occurs in the base 9 representation of n but not of n+1.
- A044638 (program): Numbers n such that string 0,6 occurs in the base 9 representation of n but not of n+1.
- A044639 (program): Numbers n such that string 0,7 occurs in the base 9 representation of n but not of n+1.
- A044640 (program): Numbers n such that string 0,8 occurs in the base 9 representation of n but not of n+1.
- A044641 (program): Numbers n such that string 1,0 occurs in the base 9 representation of n but not of n+1.
- A044652 (program): Numbers n such that string 2,2 occurs in the base 9 representation of n but not of n+1.
- A044667 (program): Numbers n such that string 3,8 occurs in the base 9 representation of n but not of n+1.
- A044668 (program): Numbers n such that string 4,0 occurs in the base 9 representation of n but not of n+1.
- A044670 (program): Numbers n such that string 4,2 occurs in the base 9 representation of n but not of n+1.
- A044671 (program): Numbers n such that string 4,3 occurs in the base 9 representation of n but not of n+1.
- A044672 (program): Numbers n such that string 4,4 occurs in the base 9 representation of n but not of n+1.
- A044673 (program): Numbers n such that string 4,5 occurs in the base 9 representation of n but not of n+1.
- A044674 (program): Numbers n such that string 4,6 occurs in the base 9 representation of n but not of n+1.
- A044675 (program): Numbers n such that string 4,7 occurs in the base 9 representation of n but not of n+1.
- A044676 (program): Numbers n such that string 4,8 occurs in the base 9 representation of n but not of n+1.
- A044677 (program): Numbers n such that string 5,0 occurs in the base 9 representation of n but not of n+1.
- A044678 (program): Numbers n such that string 5,1 occurs in the base 9 representation of n but not of n+1.
- A044679 (program): Numbers n such that string 5,2 occurs in the base 9 representation of n but not of n+1.
- A044680 (program): Numbers n such that string 5,3 occurs in the base 9 representation of n but not of n+1.
- A044681 (program): Numbers n such that string 5,4 occurs in the base 9 representation of n but not of n+1.
- A044683 (program): Numbers n such that string 5,6 occurs in the base 9 representation of n but not of n+1.
- A044684 (program): Numbers n such that string 5,7 occurs in the base 9 representation of n but not of n+1.
- A044685 (program): Numbers n such that string 5,8 occurs in the base 9 representation of n but not of n+1.
- A044686 (program): Numbers n such that string 6,0 occurs in the base 9 representation of n but not of n+1.
- A044687 (program): Numbers n such that string 6,1 occurs in the base 9 representation of n but not of n+1.
- A044688 (program): Numbers n such that string 6,2 occurs in the base 9 representation of n but not of n+1.
- A044689 (program): Numbers n such that string 6,3 occurs in the base 9 representation of n but not of n+1.
- A044690 (program): Numbers n such that string 6,4 occurs in the base 9 representation of n but not of n+1.
- A044691 (program): Numbers n such that string 6,5 occurs in the base 9 representation of n but not of n+1.
- A044692 (program): Numbers n such that string 6,6 occurs in the base 9 representation of n but not of n+1.
- A044693 (program): Numbers n such that string 6,7 occurs in the base 9 representation of n but not of n+1.
- A044694 (program): Numbers n such that string 6,8 occurs in the base 9 representation of n but not of n+1.
- A044695 (program): Numbers n such that string 7,0 occurs in the base 9 representation of n but not of n+1.
- A044696 (program): Numbers n such that string 7,1 occurs in the base 9 representation of n but not of n+1.
- A044697 (program): Numbers n such that string 7,2 occurs in the base 9 representation of n but not of n+1.
- A044698 (program): Numbers n such that string 7,3 occurs in the base 9 representation of n but not of n+1.
- A044699 (program): Numbers n such that string 7,4 occurs in the base 9 representation of n but not of n+1.
- A044700 (program): Numbers n such that string 7,5 occurs in the base 9 representation of n but not of n+1.
- A044701 (program): Numbers n such that string 7,6 occurs in the base 9 representation of n but not of n+1.
- A044702 (program): Numbers n such that string 7,7 occurs in the base 9 representation of n but not of n+1.
- A044703 (program): Numbers n such that string 7,8 occurs in the base 9 representation of n but not of n+1.
- A044704 (program): Numbers n such that string 8,0 occurs in the base 9 representation of n but not of n+1.
- A044705 (program): Numbers n such that string 8,1 occurs in the base 9 representation of n but not of n+1.
- A044706 (program): Numbers n such that string 8,2 occurs in the base 9 representation of n but not of n+1.
- A044707 (program): Numbers n such that string 8,3 occurs in the base 9 representation of n but not of n+1.
- A044708 (program): Numbers n such that string 8,4 occurs in the base 9 representation of n but not of n+1.
- A044710 (program): Numbers n such that string 8,6 occurs in the base 9 representation of n but not of n+1.
- A044711 (program): Numbers n such that string 8,7 occurs in the base 9 representation of n but not of n+1.
- A044712 (program): Numbers n such that string 8,8 occurs in the base 9 representation of n but not of n+1.
- A044713 (program): Numbers n such that string 0,0 occurs in the base 10 representation of n but not of n+1.
- A044714 (program): Numbers n such that string 0,1 occurs in the base 10 representation of n but not of n+1.
- A044715 (program): Numbers n such that string 0,2 occurs in the base 10 representation of n but not of n+1.
- A044716 (program): Numbers n such that string 0,3 occurs in the base 10 representation of n but not of n+1.
- A044717 (program): Numbers n such that string 0,4 occurs in the base 10 representation of n but not of n+1.
- A044718 (program): Numbers n such that string 0,5 occurs in the base 10 representation of n but not of n+1.
- A044719 (program): Numbers n such that string 0,6 occurs in the base 10 representation of n but not of n+1.
- A044720 (program): Numbers n such that string 0,7 occurs in the base 10 representation of n but not of n+1.
- A044721 (program): Numbers n such that string 0,8 occurs in the base 10 representation of n but not of n+1.
- A044722 (program): Numbers n such that string 0,9 occurs in the base 10 representation of n but not of n+1.
- A044723 (program): Numbers n such that string 1,0 occurs in the base 10 representation of n but not of n+1.
- A044732 (program): Numbers n such that string 1,9 occurs in the base 10 representation of n but not of n+1.
- A044748 (program): Numbers n such that string 3,5 occurs in the base 10 representation of n but not of n+1.
- A044749 (program): Numbers n such that string 3,6 occurs in the base 10 representation of n but not of n+1.
- A044750 (program): Numbers n such that string 3,7 occurs in the base 10 representation of n but not of n+1.
- A044751 (program): Numbers n such that string 3,8 occurs in the base 10 representation of n but not of n+1.
- A044752 (program): Numbers n such that string 3,9 occurs in the base 10 representation of n but not of n+1.
- A044753 (program): Numbers n such that string 4,0 occurs in the base 10 representation of n but not of n+1.
- A044754 (program): Numbers n such that string 4,1 occurs in the base 10 representation of n but not of n+1.
- A044755 (program): Numbers n such that string 4,2 occurs in the base 10 representation of n but not of n+1.
- A044756 (program): Numbers n such that string 4,3 occurs in the base 10 representation of n but not of n+1.
- A044757 (program): Numbers n such that string 4,4 occurs in the base 10 representation of n but not of n+1.
- A044758 (program): Numbers n such that string 4,5 occurs in the base 10 representation of n but not of n+1.
- A044759 (program): Numbers n such that string 4,6 occurs in the base 10 representation of n but not of n+1.
- A044760 (program): Numbers n such that string 4,7 occurs in the base 10 representation of n but not of n+1.
- A044761 (program): Numbers n such that string 4,8 occurs in the base 10 representation of n but not of n+1.
- A044763 (program): Numbers n such that string 5,0 occurs in the base 10 representation of n but not of n+1.
- A044764 (program): Numbers n such that string 5,1 occurs in the base 10 representation of n but not of n+1.
- A044765 (program): Numbers n such that string 5,2 occurs in the base 10 representation of n but not of n+1.
- A044766 (program): Numbers n such that string 5,3 occurs in the base 10 representation of n but not of n+1.
- A044767 (program): Numbers n such that string 5,4 occurs in the base 10 representation of n but not of n+1.
- A044768 (program): Numbers n such that string 5,5 occurs in the base 10 representation of n but not of n+1.
- A044769 (program): Numbers n such that string 5,6 occurs in the base 10 representation of n but not of n+1.
- A044770 (program): Numbers n such that string 5,7 occurs in the base 10 representation of n but not of n+1.
- A044771 (program): Numbers n such that string 5,8 occurs in the base 10 representation of n but not of n+1.
- A044772 (program): Numbers n such that string 5,9 occurs in the base 10 representation of n but not of n+1.
- A044773 (program): Numbers n such that string 6,0 occurs in the base 10 representation of n but not of n+1.
- A044774 (program): Numbers n such that string 6,1 occurs in the base 10 representation of n but not of n+1.
- A044775 (program): Numbers n such that string 6,2 occurs in the base 10 representation of n but not of n+1.
- A044776 (program): Numbers n such that string 6,3 occurs in the base 10 representation of n but not of n+1.
- A044777 (program): Numbers n such that string 6,4 occurs in the base 10 representation of n but not of n+1.
- A044778 (program): Numbers n such that string 6,5 occurs in the base 10 representation of n but not of n+1.
- A044779 (program): Numbers n such that string 6,6 occurs in the base 10 representation of n but not of n+1.
- A044780 (program): Numbers n such that string 6,7 occurs in the base 10 representation of n but not of n+1.
- A044781 (program): Numbers n such that string 6,8 occurs in the base 10 representation of n but not of n+1.
- A044782 (program): Numbers n such that string 6,9 occurs in the base 10 representation of n but not of n+1.
- A044784 (program): Numbers n such that string 7,1 occurs in the base 10 representation of n but not of n+1.
- A044785 (program): Numbers n such that string 7,2 occurs in the base 10 representation of n but not of n+1.
- A044786 (program): Numbers n such that string 7,3 occurs in the base 10 representation of n but not of n+1.
- A044787 (program): Numbers n such that string 7,4 occurs in the base 10 representation of n but not of n+1.
- A044788 (program): Numbers n such that string 7,5 occurs in the base 10 representation of n but not of n+1.
- A044789 (program): Numbers n such that string 7,6 occurs in the base 10 representation of n but not of n+1.
- A044790 (program): Numbers n such that string 7,7 occurs in the base 10 representation of n but not of n+1.
- A044791 (program): Numbers n such that string 7,8 occurs in the base 10 representation of n but not of n+1.
- A044792 (program): Numbers n such that string 7,9 occurs in the base 10 representation of n but not of n+1.
- A044793 (program): Numbers n such that string 8,0 occurs in the base 10 representation of n but not of n+1.
- A044794 (program): Numbers n such that string 8,1 occurs in the base 10 representation of n but not of n+1.
- A044795 (program): Numbers n such that string 8,2 occurs in the base 10 representation of n but not of n+1.
- A044796 (program): Numbers n such that string 8,3 occurs in the base 10 representation of n but not of n+1.
- A044797 (program): Numbers n such that string 8,4 occurs in the base 10 representation of n but not of n+1.
- A044798 (program): Numbers n such that string 8,5 occurs in the base 10 representation of n but not of n+1.
- A044799 (program): Numbers n such that string 8,6 occurs in the base 10 representation of n but not of n+1.
- A044800 (program): Numbers n such that string 8,7 occurs in the base 10 representation of n but not of n+1.
- A044801 (program): Numbers n such that string 8,8 occurs in the base 10 representation of n but not of n+1.
- A044802 (program): Numbers n such that string 8,9 occurs in the base 10 representation of n but not of n+1.
- A044803 (program): Numbers n such that string 9,0 occurs in the base 10 representation of n but not of n+1.
- A044804 (program): Numbers m such that string 9,1 occurs in the base 10 representation of m but not of m+1.
- A044805 (program): Numbers n such that string 9,2 occurs in the base 10 representation of n but not of n+1.
- A044806 (program): Numbers k such that the digit string 9,3 occurs in the base-10 representation of k but not of k+1.
- A044807 (program): Numbers n such that string 9,4 occurs in the base 10 representation of n but not of n+1.
- A044808 (program): Numbers n such that string 9,5 occurs in the base 10 representation of n but not of n+1.
- A044809 (program): Numbers n such that string 9,6 occurs in the base 10 representation of n but not of n+1.
- A044810 (program): Numbers n such that string 9,7 occurs in the base 10 representation of n but not of n+1.
- A044811 (program): Numbers n such that string 9,8 occurs in the base 10 representation of n but not of n+1.
- A044812 (program): Numbers n such that string 9,9 occurs in the base 10 representation of n but not of n+1.
- A044819 (program): Positive integers having distinct base-8 run lengths.
- A044833 (program): Positive integers having more base-7 runs of even length than odd.
- A044834 (program): Positive integers having more base-8 runs of even length than odd.
- A044835 (program): Positive integers having more base-9 runs of even length than odd.
- A044837 (program): Positive integers having more base-11 runs of even length than odd.
- A044838 (program): Positive integers having more base-12 runs of even length than odd.
- A044839 (program): Positive integers having more base-13 runs of even length than odd.
- A044840 (program): Positive integers having more base-14 runs of even length than odd.
- A044842 (program): Positive integers having more base-16 runs of even length than odd.
- A044847 (program): Positive integers having no fewer base-6 runs of even length than odd.
- A044849 (program): Positive integers having no fewer base-8 runs of even length than odd.
- A044862 (program): Positive integers having the same number of base-6 runs of odd length as even.
- A044864 (program): Positive integers having the same number of base-8 runs of odd length as even.
- A044873 (program): Numbers having, in base 2, (sum of even run lengths)=(sum of odd run lengths).
- A044875 (program): Numbers having, in base 4, (sum of even run lengths)=(sum of odd run lengths).
- A044877 (program): Numbers having, in base 6, (sum of even run lengths)=(sum of odd run lengths).
- A044879 (program): Numbers having, in base 8, (sum of even run lengths)=(sum of odd run lengths).
- A044909 (program): Numbers whose base-8 run lengths alternate: odd, even, odd, …
- A044910 (program): Numbers whose base-9 run lengths alternate: odd, even, odd, …
- A044911 (program): Numbers whose base-10 run lengths alternate: odd, even, odd, …
- A044912 (program): Numbers whose base-11 run lengths alternate: odd, even, odd, …
- A044913 (program): Numbers whose base-12 run lengths alternate: odd, even, odd, …
- A044916 (program): Numbers whose base-15 run lengths alternate: odd, even, odd, …
- A044917 (program): Numbers whose base-16 run lengths alternate: odd, even, odd, …
- A044918 (program): Positive integers whose base-2 run lengths form a palindrome.
- A044924 (program): a(n) = so - se, where so(se) = sum of odd(even) base-2 run lengths of n.
- A044932 (program): a(n)=so-se, where so(se)=sum of odd(even) base 10 run lengths of n.
- A044933 (program): Number of runs of even length in the base-2 representation of n.
- A044936 (program): Number of runs of even length in base-5 representation of n.
- A044937 (program): Number of runs of even length in base-6 representation of n.
- A044939 (program): Number of runs of even length in base-8 representation of n.
- A044942 (program): Number of runs of odd length in the base-2 representation of n.
- A044943 (program): Runs of odd length in the base 3 representation of n.
- A044944 (program): Runs of odd length in the base 4 representation of n.
- A044945 (program): Runs of odd length in the base 5 representation of n.
- A044946 (program): Runs of odd length in the base 6 representation of n.
- A044948 (program): Runs of odd length in the base 8 representation of n.
- A044950 (program): Runs of odd length in the base 10 representation of n.
- A044951 (program): Numbers having a different number of ones and zeros in base 2.
- A044966 (program): Numbers having no 0’s and one 1 in base 3.
- A044967 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
- A044968 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
- A044969 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 4, respectively.
- A044970 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
- A044971 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
- A044972 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
- A044973 (program): Numbers whose base-3 representation includes one 0 and three 1’s.
- A044974 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 1 and 4, respectively.
- A044975 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
- A044976 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
- A044977 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
- A044978 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
- A044979 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 4, respectively.
- A044980 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
- A044981 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
- A044982 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
- A044983 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
- A044984 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 4, respectively.
- A044985 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 0, respectively.
- A044986 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 1, respectively.
- A044987 (program): Numbers k whose base-3 representation has four 0’s and two 1’s.
- A044988 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 3, respectively.
- A044989 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 4, respectively.
- A044990 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
- A044991 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
- A044992 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 3, respectively.
- A044993 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 4, respectively.
- A044994 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
- A044996 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 2, respectively.
- A044997 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 3, respectively.
- A044998 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 4, respectively.
- A044999 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
- A045000 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 1, respectively.
- A045001 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 2, respectively.
- A045002 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 3, respectively.
- A045003 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 4, respectively.
- A045004 (program): In base 3 the numbers of 0’s and 2’s are 3 and 0, respectively.
- A045005 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 1, respectively.
- A045006 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 2, respectively.
- A045007 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 3, respectively.
- A045008 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 4, respectively.
- A045009 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 0, respectively.
- A045010 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 1, respectively.
- A045011 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 2, respectively.
- A045012 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 3, respectively.
- A045014 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 1, respectively.
- A045015 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
- A045016 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
- A045017 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 4, respectively.
- A045018 (program): Numbers n with property that in base-4 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
- A045019 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
- A045020 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
- A045021 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 3, respectively.
- A045022 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 4, respectively.
- A045023 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
- A045024 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
- A045025 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
- A045026 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
- A045027 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 4, respectively.
- A045028 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
- A045029 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
- A045030 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
- A045031 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
- A045032 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 4, respectively.
- A045033 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 0, respectively.
- A045034 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 1, respectively.
- A045035 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 2, respectively.
- A045036 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 3, respectively.
- A045037 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 4, respectively.
- A045038 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
- A045039 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
- A045042 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
- A045047 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
- A045052 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 3 and 0, respectively.
- A045057 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 4 and 0, respectively.
- A045061 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 4 and 4, respectively.
- A045062 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 1, respectively.
- A045063 (program): Numbers k such that in base 4 representation the numbers of 0’s and 3’s are 0 and 2, respectively.
- A045064 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 3, respectively.
- A045065 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 4, respectively.
- A045066 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 0, respectively.
- A045067 (program): Numbers with the property that in base-4 representation the numbers of 0’s and 3’s are 1 and 1, respectively.
- A045068 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 2, respectively.
- A045069 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 3, respectively.
- A045070 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 4, respectively.
- A045071 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 0, respectively.
- A045072 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 1, respectively.
- A045073 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 2, respectively.
- A045074 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 3, respectively.
- A045075 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 4, respectively.
- A045076 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 0, respectively.
- A045077 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 1, respectively.
- A045078 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 2, respectively.
- A045079 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 3, respectively.
- A045080 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 4, respectively.
- A045081 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 0, respectively.
- A045082 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 1, respectively.
- A045083 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 2, respectively.
- A045084 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 3, respectively.
- A045085 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 4, respectively.
- A045086 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 1, respectively.
- A045087 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 2, respectively.
- A045088 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 3, respectively.
- A045089 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 4, respectively.
- A045090 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 0, respectively.
- A045091 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 1, respectively.
- A045092 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 2, respectively.
- A045093 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 3, respectively.
- A045094 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 4, respectively.
- A045095 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 0, respectively.
- A045096 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 1, respectively.
- A045097 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 2, respectively.
- A045098 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 3, respectively.
- A045099 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 4, respectively.
- A045100 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 0, respectively.
- A045101 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 1, respectively.
- A045102 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 2, respectively.
- A045103 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 3, respectively.
- A045104 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 4, respectively.
- A045105 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 0, respectively.
- A045106 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 1, respectively.
- A045107 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 2, respectively.
- A045108 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 3, respectively.
- A045109 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 4, respectively.
- A045110 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 1, respectively.
- A045111 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 2, respectively.
- A045112 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 3, respectively.
- A045113 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 4, respectively.
- A045114 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 1 and 0, respectively.
- A045119 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 2 and 0, respectively.
- A045121 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 2 and 2, respectively.
- A045124 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 3 and 0, respectively.
- A045128 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 3 and 4, respectively.
- A045129 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 0, respectively.
- A045132 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 3, respectively.
- A045133 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 4, respectively.
- A045134 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 1, respectively.
- A045135 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 2, respectively.
- A045136 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 3, respectively.
- A045137 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 4, respectively.
- A045138 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 0, respectively.
- A045139 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 1, respectively.
- A045140 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 2, respectively.
- A045141 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 3, respectively.
- A045142 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 4, respectively.
- A045143 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 0, respectively.
- A045144 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 1, respectively.
- A045145 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 2, respectively.
- A045146 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 3, respectively.
- A045147 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 4, respectively.
- A045148 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 0, respectively.
- A045149 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 1, respectively.
- A045150 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 2, respectively.
- A045151 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 3, respectively.
- A045152 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 4, respectively.
- A045153 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 0, respectively.
- A045154 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 1, respectively.
- A045155 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 2, respectively.
- A045156 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 3, respectively.
- A045157 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 4, respectively.
- A045158 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 1, respectively.
- A045159 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
- A045160 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
- A045161 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
- A045162 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
- A045163 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
- A045164 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 3, respectively.
- A045165 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
- A045166 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
- A045167 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
- A045168 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
- A045169 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
- A045170 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
- A045171 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
- A045172 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
- A045173 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
- A045174 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
- A045175 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 3, respectively.
- A045176 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
- A045177 (program): Numbers k with property that in base 5-representation the numbers of 0’s and 2’s are 1 and 1, respectively.
- A045178 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 2, respectively.
- A045179 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 3, respectively.
- A045180 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
- A045181 (program): Numbers whose base-5 representation contains two 0’s and one 2.
- A045182 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 2, respectively.
- A045183 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 3, respectively.
- A045184 (program): Numbers whose base-5 representation contains three 0’s and no 2’s.
- A045185 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 3 and 1, respectively.
- A045186 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 3 and 2, respectively.
- A045188 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 1, respectively.
- A045189 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 2, respectively.
- A045190 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 3, respectively.
- A045191 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 0, respectively.
- A045192 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 1, respectively.
- A045193 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 2, respectively.
- A045194 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 3, respectively.
