List of integer sequences with links to LODA programs.

  • A000002 (program): Kolakoski sequence: a(n) is length of n-th run; a(1) = 1; sequence consists just of 1’s and 2’s.
  • A000004 (program): The zero sequence.
  • A000005 (program): d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.
  • A000006 (program): Integer part of square root of n-th prime.
  • A000007 (program): The characteristic function of {0}: a(n) = 0^n.
  • A000008 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
  • A000009 (program): Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts.
  • A000010 (program): Euler totient function phi(n): count numbers <= n and prime to n.
  • A000011 (program): Number of n-bead necklaces (turning over is allowed) where complements are equivalent.
  • A000012 (program): The simplest sequence of positive numbers: the all 1’s sequence.
  • A000013 (program): Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.
  • A000015 (program): Smallest prime power >= n.
  • A000016 (program): a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
  • A000023 (program): Expansion of e.g.f. exp(-2*x)/(1-x).
  • A000026 (program): Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).
  • A000027 (program): The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.
  • A000028 (program): Let n = p_1^e_1 p_2^e_2 p_3^e_3 … be the prime factorization of n. Sequence gives n such that the sum of the numbers of 1’s in the binary expansions of e_1, e_2, e_3, … is odd.
  • A000029 (program): Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).
  • A000030 (program): Initial digit of n.
  • A000031 (program): Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
  • A000032 (program): Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1.
  • A000033 (program): Coefficients of ménage hit polynomials.
  • A000034 (program): Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2).
  • A000035 (program): Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.
  • A000037 (program): Numbers that are not squares (or, the nonsquares).
  • A000038 (program): Twice A000007.
  • A000040 (program): The prime numbers.
  • A000041 (program): a(n) is the number of partitions of n (the partition numbers).
  • A000042 (program): Unary representation of natural numbers.
  • A000044 (program): Dying rabbits: a(0) = 1; for 1 <= n <= 12, a(n) = Fibonacci(n); for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13).
  • A000045 (program): Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
  • A000048 (program): Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.
  • A000051 (program): a(n) = 2^n + 1.
  • A000056 (program): Order of the group SL(2,Z_n).
  • A000062 (program): A Beatty sequence: a(n) = floor(n/(e-2)).
  • A000064 (program): Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents.
  • A000065 (program): -1 + number of partitions of n.
  • A000068 (program): Numbers k such that k^4 + 1 is prime.
  • A000069 (program): Odious numbers: numbers with an odd number of 1’s in their binary expansion.
  • A000070 (program): a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
  • A000071 (program): a(n) = Fibonacci(n) - 1.
  • A000073 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.
  • A000078 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1.
  • A000079 (program): Powers of 2: a(n) = 2^n.
  • A000082 (program): a(n) = n^2*Product_{p|n} (1 + 1/p).
  • A000085 (program): Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.
  • A000086 (program): Number of solutions to x^2 - x + 1 == 0 (mod n).
  • A000089 (program): Number of solutions to x^2 + 1 == 0 (mod n).
  • A000090 (program): Expansion of e.g.f. exp((-x^3)/3)/(1-x).
  • A000093 (program): a(n) = floor(n^(3/2)).
  • A000094 (program): Number of trees of diameter 4.
  • A000095 (program): Number of fixed points of GAMMA_0 (n) of type i.
  • A000096 (program): a(n) = n*(n+3)/2.
  • A000097 (program): Number of partitions of n if there are two kinds of 1’s and two kinds of 2’s.
  • A000100 (program): a(n) is the number of compositions of n in which the maximal part is 3.
  • A000102 (program): a(n) = number of compositions of n in which the maximum part size is 4.
  • A000108 (program): Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
  • A000110 (program): Bell or exponential numbers: number of ways to partition a set of n labeled elements.
  • A000111 (program): Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).
  • A000114 (program): Number of cusps of principal congruence subgroup GAMMA^{hat}(n).
  • A000115 (program): Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
  • A000116 (program): Number of even sequences with period 2n (bisection of A000013).
  • A000117 (program): Number of even sequences with period 2n (bisection of A000011).
  • A000118 (program): Number of ways of writing n as a sum of 4 squares; also theta series of four-dimensional cubic lattice Z^4.
  • A000120 (program): 1’s-counting sequence: number of 1’s in binary expansion of n (or the binary weight of n).
  • A000122 (program): Expansion of Jacobi theta function theta_3(x) = Sum_{m =-oo..oo} x^(m^2) (number of integer solutions to k^2 = n).
  • A000123 (program): Number of binary partitions: number of partitions of 2n into powers of 2.
  • A000124 (program): Central polygonal numbers (the Lazy Caterer’s sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
  • A000125 (program): Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.
  • A000126 (program): A nonlinear binomial sum.
  • A000127 (program): Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.
  • A000128 (program): A nonlinear binomial sum.
  • A000129 (program): Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).
  • A000132 (program): Number of ways of writing n as a sum of 5 squares.
  • A000134 (program): Positive zeros of Bessel function of order 0 rounded to nearest integer.
  • A000138 (program): Expansion of e.g.f. exp(-x^4/4)/(1-x).
  • A000139 (program): a(n) = 2*(3*n)!/((2*n+1)!*((n+1)!)).
  • A000141 (program): Number of ways of writing n as a sum of 6 squares.
  • A000142 (program): Factorial numbers: n! = 1*2*3*4*…*n (order of symmetric group S_n, number of permutations of n letters).
  • A000143 (program): Number of ways of writing n as a sum of 8 squares.
  • A000144 (program): Number of ways of writing n as a sum of 10 squares.
  • A000145 (program): Number of ways of writing n as a sum of 12 squares.
  • A000149 (program): a(n) = floor(e^n).
  • A000150 (program): Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.
  • A000152 (program): Number of ways of writing n as a sum of 16 squares.
  • A000153 (program): a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.
  • A000155 (program): Nearest integer to modified Bessel function K_n(1).
  • A000156 (program): Number of ways of writing n as a sum of 24 squares.
  • A000159 (program): Coefficients of ménage hit polynomials.
  • A000161 (program): Number of partitions of n into 2 squares.
  • A000165 (program): Double factorial of even numbers: (2n)!! = 2^n*n!.
  • A000166 (program): Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.
  • A000167 (program): Nearest integer to modified Bessel function K_n(2).
  • A000168 (program): a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).
  • A000169 (program): Number of labeled rooted trees with n nodes: n^(n-1).
  • A000172 (program): Franel number a(n) = Sum_{k = 0..n} binomial(n,k)^3.
  • A000178 (program): Superfactorials: product of first n factorials.
  • A000179 (program): Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, …, n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.
  • A000180 (program): Expansion of E.g.f. exp(-x)/(1-3x).
  • A000181 (program): Coefficients of ménage hit polynomials.
  • A000182 (program): Tangent (or “Zag”) numbers: e.g.f. tan(x), also (up to signs) e.g.f. tanh(x).
  • A000184 (program): Number of genus 0 rooted maps with 3 faces with n vertices.
  • A000185 (program): Coefficients of ménage hit polynomials.
  • A000188 (program): (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d).
  • A000189 (program): Number of solutions to x^3 == 0 (mod n).