- A045195 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 0, respectively.
- A045196 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 1, respectively.
- A045197 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 2, respectively.
- A045198 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 3, respectively.
- A045199 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 0, respectively.
- A045200 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 1, respectively.
- A045201 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 2, respectively.
- A045202 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 3, respectively.
- A045203 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 1, respectively.
- A045204 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 2, respectively.
- A045205 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 3, respectively.
- A045206 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 0, respectively.
- A045207 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 1, respectively.
- A045208 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 2, respectively.
- A045209 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 3, respectively.
- A045210 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 0, respectively.
- A045211 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 1, respectively.
- A045212 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 2, respectively.
- A045213 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 3, respectively.
- A045214 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 0, respectively.
- A045215 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 1, respectively.
- A045216 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 2, respectively.
- A045217 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 3, respectively.
- A045218 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 1, respectively.
- A045219 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 2, respectively.
- A045220 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 3, respectively.
- A045221 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 0, respectively.
- A045222 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 1, respectively.
- A045223 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 2, respectively.
- A045224 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 3, respectively.
- A045225 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 0, respectively.
- A045226 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 1, respectively.
- A045227 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 2, respectively.
- A045228 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 3, respectively.
- A045229 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 0, respectively.
- A045230 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 1, respectively.
- A045231 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 2, respectively.
- A045233 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 1, respectively.
- A045234 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 2, respectively.
- A045235 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 3, respectively.
- A045236 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 0, respectively.
- A045237 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 1, respectively.
- A045238 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 2, respectively.
- A045239 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 3, respectively.
- A045240 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 0, respectively.
- A045241 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 1, respectively.
- A045242 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 2, respectively.
- A045243 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 3, respectively.
- A045244 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 0, respectively.
- A045245 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 1, respectively.
- A045246 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 2, respectively.
- A045247 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 3, respectively.
- A045248 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 1, respectively.
- A045249 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 2, respectively.
- A045250 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 3, respectively.
- A045251 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 0, respectively.
- A045252 (program): Numbers whose base-5 expansion contains exactly one 1 and one 4.
- A045253 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 2, respectively.
- A045254 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 3, respectively.
- A045255 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 0, respectively.
- A045256 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 1, respectively.
- A045257 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 2, respectively.
- A045258 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 3, respectively.
- A045259 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 0, respectively.
- A045260 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 1, respectively.
- A045261 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 2, respectively.
- A045262 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 3, respectively.
- A045263 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 1, respectively.
- A045264 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 2, respectively.
- A045265 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 3, respectively.
- A045266 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 0, respectively.
- A045267 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 1, respectively.
- A045268 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 2, respectively.
- A045269 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 3, respectively.
- A045270 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 0, respectively.
- A045271 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 1, respectively.
- A045272 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 2, respectively.
- A045273 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 3, respectively.
- A045274 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 0, respectively.
- A045275 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 1, respectively.
- A045276 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 2, respectively.
- A045277 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 3, respectively.
- A045278 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 1, respectively.
- A045279 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 2, respectively.
- A045280 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 3, respectively.
- A045281 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 0, respectively.
- A045282 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 1, respectively.
- A045283 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 2, respectively.
- A045284 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 3, respectively.
- A045285 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 0, respectively.
- A045286 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 1, respectively.
- A045287 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 2, respectively.
- A045288 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 3, respectively.
- A045289 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 0, respectively.
- A045290 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 1, respectively.
- A045291 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 2, respectively.
- A045292 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 3, respectively.
- A045293 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 1, respectively.
- A045294 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 2, respectively.
- A045295 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 3, respectively.
- A045296 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 0, respectively.
- A045297 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 1, respectively.
- A045298 (program): Numbers having one 3 and two 4’s in base 5.
- A045299 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 3, respectively.
- A045300 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 0, respectively.
- A045301 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 1, respectively.
- A045302 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 2, respectively.
- A045303 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 3, respectively.
- A045304 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 0, respectively.
- A045305 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 1, respectively.
- A045306 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 2, respectively.
- A045307 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 3, respectively.
- A045308 (program): Primes congruent to {2, 3, 4, 5} (mod 7).
- A045309 (program): Primes congruent to {0, 2} mod 3.
- A045311 (program): Primes congruent to {1, 2, 3, 5, 6} (mod 7).
- A045312 (program): Primes congruent to {2, 3, 5, 6} (mod 7).
- A045313 (program): Primes congruent to {1, 2, 3, 5} (mod 7).
- A045314 (program): Primes congruent to {2, 3, 5} (mod 7).
- A045319 (program): Primes congruent to {1, 2, 3, 4} (mod 5).
- A045320 (program): Primes not congruent to 5 (mod 7).
- A045321 (program): Primes congruent to {1, 2, 3} (mod 5).
- A045322 (program): Primes congruent to {0, 2, 3, 4, 6} (mod 7).
- A045323 (program): Primes congruent to {1, 2, 3, 7} (mod 8).
- A045324 (program): Primes congruent to {0, 1, 2, 3, 4} (mod 7).
- A045325 (program): Primes congruent to {0, 2, 3, 4} (mod 7).
- A045326 (program): Primes congruent to {2, 3} mod 4.
- A045327 (program): Primes congruent to {2, 3, 4} mod 5.
- A045328 (program): Primes congruent to {0, 1, 2, 3, 6} (mod 7).
- A045329 (program): Primes congruent to {0, 2, 3, 6} (mod 7).
- A045331 (program): Primes congruent to {1, 2, 3} mod 6; or, -3 is a square mod p.
- A045332 (program): Primes congruent to {0, 1, 2, 3} (mod 7).
- A045333 (program): Primes congruent to {0, 2, 3} (mod 7).
- A045334 (program): Primes congruent to {1, 2, 3, 4, 6} (mod 7).
- A045335 (program): Primes congruent to {2, 3, 4, 6} (mod 7).
- A045337 (program): Primes congruent to {1, 2, 3, 4} (mod 7).
- A045338 (program): Primes congruent to {2, 3, 4} mod 7.
- A045339 (program): Primes congruent to {2, 3} mod 8.
- A045340 (program): Primes congruent to {1, 2, 3, 6} mod 7.
- A045341 (program): Primes congruent to {2, 3, 6} mod 7.
- A045342 (program): Primes congruent to {1, 2, 3} mod 7.
- A045343 (program): Primes congruent to {2, 3} mod 7.
- A045344 (program): Primes congruent to {1, 2} mod 3.
- A045346 (program): Primes congruent to {0, 1, 2, 4, 5, 6} mod 7.
- A045347 (program): Primes congruent to {0, 2, 4, 5, 6} mod 7.
- A045348 (program): Primes congruent to {0, 1, 2, 4} mod 5.
- A045349 (program): Primes congruent to {0, 1, 2} mod 5.
- A045350 (program): Primes congruent to {0, 1, 2, 4, 5} mod 7.
- A045351 (program): Primes congruent to {0, 2, 4, 5} mod 7.
- A045352 (program): Primes congruent to {1, 2, 5, 7} mod 8.
- A045353 (program): Primes congruent to {0, 1, 2, 5, 6} mod 7.
- A045354 (program): Primes congruent to {0, 2, 5, 6} mod 7.
- A045355 (program): Primes congruent to {2, 5, 7} mod 8.
- A045356 (program): Primes congruent to {0, 2, 4} mod 5.
- A045357 (program): Primes congruent to {0, 2} mod 5.
- A045358 (program): Primes congruent to {0, 1, 2, 5} mod 7.
- A045359 (program): Primes congruent to {0, 2, 5} mod 7.
- A045360 (program): Primes congruent to {1, 2, 4, 5, 6} mod 7.
- A045361 (program): Primes congruent to {2, 4, 5, 6} mod 7.
- A045362 (program): Primes congruent to {1, 2, 4, 5} mod 7.
- A045363 (program): Primes congruent to {2, 4, 5} mod 7.
- A045364 (program): Primes congruent to {1, 2, 5, 6} mod 7.
- A045365 (program): Primes congruent to {2, 5, 6} mod 7.
- A045366 (program): Primes congruent to {2, 5} mod 8.
- A045367 (program): Primes congruent to {1, 2, 5} mod 7.
- A045368 (program): Primes congruent to {2, 5} mod 7.
- A045369 (program): Primes congruent to {0, 1, 2, 4, 6} mod 7.
- A045370 (program): Primes congruent to {0, 2, 4, 6} mod 7.
- A045371 (program): Primes congruent to {1, 2, 4} mod 5.
- A045372 (program): Primes congruent to {1, 2} mod 5.
- A045373 (program): Primes congruent to {0, 1, 2, 4} mod 7.
- A045374 (program): Primes congruent to {0, 2, 4} mod 7.
- A045375 (program): Primes congruent to {1, 2} mod 6.
- A045376 (program): Primes congruent to {0, 1, 2, 6} mod 7.
- A045377 (program): Primes congruent to {0, 2, 6} mod 7.
- A045378 (program): Primes congruent to {2, 4} mod 5.
- A045379 (program): E.g.f.: exp(4*z + exp(z) - 1).
- A045380 (program): Primes congruent to 2 mod 5.
- A045381 (program): Primes congruent to {0, 1, 2} mod 7.
- A045382 (program): Primes congruent to {2, 7} mod 8.
- A045383 (program): Primes congruent to {0, 2} mod 7.
- A045384 (program): Primes congruent to {1, 2, 4, 6} mod 7.
- A045385 (program): Primes congruent to {2, 4, 6} mod 7.
- A045386 (program): Primes congruent to {1, 2, 4} mod 7.
- A045387 (program): Primes congruent to {2, 4} mod 7.
- A045388 (program): Primes congruent to {1, 2, 6} mod 7.
- A045389 (program): Primes congruent to {2, 6} mod 7.
- A045390 (program): Primes congruent to {1, 2} mod 8.
- A045391 (program): Primes congruent to {1, 2} mod 7.
- A045392 (program): Primes congruent to 2 mod 7.
- A045393 (program): Primes congruent to {0, 1, 3, 4, 5, 6} mod 7.
- A045394 (program): Primes congruent to {0, 3, 4, 5, 6} mod 7.
- A045395 (program): Primes congruent to {3, 5, 7} mod 8.
- A045396 (program): Primes congruent to {0, 1, 3, 4, 5} mod 7.
- A045397 (program): Primes congruent to {0, 3, 4, 5} mod 7.
- A045398 (program): Primes congruent to {0, 1, 3, 5, 6} mod 7.
- A045399 (program): Primes congruent to {0, 3, 5, 6} mod 7.
- A045400 (program): Primes congruent to {0, 1, 3, 5} mod 7.
- A045401 (program): Primes congruent to {0, 3, 5} mod 7.
- A045402 (program): Primes congruent to {1, 3, 4, 5, 6} mod 7.
- A045403 (program): Primes congruent to {1, 3, 5} mod 8.
- A045404 (program): Primes congruent to {3, 4, 5, 6} mod 7.
- A045405 (program): Primes congruent to {0, 1, 3, 4} mod 5.
- A045406 (program): A diagonal of A008296.
- A045407 (program): Primes congruent to {0, 1, 3} mod 5.
- A045408 (program): Primes congruent to {1, 3, 4, 5} mod 7.
- A045409 (program): Primes congruent to {3, 4, 5} mod 7.
- A045410 (program): Primes congruent to {3, 5} mod 6.
- A045411 (program): Primes congruent to {1, 3, 5, 6} mod 7.
- A045412 (program): a(1)=3; for n > 1, a(n) = a(n-1) + 1 if n is already in the sequence, a(n) = a(n-1) + 3 otherwise.
- A045413 (program): Primes congruent to {0, 3, 4} mod 5.
- A045414 (program): Primes congruent to {0, 3} mod 5.
- A045415 (program): Primes congruent to {1, 3, 5} mod 7.
- A045416 (program): Primes congruent to {3, 5} mod 7.
- A045417 (program): Primes congruent to {0, 1, 3, 4, 6} mod 7.
- A045418 (program): Primes congruent to {0, 3, 4, 6} mod 7.
- A045419 (program): Primes congruent to {1, 3, 7} mod 8.
- A045420 (program): Primes congruent to {0, 1, 3, 4} mod 7.
- A045421 (program): Primes congruent to {0, 3, 4} mod 7.
- A045422 (program): Primes congruent to {0, 1, 3, 6} mod 7.
- A045423 (program): Primes congruent to {0, 3, 6} mod 7.
- A045424 (program): Primes congruent to {0, 1, 3} mod 7.
- A045425 (program): Primes congruent to {0, 3} mod 7.
- A045426 (program): Primes congruent to {1, 3, 4, 6} mod 7.
- A045427 (program): Primes congruent to {3, 4, 6} mod 7.
- A045428 (program): Primes congruent to {1, 3, 4} mod 5.
- A045429 (program): Primes congruent to {1, 3} mod 5.
- A045430 (program): Number of dominoes with n spots (in standard set).
- A045431 (program): Primes congruent to {1, 3, 4} mod 7.
- A045432 (program): Primes congruent to {3, 4} mod 7.
- A045433 (program): Primes congruent to {1, 3, 6} mod 7.
- A045434 (program): Primes congruent to {3, 6} mod 7.
- A045435 (program): Primes congruent to {3, 4} mod 5.
- A045436 (program): Primes congruent to {1, 3} mod 7.
- A045437 (program): Primes congruent to 3 mod 7.
- A045438 (program): Primes congruent to {0, 1, 4, 5, 6} mod 7.
- A045439 (program): Primes congruent to {0, 4, 5, 6} mod 7.
- A045440 (program): Primes congruent to {0, 1, 4, 5} mod 7.
- A045441 (program): Primes congruent to {0, 4, 5} mod 7.
- A045442 (program): Primes congruent to {1, 5, 7} mod 8.
- A045443 (program): Primes congruent to {0, 1, 5, 6} mod 7.
- A045444 (program): Primes congruent to {0, 5, 6} mod 7.
- A045445 (program): Number of nonisomorphic systems of catafusenes for the unsymmetrical schemes (group C_s) with two appendages (see references for precise definition).
- A045446 (program): Primes congruent to {0, 1, 5} mod 7.
- A045447 (program): Primes congruent to {0, 5} mod 7.
- A045448 (program): Primes congruent to {1, 4, 5, 6} mod 7.
- A045449 (program): Primes congruent to {4, 5, 6} mod 7.
- A045451 (program): Primes congruent to {1, 4, 5} mod 7.
- A045452 (program): Primes congruent to {4, 5} mod 7.
- A045453 (program): Primes congruent to {0, 1} mod 5.
- A045454 (program): Primes congruent to {1, 5, 6} mod 7.
- A045455 (program): Primes congruent to {5, 6} mod 7.
- A045456 (program): Primes congruent to {1, 5} mod 7.
- A045457 (program): Primes congruent to {0, 4} mod 5.
- A045458 (program): Primes congruent to 5 mod 7.
- A045459 (program): Primes congruent to {0, 1, 4, 6} mod 7.
- A045460 (program): Primes congruent to {0, 4, 6} mod 7.
- A045461 (program): Primes congruent to {0, 1, 4} mod 7.
- A045462 (program): Primes congruent to {0, 4} mod 7.
- A045463 (program): Primes congruent to {0, 1, 6} mod 7.
- A045464 (program): Primes congruent to {0, 6} mod 7.
- A045465 (program): Primes congruent to {0, 1} mod 7.
- A045466 (program): Primes congruent to {1, 4, 6} mod 7.
- A045467 (program): Primes congruent to {4, 6} mod 7.
- A045468 (program): Primes congruent to {1, 4} mod 5.
- A045469 (program): Primes congruent to {1, 4} mod 7.
- A045471 (program): Primes congruent to 4 mod 7.
- A045472 (program): Primes congruent to {1, 6} mod 7.
- A045473 (program): Primes congruent to 6 mod 7.
- A045479 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = -8.
- A045481 (program): McKay-Thompson series of class 3B for the Monster group with a(0) = -3.
- A045483 (program): McKay-Thompson series of class 5B for the Monster group with a(0) = 1.
- A045485 (program): McKay-Thompson series of class 6B for Monster with a(0) = 7.
- A045487 (program): McKay-Thompson series of class 6D for Monster with a(0) = 1.
- A045488 (program): McKay-Thompson series of class 6E for the Monster group with a(0) = 1.
- A045492 (program): Convolution of A000108 (Catalan numbers) with A020920.
- A045499 (program): Fourth-from-right diagonal of triangle A121207.
- A045500 (program): Fifth-from-right diagonal of triangle A121207.
- A045501 (program): Third-from-right diagonal of triangle A121207.
- A045502 (program): Numbers k such that 2*k+1 and 3*k+1 are squares.
- A045503 (program): If decimal expansion of n is ab…d, a(n) = a^a + b^b +…+ d^d.
- A045505 (program): Convolution of A000108 (Catalan numbers) with A040075.
- A045506 (program): Inscribe 2 spheres of curvature 2 inside sphere of curvature -1, continue to inscribe spheres where possible; sequence gives list of curvatures.
- A045507 (program): Concatenate powers of 2.
- A045508 (program): Concatenate factorials.
- A045512 (program): If decimal expansion of n is ab…d, a(n) = a^a + b^b + … + d^d (ignoring any 0’s).
- A045520 (program): Numbers k such that k! has initial digit ‘1’.
- A045530 (program): Convolution of A000108 (Catalan numbers) with A020922.
- A045531 (program): Number of sticky functions: endofunctions of [n] having a fixed point.
- A045532 (program): Concatenate n with n-th prime.
- A045533 (program): Concatenate the n-th and (n+1)st prime.
- A045534 (program): Number of squarefree self-avoiding walks in 2 dimensions.
- A045539 (program): Multiply by 5 and reverse.
- A045543 (program): 6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
- A045544 (program): Odd values of n for which a regular n-gon can be constructed by compass and straightedge.
- A045545 (program): a(0) = 1; a(n) = Sum_{0 <= k < n and gcd(k,n) = 1} a(k).
- A045546 (program): Numbers k such that k^2 + k - 1 is prime.
- A045547 (program): Numbers whose factorial has ‘2’ as its final nonzero digit.
- A045548 (program): Numbers whose factorial has ‘4’ as its final nonzero digit.
- A045549 (program): Numbers whose factorial has ‘6’ as its final nonzero digit.
- A045550 (program): Numbers whose factorial has ‘8’ as its final nonzero digit.
- A045572 (program): Numbers that are odd but not divisible by 5.
- A045618 (program): Partial sums of A000337(n+4), n >= 0.
- A045621 (program): a(n) = 2^n - binomial(n, floor(n/2)).
- A045622 (program): Convolution of A000108 (Catalan numbers) with A045543.
- A045623 (program): Number of 1’s in all compositions of n+1.
- A045624 (program): Row sums of convolution triangle A030526.
- A045626 (program): Bends in loxodromic sequence of spheres in which each 5 consecutive spheres are in mutual contact.
- A045634 (program): Number of ways in which n can be partitioned as a sum of a square and cube.
- A045635 (program): Catafusenes (see references for precise definition).
- A045637 (program): Primes of the form p^2 + 4, where p is prime.
- A045638 (program): Palindromic and divisible by 3.
- A045639 (program): Palindromic and divisible by 4.
- A045641 (program): Palindromic and divisible by 6.
- A045642 (program): Palindromic and divisible by 7.
- A045643 (program): Palindromic and divisible by 8.
- A045644 (program): Palindromic and divisible by 9.
- A045650 (program): Numbers that cannot be expressed as k + floor(log(k)) where k is an integer.
- A045654 (program): Number of 2n-bead balanced binary strings, rotationally equivalent to complement.
- A045661 (program): a(n) = Product_{d|n} (n/d + d).
- A045663 (program): Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement.
- A045664 (program): Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reversed complement.
- A045670 (program): Digital sum (in base 10) of numbers in base 3 of the alternate number system.
- A045671 (program): Extension of Beatty sequence; complement of A045672.
- A045672 (program): Extension of Beatty sequence; complement of A045671 (apart from the initial 0).
- A045674 (program): Number of 2n-bead balanced binary necklaces which are equivalent to their reverse, complement and reversed complement.
- A045678 (program): Number of 2n-bead balanced binary necklaces which are equivalent to their reversed complement, but not equivalent to their reverse and complement.
- A045681 (program): Extension of Beatty sequence; complement of A045682.
- A045682 (program): Extension of Beatty sequence; complement of A045681.
- A045690 (program): Number of binary words of length n (beginning with 0) whose autocorrelation function is the indicator of a singleton.
- A045691 (program): Number of binary words of length n with autocorrelation function 2^(n-1)+1.
- A045694 (program): Number of ternary words of length n (beginning with 0) with autocorrelation function 2^(n-1).
- A045698 (program): Number of ways n can be written as the sum of two squares of primes.
- A045707 (program): Primes with first digit 1.
- A045708 (program): Primes with first digit 2.
- A045709 (program): Primes with first digit 3.
- A045710 (program): Primes with first digit 4.
- A045711 (program): Primes with first digit 5.
- A045712 (program): Primes with first digit 6.
- A045713 (program): Primes with first digit 7.
- A045714 (program): Primes with first digit 8.
- A045715 (program): Primes with first digit 9.
- A045716 (program): a(n) is the binary order (A029837) of the n-th primorial number, A002110(n).
- A045717 (program): For each prime p take the sum of nonprimes < p.
- A045718 (program): Nearest neighbors of primes.
- A045720 (program): 3-fold convolution of A001700(n), n >= 0.
- A045721 (program): a(n) = binomial(3*n+1,n).
- A045722 (program): Number of border edges in all noncrossing rooted trees on n nodes.
- A045723 (program): Number of configurations, excluding reflections and black-white interchanges, of n black and n white beads on a string.
- A045724 (program): Convolution of Catalan numbers A000108 with A020918.
- A045726 (program): Fibonacci numbers having initial digit ‘2’.
- A045727 (program): Fibonacci numbers having initial digit ‘3’.
- A045728 (program): Fibonacci numbers having initial digit ‘4’.
- A045729 (program): Fibonacci numbers having initial digit ‘5’.
- A045730 (program): Fibonacci numbers having initial digit ‘6’.
- A045731 (program): Fibonacci numbers having initial digit ‘7’.
- A045732 (program): Fibonacci numbers having initial digit ‘8’.
- A045733 (program): Fibonacci numbers having initial digit ‘9’.
- A045737 (program): Number of nonroot branch nodes in all noncrossing rooted trees on n nodes on a circle.
- A045738 (program): Number of branches in all noncrossing rooted trees on n nodes on a circle.
- A045739 (program): Number of edges in all noncrossing forests on n nodes on a circle.
- A045740 (program): Number of components in all forests on nodes on a circle.
- A045741 (program): Number of edges in all noncrossing connected graphs on n nodes on a circle.
- A045742 (program): Number of interior faces in all noncrossing connected graphs on n nodes on a circle.
- A045743 (program): Number of noncrossing connected graphs on n nodes on a circle having no triangular faces.
- A045745 (program): Numbers n such that sum of proper divisors s(n) is a triangular number T(k).
- A045746 (program): Numbers whose sum of divisors is a triangular number.
- A045747 (program): Number of prime factors of n!!!! (A007662), with multiplicity.
- A045748 (program): a(n) is the number consisting of the last n digits (although any leading 0’s among those last n digits are omitted) of Sum_{j=1..k} j! for all sufficiently large k.
- A045749 (program): Extension of Beatty sequence; complement of A045750.
- A045750 (program): Extension of Beatty sequence, complement of A045749.
- A045751 (program): Numbers k such that 4*k + 1 is not prime.
- A045752 (program): 4n-1 is composite.
- A045753 (program): Numbers n such that 4n-1 and 4n+1 are both primes.
- A045754 (program): 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).
- A045755 (program): 8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).
- A045756 (program): Expansion of e.g.f. (1-9*x)^(-1/9), 9-factorial numbers.
- A045757 (program): 10-factorial numbers.
- A045763 (program): Number of numbers “unrelated to n”: m < n such that m is neither a divisor of n nor relatively prime to n.
- A045766 (program): Number of prime factors of double factorials n!! (A006882), with multiplicity.
- A045767 (program): Number of prime factors of triple factorials n!!! (A007661), with multiplicity.
- A045771 (program): Number of similar sublattices of index n^2 in root lattice D_4.
- A045774 (program): Extension of Beatty sequence; complement of A045775.
- A045775 (program): Extension of Beatty sequence; complement of A045774.
- A045778 (program): Number of factorizations of n into distinct factors greater than 1.
- A045784 (program): Squares with initial digit ‘1’.
- A045785 (program): Squares with initial digit ‘2’.
- A045786 (program): Squares with initial digit ‘3’.
- A045787 (program): Squares with initial digit ‘4’.
- A045788 (program): Squares with initial digit ‘5’.
- A045789 (program): Squares with initial digit ‘6’.
- A045791 (program): Squares with initial digit ‘7’.
- A045792 (program): Squares with initial digit ‘8’.
- A045793 (program): Squares with initial digit ‘9’.
- A045794 (program): Consider all quadruples {a,b,c,d} which reach {k,k,k,k} in n steps under map {a,b,c,d}->{|a-b|,|b-c|,|c-d|,|d-a|}; look at max{a,b,c,d}; sequence gives minimal value of this.
- A045797 (program): Evenish numbers (prime to 10 and 10’s digit is even).
- A045798 (program): Oddish numbers (prime to 10 and 10’s digit is odd).
- A045800 (program): 0-ish numbers (end in 01, 07, 43, 49).
- A045801 (program): 1-ish numbers (end in 11, 39, 73, 77).
- A045802 (program): 2-ish numbers (end in 03, 21, 29, 47).
- A045803 (program): 3-ish numbers (end in 17, 19, 31, 33).
- A045804 (program): 4-ish numbers (end in 09, 41, 63, 87).
- A045805 (program): 5-ish numbers (end in 51, 57, 93, 99).
- A045806 (program): 6-ish numbers (end in 23, 27, 61, 89).
- A045807 (program): 7-ish numbers (end in 53, 71, 79, 97).
- A045808 (program): 8-ish numbers (end in 67, 69, 81, 83).
- A045809 (program): 9-ish numbers (end in 13, 37, 59, 91).
- A045819 (program): Theta series of E_8 lattice with respect to midpoint of edge.
- A045821 (program): Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.
- A045823 (program): a(n) = sigma_3(2*n+1).
- A045825 (program): a(n) = A004017(n)/2.
- A045826 (program): a(n) = A005887(n) / 2.
- A045827 (program): a(n) = A005872(n)/6.
- A045828 (program): One fourth of theta series of cubic lattice with respect to face.
- A045829 (program): Catafusenes (see reference for precise definition).
- A045831 (program): Number of 4-core partitions of n.
- A045833 (program): Expansion of eta(q^9)^3 / eta(q^3) in powers of q.
- A045834 (program): Half of theta series of cubic lattice with respect to edge.
- A045836 (program): Half of Theta series of b.c.c. lattice with respect to long edge.
- A045839 (program): a(n) = A005929(n)/2.
- A045844 (program): a(n+1) = a(n) + largest digit of a(n); a(0) = 1.
- A045848 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x6^2 = n.
- A045849 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x7^2 = n.
- A045855 (program): Numbers whose square has initial digit ‘1’.
- A045856 (program): Numbers whose square has initial digit ‘2’.
- A045857 (program): Numbers whose square has initial digit ‘3’.
- A045858 (program): Numbers whose square has initial digit ‘4’.
- A045859 (program): Numbers whose square has initial digit ‘5’.
- A045860 (program): Numbers whose square has initial digit ‘6’.
- A045861 (program): Numbers whose square has initial digit ‘7’.
- A045862 (program): Numbers whose square has initial digit ‘8’.
- A045863 (program): Numbers whose square has initial digit ‘9’.
- A045868 (program): Expansion of g.f.: ((1 - x - sqrt(1-6*x+5*x^2))/(2*x))^2.
- A045873 (program): a(n) = A006496(n)/2.
- A045883 (program): a(n) = ((3*n+1)*2^n - (-1)^n)/9.
- A045889 (program): Partial sums of A045618.
- A045890 (program): Catafusenes (see reference for precise definition).
- A045891 (program): First differences of A045623.
- A045894 (program): 4-fold convolution of A001700(n), n >= 0.
- A045895 (program): Period length of pairs (a,b) where a has period 2n-2 and b has period n.
- A045896 (program): Denominator of n/((n+1)*(n+2)) = A026741/A045896.
- A045899 (program): Numbers k such that k+1 and 3*k+1 are perfect squares.
- A045901 (program): Group the natural numbers into blocks: B_1 = 1, B_2 = 2,3,4, B_3 = 5,6,7,8,9, …, each block ending in a square. Permute each block B_k by beginning with the central term, followed by the transposed symmetric pairs from B_k.
- A045902 (program): Catafusenes (see reference for precise definition).
- A045917 (program): From Goldbach problem: number of decompositions of 2n into unordered sums of two primes.
- A045919 (program): Partial sum of Goldbach numbers A045917.
- A045920 (program): Numbers n such that factorizations of n and n+1 have the same number of primes (including multiplicities).
- A045922 (program): Partial sums of Goldbach numbers A002375.
- A045925 (program): a(n) = n*Fibonacci(n).
- A045926 (program): All digits even and nonzero.
- A045927 (program): Digits even, nonzero and nondecreasing.
- A045928 (program): The generalized Connell sequence C_{3,2}.
- A045929 (program): Generalized Connell sequence C_{5,3}.
- A045930 (program): The generalized Connell sequence C_{3,5}.
- A045939 (program): Numbers n such that factorizations of n through n+2 have the same number of primes (including multiplicities).
- A045943 (program): Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.
- A045944 (program): Rhombic matchstick numbers: a(n) = n*(3*n+2).
- A045945 (program): Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).
- A045946 (program): Star of David matchstick numbers: 6*n*(3*n+1).
- A045947 (program): Triangles in open triangular matchstick arrangement (triangle minus one side) of side n.
- A045948 (program): a(n) = A003418(n)/A034386(n).
- A045949 (program): Number of equilateral triangles formed out of matches that can be found in a hexagonal chunk of side length n in hexagonal array of matchsticks.
- A045950 (program): Triangles in Star of David matchstick arrangement of side n.
- A045952 (program): a(n) = 2^(2*n-1)*binomial(2*n,n) + 2^(4*n-1).
- A045965 (program): a(1)=2; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^e_i.
- A045966 (program): a(1)=3; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^e_i.
- A045967 (program): a(1)=4; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+1}.
- A045968 (program): a(1)=5; for n >= 2, if n = Product p_i^e_i, then a(n) = Product p_{i+3}^e_i.
- A045969 (program): a(1)=6; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^e_i * Product p_{i+2}^e_i.
- A045970 (program): a(1)=7; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+4}^e_i.
- A045971 (program): a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.
- A045972 (program): a(1)=9; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^{e_i+1}.
- A045991 (program): a(n) = n^3 - n^2.
- A045992 (program): a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,…,n to 1,…,n.
- A045993 (program): Expansion of (1-x)/(1 - 10*x + 18*x^2 - 8*x^3).
- A045994 (program): a(0)=1, a(n) = M(n) + Sum_{k=1..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).
- A045995 (program): Rows of Fibonacci-Pascal triangle.
- A045997 (program): Number of iterations required to reach stationary value when applying repeatedly applying d, the number of divisors function, to n!.
- A046021 (program): Least inverse of the Kempner function A002034.
- A046022 (program): Primes together with 1 and 4.
- A046023 (program): Number of ways to color edges of a tetrahedron using <= n colors.
- A046027 (program): Smallest multiple prime factor of the n-th nonsquarefree number (A013929).
- A046028 (program): Largest multiple prime factor of the n-th nonsquarefree number (A013929).
- A046030 (program): Digits are squares.
- A046031 (program): Digits are cubes.
- A046032 (program): a(n) = (n!)^2 - 1.
- A046033 (program): a(n) = (n!)^3 - 1.
- A046034 (program): Numbers whose digits are primes.
- A046037 (program): Numbers n for which floor((3/2)^n) is composite.
- A046052 (program): Number of prime factors of Fermat number F(n).
- A046059 (program): Orders of finite groups having the incrementally largest numbers of nonisomorphic forms A046058.
- A046062 (program): Primes of the form n*phi(n)+1 where phi(n) is the Euler function.
- A046065 (program): a(n) = n^(n+2) - (n+2)^n.
- A046072 (program): Decompose multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} x C_{k_2} x … x C_{k_m}, where k_i divides k_j for i < j; then a(n) = m.
- A046073 (program): Number of squares in multiplicative group modulo n.
- A046078 (program): Primes of the form n*phi(n)-1 where phi is the Euler function (in order of appearance).
- A046079 (program): Number of Pythagorean triangles with leg n.
- A046080 (program): a(n) is the number of integer-sided right triangles with hypotenuse n.
- A046081 (program): Number of integer-sided right triangles with n as a hypotenuse or leg.
- A046088 (program): Row sums of convolution triangle A030527.
- A046090 (program): Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives X+1 values.
- A046092 (program): 4 times triangular numbers: a(n) = 2*n*(n+1).
- A046095 (program): Decimal expansion of Calabi’s constant.
- A046098 (program): Numbers n such that central binomial coefficient C(n, floor(n/2)) is squarefree.
- A046099 (program): Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.
- A046100 (program): Biquadratefree numbers.
- A046101 (program): Biquadrateful numbers.
- A046109 (program): Number of lattice points (x,y) on the circumference of a circle of radius n with center at (0,0).
- A046110 (program): Number of lattice points on circumference of a circle of radius (2n+1)/2 with center at (1/2,0).
- A046111 (program): Number of lattice points on circumference of a circle of radius 1/3,2/3,4/3,5/3,… with center at (1/3,0).
- A046117 (program): Primes p such that p-6 is also prime. (Upper of a pair of sexy primes.)
- A046126 (program): Denominators q[ n ] of convergents to Stern’s non-simple continued fraction for Pi/2.
- A046127 (program): Maximal number of regions into which space can be divided by n spheres.
- A046132 (program): Larger member p+4 of cousin primes (p, p+4).
- A046133 (program): p and p+12 are both prime.
- A046138 (program): Primes p such that p+6 and p+8 are also primes.
- A046142 (program): Haüy rhombic dodecahedral numbers.
- A046143 (program): Triangle of gcd( 2^p-1, 2^q-1 ) = 2^gcd(p,q) - 1.
- A046151 (program): a(n) = n*phi(n) - 1.
- A046152 (program): a(n) = n*phi(n) + 1.
- A046160 (program): Bends of spheres in Soddy’s bowl of integers.
- A046161 (program): a(n) = denominator of binomial(2n,n)/4^n.
- A046162 (program): Reduced numerators of (n-1)^2/(n^2 + n + 1).
- A046163 (program): Reduced denominators of (n-1)^2/(n^2 + n + 1).
- A046166 (program): Number of minimal covers on n objects with 5 members.
- A046167 (program): Number of minimal covers on n objects with 6 members.
- A046172 (program): Indices of pentagonal numbers (A000326) that are also squares (A000290).
- A046173 (program): Indices of square numbers that are also pentagonal.
- A046174 (program): Indices of pentagonal numbers which are also triangular.
- A046175 (program): Indices of triangular numbers which are also pentagonal.
- A046176 (program): Indices of square numbers that are also hexagonal.
- A046177 (program): Squares (A000290) which are also hexagonal numbers (A000384).
- A046178 (program): Indices of pentagonal numbers that are also hexagonal.
- A046179 (program): Indices of hexagonal numbers that are also pentagonal.
- A046180 (program): Hexagonal pentagonal numbers.
- A046181 (program): Indices of octagonal numbers which are also triangular.
- A046182 (program): Indices of triangular numbers which are also octagonal.
- A046183 (program): Octagonal triangular numbers.
- A046184 (program): Indices of octagonal numbers which are also squares.
- A046187 (program): Indices of pentagonal numbers which are also octagonal.
- A046188 (program): Indices of octagonal numbers which are also pentagonal.
- A046189 (program): Octagonal pentagonal numbers.
- A046190 (program): Indices of octagonal numbers which are also hexagonal numbers.
- A046191 (program): Indices of hexagonal numbers which are also octagonal.
- A046192 (program): Octagonal hexagonal numbers.
- A046193 (program): Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).
- A046194 (program): Heptagonal triangular numbers.
- A046195 (program): Indices of heptagonal numbers (A000566) which are also squares (A000290).
- A046196 (program): Indices of square numbers which are also heptagonal.
- A046198 (program): Indices of heptagonal numbers (A000566) which are also pentagonal.
- A046199 (program): Indices of pentagonal numbers that are also heptagonal.
- A046200 (program): Odd numbers in the triangle of denominators in Leibniz’s Harmonic Triangle.
- A046203 (program): Even numbers in the triangle of denominators in Leibniz’s Harmonic Triangle.
- A046205 (program): In Leibniz’s Harmonic Triangle, write numerator first and then denominator of each element.
- A046206 (program): In Leibniz’s Harmonic Triangle, write denominator first and then numerator of each element.
- A046207 (program): Numbers to the right of the central elements in the triangle of denominators in Leibniz’s Harmonic Triangle.
- A046208 (program): In Leibniz’s Harmonic Triangle, write the numerator first and then the denominator of each element to the right of the central elements.
- A046212 (program): First numerator and then denominator of central elements of Leibniz’s Harmonic Triangle.
- A046217 (program): First numerator and then denominator of 1/2-Pascal triangle (by row) excluding 1’s and 2’s.
- A046219 (program): Denominators of elements of 1/2-Pascal triangle (by row).
- A046224 (program): Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
- A046231 (program): Numbers whose cube is palindromic in base 4.
- A046232 (program): Cubes which are palindromes in base 4.
- A046233 (program): Numbers whose cube is palindromic in base 5.
- A046234 (program): Cubes which are palindromes in base 5.
- A046236 (program): Cubes which are palindromes in base 6.
- A046301 (program): Product of 3 successive primes.
- A046302 (program): Product of 4 successive primes.
- A046303 (program): Product of 5 successive primes.
- A046304 (program): Divisible by at least 5 primes (counted with multiplicity).
- A046305 (program): Divisible by at least 6 primes (counted with multiplicity).
- A046306 (program): Numbers that are divisible by exactly 6 primes with multiplicity.
- A046307 (program): Numbers that are divisible by at least 7 primes (counted with multiplicity).
- A046308 (program): Numbers that are divisible by exactly 7 primes counting multiplicity.
- A046309 (program): Numbers that are divisible by at least 8 primes (counted with multiplicity).
- A046310 (program): Numbers that are divisible by exactly 8 primes counting multiplicity.
- A046311 (program): Numbers that are divisible by at least 9 primes (counted with multiplicity).
- A046312 (program): Numbers that are divisible by exactly 9 primes with multiplicity.
- A046313 (program): Numbers that are divisible by at least 10 primes (counted with multiplicity).
- A046314 (program): Numbers that are divisible by exactly 10 primes with multiplicity.
- A046315 (program): Odd semiprimes: odd numbers divisible by exactly 2 primes (counted with multiplicity).
- A046316 (program): Numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.
- A046317 (program): Odd numbers divisible by exactly 4 primes (counted with multiplicity).
- A046318 (program): Odd numbers divisible by exactly 5 primes (counted with multiplicity).
- A046319 (program): Odd numbers divisible by exactly 6 primes (counted with multiplicity).
- A046320 (program): Odd numbers divisible by exactly 7 primes (counted with multiplicity).
- A046321 (program): Odd numbers divisible by exactly 8 primes (counted with multiplicity).
- A046322 (program): Odd numbers divisible by exactly 9 primes (counted with multiplicity).
- A046323 (program): Odd numbers divisible by exactly 10 primes (counted with multiplicity).
- A046324 (program): Product of 6 successive primes.
- A046325 (program): Product of 7 successive primes.
- A046326 (program): Product of 8 successive primes.
- A046327 (program): Numbers that are the product of 9 successive primes.
- A046337 (program): Odd numbers with an even number of prime factors (counted with multiplicity).
- A046339 (program): Composite numbers with an odd number of prime factors (counted with multiplicity).
- A046340 (program): Odd composite numbers with an odd number of prime factors (counted with multiplicity).
- A046343 (program): Sum of the prime factors of the composite numbers (counted with multiplicity).
- A046344 (program): Sum of the prime factors of the odd composite numbers (counted with multiplicity).
- A046345 (program): Sum of the prime factors of the palindromic composite numbers (counted with multiplicity).
- A046363 (program): Composite numbers whose sum of prime factors (with multiplicity) is prime.
- A046364 (program): Odd numbers whose sum of prime factors is prime (counted with multiplicity).
- A046386 (program): Products of four distinct primes.
- A046387 (program): Products of 5 distinct primes.
- A046388 (program): Odd numbers of the form p*q where p and q are distinct primes.
- A046389 (program): Products of exactly three distinct odd primes.
- A046390 (program): Squarefree odd numbers with exactly 4 distinct prime factors.
- A046431 (program): Sum of digits of a(n) raised to its digits powers is prime.
- A046445 (program): Smallest composite with n prime factors that are distinct in length.
- A046470 (program): Even numbers with an odd number of prime factors (counted with multiplicity).
- A046489 (program): Sum of the first n palindromes (A002113).
- A046510 (program): Numbers with multiplicative persistence value 1.
- A046520 (program): a(n) = (sum of divisors of n) - phi(n) - (number of divisors of n).
- A046521 (program): Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down.
- A046522 (program): a(n) = 2*floor(sqrt(n)) - d(n), where d(n) is the number of divisors of n (A000005).
- A046523 (program): Smallest number with same prime signature as n.
- A046527 (program): A triangle related to A000108 (Catalan) and A000302 (powers of 4).
- A046540 (program): Denominators of the 1/3-Pascal triangle (by row).
- A046569 (program): Denominators of the 1/4-Pascal triangle (by row).
- A046595 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 1’s.
- A046596 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 2’s.
- A046597 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 4’s.
- A046607 (program): Denominators of the 1/5-Pascal triangle (by row).
- A046630 (program): Number of cubic residues mod 2^n.
- A046631 (program): Number of cubic residues mod 3^n.
- A046632 (program): Number of cubic residues mod 4^n.
- A046633 (program): Number of cubic residues mod 5^n.
- A046635 (program): Number of cubic residues mod 7^n.
- A046636 (program): Number of cubic residues mod 8^n.
- A046637 (program): Number of cubic residues mod 9^n.
- A046640 (program): a(n) = A045763(n) + 1.
- A046642 (program): Numbers k such that k and number of divisors d(k) are relatively prime.
- A046643 (program): From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.
- A046644 (program): From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
- A046645 (program): a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).
- A046646 (program): Number of certain rooted planar maps.
- A046649 (program): a(n) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 4 edges which are invariant under a rotation of a 1/2 turn. (Column 2 of A091665.)
- A046657 (program): a(n) = A002088(n)/2.
- A046658 (program): Triangle related to A001700 and A000302 (powers of 4).
- A046660 (program): Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
- A046662 (program): Sum of mistyped version of binomial coefficients.
- A046665 (program): Largest prime divisor of n - smallest prime divisor of n (a(1)=0).
- A046666 (program): a(n) = n - (smallest prime dividing n).
- A046667 (program): a(n) = A046666(n)/2.
- A046668 (program): Numbers n such that partition function p(n) divides n!.
- A046669 (program): Partial sums of A020639.
- A046670 (program): Partial sums of A006530.
- A046671 (program): Nim-values G(3,n) for Sylver coinage.
- A046672 (program): Expansion of 1/(1-2*x-3*x^2+2*x^3).
- A046673 (program): a(n) = (2n)!*Sum_{i=1..n} 1/i.
- A046674 (program): a(n) = A046673(n)/2.
- A046675 (program): Expansion of Product_{i>0} (1-x^{p_i}), where p_i are the primes.
- A046682 (program): Number of cycle types of conjugacy classes of all even permutations of n elements.
- A046684 (program): Numbers k such that k and sum of squares of divisors of k are relatively prime.
- A046686 (program): Numbers k such that k and sum of cubes of divisors of k are relatively prime.
- A046687 (program): Numbers k such that k and sum of 4th powers of divisors of k are relatively prime.
- A046688 (program): Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).
- A046691 (program): a(n) = (n^2 + 5*n - 2)/2.
- A046692 (program): Dirichlet inverse of sigma function (A000203).
- A046698 (program): a(0) = 0, a(1) = 1, a(n) = a(a(n-1)) + a(a(n-2)) if n > 1.