  • A000190 (program): Number of solutions to x^4 == 0 (mod n).
  • A000193 (program): Nearest integer to log n.
  • A000194 (program): n appears 2n times, for n >= 1; also nearest integer to square root of n.
  • A000195 (program): a(n) = floor(log(n)).
  • A000196 (program): Integer part of square root of n. Or, number of positive squares <= n. Or, n appears 2n+1 times.
  • A000201 (program): Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
  • A000202 (program): a(8i+j) = 13i + a(j), where 1<=j<=8.
  • A000203 (program): a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
  • A000204 (program): Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.
  • A000210 (program): A Beatty sequence: floor(n*(e-1)).
  • A000211 (program): a(n) = a(n-1) + a(n-2) - 2, a(0) = 4, a(1) = 3.
  • A000212 (program): a(n) = floor(n^2/3).
  • A000213 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
  • A000216 (program): Take sum of squares of digits of previous term, starting with 2.
  • A000217 (program): Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + … + n.
  • A000218 (program): Take sum of squares of digits of previous term; start with 3.
  • A000219 (program): Number of planar partitions (or plane partitions) of n.
  • A000221 (program): Take sum of squares of digits of previous term; start with 5.
  • A000222 (program): Coefficients of ménage hit polynomials.
  • A000225 (program): a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
  • A000227 (program): Nearest integer to e^n.
  • A000240 (program): Rencontres numbers: number of permutations of [n] with exactly one fixed point.
  • A000241 (program): Crossing number of complete graph with n nodes.
  • A000244 (program): Powers of 3: a(n) = 3^n.
  • A000245 (program): a(n) = 3*(2*n)!/((n+2)!*(n-1)!).
  • A000246 (program): Number of permutations in the symmetric group S_n that have odd order.
  • A000247 (program): a(n) = 2^n - n - 2.
  • A000248 (program): Expansion of e.g.f. exp(x*exp(x)).
  • A000252 (program): Number of invertible 2 X 2 matrices mod n.
  • A000253 (program): a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1).
  • A000254 (program): Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.
  • A000255 (program): a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.
  • A000257 (program): Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.
  • A000259 (program): Number of certain rooted planar maps.
  • A000260 (program): Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.
  • A000261 (program): a(n) = n*a(n-1) + (n-3)*a(n-2), with a(1) = 0, a(2) = 1.
  • A000262 (program): Number of “sets of lists”: number of partitions of {1,…,n} into any number of lists, where a list means an ordered subset.
  • A000265 (program): Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.
  • A000266 (program): Expansion of e.g.f. exp(-x^2/2) / (1-x).
  • A000267 (program): Integer part of square root of 4n+1.
  • A000270 (program): For n >= 2, a(n) = b(n+1)+b(n)+b(n-1), where the b(i) are the ménage numbers A000179; a(0)=a(1)=1.
  • A000271 (program): Sums of ménage numbers.
  • A000272 (program): Number of trees on n labeled nodes: n^(n-2) with a(0)=1.
  • A000274 (program): Number of permutations of length n with 2 consecutive ascending pairs.
  • A000275 (program): Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of permutations with rise/rise forbidden.
  • A000276 (program): Associated Stirling numbers.
  • A000277 (program): 3*n - 2*floor(sqrt(4*n+5)) + 5.
  • A000278 (program): a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
  • A000279 (program): Card matching: coefficients B[n,1] of t in the reduced hit polynomial An,n,n.
  • A000280 (program): a(n) = a(n-1) + a(n-2)^3.
  • A000281 (program): Expansion of cos(x)/cos(2x).
  • A000283 (program): a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
  • A000285 (program): a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
  • A000288 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.
  • A000289 (program): A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).
  • A000290 (program): The squares: a(n) = n^2.
  • A000292 (program): Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.
  • A000294 (program): Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).
  • A000295 (program): Eulerian numbers (Euler’s triangle: column k=2 of A008292, column k=1 of A173018).
  • A000296 (program): Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
  • A000297 (program): a(n) = (n+1)*(n+3)*(n+8)/6.
  • A000301 (program): a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).
  • A000302 (program): Powers of 4: a(n) = 4^n.
  • A000304 (program): a(n) = a(n-1)*a(n-2).
  • A000305 (program): Number of certain rooted planar maps.
  • A000308 (program): a(n) = a(n-1)*a(n-2)*a(n-3) with a(1)=1, a(2)=2 and a(3)=3.
  • A000309 (program): Number of rooted planar bridgeless cubic maps with 2n nodes.
  • A000312 (program): a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).
  • A000313 (program): Number of permutations of length n with 3 consecutive ascending pairs.
  • A000316 (program): Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.
  • A000317 (program): a(n+1) = a(n)^2 - a(n) a(n-1) + a(n-1)^2.
  • A000318 (program): Generalized tangent numbers d(4,n).
  • A000321 (program): H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.
  • A000322 (program): Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
  • A000325 (program): a(n) = 2^n - n.
  • A000326 (program): Pentagonal numbers: a(n) = n*(3*n-1)/2.
  • A000328 (program): Number of points of norm <= n^2 in square lattice.
  • A000330 (program): Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + … + n^2 = n*(n+1)*(2*n+1)/6.
  • A000332 (program): Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
  • A000335 (program): Euler transform of A000292.
  • A000336 (program): a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n.
  • A000337 (program): a(n) = (n-1)*2^n + 1.
  • A000338 (program): Expansion of x^3*(5-2*x)*(1-x^3)/(1-x)^4.
  • A000340 (program): a(0)=1, a(n) = 3*a(n-1) + n + 1.
  • A000344 (program): a(n) = 5*binomial(2n, n-2)/(n+3).
  • A000346 (program): a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
  • A000351 (program): Powers of 5: a(n) = 5^n.
  • A000352 (program): One half of the number of permutations of [n] such that the differences have three runs with the same signs.
  • A000354 (program): Expansion of e.g.f. exp(-x)/(1-2*x).
  • A000356 (program): Number of rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle: (2n)!(2n+1)! / (n!^2*(n+1)!(n+2)!).
  • A000358 (program): Number of binary necklaces of length n with no subsequence 00, excluding the necklace “0”.
  • A000360 (program): Distribution of nonempty triangles inside a fractal rep-4-tile.
  • A000363 (program): Number of permutations of [n] with exactly 2 increasing runs of length at least 2.
  • A000364 (program): Euler (or secant or “Zig”) numbers: e.g.f. (even powers only) sec(x) = 1/cos(x).
  • A000367 (program): Numerators of Bernoulli numbers B_2n.
  • A000377 (program): Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions.
  • A000378 (program): Sums of three squares: numbers of the form x^2 + y^2 + z^2.
  • A000379 (program): Numbers n where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.
  • A000382 (program): Restricted permutations.
  • A000383 (program): Hexanacci numbers with a(0) = … = a(5) = 1.
  • A000384 (program): Hexagonal numbers: a(n) = n*(2*n-1).
  • A000385 (program): Convolution of A000203 with itself.
  • A000386 (program): Coefficients of ménage hit polynomials.
  • A000387 (program): Rencontres numbers: number of permutations of [n] with exactly two fixed points.