- A046699 (program): a(1) = a(2) = 1, a(n) = a(n - a(n-1)) + a(n-1 - a(n-2)) if n > 2.
- A046704 (program): Additive primes: sum of digits is a prime.
- A046706 (program): a(n) = (1/2)*(n+1)!*Sum_{k=0..floor(n/2)} n^(2k+1)/(2k+1)!.
- A046707 (program): a(n) = n!*Sum_{k=0..n/2} n^(2k)/(2k)!.
- A046711 (program): From the Bruck-Ryser theorem: numbers n == 1 or 2 (mod 4) which are also the sum of 2 squares.
- A046714 (program): Convolution of A000108 (Catalan) with A000351 (powers of 5).
- A046715 (program): Secondary root edges in doubly rooted tree maps with n edges.
- A046717 (program): a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.
- A046718 (program): Number of permutations of [ n ] with exactly one 132-pattern and two 123-patterns.
- A046727 (program): Related to Pythagorean triples: alternate terms of A001652 and A046090.
- A046729 (program): Expansion of 4x/((1+x)(1-6x+x^2)).
- A046736 (program): Number of ways to place non-intersecting diagonals in convex n-gon so as to create no triangles.
- A046748 (program): Row sums of triangle A046521.
- A046757 (program): Triangle of coefficients of certain polynomials (exponents in decreasing order).
- A046790 (program): Positive numbers divisible by 8 or by the square of an odd prime.
- A046792 (program): Triangle of numbers where k-th row contains (ij)!/(i!j!) with i+j = k+1, 1 <= i <= k.
- A046804 (program): Primes p modulo t where t = terminal digit of p.
- A046814 (program): Row sums of triangle A046527.
- A046818 (program): Number of 1’s in binary expansion of 3n+1.
- A046819 (program): Number of 1’s in binary expansion of 3n+2.
- A046820 (program): Number of 1’s in binary expansion of 5n.
- A046821 (program): Number of 1’s in binary expansion of 5n+1.
- A046822 (program): Number of 1’s in binary expansion of 5n+2.
- A046823 (program): Number of 1’s in binary expansion of 5n+3.
- A046824 (program): Number of 1’s in binary expansion of 5n+4.
- A046825 (program): Numerator of Sum_{k=0..n} 1/binomial(n,k).
- A046826 (program): Denominator of Sum_{k=0..n} 1/binomial(n,k).
- A046840 (program): Number of divisors divides sum of 4th powers of divisors.
- A046841 (program): Sum of divisors divides sum of cubes of divisors.
- A046854 (program): Triangle T(n, k) = binomial(floor((n+k)/2), k), n>=0, n >= k >= 0.
- A046855 (program): a(n) = Sum_{i=0..n} binomial(2^n-1, i).
- A046864 (program): Smallest number whose digits sum to n-th prime.
- A046868 (program): Numbers n such that prime(n)^2 > prime(n-1)*prime(n+1).
- A046869 (program): Good primes (version 1): prime(n)^2 > prime(n-1)*prime(n+1).
- A046877 (program): a(n) = a(n-2) + a(n-3).
- A046878 (program): Numerator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 0.
- A046879 (program): Denominator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 1.
- A046885 (program): Row sums of triangle A046658.
- A046886 (program): Number of divisors d of 2n satisfying (d+1) = prime or number of prime factors of the denominator of the even Bernoulli numbers.
- A046895 (program): Sizes of successive clusters in Z^4 lattice.
- A046897 (program): Sum of divisors of n that are not divisible by 4.
- A046898 (program): Partial sums of A046897.
- A046899 (program): Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.
- A046901 (program): a(n) = a(n-1) - n if a(n-1) > n, else a(n) = a(n-1) + n.
- A046902 (program): Clark’s triangle: left border = 0 1 1 1…, right border = multiples of 6; other entries = sum of 2 entries above.
- A046913 (program): Sum of divisors of n not congruent to 0 mod 3.
- A046914 (program): Sum of aliquot factors (divisors excluding the number itself) of 10^n.
- A046915 (program): Sum of divisors of 10^n.
- A046916 (program): a(n) = n*2^n + 2*n^2 + 1.
- A046920 (program): Number of ways to express n as p+2a^2; p = 1 or prime, a >= 0.
- A046921 (program): Number of ways to express 2n+1 as p+2a^2; p = 1 or prime, a >= 0.
- A046922 (program): Number of ways to express n as p+2a^2; p prime, a >= 0.
- A046923 (program): Number of ways to express 2n+1 as p+2a^2; p prime, a >= 0.
- A046924 (program): Number of ways to express n as p+2q; p, q = 1 or prime.
- A046925 (program): Number of ways to express 2n+1 as p+2q; p, q = 1 or prime.
- A046926 (program): Number of ways to express n as p+2q; p, q primes.
- A046927 (program): Number of ways to express 2n+1 as p+2q where p and q are primes.
- A046930 (program): Size of sea of composite numbers surrounding n-th prime.
- A046933 (program): Number of composites between successive primes.
- A046934 (program): Same rule as Aitken triangle (A011971) except a(0,0)=1, a(1,0)=0.
- A046935 (program): Sequence formed from rows of triangle A046934.
- A046948 (program): Sizes of successive balls in E_8 lattice.
- A046949 (program): Sizes of successive balls in D_4 lattice.
- A046951 (program): a(n) is the number of squares dividing n.
- A046953 (program): Numbers k such that 6*k - 1 is composite.
- A046954 (program): Numbers k such that 6*k + 1 is nonprime.
- A046968 (program): Numerators of coefficients in Stirling’s expansion for log(Gamma(z)).
- A046969 (program): Denominators of coefficients in Stirling’s expansion for log(Gamma(z)).
- A046970 (program): Dirichlet inverse of the Jordan function J_2 (A007434).
- A046971 (program): Maximal value of number of unitary divisors (see A034444) for integers in binary order range of n.
- A046974 (program): Partial sums of digits of decimal expansion of Pi.
- A046975 (program): Partial sums of digits of decimal expansion of e.
- A046976 (program): Numerators of Taylor series for sec(x) = 1/cos(x).
- A046977 (program): Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).
- A046978 (program): Numerators of Taylor series for exp(x)*sin(x).
- A046979 (program): Denominators of Taylor series for exp(x)*sin(x).
- A046980 (program): Numerators of Taylor series for exp(x)*cos(x).
- A046981 (program): Denominators of Taylor series for exp(x)*cos(x).
- A046982 (program): Numerators of Taylor series for tan(x + Pi/4).
- A046983 (program): Denominators of Taylor series for tan(x + Pi/4).
- A046984 (program): Number of ways to tile a 4 X 3n rectangle with right trominoes.
- A046988 (program): Numerators of zeta(2*n)/Pi^(2*n).
- A046990 (program): Numerators of Taylor series for log(1/cos(x)). Also from log(cos(x)).
- A046991 (program): Denominators of Taylor series for log(1/cos(x)). Also from log(cos(x)).
- A046992 (program): a(n) = Sum_{k=1..n} pi(k) (cf. A000720).
- A046993 (program): Partial products of pi(n), A000720.
- A046994 (program): Number of Greek-key tours on a 3 X n board; i.e., self-avoiding walks on a 3 X n grid starting in the top left corner.
- A046998 (program): a(n) = 1 - (7/6)*n + (2/3)*n^3 + (1/2)*n^4.
- A047002 (program): T(n,n), array T given by A047000.
- A047006 (program): T(n,n+1), array T given by A047000.
- A047007 (program): T(n,n+2), array T given by A047000.
- A047008 (program): T(n,n+3), array T given by A047000.
- A047009 (program): T(2n,n), array T given by A047000.
- A047053 (program): a(n) = 4^n * n!.
- A047055 (program): Quintuple factorial numbers: a(n) = Product_{k=0..n-1} (5*k + 2).
- A047056 (program): Quintuple factorial numbers: Product_{k=0..n-1} (5*k+3).
- A047058 (program): a(n) = 6^n * n!.
- A047073 (program): a(n) = Sum_{j=0..n} A047072(j, n-j).
- A047074 (program): a(n) = Sum_{i=0..floor(n/2)} T(i,n-i), array T as in A047072.
- A047075 (program): All differences C(j)-C(i), j>i, of Catalan numbers A000108.
- A047081 (program): a(n) = Sum_{k=0..n} T(n, k), array T as in A047080.
- A047084 (program): a(n) = Sum_{i=0..n} A047080(i,n-i).
- A047085 (program): a(n) = T(2*n, n), array T as in A047080.
- A047086 (program): a(n) = T(2*n+1, n), array T as in A047080.
- A047098 (program): a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).
- A047099 (program): a(n) = A047098(n)/2.
- A047160 (program): For n >= 2, a(n) = smallest number m >= 0 such that n-m and n+m are both primes, or -1 if no such m exists.
- A047161 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= n/2.
- A047162 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= n/2.
- A047163 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= n/2.
- A047164 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= n/2.
- A047165 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= n/2.
- A047166 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= n/2.
- A047167 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= n/2.
- A047168 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= n/2.
- A047169 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= n/2.
- A047170 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 5/6 of the elements are <= n/2.
- A047171 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-1)/2.
- A047172 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-1)/2.
- A047173 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-1)/2.
- A047174 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-1)/2.
- A047175 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-1)/2.
- A047176 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-1)/2.
- A047177 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-1)/2.
- A047178 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-1)/2.
- A047179 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= (n-1)/2.
- A047180 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-1)/2.
- A047182 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-2)/2.
- A047183 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-2)/2.
- A047184 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-2)/2.
- A047185 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-2)/2.
- A047186 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-2)/2.
- A047187 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-2)/2.
- A047188 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-2)/2.
- A047189 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-2)/2.
- A047190 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= (n-2)/2.
- A047191 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-2)/2.
- A047193 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= n/3.
- A047201 (program): Numbers not divisible by 5.
- A047202 (program): Numbers that are congruent to {2, 3, 4} mod 5.
- A047203 (program): Numbers that are congruent to {0, 2, 3, 4} mod 5.
- A047204 (program): Numbers that are congruent to {3, 4} mod 5.
- A047205 (program): Numbers that are congruent to {0, 3, 4} mod 5.
- A047206 (program): Numbers that are congruent to {1, 3, 4} mod 5.
- A047207 (program): Numbers that are congruent to {0, 1, 3, 4} mod 5.
- A047208 (program): Numbers that are congruent to {0, 4} mod 5.
- A047209 (program): Numbers that are congruent to {1, 4} mod 5.
- A047210 (program): Largest square modulo n.
- A047211 (program): Numbers that are congruent to {2, 4} mod 5.
- A047212 (program): Numbers that are congruent to {0, 2, 4} mod 5.
- A047213 (program): Largest 4th power modulo n.
- A047214 (program): Largest 6th power modulo n.
- A047215 (program): Numbers that are congruent to {0, 2} mod 5.
- A047216 (program): Numbers that are congruent to {1, 2} mod 5.
- A047217 (program): Numbers that are congruent to {0, 1, 2} mod 5.
- A047218 (program): Numbers that are congruent to {0, 3} mod 5.
- A047219 (program): Numbers that are congruent to {1, 3} mod 5.
- A047220 (program): Numbers that are congruent to {0, 1, 3} mod 5.
- A047221 (program): Numbers that are congruent to {2, 3} mod 5.
- A047222 (program): Numbers that are congruent to {0, 2, 3} mod 5.
- A047223 (program): Numbers that are congruent to {1, 2, 3} mod 5.
- A047225 (program): Numbers that are congruent to {0, 1} mod 6.
- A047226 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 6; a(n)=floor(6(n-1)/5).
- A047227 (program): Numbers that are congruent to {1, 2, 3, 4} mod 6.
- A047228 (program): Numbers that are congruent to {2, 3, 4} mod 6.
- A047229 (program): Numbers that are congruent to {0, 2, 3, 4} mod 6.
- A047230 (program): Numbers that are congruent to {3, 4} mod 6.
- A047231 (program): Numbers that are congruent to {0, 3, 4} mod 6.
- A047233 (program): Numbers that are congruent to {0, 4} mod 6.
- A047234 (program): Numbers that are congruent to {0, 1, 4} mod 6.
- A047235 (program): Numbers that are congruent to {2, 4} mod 6.
- A047236 (program): Numbers that are congruent to {1, 2, 4} mod 6.
- A047237 (program): Numbers that are congruent to {0, 1, 2, 4} mod 6.
- A047238 (program): Numbers that are congruent to {0, 2} mod 6.
- A047239 (program): Numbers that are congruent to {1, 2} (mod 6).
- A047240 (program): Numbers that are congruent to {0, 1, 2} mod 6.
- A047241 (program): Numbers that are congruent to {1, 3} mod 6.
- A047242 (program): Numbers that are congruent to {0, 1, 3} mod 6.
- A047243 (program): Numbers that are congruent to {2, 3} mod 6.
- A047244 (program): Numbers that are congruent to {0, 2, 3} mod 6.
- A047245 (program): Numbers that are congruent to {1, 2, 3} mod 6.
- A047246 (program): Numbers that are congruent to {0, 1, 2, 3} mod 6.
- A047247 (program): Numbers that are congruent to {2, 3, 4, 5} (mod 6).
- A047248 (program): Numbers that are congruent to {0, 2, 3, 4, 5} (mod 6).
- A047249 (program): Numbers that are congruent to {3, 4, 5} mod 6.
- A047250 (program): Numbers that are congruent to {0, 3, 4, 5} (mod 6).
- A047251 (program): Numbers that are congruent to {1, 3, 4, 5} (mod 6).
- A047252 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 6.
- A047253 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.
- A047254 (program): Numbers that are congruent to {2, 3, 5} mod 6.
- A047255 (program): Numbers that are congruent to {1, 2, 3, 5} mod 6.
- A047256 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 6.
- A047257 (program): Numbers that are congruent to {4, 5} mod 6.
- A047258 (program): Numbers that are congruent to {0, 4, 5} mod 6.
- A047259 (program): Numbers that are congruent to {1, 4, 5} mod 6.
- A047260 (program): Numbers that are congruent to {0, 1, 4, 5} mod 6.
- A047261 (program): Numbers that are congruent to {2, 4, 5} mod 6.
- A047262 (program): Numbers that are congruent to {0, 2, 4, 5} mod 6.
- A047263 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 6.
- A047264 (program): Numbers that are congruent to 0 or 5 mod 6.
- A047266 (program): Numbers that are congruent to {0, 1, 5} mod 6.
- A047267 (program): Numbers that are congruent to {0, 2, 5} mod 6.
- A047268 (program): Numbers that are congruent to {1, 2, 5} mod 6.
- A047269 (program): Numbers that are congruent to {0, 1, 2, 5} mod 6.
- A047270 (program): Numbers that are congruent to {3, 5} mod 6.
- A047271 (program): Numbers that are congruent to {0, 3, 5} mod 6.
- A047273 (program): Numbers that are congruent to {0, 1, 3, 5} mod 6.
- A047274 (program): Numbers that are congruent to {0, 1} mod 7.
- A047275 (program): Numbers that are congruent to {0, 1, 6} mod 7.
- A047276 (program): Numbers that are congruent to {2, 6} mod 7.
- A047277 (program): Numbers that are congruent to {0, 2, 6} mod 7.
- A047278 (program): Numbers that are congruent to {1, 2, 6} mod 7.
- A047279 (program): Numbers that are congruent to {0, 1, 2, 6} mod 7.
- A047280 (program): Numbers that are congruent to {3, 6} mod 7.
- A047281 (program): Numbers that are congruent to {0, 3, 6} mod 7.
- A047282 (program): Numbers that are congruent to {1, 3, 6} mod 7.
- A047283 (program): Numbers that are congruent to {0, 1, 3, 6} mod 7.
- A047284 (program): Numbers that are congruent to {2, 3, 6} mod 7.
- A047285 (program): Numbers that are congruent to {0, 2, 3, 6} mod 7.
- A047286 (program): Numbers that are congruent to {1, 2, 3, 6} mod 7.
- A047287 (program): Numbers that are congruent to {0, 1, 2, 3, 6} mod 7.
- A047288 (program): Numbers that are congruent to {4, 6} mod 7.
- A047289 (program): Numbers that are congruent to {0, 4, 6} mod 7.
- A047290 (program): Numbers that are congruent to {1, 4, 6} mod 7.
- A047291 (program): Numbers that are congruent to {0, 1, 4, 6} mod 7.
- A047292 (program): Numbers that are congruent to {2, 4, 6} mod 7.
- A047293 (program): Numbers that are congruent to {0, 2, 4, 6} mod 7.
- A047294 (program): Numbers that are congruent to {1, 2, 4, 6} mod 7.
- A047295 (program): Numbers that are congruent to {0, 1, 2, 4, 6} mod 7.
- A047296 (program): Numbers that are congruent to {3, 4, 6} mod 7.
- A047297 (program): Numbers that are congruent to {0, 3, 4, 6} mod 7.
- A047298 (program): Numbers that are congruent to {1, 3, 4, 6} mod 7.
- A047299 (program): Numbers that are congruent to {0, 1, 3, 4, 6} mod 7.
- A047300 (program): Numbers that are congruent to {2, 3, 4, 6} mod 7.
- A047301 (program): Numbers that are congruent to {0, 2, 3, 4, 6} mod 7.
- A047302 (program): Numbers that are congruent to {1, 2, 3, 4, 6} mod 7.
- A047303 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 7.
- A047304 (program): Numbers not divisible by 7.
- A047305 (program): Numbers that are congruent to {2, 3, 4, 5, 6} mod 7.
- A047306 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.
- A047307 (program): Numbers that are congruent to {3, 4, 5, 6} mod 7.
- A047308 (program): Numbers that are congruent to {0, 3, 4, 5, 6} mod 7.
- A047309 (program): Numbers that are congruent to {1, 3, 4, 5, 6} mod 7.
- A047310 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 7.
- A047311 (program): Numbers that are congruent to {4, 5, 6} mod 7.
- A047312 (program): Numbers that are congruent to {0, 4, 5, 6} mod 7.
- A047313 (program): Numbers that are congruent to {1, 4, 5, 6} mod 7.
- A047314 (program): Numbers that are congruent to {0, 1, 4, 5, 6} mod 7.
- A047315 (program): Numbers that are congruent to {2, 4, 5, 6} mod 7.
- A047316 (program): Numbers that are congruent to {0, 2, 4, 5, 6} mod 7.
- A047317 (program): Numbers that are congruent to {1, 2, 4, 5, 6} mod 7.
- A047318 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
- A047319 (program): Numbers that are congruent to {5, 6} mod 7.
- A047320 (program): Numbers that are congruent to {0, 5, 6} mod 7.
- A047321 (program): Numbers that are congruent to {1, 5, 6} mod 7.
- A047322 (program): Numbers that are congruent to {0, 1, 5, 6} mod 7.
- A047323 (program): Numbers that are congruent to {2, 5, 6} mod 7.
- A047324 (program): Numbers that are congruent to {0, 2, 5, 6} mod 7.
- A047325 (program): Numbers that are congruent to {1, 2, 5, 6} mod 7.
- A047326 (program): Numbers that are congruent to {0, 1, 2, 5, 6} mod 7.
- A047327 (program): Numbers that are congruent to {3, 5, 6} mod 7.
- A047328 (program): Numbers that are congruent to {0, 3, 5, 6} mod 7.
- A047329 (program): Numbers that are congruent to {1, 3, 5, 6} mod 7.
- A047330 (program): Numbers that are congruent to {0, 1, 3, 5, 6} mod 7.
- A047331 (program): Numbers that are congruent to {2, 3, 5, 6} mod 7.
- A047332 (program): Numbers that are congruent to {0, 2, 3, 5, 6} mod 7.
- A047335 (program): Numbers that are congruent to {0, 6} mod 7.
- A047336 (program): Numbers that are congruent to {1, 6} mod 7.
- A047337 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 7.
- A047338 (program): Numbers that are congruent to {1, 2, 3, 4} mod 7.
- A047339 (program): Numbers that are congruent to {2, 3, 4} mod 7.
- A047340 (program): Numbers that are congruent to {0, 2, 3, 4} mod 7.
- A047341 (program): Numbers that are congruent to {3, 4} mod 7.
- A047342 (program): Numbers that are congruent to {0, 3, 4} mod 7.
- A047343 (program): Numbers that are congruent to {1, 3, 4} mod 7.
- A047344 (program): Numbers that are congruent to {0, 1, 3, 4} mod 7.
- A047345 (program): Numbers that are congruent to {0, 4} mod 7.
- A047346 (program): Numbers that are congruent to {1, 4} mod 7.
- A047347 (program): Numbers that are congruent to {0, 1, 4} mod 7.
- A047348 (program): Numbers that are congruent to {2, 4} mod 7.
- A047349 (program): Numbers that are congruent to {0, 2, 4} mod 7.
- A047350 (program): Numbers that are congruent to {1, 2, 4} mod 7.
- A047351 (program): Numbers that are congruent to {0, 1, 2, 4} mod 7.
- A047352 (program): Numbers that are congruent to {0, 2} mod 7.
- A047353 (program): Numbers that are congruent to {1, 2} mod 7.
- A047354 (program): Numbers that are congruent to {0, 1, 2} mod 7.
- A047355 (program): Numbers that are congruent to {0, 3} mod 7.
- A047356 (program): Numbers that are congruent to {1, 3} mod 7.
- A047357 (program): Numbers that are congruent to {0, 1, 3} mod 7.
- A047358 (program): Numbers that are congruent to {2, 3} mod 7.
- A047359 (program): Numbers that are congruent to {0, 2, 3} mod 7.
- A047360 (program): Numbers that are congruent to {1, 2, 3} mod 7.
- A047361 (program): Numbers that are congruent to {0, 1, 2, 3} mod 7.
- A047362 (program): Numbers that are congruent to {2, 3, 4, 5} mod 7.
- A047363 (program): Numbers that are congruent to {0, 2, 3, 4, 5} mod 7.
- A047364 (program): Numbers that are congruent to {3, 4, 5} mod 7.
- A047365 (program): Numbers that are congruent to {0, 3, 4, 5} mod 7.
- A047366 (program): Numbers that are congruent to {1, 3, 4, 5} mod 7.
- A047367 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 7.
- A047368 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).
- A047369 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 7.
- A047370 (program): Numbers that are congruent to {2, 3, 5} mod 7.
- A047371 (program): Numbers that are congruent to {0, 2, 3, 5} mod 7.
- A047372 (program): Numbers that are congruent to {1, 2, 3, 5} mod 7.
- A047373 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 7.
- A047374 (program): Numbers that are congruent to {4, 5} mod 7.
- A047375 (program): Numbers that are congruent to {0, 4, 5} mod 7.
- A047376 (program): Numbers that are congruent to {1, 4, 5} mod 7.
- A047377 (program): Numbers that are congruent to {0, 1, 4, 5} mod 7.
- A047378 (program): Numbers that are congruent to {2, 4, 5} mod 7.
- A047379 (program): Numbers that are congruent to {0, 2, 4, 5} mod 7.
- A047380 (program): Numbers that are congruent to {1, 2, 4, 5} mod 7.
- A047381 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 7.
- A047382 (program): Numbers that are congruent to {0, 5} mod 7.
- A047383 (program): Numbers that are congruent to {1, 5} mod 7.
- A047384 (program): Numbers that are congruent to {0, 1, 5} mod 7.
- A047385 (program): Numbers that are congruent to {2, 5} mod 7.
- A047386 (program): Numbers that are congruent to {0, 2, 5} mod 7.
- A047387 (program): Numbers that are congruent to {1, 2, 5} mod 7.
- A047388 (program): Numbers that are congruent to {0, 1, 2, 5} mod 7.
- A047389 (program): Numbers that are congruent to {3, 5} mod 7.
- A047390 (program): Numbers that are congruent to {0, 3, 5} mod 7.
- A047391 (program): Numbers that are congruent to {1, 3, 5} mod 7.
- A047392 (program): Numbers that are congruent to {0, 1, 3, 5} mod 7.
- A047393 (program): Numbers that are congruent to {0, 1} mod 8.
- A047394 (program): Numbers that are congruent to {0, 1, 6} mod 8.
- A047395 (program): Numbers that are congruent to {0, 2, 6} mod 8.
- A047396 (program): Numbers that are congruent to {1, 2, 6} mod 8.
- A047397 (program): Numbers that are congruent to {0, 1, 2, 6} mod 8.
- A047398 (program): Numbers that are congruent to {3, 6} mod 8.
- A047399 (program): Numbers that are congruent to {0, 3, 6} mod 8.
- A047400 (program): Numbers that are congruent to {1, 3, 6} mod 8.
- A047401 (program): Numbers that are congruent to {0, 1, 3, 6} mod 8.
- A047402 (program): Numbers that are congruent to {2, 3, 6} mod 8.
- A047403 (program): Numbers that are congruent to {0, 2, 3, 6} mod 8.
- A047404 (program): Numbers that are congruent to {1, 2, 3, 6} mod 8.
- A047405 (program): Numbers that are congruent to {0, 1, 2, 3, 6} mod 8.
- A047406 (program): Numbers that are congruent to {4, 6} mod 8.
- A047407 (program): Numbers that are congruent to {0, 4, 6} mod 8.
- A047408 (program): Numbers that are congruent to {1, 4, 6} mod 8.
- A047409 (program): Numbers that are congruent to {0, 1, 4, 6} mod 8.
- A047410 (program): Numbers that are congruent to {2, 4, 6} mod 8.
- A047411 (program): Numbers that are congruent to {1, 2, 4, 6} mod 8.
- A047412 (program): Numbers that are congruent to {0, 1, 2, 4, 6} mod 8.
- A047413 (program): Numbers that are congruent to {3, 4, 6} mod 8.
- A047414 (program): Numbers that are congruent to {0, 3, 4, 6} mod 8.
- A047415 (program): Numbers that are congruent to {1, 3, 4, 6} mod 8.
- A047416 (program): Numbers that are congruent to {0, 1, 3, 4, 6} mod 8.
- A047417 (program): Numbers that are congruent to {2, 3, 4, 6} mod 8.
- A047418 (program): Numbers that are congruent to {0, 2, 3, 4, 6} mod 8.
- A047419 (program): Numbers that are congruent to {1, 2, 3, 4, 6} mod 8.
- A047420 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 8.
- A047421 (program): Floor(8n/7).
- A047422 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 6} mod 8.
- A047423 (program): Numbers that are congruent to {2, 3, 4, 5, 6} mod 8.
- A047424 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 8.
- A047425 (program): Numbers that are congruent to {3, 4, 5, 6} mod 8.
- A047426 (program): Numbers that are congruent to {0, 3, 4, 5, 6} mod 8.
- A047427 (program): Numbers that are congruent to {1, 3, 4, 5, 6} mod 8.
- A047428 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 8.
- A047429 (program): Numbers that are congruent to {4, 5, 6} mod 8.
- A047430 (program): Numbers that are congruent to {0, 4, 5, 6} mod 8.
- A047431 (program): Numbers that are congruent to {1, 4, 5, 6} mod 8.
- A047432 (program): Numbers that are congruent to {0, 1, 4, 5, 6} mod 8.
- A047433 (program): Numbers that are congruent to {2, 4, 5, 6} mod 8.
- A047434 (program): Numbers that are congruent to {0, 2, 4, 5, 6} mod 8.
- A047435 (program): Numbers that are congruent to {1, 2, 4, 5, 6} mod 8.
- A047436 (program): Numbers that are congruent to {5, 6} mod 8.
- A047437 (program): Numbers that are congruent to {0, 5, 6} mod 8.
- A047438 (program): Numbers that are congruent to {1, 5, 6} mod 8.
- A047439 (program): Numbers that are congruent to {0, 1, 5, 6} mod 8.
- A047440 (program): Numbers that are congruent to {2, 5, 6} mod 8.
- A047441 (program): Numbers that are congruent to {0, 2, 5, 6} mod 8.
- A047442 (program): Numbers that are congruent to {0, 1, 2, 5, 6} mod 8.
- A047443 (program): Numbers that are congruent to {3, 5, 6} mod 8.
- A047444 (program): Numbers that are congruent to {0, 3, 5, 6} mod 8.
- A047445 (program): Numbers that are congruent to {1, 3, 5, 6} mod 8.
- A047446 (program): Numbers that are congruent to {0, 1, 3, 5, 6} mod 8.
- A047447 (program): Numbers that are congruent to {2, 3, 5, 6} mod 8.
- A047448 (program): Numbers that are congruent to {0, 2, 3, 5, 6} mod 8.
- A047449 (program): Numbers that are primitively represented by x^2 + y^2 + z^2.
- A047450 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.
- A047451 (program): Numbers that are congruent to {0, 6} mod 8.
- A047452 (program): Numbers that are congruent to {1, 6} mod 8.
- A047453 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 8.
- A047454 (program): Numbers that are congruent to {1, 2, 3, 4} mod 8.
- A047455 (program): Numbers that are congruent to {2, 3, 4} mod 8.
- A047456 (program): Numbers that are congruent to {0, 2, 3, 4} mod 8.
- A047457 (program): Numbers that are congruent to {3, 4} mod 8.
- A047458 (program): Numbers that are congruent to {0, 3, 4} mod 8.
- A047459 (program): Numbers that are congruent to {1, 3, 4} mod 8.
- A047460 (program): Numbers that are congruent to {0, 1, 3, 4} mod 8.
- A047461 (program): Numbers that are congruent to {1, 4} mod 8.
- A047462 (program): Numbers that are congruent to {0, 1, 4} mod 8.
- A047463 (program): Numbers that are congruent to {2, 4} mod 8.
- A047464 (program): Numbers that are congruent to {0, 2, 4} mod 8.
- A047465 (program): Numbers that are congruent to {1, 2, 4} mod 8.
- A047466 (program): Numbers that are congruent to {0, 1, 2, 4} mod 8.
- A047467 (program): Numbers that are congruent to {0, 2} mod 8.
- A047468 (program): Numbers that are congruent to {1, 2} mod 8.
- A047469 (program): Numbers that are congruent to {0, 1, 2} mod 8.
- A047470 (program): Numbers that are congruent to {0, 3} mod 8.
- A047471 (program): Numbers that are congruent to {1, 3} mod 8.
- A047472 (program): Numbers that are congruent to {0, 1, 3} (mod 8).
- A047473 (program): Numbers that are congruent to {2, 3} mod 8.
- A047474 (program): Numbers that are congruent to {0, 2, 3} mod 8.
- A047475 (program): Numbers that are congruent to {1, 2, 3} mod 8.
- A047476 (program): Numbers that are congruent to {0, 1, 2, 3} mod 8.
- A047477 (program): Numbers that are congruent to {0, 5, 7} mod 8.
- A047478 (program): Numbers that are congruent to {1, 5, 7} mod 8.
- A047479 (program): Numbers that are congruent to {0, 1, 5, 7} mod 8.
- A047480 (program): Numbers that are congruent to {2, 5, 7} mod 8.
- A047481 (program): Numbers that are congruent to {0, 2, 5, 7} mod 8.
- A047482 (program): Numbers that are congruent to {1, 2, 5, 7} mod 8.
- A047483 (program): Numbers that are congruent to {0, 1, 2, 5, 7} mod 8.
- A047484 (program): Numbers that are congruent to {3, 5, 7} mod 8.
- A047485 (program): Numbers that are congruent to {0, 3, 5, 7} mod 8.
- A047486 (program): Numbers that are congruent to {0, 1, 3, 5, 7} mod 8.
- A047487 (program): Numbers that are congruent to {2, 3, 5, 7} mod 8.
- A047488 (program): Numbers that are congruent to {0, 2, 3, 5, 7} mod 8.
- A047489 (program): Numbers that are congruent to {1, 2, 3, 5, 7} mod 8.
- A047490 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 7} mod 8.
- A047491 (program): Numbers that are congruent to {4, 5, 7} mod 8.
- A047492 (program): Numbers that are congruent to {0, 4, 5, 7} mod 8.
- A047493 (program): Numbers that are congruent to {1, 4, 5, 7} mod 8.
- A047494 (program): Numbers that are congruent to {0, 1, 4, 5, 7} mod 8.
- A047495 (program): Numbers that are congruent to {2, 4, 5, 7} mod 8.
- A047496 (program): Numbers that are congruent to {0, 2, 4, 5, 7} mod 8.
- A047497 (program): Numbers that are congruent to {1, 2, 4, 5, 7} mod 8.
- A047498 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 7} mod 8.
- A047499 (program): Numbers that are congruent to {3, 4, 5, 7} mod 8.
- A047500 (program): Numbers that are congruent to {0, 3, 4, 5, 7} mod 8.
- A047501 (program): Numbers that are congruent to {1, 3, 4, 5, 7} mod 8.
- A047502 (program): Numbers that are congruent to {2, 3, 4, 5, 7} mod 8.
- A047503 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 7} mod 8.
- A047504 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 7} mod 8.
- A047505 (program): Numbers that are congruent to {0, 1, 2, 3, 6, 7} mod 8.
- A047506 (program): Numbers that are congruent to {4, 6, 7} mod 8.
- A047507 (program): Numbers that are congruent to {0, 4, 6, 7} mod 8.
- A047508 (program): Numbers that are congruent to {1, 4, 6, 7} mod 8.
- A047509 (program): Numbers that are congruent to {0, 1, 4, 6, 7} mod 8.
- A047510 (program): Numbers that are congruent to {2, 4, 6, 7} mod 8.
- A047511 (program): Numbers that are congruent to {0, 2, 4, 6, 7} mod 8.
- A047512 (program): Numbers that are congruent to {1, 2, 4, 6, 7} mod 8.
- A047513 (program): Numbers that are congruent to {0, 1, 2, 4, 6, 7} mod 8.
- A047514 (program): Numbers that are congruent to {3, 4, 6, 7} mod 8.
- A047515 (program): Numbers that are congruent to {0, 3, 4, 6, 7} mod 8.
- A047516 (program): Numbers that are congruent to {1, 3, 4, 6, 7} mod 8.
- A047517 (program): Numbers that are congruent to {0, 1, 3, 4, 6, 7} mod 8.
- A047518 (program): Numbers that are congruent to {2, 3, 4, 6, 7} mod 8.
- A047519 (program): Numbers that are congruent to {1, 2, 3, 4, 6, 7} mod 8.
- A047520 (program): a(n) = 2*a(n-1) + n^2, a(0) = 0.
- A047521 (program): Numbers that are congruent to {0, 7} mod 8.
- A047522 (program): Numbers that are congruent to {1, 7} mod 8.
- A047523 (program): Numbers that are congruent to {0, 1, 7} mod 8.
- A047524 (program): Numbers that are congruent to {2, 7} mod 8.
- A047525 (program): Numbers that are congruent to {0, 2, 7} mod 8.
- A047526 (program): Numbers that are congruent to {1, 2, 7} mod 8.
- A047527 (program): Numbers that are congruent to {0, 1, 2, 7} mod 8.
- A047528 (program): Numbers that are congruent to {0, 3, 7} mod 8.
- A047529 (program): Numbers that are congruent to {1, 3, 7} mod 8.
- A047530 (program): Numbers that are congruent to {0, 1, 3, 7} mod 8.
- A047531 (program): Numbers that are congruent to {2, 3, 7} mod 8.
- A047532 (program): Numbers that are congruent to {0, 2, 3, 7} mod 8.
- A047533 (program): Numbers that are congruent to {1, 2, 3, 7} mod 8.
- A047534 (program): Numbers that are congruent to {0, 1, 2, 3, 7} mod 8.
- A047535 (program): Numbers that are congruent to {4, 7} mod 8.
- A047536 (program): Numbers that are congruent to {0, 4, 7} mod 8.
- A047537 (program): Numbers that are congruent to {1, 4, 7} mod 8.
- A047538 (program): Numbers that are congruent to {0, 1, 4, 7} mod 8.
- A047539 (program): Numbers that are congruent to {2, 4, 7} mod 8.
- A047540 (program): Numbers that are congruent to {0, 2, 4, 7} mod 8.
- A047541 (program): Numbers that are congruent to {1, 2, 4, 7} mod 8.
- A047542 (program): Numbers that are congruent to {0, 1, 2, 4, 7} mod 8.
- A047543 (program): Numbers that are congruent to {3, 4, 7} mod 8.
- A047544 (program): Numbers that are congruent to {1, 3, 4, 7} mod 8.
- A047545 (program): Numbers that are congruent to {0, 1, 3, 4, 7} mod 8.
- A047546 (program): Numbers that are congruent to {2, 3, 4, 7} mod 8.
- A047547 (program): Numbers that are congruent to {0, 2, 3, 4, 7} mod 8.
- A047548 (program): Numbers that are congruent to {1, 2, 3, 4, 7} mod 8.
- A047549 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8.
- A047550 (program): Numbers that are congruent to {5, 7} mod 8.
- A047551 (program): Numbers that are congruent to {0, 1, 6, 7} mod 8.
- A047552 (program): Numbers that are congruent to {2, 6, 7} mod 8.
- A047553 (program): Numbers that are congruent to {0, 2, 6, 7} mod 8.
- A047554 (program): Numbers that are congruent to {1, 2, 6, 7} mod 8.
- A047555 (program): Numbers that are congruent to {0, 1, 2, 6, 7} mod 8.
- A047556 (program): Numbers that are congruent to {3, 6, 7} mod 8.
- A047557 (program): Numbers that are congruent to {0, 3, 6, 7} mod 8.
- A047558 (program): Numbers that are congruent to {1, 3, 6, 7} mod 8.
- A047559 (program): Numbers that are congruent to {0, 1, 3, 6, 7} mod 8.
- A047560 (program): Numbers that are congruent to {0, 2, 3, 6, 7} mod 8.
- A047561 (program): Numbers that are congruent to {1, 2, 3, 6, 7} mod 8.
- A047562 (program): Numbers that are congruent to {3, 4, 5, 6, 7} mod 8.
- A047563 (program): Numbers that are congruent to {0, 3, 4, 5, 6, 7} mod 8.
- A047564 (program): Numbers that are congruent to {1, 3, 4, 5, 6, 7} mod 8.
- A047565 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6, 7} mod 8.
- A047566 (program): Numbers that are congruent to {4, 5, 6, 7} mod 8.
- A047567 (program): Numbers that are congruent to {0, 4, 5, 6, 7} mod 8.
- A047568 (program): Numbers that are congruent to {1, 4, 5, 6, 7} mod 8.
- A047569 (program): Numbers that are congruent to {0, 1, 4, 5, 6, 7} mod 8.
- A047570 (program): Numbers that are congruent to {2, 4, 5, 6, 7} mod 8.
- A047571 (program): Numbers that are congruent to {0, 2, 4, 5, 6, 7} mod 8.
- A047572 (program): Numbers that are congruent to {1, 2, 4, 5, 6, 7} mod 8.
- A047573 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 6, 7} mod 8.
- A047574 (program): Numbers that are congruent to {5, 6, 7} mod 8.
- A047575 (program): Numbers that are congruent to {0, 5, 6, 7} mod 8.
- A047576 (program): Numbers that are congruent to {1, 5, 6, 7} mod 8.
- A047577 (program): Numbers that are congruent to {0, 1, 5, 6, 7} mod 8.
- A047578 (program): Numbers that are congruent to {2, 5, 6, 7} mod 8.
- A047579 (program): Numbers that are congruent to {0, 2, 5, 6, 7} mod 8.
- A047580 (program): Numbers that are congruent to {1, 2, 5, 6, 7} mod 8.
- A047581 (program): Numbers that are congruent to {0, 1, 2, 5, 6, 7} mod 8.
- A047582 (program): Numbers that are congruent to {3, 5, 6, 7} mod 8.
- A047583 (program): Numbers that are congruent to {0, 3, 5, 6, 7} mod 8.
- A047584 (program): Numbers that are congruent to {1, 3, 5, 6, 7} mod 8.
- A047585 (program): Numbers that are congruent to {0, 1, 3, 5, 6, 7} mod 8.
- A047586 (program): Numbers that are congruent to {2, 3, 5, 6, 7} mod 8.
- A047587 (program): Numbers that are congruent to {0, 2, 3, 5, 6, 7} mod 8.
- A047588 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6, 7} mod 8.
- A047589 (program): Numbers that are congruent to {6, 7} mod 8.
- A047590 (program): Numbers that are congruent to {0, 6, 7} mod 8.
- A047591 (program): Numbers that are congruent to {1, 6, 7} mod 8.
- A047592 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.
- A047593 (program): Numbers that are congruent to {2, 3, 4, 5, 6, 7} mod 8.
- A047594 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6, 7} mod 8.
- A047595 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5, 7} mod 8.
- A047596 (program): Numbers that are congruent to {2, 3, 4, 5} mod 8.
- A047597 (program): Numbers that are congruent to {0, 2, 3, 4, 5} mod 8.
- A047598 (program): Numbers that are congruent to {3, 4, 5} mod 8.
- A047599 (program): Numbers that are congruent to {0, 3, 4, 5} mod 8.
- A047600 (program): Numbers that are congruent to {1, 3, 4, 5} mod 8.
- A047601 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 8.
- A047602 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 8.
- A047603 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 8.
- A047604 (program): Numbers that are congruent to {2, 3, 5} mod 8.
- A047605 (program): Numbers that are congruent to {0, 2, 3, 5} mod 8.
- A047606 (program): Numbers that are congruent to {1, 2, 3, 5} mod 8.
- A047607 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 8.
- A047608 (program): Numbers that are congruent to {4, 5} mod 8.
- A047609 (program): Numbers that are congruent to {0, 4, 5} mod 8.
- A047610 (program): Positive integers that are congruent to {1, 4, 5} mod 8.
- A047611 (program): Numbers that are congruent to {2, 4, 5} mod 8.
- A047612 (program): Numbers that are congruent to {0, 2, 4, 5} mod 8.
- A047613 (program): Numbers that are congruent to {1, 2, 4, 5} mod 8.
- A047614 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 8.
- A047615 (program): Numbers that are congruent to {0, 5} mod 8.
- A047616 (program): Numbers that are congruent to {0, 1, 5} mod 8.
- A047617 (program): Numbers that are congruent to {2, 5} mod 8.
- A047618 (program): Numbers that are congruent to {0, 2, 5} mod 8.
- A047619 (program): Numbers that are congruent to {1, 2, 5} mod 8.
- A047620 (program): Numbers that are congruent to {0, 1, 2, 5} mod 8.
- A047621 (program): Numbers that are congruent to {3, 5} mod 8.
- A047622 (program): Numbers that are congruent to {0, 3, 5} mod 8.
- A047623 (program): Numbers that are congruent to {1, 3, 5} mod 8.
- A047624 (program): Numbers that are congruent to {0, 1, 3, 5} mod 8.
- A047656 (program): a(n) = 3^((n^2-n)/2).
- A047657 (program): Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+2).
- A047661 (program): Row 5 of square array defined in A047662.
- A047662 (program): Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k)=a(n-1,k-1)+a(n-1,k)+a(n,k-1)+1.
- A047663 (program): Row 6 of square array defined in A047662.
- A047664 (program): Row 7 of square array defined in A047662.
- A047665 (program): Expansion of (1/sqrt(1-6*x+x^2)-1/(1-x))/2.
- A047666 (program): Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).
- A047667 (program): Row 3 of array in A047666.
- A047668 (program): Row 4 of array in A047666.
- A047669 (program): Row 5 of array in A047666.
- A047670 (program): Row 6 of array in A047666.
- A047671 (program): Square array a(n,k) read by antidiagonals: a(n,1)=1, a(1,k)=1, a(n,k) = 1 + a(n-1,k-1) + a(n-1,k) + a(n,k-1).
- A047672 (program): Row 3 of square array defined in A047671.
- A047673 (program): Row 4 of square array defined in A047671.
- A047674 (program): Row 5 of square array defined in A047671.
- A047677 (program): Row 2 of square array defined in A047675: 2*n!*(n+1)!.
- A047679 (program): Denominators in full Stern-Brocot tree.
- A047690 (program): Denominators of coefficients in Taylor series for exp(cos(x)-1).
- A047700 (program): Numbers that are the sum of 5 positive squares.
- A047701 (program): All positive numbers that are not the sum of 5 nonzero squares.
- A047732 (program): First differences are A005563.
- A047743 (program): A discrete analog of Li(n): floor ( Sum_{k=2..n} 1/log_2 (k) ).
- A047744 (program): A discrete analog of Li(n): round ( Sum_{k=2..n} 1/log_2 (k) ).