  • A000389 (program): Binomial coefficients C(n,5).
  • A000392 (program): Stirling numbers of second kind S(n,3).
  • A000394 (program): Numbers of form x^2 + y^2 + 7z^2.
  • A000399 (program): Unsigned Stirling numbers of first kind s(n,3).
  • A000400 (program): Powers of 6: a(n) = 6^n.
  • A000401 (program): Numbers of form x^2 + y^2 + 2z^2.
  • A000404 (program): Numbers that are the sum of 2 nonzero squares.
  • A000407 (program): a(n) = (2*n+1)! / n!.
  • A000408 (program): Numbers that are the sum of three nonzero squares.
  • A000414 (program): Numbers that are the sum of 4 nonzero squares.
  • A000415 (program): Numbers that are the sum of 2 but no fewer nonzero squares.
  • A000420 (program): Powers of 7: a(n) = 7^n.
  • A000422 (program): Concatenation of numbers from n down to 1.
  • A000423 (program): a(n) is smallest number > a(n-1) of form a(i)*a(j), i < j < n.
  • A000424 (program): Differences of reciprocals of unity.
  • A000425 (program): Coefficients of ménage hit polynomials.
  • A000426 (program): Coefficients of ménage hit polynomials.
  • A000430 (program): Primes and squares of primes.
  • A000431 (program): Expansion of 2*x^3/((1-2*x)^2*(1-4*x)).
  • A000433 (program): n written in base where place values are positive cubes.
  • A000435 (program): Normalized total height of all nodes in all rooted trees with n labeled nodes.
  • A000436 (program): Generalized Euler numbers c(3,n).
  • A000439 (program): Powers of rooted tree enumerator.
  • A000441 (program): a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).
  • A000442 (program): a(n) = (n!)^3.
  • A000447 (program): a(n) = 1^2 + 3^2 + 5^2 + 7^2 + … + (2*n-1)^2 = n*(4*n^2 - 1)/3.
  • A000449 (program): Rencontres numbers: number of permutations of [n] with exactly 3 fixed points.
  • A000450 (program): Coefficients of ménage hit polynomials.
  • A000452 (program): The greedy sequence of integers which avoids 3-term geometric progressions.
  • A000453 (program): Stirling numbers of the second kind, S(n,4).
  • A000454 (program): Unsigned Stirling numbers of first kind s(n,4).
  • A000457 (program): Exponential generating function: (1+3*x)/(1-2*x)^(7/2).
  • A000459 (program): Number of multiset permutations of {1, 1, 2, 2, …, n, n} with no fixed points.
  • A000460 (program): Eulerian numbers (Euler’s triangle: column k=3 of A008292, column k=2 of A173018).
  • A000461 (program): Concatenate n n times.
  • A000462 (program): Numbers written in base of triangular numbers.
  • A000463 (program): n followed by n^2.
  • A000464 (program): Expansion of sin x /cos 2x.
  • A000466 (program): a(n) = 4*n^2 - 1.
  • A000468 (program): Powers of ten written in base 8.
  • A000469 (program): 1 together with products of 2 or more distinct primes.
  • A000471 (program): a(n) = floor(sinh(n)).
  • A000475 (program): Rencontres numbers: number of permutations of [n] with exactly 4 fixed points.
  • A000477 (program): a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k).
  • A000478 (program): Number of ways of placing n labeled balls into 3 indistinguishable boxes with at least 2 balls in each box.
  • A000480 (program): a(n) = floor(cos(n)).
  • A000481 (program): Stirling numbers of the second kind, S(n,5).
  • A000482 (program): Unsigned Stirling numbers of first kind s(n,5).
  • A000483 (program): Associated Stirling numbers: second order reciprocal Stirling numbers (Fekete) [[n, 3]]. The number of 3-orbit permutations of an n-set with at least 2 elements in each orbit.
  • A000486 (program): One half of the number of permutations of [n] such that the differences have 4 runs with the same signs.
  • A000487 (program): Number of permutations of length n with exactly two valleys.
  • A000490 (program): Generalized Euler numbers c(4,n).
  • A000493 (program): a(n) = floor(sin(n)).
  • A000495 (program): Nearest integer to sinh(n).
  • A000497 (program): S2(j,2j+2) where S2(n,k) is a 2-associated Stirling number of the second kind.
  • A000498 (program): Eulerian numbers (Euler’s triangle: column k=4 of A008292, column k=3 of A173018)
  • A000499 (program): a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k).
  • A000501 (program): a(n) = floor(cosh(n)).
  • A000505 (program): Eulerian numbers (Euler’s triangle: column k=5 of A008292, column k=4 of A173018).
  • A000514 (program): Eulerian numbers (Euler’s triangle: column k=6 of A008292, column k=5 of A173018)
  • A000515 (program): a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
  • A000520 (program): Nearest integer to log_10(n).
  • A000522 (program): Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.
  • A000523 (program): a(n) = floor(log_2(n)).
  • A000529 (program): Powers of rooted tree enumerator.
  • A000531 (program): From area of cyclic polygon of 2n + 1 sides.
  • A000533 (program): a(0)=1; a(n) = 10^n + 1, n >= 1.
  • A000536 (program): Number of 3-line Latin rectangles.
  • A000537 (program): Sum of first n cubes; or n-th triangular number squared.
  • A000538 (program): Sum of fourth powers: 0^4 + 1^4 + … + n^4.
  • A000539 (program): Sum of 5th powers: 0^5 + 1^5 + 2^5 + … + n^5.
  • A000540 (program): Sum of 6th powers: 0^6 + 1^6 + 2^6 + … + n^6.
  • A000541 (program): Sum of 7th powers: 1^7 + 2^7 + … + n^7.
  • A000542 (program): Sum of 8th powers: 1^8 + 2^8 + … + n^8.
  • A000543 (program): Number of inequivalent ways to color vertices of a cube using at most n colors.
  • A000548 (program): Squares that are not the sum of 2 nonzero squares.
  • A000551 (program): Number of labeled rooted trees of height 2 with n nodes.
  • A000554 (program): Number of labeled trees of diameter 3 with n nodes.
  • A000556 (program): Expansion of exp(-x) / (1 - exp(x) + exp(-x)).
  • A000557 (program): Expansion of e.g.f.: 1/(1-2*sinh(x)).
  • A000558 (program): Generalized Stirling numbers of second kind.
  • A000561 (program): Number of discordant permutations.
  • A000566 (program): Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2.
  • A000567 (program): Octagonal numbers: n*(3*n-2). Also called star numbers.
  • A000570 (program): Number of tournaments on n nodes determined by their score vectors.
  • A000572 (program): A Beatty sequence: [ n(e+1) ].
  • A000574 (program): Coefficient of x^5 in expansion of (1 + x + x^2)^n.
  • A000575 (program): Tenth column of quintinomial coefficients.
  • A000578 (program): The cubes: a(n) = n^3.
  • A000579 (program): Figurate numbers or binomial coefficients C(n,6).
  • A000580 (program): a(n) = binomial coefficient C(n,7).
  • A000581 (program): a(n) = binomial coefficient C(n,8).
  • A000582 (program): a(n) = binomial coefficient C(n,9).