- A047745 (program): A discrete analog of Li(n): ceiling ( Sum_{k=2..n} 1/log_2 (k) ).
- A047749 (program): If n = 2*m then a(n) = binomial(3*m, m)/(2*m+1), if n=2*m+1 then a(n) = binomial(3*m+1, m+1)/(2*m+1).
- A047750 (program): If n mod 2 = 0 then m := n/2 and a(n) = (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!); otherwise m := (n-1)/2, a(n) = 6*(3*m+2)!/(m!*(2*m+3)!).
- A047755 (program): a(n) = A047752(12n+5).
- A047768 (program): a(n) = A047766(6n+2).
- A047778 (program): Concatenation of first n numbers in binary, converted to base 10.
- A047780 (program): Number of inequivalent ways to color faces of a cube using at most n colors.
- A047781 (program): a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.
- A047786 (program): a(n) = (9*n^4 + 4*n^3 - n)/2.
- A047788 (program): Numerators of Glaisher’s I-numbers.
- A047789 (program): Denominators of Glaisher’s I-numbers.
- A047790 (program): a(n) = Fibonacci(2*n)-2^n+1.
- A047791 (program): Numbers n such that n plus digit sum of n (A007953) equals a prime.
- A047808 (program): a(n) counts different values of i^2 + j^2 <= n^2 or number of distances from the origin to all integer points inside a circle of radius n.
- A047809 (program): a(n) counts different values of i^2+j^2+k^2 <= n^2 or number of distances from the origin to all integer points inside a sphere of radius n.
- A047819 (program): a(n) = Product_{i=1..n} ((i+3)*(i+4)*(i+5))/(i*(i+1)*(i+2)).
- A047820 (program): Composite numbers that become prime after exactly 1 iteration of f(k) = sum of distinct prime factors of k.
- A047821 (program): Becomes prime after exactly 2 iterations of f(x) = sum of prime factors of x.
- A047822 (program): Becomes prime after exactly 3 iterations of f(x) = sum of prime factors of x.
- A047823 (program): Becomes prime after exactly 4 iterations of f(x) = sum of prime factors of x.
- A047824 (program): Becomes prime after exactly 5 iterations of f(x) = sum of prime factors of x.
- A047831 (program): a(n) = Product_{i=1..n} ((i+5)*(i+6)*(i+7)*(i+8)*(i+9))/(i*(i+1)*(i+2)*(i+3)*(i+4)).
- A047835 (program): a(n) = Product_{i=1..n} ((i+4)*(i+5)*(i+6)*(i+7))/(i*(i+1)*(i+2)*(i+3)).
- A047836 (program): “Nullwertzahlen” (or “inverse prime numbers”): n=p1*p2*p3*p4*p5*…*pk, where pi are primes with p1 <= p2 <= p3 <= p4 …; then p1 = 2 and p1*p2*…*pi >= p(i+1) for all i < k.
- A047838 (program): a(n) = floor(n^2/2) - 1.
- A047839 (program): a(n) = n + floor( sqrt(2*n) ).
- A047845 (program): (n-1)/2, where n runs through odd nonprimes (A014076).
- A047846 (program): Number of successive odd nonprimes (A014076).
- A047847 (program): Numbers n such that n + (n+1) and (n+2) + (n+3) are both prime.
- A047848 (program): Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is (k+2)^(n-1), for n=1,2,3,…; k=0,1,2,…
- A047849 (program): a(n) = (4^n + 2)/3.
- A047850 (program): a(n) = (5^n + 3)/4.
- A047851 (program): a(n) = T(3,n), array T given by A047848.
- A047852 (program): a(n) = T(4,n), array T given by A047848.
- A047853 (program): a(n) = T(5,n), array T given by A047848.
- A047854 (program): a(n) = T(6,n), array T given by A047848.
- A047855 (program): a(n) = T(7, n), array T given by A047848.
- A047856 (program): a(n) = T(8,n), array T given by A047848.
- A047857 (program): a(n) = T(0,n) + T(1,n-1) + … + T(n,0), array T given by A047848.
- A047858 (program): Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is k+n, for n=1,2,3,…; k=0,1,2,…
- A047859 (program): a(n) = T(2, n), array T given by A047858.
- A047860 (program): a(n) = T(3,n), array T given by A047858.
- A047861 (program): a(n) = T(4,n), array T given by A047858.
- A047862 (program): a(n) = T(5,n), array T given by A047858.
- A047863 (program): Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.
- A047865 (program): Number of derangements of n where minimal cycle size is at least 4.
- A047866 (program): a(n) = ceiling(n*(n+1)*(n+2)/8).
- A047872 (program): a(n) = floor(abs(B(2*n + 2)/B(2*n))) where B(n) is the n-th Bernoulli number.
- A047878 (program): a(n) is the least number of knight’s moves from corner (0,0) to n-th diagonal of unbounded chessboard.
- A047883 (program): Squares on unbounded chessboard for which the least number of knight’s moves from corner (0,0) is n.
- A047891 (program): Number of planar rooted trees with n nodes and tricolored end nodes.
- A047892 (program): a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047894 (program): Number of digits of A000182(n).
- A047897 (program): a(1) = 5; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047898 (program): a(1) = 6; for n > 0, a(n+1) = a(n) * (sum of digits of a(n)).
- A047899 (program): a(1) = 7; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047900 (program): a(1) = 8; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047901 (program): a(1) = 9; a(n+1) = a(n) * sum of decimal digits of a(n).
- A047902 (program): a(1) = 11; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047903 (program): a(1) = 13; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047904 (program): a(n+1) = a(n) + n (if n is odd), a(n+1) = a(n) * n (if n is even).
- A047905 (program): a(n+1) = a(n) + n (if n is even), a(n+1) = a(n) * n (if n is odd).
- A047906 (program): a(n+1) = a(n) - n (if n is odd), a(n+1) = a(n) * n (if n is even).
- A047907 (program): a(n+1) = a(n) - n (if n is even), a(n+1) = a(n) * n (if n is odd).
- A047912 (program): a(1) = 3; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
- A047915 (program): 3*n^2-2*n+6.
- A047920 (program): Triangular array formed from successive differences of factorial numbers.
- A047924 (program): a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.
- A047925 (program): 3rd column of array in A038150.
- A047926 (program): a(n) = (3^(n+1) + 2*n + 1)/4.
- A047927 (program): a(n) = n*(n-1)*(n-2)^2.
- A047928 (program): a(n) = n*(n-1)^2*(n-2).
- A047929 (program): a(n) = n^2*(n-1)*(n-2).
- A047930 (program): Smallest positive Fibonacci number divisible by n.
- A047931 (program): Number of new penny-penny contacts when putting pennies on a table following a spiral pattern.
- A047932 (program): a(n) = floor(3*n-sqrt(12*n-3)).
- A047946 (program): a(n) = 5*F(n)^2 + 3*(-1)^n where F(n) are the Fibonacci numbers A000045.
- A047949 (program): a(n) is the largest m such that n-m and n+m are both primes, or -1 if no such m exists.
- A047967 (program): Number of partitions of n with some part repeated.
- A047968 (program): a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.
- A047969 (program): Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
- A047970 (program): Antidiagonal sums of nexus numbers (A047969).
- A047972 (program): Distance of n-th prime to nearest square.
- A047973 (program): Distance of n-th prime to nearest cube.
- A047974 (program): a(n) = a(n-1) + 2*(n-1)*a(n-2).
- A047990 (program): a(n+1) = a(n) + (n^2 + 1)*a(n-1).
- A047992 (program): Number of distinct permutations generated by shuffling n cards with “clump size” <= 2.
- A047994 (program): Unitary totient (or unitary phi) function uphi(n).
- A047999 (program): Sierpiński’s [Sierpinski’s] triangle (or gasket): triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 2.
- A048005 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-1)/3.
- A048016 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-2)/3.
- A048027 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-3)/3.
- A048038 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+1)/3.
- A048050 (program): Chowla’s function: sum of divisors of n except 1 and n.
- A048058 (program): a(n) = n^2 + n + 11.
- A048059 (program): Primes of the form k^2 + k + 11.
- A048060 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-4)/2.
- A048061 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-4)/2.
- A048062 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-4)/2.
- A048063 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-4)/2.
- A048064 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-4)/2.
- A048065 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-4)/2.
- A048066 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-4)/2.
- A048067 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-4)/2.
- A048069 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-4)/2.
- A048071 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+2)/3.
- A048082 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+3)/3.
- A048093 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= sqrt(n).
- A048097 (program): Numbers k such that k^2 + k + 11 is prime.
- A048098 (program): Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.
- A048099 (program): Number of degree-n even permutations of order exactly 2.
- A048103 (program): Numbers not divisible by p^p for any prime p.
- A048105 (program): Number of non-unitary divisors of n.
- A048106 (program): Number of unitary divisors of n (A034444) - number of non-unitary divisors of n (A048105).
- A048107 (program): Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).
- A048108 (program): Numbers with at least as many non-unitary divisors (A048105) as unitary divisors (A034444).
- A048109 (program): Numbers having equally many squarefree and nonsquarefree divisors; number of unitary divisors of n (A034444) = number of non-unitary divisors of n (A048105).
- A048111 (program): Number of unitary divisors of n (A034444) < number of non-unitary divisors of n (A048105).
- A048112 (program): a(1) = 1, a(2) = 1, a(3) = 1, a(n) = a(n-3) * (a(n-2) + a(n-1)).
- A048124 (program): Becomes prime or 4 after exactly 2 iterations of f(x) = sum of prime factors of x.
- A048125 (program): Becomes prime or 4 after exactly 3 iterations of f(x) = sum of prime factors of x.
- A048126 (program): Becomes prime or 4 after exactly 4 iterations of f(x) = sum of prime factors of x.
- A048127 (program): Becomes prime or 4 after exactly 5 iterations of f(x) = sum of prime factors of x.
- A048128 (program): Becomes prime or 4 after exactly 6 iterations of f(x) = sum of prime factors of x.
- A048129 (program): Becomes prime or 4 after exactly 7 iterations of f(x) = sum of prime factors of x.
- A048130 (program): Becomes prime or 4 after exactly 8 iterations of f(x) = sum of prime factors of x.
- A048134 (program): Number of colors that can be mixed with up to n units of yellow, blue, red.
- A048135 (program): Tomahawk-constructible n-gons.
- A048136 (program): Tomahawk-nonconstructible n-gons.
- A048144 (program): a(n) = Sum_{k=0..n} (k!)^2 * Stirling_2(n,k)^2.
- A048146 (program): Sum of non-unitary divisors of n.
- A048147 (program): Array T read by diagonals; T(i,j) = i^2 + j^2.
- A048149 (program): Array T read by diagonals: T(i,j) = number of pairs (h,k) with h^2+k^2 <= i^2+j^2, h>=0, k >= 0.
- A048150 (program): a(n)=number of numbers h^2+k^2 that are <=2n^2; equivalently, a(n)=T(n,n), array T as in A048149.
- A048151 (program): Triangular array T read by rows: T(n,k)=k mod n, for k=1,2,…,n, n=1,2,…
- A048152 (program): Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1.
- A048153 (program): a(n) = Sum_{k=1..n} (k^2 mod n).
- A048154 (program): Triangular array T read by rows: T(n,k)=k^3 mod n, for k=1,2,…,n, n=1,2,…
- A048155 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A048154.
- A048156 (program): Triangular array T read by rows: T(n,k)=k^4 mod n, for k=1,2,…,n, n=1,2,…
- A048157 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A048156.
- A048158 (program): Triangular array T read by rows: T(n,k) = n mod k, for k=1,2,…,n, n=1,2,…
- A048161 (program): Primes p such that q = (p^2 + 1)/2 is also a prime.
- A048162 (program): Expansion of (1 - x + 3*x^3 - 2*x^4 - 3*x^5)/(1 - 2*x + x^3).
- A048163 (program): a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2.
- A048166 (program): Numbers k that are divisible by the number of unitary divisors of k (A034444).
- A048184 (program): Primes with nontrivial omnipower group.
- A048195 (program): Numbers k for which binomial(k, floor(k/2)) has fewer unitary than non-unitary divisors.
- A048198 (program): Number of primes between successive n’s, where n mod 10 = 5.
- A048199 (program): Distance of primes to next odd multiple of 5 (where n mod 10 = 5),
- A048200 (program): Minimal length pair-exchange / set-rotate sequence to reverse n distinct ordered elements.
- A048240 (program): Number of new colors that can be mixed with n units of yellow, blue, red.
- A048241 (program): Number of colors that can be mixed with n >= 0 units of yellow, blue, red.
- A048248 (program): Possible traces of n-step walks on 1-D lattice, ignoring translations.
- A048250 (program): Sum of the squarefree divisors of n.
- A048254 (program): Numbers whose sum of divisors is 6^4 = 1296.
- A048260 (program): The sum of 2 (not necessarily distinct) abundant numbers.
- A048266 (program): Smallest integer requiring n fifth powers to sum to it.
- A048271 (program): a(0) = 1, a(n+1) = -3*a(n) mod 11.
- A048272 (program): Number of odd divisors of n minus number of even divisors of n.
- A048276 (program): a(n) = number of squarefree numbers among C(n,k), k=0..n.
- A048277 (program): Number of (not necessarily distinct) nonsquarefree numbers among C(n,k), k=0..n.
- A048287 (program): Number of semiorders on n labeled nodes whose incomparability graph is connected.
- A048291 (program): Number of {0,1} n X n matrices with no zero rows or columns.
- A048297 (program): Coefficients in power series expansion over GF(2)[ X^(-1) ] of continued fraction [ 0, X, X^2, X^4, X^8, X^16, … ].
- A048298 (program): a(n) = n if n=2^i for i >= 0, otherwise a(n) = 0.
- A048307 (program): Numbers whose decimal expansions, read from left to right, have run lengths that strictly increase.
- A048319 (program): Numbers whose base-8 expansions, read from left to right, have run lengths that strictly decrease.
- A048320 (program): Numbers whose base-9 expansions, read from left to right, have run lengths that strictly decrease.
- A048328 (program): Numbers that are repdigits in base 3.
- A048329 (program): Numbers that are repdigits in base 4.
- A048330 (program): Numbers that are repdigits in base 5.
- A048331 (program): Numbers that are repdigits in base 6.
- A048332 (program): Numbers that are repdigits in base 7.
- A048333 (program): Numbers that are repdigits in base 8.
- A048334 (program): Numbers that are repdigits in base 9.
- A048338 (program): a(n) in base 14 is a repdigit.
- A048345 (program): a(n)^2 is the smallest square containing exactly n 0’s.
- A048379 (program): Apply the transformation 0->1->2->3->4->5->6->7->8->9->0 to digits of n.
- A048395 (program): Sum of consecutive nonsquares.
- A048396 (program): Sums of consecutive noncubes.
- A048435 (program): Take the first n numbers written in base 3, concatenate them, then convert from base 3 to base 10.
- A048436 (program): Take the first n numbers written in base 4, concatenate them, then convert from base 4 to base 10.
- A048437 (program): Take the first n numbers written in base 5, concatenate them, then convert from base 5 to base 10.
- A048438 (program): Take the first n numbers written in base 6, concatenate them, then convert from base 6 to base 10.
- A048439 (program): Take the first n numbers written in base 7, concatenate them, then convert from base 7 to base 10.
- A048440 (program): Take the first n numbers written in base 8, concatenate them, then convert from base 8 to base 10.
- A048441 (program): Take the first n numbers written in base 9, concatenate them, then convert from base 9 to base 10.
- A048442 (program): Take the first n numbers written in base 11, concatenate them, then convert from base 11 to base 10.
- A048443 (program): Take the first n numbers written in base 12, concatenate them, then convert from base 12 to base 10.
- A048444 (program): Take the first n numbers written in base 13, concatenate them, then convert from base 13 to base 10.
- A048445 (program): Take the first n numbers written in base 14, concatenate them, then convert from base 14 to base 10.
- A048446 (program): Take the first n numbers written in base 15, concatenate them, then convert from base 15 to base 10.
- A048447 (program): Take the first n numbers written in base 16, concatenate them, then convert from base 16 to base 10.
- A048448 (program): a(n) = prime(n-1) + prime(n+1) (assuming prime(i) = 0 for i < 1).
- A048457 (program): Last odd terms from generation 2 onwards.
- A048460 (program): Total of odd numbers in the generations from 2 onwards.
- A048467 (program): a(n) = T(6,n), array T given by A047858.
- A048468 (program): a(n) = T(7,n), array T given by A047858.
- A048469 (program): a(n) = T(8,n), array T given by A047858.
- A048470 (program): a(n) = (n+1)*(2^(n+1) - n)/2.
- A048471 (program): Array T read by diagonals: T(k,n) = 2^(k-1) * (3^n - 1) + 1.
- A048472 (program): Array T by antidiagonals, T(k,n)=(k+1)*n*2^(n-1)+1, n >= 0, k >= 1.
- A048473 (program): a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.
- A048474 (program): a(n) = 3*n*2^(n-1) + 1.
- A048476 (program): a(n) = T(4,n), array T given by A048472.
- A048477 (program): a(n) = T(5,n), array T given by A048472.
- A048478 (program): a(n) = T(6,n), array T given by A048472.
- A048479 (program): a(n) = T(7,n), array T given by A048472.
- A048480 (program): a(n) = T(8,n), array T given by A048472.
- A048481 (program): a(n) = T(0,n)+T(1,n-1)+…+T(n,0), array T given by A048472.
- A048482 (program): a(n) = T(n,n), array T given by A048472.
- A048483 (program): Array read by antidiagonals: T(k,n) = (k+1)2^n - k.
- A048487 (program): a(n) = T(4,n), array T given by A048483.
- A048488 (program): a(n) = 6*2^n - 5.
- A048489 (program): a(n) = 7 * 2^n - 6.
- A048490 (program): a(n) = T(7,n), array T given by A048483.
- A048491 (program): a(n) = T(8,n), array T given by A048483.
- A048492 (program): a(n) = ( 8*(2^n) - n^2 - 3*n - 6 )/2.
- A048493 (program): a(n) = (n+1)*2^n - n.
- A048494 (program): Array T(k,n) read by antidiagonals: T(n,k) = 2^(n-1) * ((k+1)*n - 2k) + k + 1.
- A048495 (program): a(n) = (n-1)*2^n + 2.
- A048496 (program): a(n) = 2^(n-1)*(3*n-4) + 3.
- A048497 (program): a(n) = 2^(n-1)*(4*n - 6) + 4.
- A048498 (program): 2^(n-1)*(5n-8)+5.
- A048499 (program): a(n) = 2^(n-1)*(6*n-10)+6.
- A048500 (program): a(n) = 2^(n-1)*(7*n-12)+7.
- A048501 (program): a(n) = 2^(n-1)*(8*n-14)+8.
- A048502 (program): a(n) = 2^(n-1)*(9*n-16)+9.
- A048503 (program): G.f.: (1 - 4*x + 6*x^2 - 2*x^3)/((1-x)^3*(1-2*x)^2).
- A048504 (program): a(n) = T(n,n), array T given by A048494.
- A048505 (program): Array T read by diagonals, n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is (k+n)^2, for n=1,2,3,…; k=0,1,2,…
- A048506 (program): a(n) = T(0,n), array T given by A048505.
- A048507 (program): a(n) = T(2,n), array T given by A048505.
- A048508 (program): a(n) = T(3,n), array T given by A048505.
- A048509 (program): a(n) = T(4,n), array T given by A048505.
- A048510 (program): a(n) = T(5,n), array T given by A048505.
- A048511 (program): a(n) = T(6,n), array T given by A048505.
- A048512 (program): a(n) = T(7,n), array T given by A048505.
- A048513 (program): a(n) = T(8,n), array T given by A048505.
- A048514 (program): a(n) = T(0,n)+T(1,n-1)+…+T(n,0), array T given by A048505.
- A048515 (program): a(n) = T(n,n), array T given by A048505.
- A048516 (program): Array T read by diagonals: T(m,n)=number of subsets S of {1,2,3,…,m+n-1} such that |S|>1 and |a-b|>=m for all distinct a and b in S, m=1,2,3,…; n=1,2,3,…
- A048521 (program): Primes expressible as the sum of an integer plus its digit sum.
- A048570 (program): Triangle T(n,k) = number of divisors of binomial(n,k).
- A048571 (program): Triangle read by rows: T(n,k) = number of distinct prime factors of C(n,k).
- A048572 (program): a(n) = sum of digits of a(n-1)*a(n-2).
- A048573 (program): a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.
- A048574 (program): Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 … (A000041).
- A048575 (program): Pisot sequences L(2,5), E(2,5).
- A048576 (program): Pisot sequence L(2,7).
- A048577 (program): Pisot sequence L(3,4).
- A048578 (program): Pisot sequence L(3,5).
- A048579 (program): Pisot sequence L(3,8).
- A048580 (program): Pisot sequence L(3,10).
- A048582 (program): Pisot sequence L(4,9).
- A048583 (program): Pisot sequence L(5,6).
- A048584 (program): Pisot sequence L(5,7).
- A048585 (program): Pisot sequence L(6,7).
- A048586 (program): Pisot sequence L(6,8).
- A048587 (program): Pisot sequence L(6,10).
- A048588 (program): Pisot sequence L(7,8).
- A048589 (program): Pisot sequence L(7,9).
- A048590 (program): Pisot sequence L(8,9).
- A048591 (program): Pisot sequence L(8,10).
- A048592 (program): Pisot sequence L(9,10).
- A048595 (program): Alternative start to A002371, which is the main entry for this sequence.
- A048597 (program): Very round numbers: reduced residue system consists of only primes and 1.
- A048598 (program): Partial sums of the sequence (A001097) of twin primes.
- A048599 (program): Partial products of the sequence (A001097) of twin primes.
- A048614 (program): Number of primes between successive pairs of twin primes.
- A048617 (program): a(n) = 2*(n!)^2.
- A048618 (program): Even numbers n such that binomial(n,n/2) is divisible by n/2.
- A048619 (program): a(n) = LCM(binomial(n,0), …, binomial(n,n)) / binomial(n,floor(n/2)).
- A048621 (program): a(n) = A001222(A001405(n)).
- A048623 (program): Binary encoding of semiprimes (A001358).
- A048625 (program): Pisot sequence P(4,6).
- A048626 (program): Pisot sequence P(6,9).