  • A000583 (program): Fourth powers: a(n) = n^4.
  • A000584 (program): Fifth powers: a(n) = n^5.
  • A000586 (program): Number of partitions of n into distinct primes.
  • A000587 (program): Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
  • A000588 (program): a(n) = 7*binomial(2n,n-3)/(n+4).
  • A000589 (program): a(n) = 11*binomial(2n,n-5)/(n+6).
  • A000590 (program): a(n) = 13*binomial(2n,n-6)/(n+7).
  • A000592 (program): Number of nonnegative solutions of x^2 + y^2 = z in first n shells.
  • A000593 (program): Sum of odd divisors of n.
  • A000594 (program): Ramanujan’s tau function (or Ramanujan numbers, or tau numbers).
  • A000596 (program): Central factorial numbers.
  • A000601 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^3)).
  • A000603 (program): Number of nonnegative solutions to x^2 + y^2 <= n^2.
  • A000604 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 <= n^2.
  • A000606 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 <= n.
  • A000607 (program): Number of partitions of n into prime parts.
  • A000629 (program): Number of necklaces of partitions of n+1 labeled beads.
  • A000643 (program): a(n) = a(n-1) + 2^a(n-2).
  • A000655 (program): a(n) = number of letters in a(n-1), a(1) = 1 (in English).
  • A000657 (program): Median Euler numbers (the middle numbers of Arnold’s shuttle triangle).
  • A000660 (program): Boustrophedon transform of 1,1,2,3,4,5,…
  • A000667 (program): Boustrophedon transform of all-1’s sequence.
  • A000670 (program): Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].
  • A000674 (program): Boustrophedon transform of 1, 2, 2, 2, 2, …
  • A000680 (program): a(n) = (2n)!/2^n.
  • A000681 (program): Number of n X n matrices with nonnegative entries and every row and column sum 2.
  • A000683 (program): Number of colorings of labeled graphs on n nodes using exactly 2 colors, divided by 4.
  • A000684 (program): Number of colored labeled n-node graphs with 2 interchangeable colors.
  • A000687 (program): Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,5,…
  • A000688 (program): Number of Abelian groups of order n; number of factorizations of n into prime powers.
  • A000689 (program): Final decimal digit of 2^n.
  • A000695 (program): Moser-de Bruijn sequence: sums of distinct powers of 4.
  • A000698 (program): A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.
  • A000700 (program): Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.
  • A000701 (program): One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.
  • A000703 (program): Chromatic number (or Heawood number) of nonorientable surface with n crosscaps.
  • A000704 (program): Number of degree-n even permutations of order dividing 2.
  • A000707 (program): Number of permutations of [1,2,…,n] with n-1 inversions.
  • A000708 (program): a(n) = E(n+1) - 2*E(n), where E(i) is the Euler number A000111(i).
  • A000712 (program): Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
  • A000713 (program): EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, …
  • A000714 (program): Number of partitions of n, with three kinds of 1 and 2 and two kinds of 3,4,5,….
  • A000716 (program): Number of partitions of n into parts of 3 kinds.
  • A000720 (program): pi(n), the number of primes <= n. Sometimes called PrimePi(n) to distinguish it from the number 3.14159…
  • A000726 (program): Number of partitions of n in which no parts are multiples of 3.
  • A000727 (program): Expansion of Product_{k >= 1} (1 - x^k)^4.
  • A000728 (program): Expansion of Product_{n>=1} (1-x^n)^5.
  • A000729 (program): Expansion of Product_{k >= 1} (1 - x^k)^6.
  • A000730 (program): Expansion of Product_{n>=1} (1 - x^n)^7.
  • A000731 (program): Expansion of Product (1 - x^k)^8 in powers of x.
  • A000734 (program): Boustrophedon transform of 1,1,2,4,8,16,32,…
  • A000735 (program): Expansion of Product_{k>=1} (1 - x^k)^12.
  • A000737 (program): Boustrophedon transform of natural numbers, cf. A000027.
  • A000738 (program): Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,…
  • A000739 (program): Expansion of Product_{k>=1} (1 - x^k)^16.
  • A000740 (program): Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.
  • A000741 (program): Number of compositions of n into 3 ordered relatively prime parts.
  • A000744 (program): Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,…
  • A000745 (program): Boustrophedon transform of squares.
  • A000746 (program): Boustrophedon transform of triangular numbers.
  • A000748 (program): Expansion of bracket function.
  • A000749 (program): a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.
  • A000750 (program): Expansion of bracket function.
  • A000752 (program): Boustrophedon transform of powers of 2.
  • A000754 (program): Boustrophedon transform of odd numbers.
  • A000756 (program): Boustrophedon transform of sequence 1,1,0,0,0,0,…
  • A000757 (program): Number of cyclic permutations of [n] with no i->i+1 (mod n)
  • A000770 (program): Stirling numbers of the second kind, S(n,6).
  • A000771 (program): Stirling numbers of second kind, S(n,7).
  • A000773 (program): Number of numbers == 0 (mod 3) in range 2^n to 2^(n+1) with odd number of 1’s in binary expansion.
  • A000774 (program): a(n) = n!*(1 + Sum_{i=1..n} 1/i).
  • A000775 (program): a(n) = n! * (n + 1 + 2*Sum_{k=1…n} 1/k).
  • A000776 (program): a(n) = n! * (1 + 2*Sum_{k=1..n} 1/k).
  • A000777 (program): a(n) = (n+2)*Catalan(n) - 1.
  • A000778 (program): a(n) = Catalan(n) + Catalan(n+1) - 1.
  • A000779 (program): a(n) = 2*(2n-1)!!-(n-1)!*2^(n-1), where (2n-1)!! is A001147(n).
  • A000780 (program): a(n) = (n+1)!/2 + (n-1)(n-1)!.
  • A000781 (program): a(n) = 3*Catalan(n) - Catalan(n-1) - 1.
  • A000782 (program): a(n) = 2*Catalan(n) - Catalan(n-1).
  • A000788 (program): Total number of 1’s in binary expansions of 0, …, n.
  • A000789 (program): Maximal order of a triangle-free cyclic graph with no independent set of size n.
  • A000792 (program): a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.
  • A000795 (program): Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.
  • A000796 (program): Decimal expansion of Pi (or digits of Pi).
  • A000799 (program): a(n) = floor(2^n / n).
  • A000801 (program): a(n) = Sum_{k = 1..n} floor(2^k / k).
  • A000803 (program): a(n+3) = a(n+2) + a(n+1) + a(n) - 4.
  • A000806 (program): Bessel polynomial y_n(-1).
  • A000807 (program): Quadratic invariants.
  • A000810 (program): Expansion of e.g.f. (sin x + cos x)/cos 3x.
  • A000816 (program): E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).
  • A000819 (program): E.g.f.: cos(x)^2 / cos(2x) = Sum_{n >= 0} a(n) * x^(2n) / (2n)!.
  • A000828 (program): E.g.f. cos(x)/(cos(x) - sin(x)).
  • A000831 (program): Expansion of e.g.f. (1 + tan(x))/(1 - tan(x)).
  • A000834 (program): Expansion of exp(x)*(1 + tan(x))/(1 - tan(x)).
  • A000846 (program): a(n) = C(3n,n) - C(2n,n).
  • A000855 (program): Final two digits of 2^n.
  • A000865 (program): Numbers beginning with letter ‘o’ in English.
  • A000866 (program): 2^n written in base 5.
  • A000879 (program): Number of primes < prime(n)^2.
  • A000888 (program): a(n) = (2*n)!^2 / ((n+1)!*n!^3).
  • A000891 (program): a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.
  • A000894 (program): a(n) = (2*n)!*(2*n+1)! /((n+1)! *n!^3).
  • A000897 (program): a(n) = (4*n)! / ((2*n)!*n!^2).
  • A000898 (program): a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.
  • A000900 (program): Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
  • A000902 (program): Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).
  • A000904 (program): a(n) = (n+1)*a(n-1) + (n+2)*a(n-2) + a(n-3); a(1)=0, a(2)=3, a(3)=13.
  • A000906 (program): Exponential generating function: 2*(1+3*x)/(1-2*x)^(7/2).
  • A000907 (program): Second order reciprocal Stirling number (Fekete) [[2n+2, n]]. The number of n-orbit permutations of a (2n+2)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).
  • A000909 (program): a(n) = (2n)!(2n+1)! / n!^2.
  • A000910 (program): a(n) = 5*binomial(n, 6).
  • A000911 (program): a(n) = (2n+3)! /( n! * (n+1)! ).
  • A000912 (program): Expansion of (sqrt(1-4x^2) - sqrt(1-4x))/(2x).
  • A000914 (program): Stirling numbers of the first kind: s(n+2, n).
  • A000915 (program): Stirling numbers of first kind s(n+4, n).
  • A000917 (program): a(n) = (2n+3)!/(n!*(n+2)!).
  • A000918 (program): a(n) = 2^n - 2.
  • A000919 (program): a(n) = 4^n - C(4,3)*3^n + C(4,2)*2^n - C(4,1).
  • A000920 (program): Differences of 0: 6!*Stirling2(n,6).
  • A000925 (program): Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.
  • A000930 (program): Narayana’s cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).
  • A000931 (program): Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
  • A000932 (program): a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.
  • A000933 (program): Genus of complete graph on n nodes.
  • A000934 (program): Chromatic number (or Heawood number) Chi(n) of surface of genus n.
  • A000943 (program): Number of combinatorial types of simplicial n-dimensional polytopes with n+3 nodes.
  • A000952 (program): Numbers n == 2 (mod 4) that are the orders of conference matrices.
  • A000957 (program): Fine’s sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.
  • A000958 (program): Number of ordered rooted trees with n edges having root of odd degree.
  • A000960 (program): Flavius Josephus’s sieve: Start with the natural numbers; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate.
  • A000961 (program): Powers of primes. Alternatively, 1 and the prime powers (p^k, p prime, k >= 1).
  • A000964 (program): The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
  • A000966 (program): n! never ends in this many 0’s.
  • A000968 (program): Sum of odd Fermat coefficients rounded to nearest integer.
  • A000969 (program): Expansion of (1+x+2*x^2)/((1-x)^2*(1-x^3)).
  • A000970 (program): Fermat coefficients.
  • A000971 (program): Fermat coefficients.
  • A000972 (program): Fermat coefficients.
  • A000973 (program): Fermat coefficients.
  • A000975 (program): a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).
  • A000977 (program): Numbers that are divisible by at least three different primes.
  • A000982 (program): a(n) = ceiling(n^2/2).
  • A000984 (program): Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.
  • A000985 (program): Number of n X n symmetric matrices with nonnegative entries and all row sums 2.
  • A000986 (program): Number of n X n symmetric matrices with (0,1) entries and all row sums 2.
  • A000989 (program): 3-adic valuation of binomial(2*n, n): largest k such that 3^k divides binomial(2*n, n).
  • A000990 (program): Number of plane partitions of n with at most two rows.
  • A000991 (program): Number of 3-line partitions of n.
  • A000994 (program): Shifts 2 places left under binomial transform.
  • A000995 (program): Shifts left two terms under the binomial transform.
  • A000996 (program): Shifts 3 places left under binomial transform.
  • A000997 (program): From a differential equation.
  • A000998 (program): From a differential equation.
  • A000999 (program): 5-adic valuation of binomial(2*n,n): largest k such that 5^k divides binomial(2*n, n).
  • A001000 (program): a(n) = least m such that if a/b < c/d where a,b,c,d are integers in [0,n], then a/b < k/m < c/d for some integer k.
  • A001001 (program): Number of sublattices of index n in generic 3-dimensional lattice.
  • A001002 (program): Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.
  • A001003 (program): Schroeder’s second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.
  • A001005 (program): Number of ways of partitioning n points on a circle into subsets only of sizes 2 and 3.
  • A001006 (program): Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle.
  • A001008 (program): Numerators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
  • A001014 (program): Sixth powers: a(n) = n^6.
  • A001015 (program): Seventh powers: a(n) = n^7.
  • A001016 (program): Eighth powers: a(n) = n^8.
  • A001017 (program): Ninth powers: a(n) = n^9.
  • A001018 (program): Powers of 8: a(n) = 8^n.
  • A001019 (program): Powers of 9: a(n) = 9^n.
  • A001020 (program): Powers of 11: a(n) = 11^n.
  • A001021 (program): Powers of 12.
  • A001022 (program): Powers of 13.
  • A001023 (program): Powers of 14.
  • A001024 (program): Powers of 15.
  • A001025 (program): Powers of 16: a(n) = 16^n.
  • A001026 (program): Powers of 17.
  • A001027 (program): Powers of 18.
  • A001029 (program): Powers of 19.
  • A001030 (program): Fixed under 1 -> 21, 2 -> 211.
  • A001031 (program): Goldbach conjecture: a(n) = number of decompositions of 2n into sum of two primes (counting 1 as a prime).
  • A001036 (program): Partial sums of A001037, omitting A001037(1).
  • A001037 (program): Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.
  • A001039 (program): a(n) = (p^p-1)/(p-1) where p = prime(n).
  • A001040 (program): a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.
  • A001041 (program): a(0)=12; thereafter a(n) = 12 times the product of the first n primes.
  • A001042 (program): a(n) = a(n-1)^2 - a(n-2)^2.
  • A001043 (program): Numbers that are the sum of 2 successive primes.
  • A001044 (program): a(n) = (n!)^2.
  • A001045 (program): Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with a(0) = 0, a(1) = 1; also a(n) = nearest integer to 2^n/3.
  • A001046 (program): a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = a(1) = 1.
  • A001047 (program): a(n) = 3^n - 2^n.
  • A001048 (program): a(n) = n! + (n-1)!.
  • A001052 (program): a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = 1, a(1) = 2.
  • A001053 (program): a(n+1) = n*a(n) + a(n-1) with a(0)=1, a(1)=0.
  • A001054 (program): a(n) = a(n-1)*a(n-2) - 1.
  • A001056 (program): a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3.
  • A001057 (program): Canonical enumeration of integers: interleaved positive and negative integers with zero prepended.
  • A001060 (program): a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.