- A048628 (program): n-th 4k+1 prime times (n+1)st 4k+3 prime.
- A048630 (program): n-th 4k+1 prime times n-th 4k-1 prime.
- A048633 (program): Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]).
- A048634 (program): a(n) = a(n-1)*a(n-3) + a(n-2), with a(0)=a(1)=0 and a(2)=1.
- A048635 (program): Number of rational points of Klein curve over GF(2^n).
- A048639 (program): Binary encoding of A006881, numbers with two distinct prime divisors.
- A048640 (program): Binary encoding of the squarefree numbers, A005117.
- A048641 (program): Partial sums of A003188 (Gray code).
- A048642 (program): Partial products of A003188 (Gray code).
- A048643 (program): Differences between partial products of Gray code (A048642) and factorials (A000142).
- A048644 (program): Differences between partial sums of Gray code (A048641) and triangular numbers (A000217).
- A048645 (program): Integers with one or two 1-bits in their binary expansion.
- A048647 (program): Write n in base 4, then replace each digit ‘1’ with ‘3’ and vice versa and convert back to decimal.
- A048649 (program): Decimal expansion of Sum_{m>=0} 1/(2^2^m - 1).
- A048654 (program): a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.
- A048655 (program): Generalized Pellian with second term equal to 5.
- A048656 (program): a(n) is the number of unitary (and also of squarefree) divisors of n!.
- A048657 (program): Number of non-unitary divisors of n!.
- A048669 (program): The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n.
- A048671 (program): a(n) is the least common multiple of the proper divisors of n.
- A048672 (program): Binary encoding of squarefree numbers (A005117): A048640(n)/2.
- A048673 (program): Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].
- A048675 (program): If n = p_i^e_i * … * p_k^e_k, p_i < … < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + … + e_k * 2^k).
- A048678 (program): Binary expansion of nonnegative integers expanded to “Zeckendorffian format” with rewrite rules 0->0, 1->01.
- A048679 (program): Compressed fibbinary numbers (A003714), with rewrite 0->0, 01->1 applied to their binary expansion.
- A048680 (program): Nonnegative integers A001477 expanded with rewrite 0->0, 01->1, then interpreted as Zeckendorffian expansions (as numbers of Fibonacci number system).
- A048691 (program): a(n) = d(n^2), where d(k) = A000005(k) is the number of divisors of k.
- A048693 (program): Generalized Pellian with 2nd term equal to 6.
- A048694 (program): Generalized Pellian with second term equal to 7.
- A048695 (program): Generalized Pellian with second term equal to 8.
- A048696 (program): Generalized Pellian with second term equal to 9.
- A048697 (program): Generalized Pellian with second term equal to 10.
- A048700 (program): Binary palindromes of odd length (written in base 10).
- A048701 (program): List of binary palindromes of even length (written in base 10).
- A048702 (program): Binary palindromes of even length divided by 3.
- A048703 (program): Numbers which in base 4 are palindromes and have an even number of digits.
- A048704 (program): Base 4 palindromes of even length divided by 5. a(n) = A048703(n)/5.
- A048711 (program): 2nd row of Family 1 “90 X 150 array”: generations 0 .. n of Rule 90 starting from seed pattern 7.
- A048712 (program): 2nd column of Family 1 “90 X 150 array”: generations 0 .. n of Rule 150 starting from seed pattern 5.
- A048713 (program): 3rd row of Family 1 “90 x 150 array”: generations 0 .. n of Rule 90 starting from seed pattern 21.
- A048714 (program): 3rd column of Family 1 “90 x 150 array”: generations 0 .. n of Rule 150 starting from seed pattern 17.
- A048715 (program): Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3).
- A048716 (program): Numbers n such that binary expansion matches ((0)*00(1?)1)*(0*).
- A048717 (program): Binary expansion matches ((0)*00(1*)11)*(0*).
- A048718 (program): Binary expansion matches ((0)*0001)*(0*); or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-4).
- A048719 (program): Binary expansion matches ((0)*0011)*(0*).
- A048721 (program): Binary packing of Fibonacci sequence A000045.
- A048722 (program): Reversed binary packing of Fibonacci sequence A000045.
- A048724 (program): Write n and 2n in binary and add them mod 2.
- A048725 (program): a(n) = Xmult(n,5) or rule90(n,1).
- A048726 (program): a(n) = Xmult(n,6), or 2*A048724(n).
- A048727 (program): a(n) = Xmult(n,7) or rule150(n,1).
- A048728 (program): Differences between A008585 (multiples of 3) and A048724.
- A048729 (program): Differences between A008587 (multiples of 5) and A048725
- A048730 (program): Differences between A008589 (multiples of 7) and A048727, a(n) = ((n*7)-Xmult(n,7)).
- A048733 (program): a(n) = A048730(n)/4.
- A048735 (program): a(n) = (n AND floor(n/2)), where AND is bitwise and-operator (A004198).
- A048736 (program): Dana Scott’s sequence: a(n) = (a(n-2) + a(n-1) * a(n-3)) / a(n-4), a(0) = a(1) = a(2) = a(3) = 1.
- A048739 (program): Expansion of 1/((1 - x)*(1 - 2*x - x^2)).
- A048740 (program): Product of divisors of n-th composite number.
- A048741 (program): Product of aliquot divisors of composite n (1 and primes omitted).
- A048742 (program): a(n) = n! - (n-th Bell number).
- A048743 (program): Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.
- A048745 (program): Partial sums of A048654.
- A048746 (program): Partial sums of A048655.
- A048751 (program): Composites k whose product of divisors divided by number of divisors is an integer.
- A048753 (program): Composite numbers k whose product of aliquot divisors divided by number of aliquot divisors is an integer.
- A048755 (program): Partial sums of A048693.
- A048757 (program): Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).
- A048759 (program): Longest perimeter of a Pythagorean triangle with n as length of one of the three sides.
- A048760 (program): Largest square <= n.
- A048761 (program): Smallest square greater than or equal to n.
- A048762 (program): Largest cube <= n.
- A048763 (program): Smallest cube >= n.
- A048764 (program): Largest factorial <= n.
- A048765 (program): Smallest factorial >= n.
- A048766 (program): Integer part of cube root of n. Or, number of cubes <= n. Or, n appears 3n^2 + 3n + 1 times.
- A048770 (program): Partial sums of A048694.
- A048771 (program): Partial sums of A048695.
- A048772 (program): Partial sums of A048696.
- A048773 (program): Partial sums of A048697.
- A048775 (program): Number of (partially defined) monotone maps from intervals of 1..n to 1..n.
- A048776 (program): First partial sums of A048739; second partial sums of A000129.
- A048777 (program): First partial sums of A005409; second partial sums of A001333.
- A048778 (program): First partial sums of A048745; second partial sums of A048654.
- A048779 (program): Coefficients of power series for (1 - (1-8*x)^(1/4))/2.
- A048784 (program): a(n) = tau(binomial(2*n,n)), where tau = number of divisors (A000005).
- A048785 (program): a(0) = 0; a(n) = tau(n^3), where tau = number of divisors (A000005).
- A048786 (program): Triangle of coefficients of certain exponential convolution polynomials.
- A048787 (program): Write n in base 3 then rotate left one place.
- A048788 (program): a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1.
- A048798 (program): Smallest k > 0 such that n*k is a perfect cube.
- A048800 (program): E.g.f. satisfies A(x) = 1 + x * A(x / (1 - x)).
- A048803 (program): a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, …, n, a(1)*a(n-1), a(2)*a(n-2), …, a(n-1)*a(1) ).
- A048839 (program): Numbers n dividing P(n)!, where P(n) is the largest prime factor of n.
- A048840 (program): Expansion of (1 - x + 2*x^2 + 2*x^3 - x^4 - x^5)/(1-x)^3.
- A048841 (program): Least positive integer k for which 11^n divides k!.
- A048842 (program): Least positive integer k for which 13^n divides k!.
- A048843 (program): Least positive integer k for which 17^n divides k!.
- A048844 (program): Least positive integer k for which 19^n divides k!.
- A048845 (program): Least positive integer k for which 23^n divides k!.
- A048846 (program): Least positive integer k for which 29^n divides k!.
- A048848 (program): a(n) = prime(phi(n)).
- A048849 (program): a(n) = prime(phi(n)) + phi(prime(n)).
- A048851 (program): Length of hypotenuse squared in right triangle formed by a prime spiral plotted in Cartesian coordinates.
- A048852 (program): Difference between b^2 (in c^2=a^2+b^2) and product of successive prime pairs.
- A048854 (program): Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].
- A048855 (program): Number of integers up to n! relatively prime to n!.
- A048856 (program): Number of digits of prime(n)# + 1.
- A048859 (program): A sieve: keep the first 2 numbers, delete the next 3 numbers; keep the next 3 numbers, delete the next 4 numbers; keep the next 4 numbers, delete the next 5 numbers; and so on. In other words, keep the next k numbers and delete the next k+1 numbers, for k = 2, 3, …
- A048861 (program): a(n) = n^n - 1.
- A048864 (program): Number of nonprime numbers (composites and 1) in the reduced residue system of n.
- A048865 (program): a(n) is the number of primes in the reduced residue system mod n.
- A048866 (program): Difference between number of nonprimes and primes in reduced residue system of n.
- A048867 (program): Numbers for which reduced residue system contains fewer primes than nonprimes.
- A048868 (program): Numbers for which reduced residue system contains more primes than nonprimes.
- A048871 (program): Length of hypotenuse squared in right triangle formed by a palindromic spiral plotted in Cartesian coordinates.
- A048875 (program): Generalized Pellian with second term of 6.
- A048876 (program): a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=7.
- A048877 (program): a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=8.
- A048878 (program): Generalized Pellian with second term of 9.
- A048879 (program): Generalized Pellian with second term of 10.
- A048881 (program): a(n) = A000120(n+1) - 1 = wt(n+1) - 1.
- A048883 (program): a(n) = 3^wt(n), where wt(n) = A000120(n).
- A048893 (program): Threshold function for orthogonal arrays of strength 2.
- A048894 (program): n - 1 - A048893(n).
- A048896 (program): a(n) = 2^(A000120(n+1) - 1), n >= 0.
- A048898 (program): One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-1). Here the 2 (mod 5) numbers (except for n=0).
- A048899 (program): One of the two successive approximations up to 5^n for 5-adic integer sqrt(-1). Here the 3 (mod 5) case (except for n=0).
- A048900 (program): Heptagonal pentagonal numbers.
- A048901 (program): Indices of hexagonal numbers which are also heptagonal.
- A048902 (program): Indices of heptagonal numbers (A000566) which are also hexagonal.
- A048903 (program): Heptagonal hexagonal numbers.
- A048904 (program): Indices of heptagonal numbers (A000566) which are also octagonal.
- A048905 (program): Indices of octagonal numbers which are also heptagonal.
- A048907 (program): Indices of 9-gonal numbers which are also triangular.
- A048908 (program): Indices of triangular numbers which are also 9-gonal.
- A048909 (program): 9-gonal (or nonagonal) triangular numbers.
- A048910 (program): Indices of 9-gonal numbers that are also square.
- A048911 (program): Indices of square numbers which are also 9-gonal.
- A048913 (program): Indices of 9-gonal numbers which are also pentagonal.
- A048914 (program): Indices of pentagonal numbers which are also 9-gonal.
- A048915 (program): 9-gonal pentagonal numbers.
- A048916 (program): Indices of 9-gonal numbers which are also hexagonal.
- A048917 (program): Indices of hexagonal numbers which are also 9-gonal.
- A048918 (program): 9-gonal hexagonal numbers.
- A048919 (program): Indices of 9-gonal numbers which are also heptagonal.
- A048920 (program): Indices of heptagonal numbers (A000566) which are also 9-gonal.
- A048921 (program): 9-gonal heptagonal numbers (A000566).
- A048922 (program): Indices of 9-gonal numbers which are also octagonal.
- A048923 (program): Indices of octagonal numbers which are also 9-gonal.
- A048943 (program): Product of divisors of n is a square.
- A048944 (program): Numbers k such that the product of divisors of k is a cube.
- A048964 (program): a(n) is smallest number k such that k! >= n-th primorial number (A002110(n)).
- A048965 (program): Row sums of triangle A048882.
- A048966 (program): A convolution triangle of numbers obtained from A025748.
- A048967 (program): Number of even entries in row n of Pascal’s triangle (A007318).
- A048972 (program): Length of record run mentioned in A048971.
- A048974 (program): Odd numbers that are the sum of 2 primes.
- A048983 (program): As n runs through composite numbers, a(n) = number of composite d < n such that gcd(d,n) = 1.
- A048984 (program): As n runs through composite numbers, a(n) = number of nonprime d < n such that gcd(d,n) = 1.
- A048988 (program): Primes of the form 4*k^2 + 4*k + 59.
- A048989 (program): Numbers n such that pi(n) is prime.
- A048990 (program): Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = binomial(4*n, 2*n)/(2*n+1).
- A049001 (program): a(n) = prime(n)^2 - 2.
- A049002 (program): Primes of form p^2 - 2, where p is prime.
- A049003 (program): Primes of form p^3 - 4, p prime.
- A049005 (program): Number of letters in English names for days of week.
- A049008 (program): Greatest possible number of right angles that can occur as interior angles in a planar n-gon.
- A049016 (program): Expansion of 1/((1-x)^5-x^5).
- A049017 (program): Expansion of 1/((1-x)^7-x^7).
- A049018 (program): Expansion of 1/((1+x)^7 - x^7).
- A049027 (program): G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.
- A049028 (program): Row sums of triangle A035529.
- A049031 (program): Maximization of sums of cubes of integer differences (b_[ i ]-i)^3 over permutations {b_[ i ], for i-1,2,…,n} on first n integers.
- A049032 (program): A049031/2.
- A049034 (program): Scaled sums of odd reciprocals.
- A049039 (program): Geometric Connell sequence: 1 odd, 2 even, 4 odd, 8 even, …
- A049046 (program): Number of k >= 1 with k! == 1 (mod n).
- A049047 (program): Number of distinct factorial numbers congruent to 1 (mod prime(n)).
- A049060 (program): a(n) = (-1)^omega(n)*Sum_{d|n} d*(-1)^omega(d), where omega(n) = A001221(n) is number of distinct primes dividing n.
- A049066 (program): Mean prime gaps associated with A049036.
- A049068 (program): Complement of quarter-squares (A002620).
- A049069 (program): Array T read by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 1.
- A049070 (program): a(n) = (n+1)^2*binomial(2*n+2,n-1)/2.
- A049071 (program): Expansion of x*(3-2*x)/(1-x^2).
- A049072 (program): Expansion of 1/(1 - 3*x + 4*x^2).
- A049074 (program): Ulam’s conjecture (steps to return n to 1 after division by 2 and, if needed, multiplication by 3 with 1 added).
- A049076 (program): Number of steps in the prime index chain for the n-th prime.
- A049077 (program): a(n) = n / gcd(n, binomial(n, floor(n/2))).
- A049078 (program): Primes prime(k) for which A049076(k) = 2.
- A049079 (program): Primes prime(k) for which A049076(k) = 3.
- A049084 (program): a(n) = pi(n) if n is prime, otherwise 0.
- A049086 (program): Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.
- A049089 (program): Array read by antidiagonals: T(1,j)=2j+2 i>=1, T(i,1)=2i+2 i>=1, T(i,j)=T(i-1,j-1)+T(i-1,j).
- A049092 (program): Primes p such that p-1 is not squarefree.
- A049095 (program): Numbers k such that 2^k + 1 is squarefree.
- A049097 (program): Primes p such that p+1 is squarefree.
- A049098 (program): Primes p such that p+1 is divisible by a square.
- A049099 (program): a(n) = Euler phi function applied thrice to n.
- A049108 (program): a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).
- A049111 (program): Number of divisors of A005237(n).
- A049112 (program): 2-ranks of difference sets constructed from Glynn type I hyperovals.
- A049114 (program): 2-ranks of difference sets constructed from Glynn type II hyperovals.
- A049115 (program): a(n) is the number of iterations of the Euler phi function needed to reach a power of 2, when starting from n.
- A049118 (program): Row sums of triangle A035342 and array A134144.
- A049122 (program): Revert transform of (1 + 2x)/(1 + 3x + x^2).
- A049124 (program): Revert transform of (-1 + x + x^2)/((x - 1)*(x + 1)).
- A049125 (program): Revert transform of (1 + x - x^2) / (1 + x)^2.
- A049128 (program): Revert transform of (x - 1)^2/(1 - x + x^3).
- A049130 (program): Revert transform of ((x - 1)(x + 1))/(-1 - x + x^3).
- A049140 (program): Revert transform of 1 - x - x^3.
- A049149 (program): Numbers k such that the Euler totient function phi(k) is squarefree.
- A049171 (program): Revert transform of 2*(1 + x + x^2)-1/(1-x).
- A049173 (program): Revert transform of 2*(1 + x + x^2 + x^3 + x^4)-1/(1-x).
- A049181 (program): Revert transform of 2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)-1/(1-x).
- A049194 (program): Number of digits in n-th term of A001387.
- A049195 (program): Numbers k such that the Euler totient function phi(k) is divisible by a square.
- A049196 (program): Squarefree numbers whose Euler totient function is also squarefree.
- A049197 (program): Squarefree numbers whose Euler totient function is not squarefree.
- A049200 (program): Euler totient function phi applied to the n-th squarefree number.
- A049206 (program): Maximum mean distance between cards during perfect faro shuffles, with cut, to return to original order in A024222.
- A049207 (program): Array T(m,n) of products of pronic numbers m(m+1) * n(n+1) read by antidiagonals (“bipronics”).
- A049209 (program): a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
- A049210 (program): a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
- A049211 (program): a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
- A049212 (program): a(n) = -Product_{k=0..n} (10*k - 1); deca-factorial numbers.
- A049214 (program): Scaled coefficients of (arctanh x)^3.
- A049219 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square.
- A049220 (program): Number of horizontally convex n-ominoes in which the top row has at least 2 squares and the rightmost square in the top row is above the leftmost square in the second row.
- A049221 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square, which is not above the rightmost square in the second row.
- A049222 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square, which is not above the rightmost square in the second row and the rightmost square in the second row is above the leftmost square in the third row.
- A049229 (program): Primes p such that p-2 is not squarefree.
- A049231 (program): Primes p such that p - 2 is squarefree.
- A049232 (program): Primes p such that p+2 is divisible by a square.
- A049233 (program): Primes p such that p + 2 is squarefree.
- A049234 (program): Number of divisors of prime(n) + 2.
- A049235 (program): Sum of balls on the lawn for the s=3 tennis ball problem.
- A049236 (program): a(n) is the number of distinct prime factors of prime(n) + 2.
- A049237 (program): Quotient n/phi(n) for n in A007694.
- A049238 (program): a(n) is the number of divisors of prime(n) - 2.
- A049240 (program): Smallest nonnegative value taken on by x^2 - n*y^2 for an infinite number of integer pairs (x, y).
- A049281 (program): Numerators of coefficients in power series for -log(1+x)*log(1-x).
- A049291 (program): Number of subgroups of index n in free group of rank 4.
- A049293 (program): Number of subgroups of index 3 in fundamental group of a closed surface of characteristic -n.
- A049294 (program): Number of subgroups of index 3 in free group of rank n+1.
- A049296 (program): First differences of A008364. Also first differences of reduced residue system (RRS) for 4th primorial number, A002110(4)=210.
- A049298 (program): Take reduced residue systems of n, generate its first differences, dRRS(n); sequence gives maximal value of dRSSS(n).
- A049308 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k+4).
- A049310 (program): Triangle of coefficients of Chebyshev’s S(n,x) := U(n,x/2) polynomials (exponents in increasing order).
- A049319 (program): Number of 3-dimensional integer direction vectors (a,b,c) towards grid points at squared integer distance 2n-1.
- A049320 (program): Non-primitive Chacon sequence: fixed under 0->0010, 1->1.
- A049321 (program): Primitive Chacon sequence: fixed under 0->0012, 1->12, 2->012.
- A049323 (program): Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.
- A049324 (program): A convolution triangle of numbers generalizing Pascal’s triangle A007318.
- A049330 (program): Numerator of (1/Pi)*Integral_{x=0..infinity} (sin(x)/x)^n dx.
- A049331 (program): Denominator of (1/Pi)*Integral_{0..oo} (sin x / x)^n dx.
- A049332 (program): Number of conjugacy classes in Clifford group CL(n).
- A049341 (program): a(n+1) = sum of digits of a(n) + a(n-1).
- A049342 (program): a(n) = A049341(n)/3.
- A049347 (program): Period 3: repeat [1, -1, 0].
- A049348 (program): Row sums of triangle A049324.
- A049349 (program): Row sums of triangle A049325.
- A049358 (program): Digitally balanced numbers in base 7: equal numbers of 0’s, 1’s, …, 6’s.
- A049359 (program): Digitally balanced numbers in base 8: equal numbers of 0’s, 1’s, …, 7’s.
- A049360 (program): Digitally balanced numbers in base 9: equal numbers of 0’s, 1’s, …, 8’s.
- A049363 (program): a(1) = 1; for n > 1, smallest digitally balanced number in base n.
- A049376 (program): Row sums of triangle A046089.
- A049377 (program): Row sums of triangle A049352.
- A049378 (program): Row sums of triangle A049353.
- A049380 (program): Expansion of (1-25*x)^(-2/5).
- A049381 (program): Expansion of (1-25*x)^(-3/5).
- A049382 (program): Expansion of (1-25*x)^(-4/5).
- A049386 (program): Binary order of 2^n-th prime.
- A049388 (program): a(n) = (n+7)!/7!.
- A049389 (program): a(n) = (n+8)!/8!.
- A049390 (program): Expansion of (1-25*x)^(4/5).
- A049391 (program): Expansion of (1-25*x)^(3/5).
- A049392 (program): Expansion of (1-25*x)^(2/5).
- A049393 (program): Expansion of (1-25*x)^(1/5).
- A049394 (program): Expansion of (1-25*x)^(-6/5).
- A049395 (program): Expansion of (1-25*x)^(-7/5).
- A049396 (program): Expansion of (1-25*x)^(-8/5).
- A049397 (program): Expansion of (1-25*x)^(-9/5).
- A049398 (program): a(n) = (n+9)!/9!.
- A049401 (program): Number of Young tableaux of height <= 5.