  • A001063 (program): E.g.f. satisfies A’(x) = A(x/(1-x)).
  • A001064 (program): a(n) = a(n-1)*a(n-2) + a(n-3).
  • A001065 (program): Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.
  • A001067 (program): Numerator of Bernoulli(2*n)/(2*n).
  • A001068 (program): a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.
  • A001069 (program): Log2*(n) (version 2): take log_2 of n this many times to get a number < 2.
  • A001075 (program): a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
  • A001076 (program): Denominators of continued fraction convergents to sqrt(5).
  • A001077 (program): Numerators of continued fraction convergents to sqrt(5).
  • A001078 (program): a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
  • A001079 (program): a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5.
  • A001080 (program): a(n) = 16*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
  • A001081 (program): a(n) = 16*a(n-1) - a(n-2).
  • A001082 (program): Generalized octagonal numbers: k*(3*k-2), k=0, +- 1, +- 2, +-3, …
  • A001084 (program): a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
  • A001085 (program): a(n) = 20*a(n-1) - a(n-2).
  • A001088 (program): Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).
  • A001090 (program): a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.
  • A001091 (program): a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.
  • A001093 (program): a(n) = n^3 + 1.
  • A001094 (program): a(n) = n + n*(n-1)*(n-2)*(n-3).
  • A001095 (program): a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4).
  • A001096 (program): a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).
  • A001097 (program): Twin primes.
  • A001099 (program): a(n) = n^n - a(n-1), with a(1) = 1.
  • A001105 (program): a(n) = 2*n^2.
  • A001106 (program): 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
  • A001107 (program): 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
  • A001108 (program): a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
  • A001109 (program): a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.
  • A001110 (program): Square triangular numbers: numbers that are both triangular and square.
  • A001112 (program): A continued fraction.
  • A001113 (program): Decimal expansion of e.
  • A001116 (program): Maximal kissing number of an n-dimensional lattice.
  • A001117 (program): a(n) = 3^n - 3*2^n + 3.
  • A001118 (program): Differences of 0; labeled ordered partitions into 5 parts.
  • A001120 (program): a(0) = a(1) = 1; for n > 1, a(n) = n*a(n-1) + (-1)^n.
  • A001122 (program): Primes with primitive root 2.
  • A001127 (program): Trajectory of 1 under map x->x + (x-with-digits-reversed).
  • A001129 (program): Iccanobif numbers: reverse digits of two previous terms and add.
  • A001132 (program): Primes == +-1 (mod 8).
  • A001142 (program): a(n) = Product_{k=1..n} k^(2k - 1 - n).
  • A001147 (program): Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*…*(2*n-1).
  • A001148 (program): Final digit of 3^n.
  • A001156 (program): Number of partitions of n into squares.
  • A001157 (program): a(n) = sigma_2(n): sum of squares of divisors of n.
  • A001158 (program): sigma_3(n): sum of cubes of divisors of n.
  • A001159 (program): sigma_4(n): sum of 4th powers of divisors of n.
  • A001160 (program): sigma_5(n), the sum of the 5th powers of the divisors of n.
  • A001169 (program): Number of board-pile polyominoes with n cells.
  • A001175 (program): Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n.
  • A001177 (program): Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).
  • A001182 (program): Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
  • A001189 (program): Number of degree-n permutations of order exactly 2.
  • A001193 (program): a(n) = (n+1)*(2*n)!/(2^n*n!) = (n+1)*(2n-1)!!.
  • A001194 (program): a(n) = A059366(n,n-2) = A059366(n,2) for n >= 2, where the triangle A059366 arises in the expansion of a trigonometric integral.
  • A001196 (program): Double-bitters: only even length runs in binary expansion.
  • A001202 (program): a(1)=0, a(2n) = a(n)+1, a(2n+1) = 10*a(n+1).
  • A001205 (program): Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.
  • A001218 (program): a(n) = 3^n mod 100.
  • A001221 (program): Number of distinct primes dividing n (also called omega(n)).
  • A001222 (program): Number of prime divisors of n counted with multiplicity (also called big omega of n, bigomega(n) or Omega(n)).
  • A001223 (program): Prime gaps: differences between consecutive primes.
  • A001224 (program): If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
  • A001225 (program): Number of consistent arcs in a tournament with n nodes.
  • A001226 (program): Lerch’s function q_2(n) = (2^{phi(t)} - 1)/t where t = 2*n - 1.
  • A001227 (program): Number of odd divisors of n.
  • A001233 (program): Unsigned Stirling numbers of first kind s(n,6).
  • A001234 (program): Unsigned Stirling numbers of the first kind s(n,7).
  • A001236 (program): Differences of reciprocals of unity.
  • A001237 (program): Differences of reciprocals of unity.
  • A001238 (program): Differences of reciprocals of unity.
  • A001240 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)).
  • A001241 (program): Differences of reciprocals of unity.
  • A001243 (program): Eulerian numbers (Euler’s triangle: column k=7 of A008292, column k=6 of A173018).
  • A001244 (program): Eulerian numbers (Euler’s triangle: column k=8 of A008292, column k=7 of A173018).
  • A001246 (program): Squares of Catalan numbers.
  • A001247 (program): Squares of Bell numbers.
  • A001248 (program): Squares of primes.
  • A001249 (program): Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2.
  • A001250 (program): Number of alternating permutations of order n.
  • A001254 (program): Squares of Lucas numbers.
  • A001255 (program): Squares of partition numbers.
  • A001260 (program): Number of permutations of length n with 4 consecutive ascending pairs.
  • A001261 (program): Number of permutations of length n with 5 consecutive ascending pairs.
  • A001263 (program): Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.
  • A001264 (program): Final 2 digits of 4^n.
  • A001277 (program): Number of permutations of length n by rises.
  • A001278 (program): Number of permutations of length n by rises.
  • A001281 (program): Image of n under the map n->n/2 if n even, n->3n-1 if n odd.
  • A001283 (program): Triangle read by rows, in which row n consists of n(n+m) for m = 1 .. n-1.
  • A001284 (program): Numbers of form m*k with m+1 <= k <= 2m-1.
  • A001285 (program): Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1’s and 2’s.
  • A001286 (program): Lah numbers: a(n) = (n-1)*n!/2.
  • A001287 (program): a(n) = binomial coefficient C(n,10).
  • A001288 (program): a(n) = binomial(n,11).
  • A001296 (program): 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).
  • A001297 (program): Stirling numbers of the second kind S(n+3, n).
  • A001298 (program): Stirling numbers of the second kind S(n+4, n).
  • A001299 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 25 cents.
  • A001300 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.
  • A001301 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25 cents.
  • A001302 (program): Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents.
  • A001303 (program): Stirling numbers of first kind, s(n+3, n), negated.
  • A001304 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)).
  • A001305 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)).
  • A001306 (program): Number of ways of making change for n cents using coins of 1, 5, 10, 20, 50, 100 cents.
  • A001307 (program): Expansion of 1/(1-x)^2/(1-x^2)/(1-x^4)/(1-x^10)/(1-x^20).
  • A001311 (program): Final 2 digits of 6^n.
  • A001315 (program): a(n) = Sum_{k=0..n} 2^binomial(n,k).
  • A001316 (program): Gould’s sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal’s triangle (A007318); a(n) = 2^A000120(n).
  • A001317 (program): Sierpiński’s triangle (Pascal’s triangle mod 2) converted to decimal.
  • A001318 (program): Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ….
  • A001332 (program): a(n) = Bernoulli(2*n) * (2*n + 1)!.
  • A001333 (program): Numerators of continued fraction convergents to sqrt(2).
  • A001338 (program): -1 + Sum (k-1)! C(n,k), k = 1..n for n > 0, a(0) = 1.
  • A001339 (program): a(n) = Sum_{k=0..n} (k+1)! binomial(n,k).
  • A001340 (program): E.g.f.: 2*exp(x)/(1-x)^3.
  • A001341 (program): E.g.f.: 6*exp(x)/(1-x)^4;
  • A001342 (program): E.g.f.: 24*exp(x)/(1-x)^5.
  • A001343 (program): Number of (unordered) ways of making change for n cents using coins of 5, 10, 20, 50, 100 cents.
  • A001344 (program): a(n) = sum_{k=0..2} (n+k)! * C(2,k).
  • A001345 (program): a(n) = Sum_{k = 0..3} (n+k)! C(3,k).
  • A001346 (program): a(n) = Sum_{k = 0..4} (n+k)! C(4,k).
  • A001347 (program): a(n) = Sum_{k=0..5} (n+k)! * C(5,k).
  • A001348 (program): Mersenne numbers: 2^p - 1, where p is prime.
  • A001350 (program): Associated Mersenne numbers.
  • A001352 (program): a(0) = 1, a(1) = 6, a(2) = 24; for n>=3, a(n) = 4a(n-1) - a(n-2).
  • A001353 (program): a(n) = 4*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
  • A001354 (program): Coordination sequence for hyperbolic tessellation 3^7 (from triangle group (2,3,7)).
  • A001357 (program): Powers of 2 written in base 9.
  • A001358 (program): Semiprimes (or biprimes): products of two primes.
  • A001359 (program): Lesser of twin primes.
  • A001360 (program): Crystal ball sequence for hyperbolic tessellation 3^7 (from triangle group (2,3,7)).
  • A001362 (program): Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.
  • A001363 (program): Primes in ternary.
  • A001370 (program): Sum of digits of 2^n.
  • A001386 (program): Coordination sequence for 4-dimensional I-centered tetragonal orthogonal lattice.
  • A001392 (program): a(n) = 9*binomial(2n,n-4)/(n+5).
  • A001399 (program): a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.
  • A001400 (program): Number of partitions of n into at most 4 parts.
  • A001401 (program): Number of partitions of n into at most 5 parts.
  • A001402 (program): Number of partitions of n into at most 6 parts.
  • A001405 (program): a(n) = binomial(n, floor(n/2)).
  • A001414 (program): Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n).
  • A001421 (program): a(n) = (6n)!/((n!)^3*(3n)!).
  • A001444 (program): Bending a piece of wire of length n+1 (configurations that can only be brought into coincidence by turning the figure over are counted as different).
  • A001445 (program): a(n) = (2^n + 2^[ n/2 ] )/2.
  • A001446 (program): a(n) = (4^n + 4^[ n/2 ] )/2.
  • A001447 (program): a(n) = (5^n + 5^floor(n/2))/2.
  • A001448 (program): a(n) = binomial(4n,2n) or (4*n)!/((2*n)!*(2*n)!).
  • A001449 (program): Binomial coefficients binomial(5n,n).
  • A001450 (program): a(n) = binomial(5*n,2*n).
  • A001451 (program): a(n) = (5*n)!/((3*n)!*n!*n!).
  • A001452 (program): Number of 5-line partitions of n.
  • A001453 (program): Catalan numbers - 1.
  • A001459 (program): a(n) = (5*n)!/((2*n)!*(2*n)!*n!).
  • A001460 (program): a(n) = (5*n)!/((2*n)!*(n!)^3).
  • A001463 (program): Partial sums of A001462; also a(n) is the last occurrence of n in A001462.
  • A001464 (program): E.g.f. exp( -x -(1/2)*x^2 ).
  • A001465 (program): Number of degree-n odd permutations of order 2.
  • A001468 (program): There are a(n) 2’s between successive 1’s.
  • A001469 (program): Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2).
  • A001470 (program): Number of degree-n permutations of order dividing 3.
  • A001471 (program): Number of degree-n permutations of order exactly 3.
  • A001472 (program): Number of degree-n permutations of order dividing 4.
  • A001475 (program): a(n) = a(n-1) + n * a(n-2), where a(1) = 1, a(2) = 2.
  • A001477 (program): The nonnegative integers.
  • A001478 (program): The negative integers.
  • A001481 (program): Numbers that are the sum of 2 squares.
  • A001489 (program): a(n) = -n.
  • A001495 (program): Number of symmetric 0-1 (n+1) X (n+1) matrices with row sums 2 and first row starting 1,1 for n > 0, a(0)=1.
  • A001497 (program): Triangle of coefficients of Bessel polynomials (exponents in decreasing order).
  • A001498 (program): Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).
  • A001499 (program): Number of n X n matrices with exactly 2 1’s in each row and column, other entries 0.
  • A001504 (program): a(n) = (3*n+1)*(3*n+2).
  • A001505 (program): a(n) = (4n+1)(4n+2)(4n+3).
  • A001509 (program): (5*n+1)*(5*n+2)*(5*n+3).
  • A001511 (program): The ruler function: 2^a(n) divides 2n. Or, a(n) = 2-adic valuation of 2n.
  • A001512 (program): a(n) = (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4).
  • A001513 (program): a(n) = (6n+1)*(6n+5).
  • A001514 (program): Bessel polynomial {y_n}‘(1).
  • A001515 (program): Bessel polynomial y_n(x) evaluated at x=1.
  • A001516 (program): Bessel polynomial {y_n}’‘(1).
  • A001517 (program): Bessel polynomials y_n(x) (see A001498) evaluated at 2.
  • A001518 (program): Bessel polynomial y_n(3).
  • A001519 (program): a(n) = 3*a(n-1) - a(n-2) for n >= 2, with a(0) = a(1) = 1.
  • A001520 (program): a(n) = (6*n+1)*(6*n+3)*(6*n+5).
  • A001521 (program): a(1) = 1; thereafter a(n+1) = floor(sqrt(2*a(n)*(a(n)+1))).
  • A001525 (program): a(n) = (3n)!/(3!n!).
  • A001526 (program): a(n) = (7n+1)*(7n+6).
  • A001527 (program): a(n) = 2 * Sum_{i=0..n} C(2^n-1, i).
  • A001533 (program): a(n) = (8n+1)*(8n+7).
  • A001534 (program): a(n) = (9n+1)*(9n+8).
  • A001535 (program): a(n) = (10n+1)*(10n+9).
  • A001536 (program): a(n) = (11n+1)*(11n+10).
  • A001538 (program): a(n) = (12n+1)*(12n+11).
  • A001539 (program): a(n) = (4*n+1)*(4*n+3).