- A049402 (program): Row sums of triangle A049374.
- A049403 (program): A triangle of numbers related to triangle A030528; array a(n,m), read by rows (1 <= m <= n).
- A049407 (program): Numbers m such that m^3 + m + 1 is prime.
- A049415 (program): Number of squares (of positive integers) with n digits.
- A049416 (program): Largest number whose square has n digits.
- A049417 (program): a(n) = isigma(n): sum of infinitary divisors of n.
- A049422 (program): Numbers k such that k^2 + 3 is prime.
- A049423 (program): Primes of the form k^2 + 3.
- A049425 (program): Row sums of triangle A049404.
- A049426 (program): Row sums of triangle A049410.
- A049434 (program): Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.
- A049435 (program): Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.
- A049437 (program): Primes p such that p+2 and p+8 are also primes but p+6 is not.
- A049440 (program): Fib(3n)^2 - 2*Fib(3n) + 4*Fib(3n+1) + 5.
- A049441 (program): Numbers n such that n^3 + 3 is prime.
- A049445 (program): Numbers n with property that the number of 1’s in binary expansion of n (see A000120) divides n.
- A049447 (program): Stirling numbers of second kind: 9th column of Stirling2 triangle A008277.
- A049448 (program): Sum of numerator and denominator of fractions in Farey tree A007305/A007306.
- A049449 (program): Product of numerator and denominator of fractions in Farey tree A007305/A007306.
- A049450 (program): Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
- A049451 (program): Twice second pentagonal numbers.
- A049452 (program): Pentagonal numbers with even index.
- A049453 (program): Second pentagonal numbers with even index: a(n) = n*(6*n+1).
- A049454 (program): a(n) = 1 + Sum_{i=1..n} phi(i)^2.
- A049455 (program): Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.
- A049456 (program): Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant of Farey series. This is also Stern’s diatomic array read by rows (version 1).
- A049457 (program): Least positive integer k such that the number having periodic continued fraction [ 1,m,1,m,1,m,… ] is of form (a+b*sqrt(k))/c, where a,b,c are positive integers.
- A049465 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 2p + q.
- A049466 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 3p+q.
- A049467 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 4p+q.
- A049468 (program): Replace each fraction p/q in Farey tree A007305/A007306 with p+2q.
- A049469 (program): Decimal expansion of sin(1).
- A049470 (program): Decimal expansion of cos(1).
- A049471 (program): Decimal expansion of tan(1).
- A049472 (program): a(n) = floor(n/sqrt(2)).
- A049473 (program): Nearest integer to n/sqrt(2).
- A049474 (program): a(n) = ceiling(n/sqrt(2)).
- A049480 (program): a(n) = (2*n-1)*(n^2 -n +6)/6.
- A049481 (program): Both p and p+30 are primes.
- A049482 (program): Primes p such that p + 210 is also prime.
- A049486 (program): Maximum length of non-crossing path on n X n square lattice.
- A049488 (program): Primes p such that p+16 is prime.
- A049489 (program): Primes p such that p + 32 is also prime.
- A049490 (program): a(n) and a(n)+64 both prime.
- A049491 (program): Numbers k such that k and k+128 are both prime.
- A049499 (program): A finite sequence of primes: the primes 671353+4^k for k=1, 2, 3, 4, 5, 6, 7, 8, 9.
- A049501 (program): Major index of n, first definition.
- A049502 (program): Major index of n, 2nd definition.
- A049508 (program): Numbers k such that prime(k) == 3 (mod 10).
- A049509 (program): Numbers k such that prime(k) == 7 (mod 10).
- A049510 (program): Numbers k such that prime(k) == 9 (mod 10).
- A049511 (program): Numbers k such that prime(k) == 1 (mod 10).
- A049513 (program): Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.
- A049532 (program): Numbers k such that k^2 + 1 is not squarefree.
- A049533 (program): Numbers k such that k^2+1 is squarefree.
- A049539 (program): Number of distinct binary sequences of length k+n generated by a general (non-linear) binary feedback shift register of length k, for sufficiently large k.
- A049541 (program): Decimal expansion of 1/Pi.
- A049559 (program): a(n) = gcd(n - 1, phi(n)).
- A049563 (program): a(n) = ((prime(n)-1)! + 1) mod (prime(n) + 2).
- A049579 (program): Numbers k such that prime(k)+2 divides (prime(k)-1)!.
- A049581 (program): Table T(n,k) = |n-k| read by antidiagonals (n >= 0, k >= 0).
- A049586 (program): a(n) is the GCD of the cototients (A051953) of n and n+1.
- A049591 (program): Odd primes p such that p+2 is composite.
- A049598 (program): 12 times triangular numbers.
- A049600 (program): Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < … < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= … <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.
- A049601 (program): a(n)=Sum{T(2i,n-2i): i=0,1,…,[ n/2 ]}, array T as in A049600.
- A049602 (program): a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.
- A049605 (program): Smallest k>1 such that k divides sigma(k*n).
- A049606 (program): Largest odd divisor of n!.
- A049608 (program): a(n)=T(n,n+2), array T as in A049600.
- A049609 (program): a(n)=T(n,n+3), array T as in A049600.
- A049610 (program): a(n) = Sum_{k=0..floor(n/2)} k*binomial(n,2*k) = floor(n*2^(n-3)).
- A049611 (program): a(n) = T(n,2), array T as in A049600.
- A049612 (program): a(n) = T(n,3), array T as in A049600.
- A049613 (program): a(n) = 2n - (largest prime < 2n-2).
- A049614 (program): n! divided by its squarefree kernel.
- A049615 (program): Array T by antidiagonals; T(i,j) = number of lattice points (x,y) hidden from (i,j), where 0<=x<=i, 0<=y<=j; (x,y) is hidden if there is a lattice point (h,k) collinear with and between (x,y) and (i,j).
- A049616 (program): a(n) = Sum_{i=1..n} T(i,n-i), where T is A049615.
- A049617 (program): a(n) = Sum_{i=0..2n} (-1)^i * T(i,2n-i) where T is A049615.
- A049620 (program): a(n) = T(n,n), array T as in A049615.
- A049621 (program): a(n) = T(n,n+1), array T as in A049615.
- A049622 (program): a(n) = T(n,n+2), array T as in A049615.
- A049625 (program): Congruent to 1, 2, 4, 6, 8 or 9 mod 11, but with 2 instead of 1.
- A049626 (program): a(n) = T(n,4), array T as in A049615.
- A049627 (program): Array T read by diagonals; T(i,j)=(i+1)*(j+1)-H(i,j), where H is the array in A049615; thus T(i,j) is the number of lattice points in rectangle having diagonal (0,0)-to-(i,j) that are visible from (i,j).
- A049628 (program): a(n) = Sum_{i=0..n} T(i,n-i) where T is A049627.
- A049629 (program): a(n) = (F(6*n+5) - F(6*n+1))/4 = (F(6*n+4) + F(6*n+2))/4, where F = A000045.
- A049630 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i) where T is A049627.
- A049631 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i+1,n-2i-1) where T is A049627.
- A049632 (program): a(n) = T(n,n), array T as in A049627.
- A049633 (program): a(n) = T(n,n+1), array T as in A049627.
- A049634 (program): a(n) = T(n,n+2), array T as in A049627.
- A049635 (program): a(n) = T(n,n+3), array T as in A049627.
- A049636 (program): Congruent to 0 or 2 mod 3, but not equal to 0 or 3.
- A049637 (program): Congruent to 2, 3, 6, 8, 10 or 12 mod 13, but not equal to 3.
- A049638 (program): a(n) = T(n,4), array T as in A049627.
- A049639 (program): Array T read by diagonals; T(i,j) = number of lines passing through (i,j) and at least two other lattice points (h,k) satisfying 0<=h<=i, 0<=k<=j.
- A049640 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049639.
- A049641 (program): a(n) = Sum_{i=0..n} ((-1)^i)*T(i,n-i), array T as in A049639.
- A049642 (program): Number of divisors of n does not divide sum of divisors of n.
- A049643 (program): Number of fractions in Farey series of order n.
- A049644 (program): T(n,n), array T given by A049639.
- A049646 (program): a(n) = T(n,n+1), array T given by A049639.
- A049647 (program): a(n) = T(n,n+2), array T given by A049639.
- A049648 (program): T(n,n+1), array T as in A049687 and T(2n,2n+2), array T given by A049639.
- A049649 (program): T(n,n+3), array T given by A049639.
- A049650 (program): Compositorial numbers (A036691) + 1.
- A049651 (program): a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
- A049652 (program): a(n) = (F(3*n+2) - 1)/4, where F=A000045 (the Fibonacci sequence).
- A049653 (program): a(n) = 2*n - prevprime(2*n).
- A049654 (program): a(n) = (F(8*n+1) - 1)/3 where F=A000045 (the Fibonacci sequence).
- A049655 (program): a(n) = (F(8n+2)-1)/3, where F=A000045 (the Fibonacci sequence).
- A049656 (program): a(n) = (F(8n+7)-1)/3, where F=A000045 (the Fibonacci sequence).
- A049657 (program): a(n) = (F(8*n+3) - 2)/3, where F=A000045 (the Fibonacci sequence).
- A049658 (program): a(n) = (F(8*n+5) - 2)/3, where F=A000045 (the Fibonacci sequence).
- A049659 (program): a(n) = (F(8*n+6) - 2)/3, where F=A000045 (the Fibonacci sequence).
- A049660 (program): a(n) = Fibonacci(6*n)/8.
- A049661 (program): a(n) = (Fibonacci(6*n+1) - 1)/4.
- A049662 (program): a(n) = (F(6*n+2)-1)/4, where F=A000045 (the Fibonacci sequence).
- A049663 (program): a(n) = (F(6*n+5) - 1)/4, where F=A000045 (the Fibonacci sequence).
- A049664 (program): a(n) = (F(6*n+3) - 2)/32, where F=A000045 (the Fibonacci sequence).
- A049665 (program): a(n) = (F(6*n+4) - 3)/4, where F=A000045 (the Fibonacci sequence).
- A049666 (program): a(n) = Fibonacci(5*n)/5.
- A049667 (program): a(n) = Fibonacci(7*n)/13.
- A049668 (program): a(n) = Fibonacci(8*n)/21.
- A049669 (program): a(n) = Fibonacci(9*n)/34.
- A049670 (program): a(n) = Fibonacci(10*n)/55.
- A049671 (program): a(n) = (F(n) + F(4*n))/2, where F=A000045 (the Fibonacci sequence).
- A049672 (program): a(n) = (F(4*n) - F(n))/2, where F=A000045 (the Fibonacci sequence).
- A049673 (program): a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).
- A049674 (program): a(n) = (F(3*n) - 2*F(n))/6, where F=A000045 (the Fibonacci sequence).
- A049675 (program): a(n) = (2*F(3*n) - F(n))/3, where F=A000045 (the Fibonacci sequence).
- A049676 (program): a(n) = (F(8*n+3) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence).
- A049677 (program): a(n) = (F(8*n+6) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence).
- A049678 (program): a(n) = F(8*n+4)/3, where F=A000045 (the Fibonacci sequence).
- A049679 (program): a(n) = (F(8*n+7)+F(8*n+5))/3, where F=A000045 (the Fibonacci sequence).
- A049680 (program): a(n) = (L(n) + L(2*n))/2, where L = A000032 (the Lucas sequence).
- A049681 (program): a(n) = (Lucas(2*n) - Lucas(n))/2.
- A049682 (program): a(n) = (Lucas(8*n) - 2)/45.
- A049683 (program): a(n) = (Lucas(6*n) - 2)/16.
- A049684 (program): a(n) = Fibonacci(2n)^2.
- A049685 (program): a(n) = L(4*n+2)/3, where L=A000032 (the Lucas sequence).
- A049686 (program): a(n) = Fibonacci(8n)/3.
- A049687 (program): Array T read by diagonals: T(i,j)=number of lines passing through (0,0) and at least one other lattice point (h,k) satisfying 0<=h<=i, 0<=k<=j.
- A049688 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049687.
- A049689 (program): a(n)=Sum{((-1)^(i+1))*T(i,n-i): i=0,1,…,n}, array T as in A049687.
- A049690 (program): a(n) = Sum_{k=1..n} phi(2*k), where phi = Euler totient function, cf. A000010.
- A049691 (program): a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639.
- A049693 (program): a(n) = T(n,n+2), array T as in A049687.
- A049694 (program): a(n) = T(n,n+3), array T as in A049687.
- A049695 (program): Array T read by diagonals; T(i,j) is the number of nonnegative slopes of lines determined by 2 lattice points in [ 0,i ] X [ 0,j ] if i > 0; T(0,j)=1 if j > 0; T(0,0)=0.
- A049696 (program): a(n)=T(n,n), array T as in A049695.
- A049697 (program): a(n)=T(n,n+1), array T as in A049695.
- A049698 (program): a(n) = T(n,n+2), array T as in A049695.
- A049699 (program): a(n) = T(n,n+3), array T as in A049695.
- A049702 (program): Array T read by diagonals; T(i,j)=number of directions determined by 2 lattice points in [ 0,i ]x[ 0,j ].
- A049703 (program): a(0) = 0; for n>0, a(n) = A005598(n)/2.
- A049705 (program): a(n)=3-k(n), where k=A000002=Kolakoski sequence; also the sequence of runlengths of a is k.
- A049706 (program): a(n) = T(n,n+2), array T as in A049704.
- A049710 (program): a(n)=3-k(n), where k=A006928; also, a and k have the same runlength sequence, with n-th term k(n-1) for n >= 2.
- A049711 (program): a(n) = n - prevprime(n).
- A049712 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048149.
- A049714 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i), array T as in A048149.
- A049715 (program): a(n)=T(n,0), array T as in A049747.
- A049716 (program): a(n) = 2*n + 1 - prevprime(2*n + 1).
- A049717 (program): a(n) = T(n,n+1), array T as in A048149.
- A049718 (program): a(n)=T(n,n+2), array T as in A048149.
- A049719 (program): a(n)=T(n,n+3), array T as in A048149.
- A049720 (program): a(n)=T(n,1), array T as in A048149.
- A049721 (program): a(n)=T(n,2), array T as in A048149.
- A049722 (program): a(n)=T(n,3), array T as in A048149.
- A049727 (program): Array T read by diagonals; T(i,j)=number of lattice points in triangle (possibly degenerate) with vertices (0,0),(i,0),(i,j).
- A049728 (program): a(n)=T(n,n), array T as in A049723.
- A049730 (program): a(n)=T(n,n+2), array T as in A049723.
- A049732 (program): a(n)=T(n,1), array T as in A049723.
- A049733 (program): a(n)=T(n,2), array T as in A049723.
- A049734 (program): a(n)=T(n,3), array T as in A049723.
- A049735 (program): Array T(i,j) is the number of lattice points (x,y) in circle with radius (0,0)-to-(i,j), read by antidiagonals.
- A049736 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049735.
- A049738 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i), array T as in A049735.
- A049739 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049727.
- A049740 (program): a(n)=T(n,n), array T as in A049735.
- A049741 (program): a(n)=T(n,n+1), array T as in A049735.
- A049742 (program): a(n)=T(n,n+2), array T as in A049735.
- A049743 (program): a(n)=T(n,n+3), array T as in A049735.
- A049744 (program): a(n)=T(n,1), array T as in A049735.
- A049745 (program): a(n)=T(n,2), array T as in A049735.
- A049746 (program): a(n)=T(n,3), array T as in A049735.
- A049759 (program): Triangular array T read by rows: T(n,k)=n^2 mod k, for k=1,2,…,n, n=1,2,…
- A049760 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049759.
- A049761 (program): Triangular array T, read by rows: T(n,k) = n^3 mod k, for k = 1..n and n >= 1.
- A049762 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049761.
- A049763 (program): Triangular array T, read by rows: T(n,k) = n^4 mod k, for k = 1..n and n >= 1.
- A049764 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049763.
- A049765 (program): Triangular array T, read by rows: T(n,k) = (k mod n) + (n mod k), for k = 1..n and n >= 1.
- A049766 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049765.
- A049767 (program): Triangular array T, read by rows: T(n,k) = (k^2 mod n) + (n^2 mod k), for k = 1..n and n >= 1.
- A049768 (program): a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.
- A049769 (program): Triangular array T read by rows: T(n,k) = (k^3 mod n) + (n^3 mod k).
- A049770 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049769.
- A049771 (program): Triangular array T read by rows: T(n,k) = (k^4 mod n) + (n^4 mod k).
- A049772 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049771.
- A049773 (program): Triangular array T read by rows: if row n is r(1),…,r(m), then row n+1 is 2r(1)-1,…,2r(m)-1,2r(1),…,2r(m).
- A049775 (program): a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1).
- A049776 (program): Triangular array T read by rows: n-th row consists of fixed points, k, of n-th row of array t given by A049773; i.e., t(n, t(n,k)) = t(n,k).
- A049777 (program): Triangular array read by rows: T(m,n) = n + n+1 + … + m = (m+n)(m-n+1)/2.
- A049778 (program): a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777.
- A049779 (program): a(n) = Sum_{k=1..floor(n/2)} T(n, 2k), array T as in A049777.
- A049780 (program): Array T, read by descending diagonals: T(n, k) = k*(2*n + k + 1)/2 for n, k >= 0.
- A049782 (program): a(n) = (0! + 1! + … + (n-1)!) mod n.
- A049785 (program): a(n) = Sum_{k=1..n} (n mod floor(n/k)) = T(n,n), array T as in A049783.
- A049786 (program): a(n) = T(n,n-1), array T as in A049783.
- A049787 (program): a(n) = T(n,n-2), array T as in A049783.
- A049788 (program): a(n) = T(n,n-3), array T as in A049783.
- A049789 (program): a(n) = T(n,n-4), array T as in A049783.
- A049792 (program): a(n) = Sum_{k=1..n} floor(n/floor(n/k)).
- A049797 (program): a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.
- A049798 (program): a(n) = (1/2)*Sum_{k = 1..n} T(n,k), array T as in A049800.
- A049800 (program): Triangular array T, read by rows: T(n,k) = (n+1) mod floor((k+1)/2), k = 1..n and n >= 1.
- A049802 (program): a(n) = n mod 2 + n mod 4 + … + n mod 2^k, where 2^k <= n < 2^(k+1).
- A049803 (program): a(n) = n mod 3 + n mod 9 + … + n mod 3^k, where 3^k <= n < 3^(k+1).
- A049804 (program): a(n) = n mod 4 + n mod 16 + … + n mod 4^k, where 4^k <= n < 4^(k+1).
- A049806 (program): Number of Farey fractions of order n that are <=1/2; cf. A049805.
- A049807 (program): a(n)=number of Farey fractions of order n that are <=1/3; cf. A049805.
- A049808 (program): a(n)=number of Farey fractions of order n that are <=1/4; cf. A049805.
- A049809 (program): a(n)=number of Farey fractions of order n that are <=1/5; cf. A049805.
- A049810 (program): a(n)=number of Farey fractions of order n that are <=1/6; cf. A049805.
- A049811 (program): a(n)=number of Farey fractions of order n that are <=1/7; cf. A049805.
- A049812 (program): a(n)=number of Farey fractions of order n that are <=1/8; cf. A049805.
- A049813 (program): a(n)=number of Farey fractions of order n that are <=1/9; cf. A049805.
- A049814 (program): a(n)=number of Farey fractions of order n that are <=1/10; cf. A049805.
- A049815 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A049805.
- A049820 (program): a(n) = n - d(n), where d(n) is the number of divisors of n (A000005).
- A049822 (program): a(n) = 1 - tau(n) + Sum_{d|n} tau(d-1).
- A049835 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049834.
- A049836 (program): a(n) = Sum_{m=1..n, k=1..m} T(m,k), array T as in A049834.
- A049847 (program): a(n) = (2*n + 1 - prevprime(2*n+1))/2.
- A049852 (program): Concatenate “n” and “nextprime(n)”.
- A049853 (program): a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2.
- A049854 (program): a(n)=Sum{a(k): k=0,1,2,…,n-3,n-1}; a(n-2) is not a summand; 2 initial terms required.
- A049855 (program): a(n) = Sum{a(k): k=0,1,2,…,n-3,n-1}; a(n-2) is not a summand; 2 initial terms required.
- A049856 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049858 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049859 (program): a(n) = Sum_{k=0,1,2,…,n-4,n-2,n-1} a(k); a(n-3) is not a summand; 3 initial terms required.
- A049860 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049861 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049863 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049864 (program): a(n) = Sum_{k=0,1,2,…,n-4,n-2,n-1} a(k); a(n-3) is not a summand; 3 initial terms required.
- A049865 (program): Number of iterations of unitary totient function (A047994) required to reach 1 from n.
- A049866 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049867 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049868 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049870 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049871 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049873 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049875 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049876 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
- A049884 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = a(2) = 1.
- A049885 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
- A049886 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
- A049888 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
- A049889 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m), where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
- A049890 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
- A049892 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
- A049893 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
- A049894 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
- A049896 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
- A049897 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
- A049898 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
- A049900 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049901 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049902 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049904 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
- A049905 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique number such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
- A049906 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
- A049908 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049909 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the smallest integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049910 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049912 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
- A049913 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
- A049914 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2 and a(3) = 4.
- A049916 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049917 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049918 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049920 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 2.
- A049921 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
- A049922 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3 and a(3) = 2.
- A049924 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 3.
- A049925 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
- A049926 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
- A049928 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
- A049929 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
- A049930 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(4) = 4.
- A049932 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
- A049933 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
- A049934 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
- A049936 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
- A049937 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
- A049938 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = a(2) = 1 and a(3) = 2.
- A049940 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1) with a(1) = a(2) = 1.
- A049941 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m), where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1.
- A049942 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1.
- A049944 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = a(2) = 1 and a(3) = 4.
- A049945 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
- A049946 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
- A049948 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049949 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049950 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = 1, a(2) = 2, and a(3) = 1.
- A049952 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
- A049953 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
- A049954 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
- A049956 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049957 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049958 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
- A049960 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1 and a(2) = 2.
- A049961 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the smallest number such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
- A049962 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
- A049964 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049965 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049966 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
- A049968 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
- A049969 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
- A049970 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
- A049972 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
- A049973 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
- A049974 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
- A049976 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
- A049977 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n -1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.
- A049978 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.