  • A001540 (program): Number of transpositions needed to generate permutations of length n.
  • A001541 (program): a(0) = 1, a(1) = 3; for n > 1, a(n) = 6*a(n-1) - a(n-2).
  • A001542 (program): a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.
  • A001545 (program): a(n) = (5n+1)*(5n+4).
  • A001546 (program): a(n) = (8*n+1)*(8*n+3)*(8*n+5)*(8*n+7).
  • A001547 (program): a(n) = (7*n+1)*(7*n+2)*(7*n+4).
  • A001550 (program): a(n) = 1^n + 2^n + 3^n.
  • A001551 (program): a(n) = 1^n + 2^n + 3^n + 4^n.
  • A001552 (program): a(n) = 1^n + 2^n + … + 5^n.
  • A001553 (program): a(n) = 1^n + 2^n + … + 6^n.
  • A001554 (program): a(n) = 1^n + 2^n + … + 7^n.
  • A001555 (program): a(n) = 1^n + 2^n + … + 8^n.
  • A001556 (program): a(n) = 1^n + 2^n + … + 9^n.
  • A001557 (program): a(n) = 1^n + 2^n + … + 10^n.
  • A001558 (program): Number of hill-free Dyck paths of semilength n+3 and having length of first descent equal to 1 (a hill in a Dyck path is a peak at level 1).
  • A001559 (program): a(0) = 1, a(1) = 4; thereafter a(n)*(2n + 10) - a(n-1)*(11n + 35) + a(n-2)*(8n + 2) + a(n-3)*(15n + 7) + a(n-4)*(4n - 2) = 0.
  • A001561 (program): a(n) = (7*n+3)*(7*n+5)*(7*n+6).
  • A001563 (program): a(n) = n*n! = (n+1)! - n!.
  • A001564 (program): 2nd differences of factorial numbers.
  • A001565 (program): 3rd differences of factorial numbers.
  • A001570 (program): Numbers k such that k^2 is centered hexagonal.
  • A001571 (program): a(n) = 4*a(n-1) - a(n-2) + 1, with a(0) = 0, a(1) = 2.
  • A001576 (program): a(n) = 1^n + 2^n + 4^n.
  • A001577 (program): An operational recurrence.
  • A001579 (program): a(n) = 3^n + 5^n + 6^n.
  • A001580 (program): a(n) = 2^n + n^2.
  • A001582 (program): Product of Fibonacci and Pell numbers.
  • A001584 (program): A generalized Fibonacci sequence.
  • A001585 (program): a(n) = 3^n + n^3.
  • A001586 (program): Generalized Euler numbers, or Springer numbers.
  • A001588 (program): a(n) = a(n-1) + a(n-2) - 1.
  • A001589 (program): a(n) = 4^n + n^4.
  • A001590 (program): Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=0.
  • A001591 (program): Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5), a(0)=a(1)=a(2)=a(3)=0, a(4)=1.
  • A001592 (program): Hexanacci numbers: a(n+1) = a(n)+…+a(n-5) with a(0)=…=a(4)=0, a(5)=1.
  • A001593 (program): a(n) = 5^n + n^5.
  • A001594 (program): a(n) = 6^n + n^6.
  • A001595 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = a(1) = 1.
  • A001596 (program): a(n) = 7^n + n^7.
  • A001602 (program): Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m).
  • A001603 (program): Odd-indexed terms of A124296.
  • A001604 (program): Odd-indexed terms of A124297.
  • A001607 (program): a(n) = -a(n-1) - 2*a(n-2).
  • A001608 (program): Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.
  • A001609 (program): a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).
  • A001610 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.
  • A001611 (program): a(n) = Fibonacci(n) + 1.
  • A001612 (program): a(n) = a(n-1) + a(n-2) - 1 for n > 1, a(0)=3, a(1)=2.
  • A001614 (program): Connell sequence: 1 odd, 2 even, 3 odd, …
  • A001615 (program): Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).
  • A001621 (program): a(n) = n*(n + 1)*(n^2 + n + 2)/4.
  • A001622 (program): Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
  • A001628 (program): Convolved Fibonacci numbers.
  • A001629 (program): Self-convolution of Fibonacci numbers.
  • A001630 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=a(1)=0, a(2)=1, a(3)=2.
  • A001631 (program): Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).
  • A001633 (program): Numbers with an odd number of digits.
  • A001634 (program): a(n) = a(n-2) + a(n-3) + a(n-4), with initial values a(0) = 0, a(1) = 2, a(2) = 3, a(3) = 6.
  • A001635 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-6), n >= 7.
  • A001636 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) - a(n-7), n >= 8.
  • A001637 (program): Numbers with an even number of digits.
  • A001638 (program): A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.
  • A001639 (program): A Fielder sequence. a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5), n >= 6.
  • A001640 (program): A Fielder sequence.
  • A001641 (program): A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).
  • A001642 (program): A Fielder sequence.
  • A001643 (program): A Fielder sequence.
  • A001644 (program): a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.
  • A001645 (program): A Fielder sequence.
  • A001648 (program): Tetranacci numbers A073817 without the leading term 4.
  • A001649 (program): A Fielder sequence.
  • A001650 (program): k appears k times (k odd).
  • A001651 (program): Numbers not divisible by 3.
  • A001652 (program): a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.
  • A001653 (program): Numbers k such that 2*k^2 - 1 is a square.
  • A001654 (program): Golden rectangle numbers: F(n)*F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
  • A001655 (program): Fibonomial coefficients: a(n) = F(n+1)*F(n+2)*F(n+3)/2, where F() = Fibonacci numbers A000045.
  • A001656 (program): Fibonomial coefficients.
  • A001657 (program): Fibonomial coefficients: column 5 of A010048.
  • A001658 (program): Fibonomial coefficients.
  • A001659 (program): Expansion of bracket function.
  • A001670 (program): n appears n times (n even).
  • A001671 (program): Powers of e rounded up.
  • A001680 (program): The partition function G(n,3).
  • A001681 (program): The partition function G(n,4).
  • A001684 (program): From a continued fraction.
  • A001685 (program): a(0) = 1, a(1) = 2, a(2) = 3; for n >= 3, a(n) = a(n-2) + a(n-1)*Product_{i=1..n-3} a(i).
  • A001686 (program): From a continued fraction.
  • A001687 (program): a(n) = a(n-2) + a(n-5).
  • A001688 (program): 4th forward differences of factorial numbers A000142.
  • A001689 (program): 5th forward differences of factorial numbers A000142.
  • A001690 (program): Non-Fibonacci numbers.
  • A001692 (program): Number of irreducible polynomials of degree n over GF(5); dimensions of free Lie algebras.
  • A001693 (program): Number of degree-n irreducible polynomials over GF(7); dimensions of free Lie algebras.
  • A001694 (program): Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers).
  • A001696 (program): a(n) = a(n-1)*(1 + a(n-1) - a(n-2)), a(0) = 0, a(1) = 1.
  • A001697 (program): a(n+1) = a(n)(a(0) + … + a(n)).
  • A001699 (program): Number of binary trees of height n; or products (ways to insert parentheses) of height n when multiplication is non-commutative and non-associative.
  • A001700 (program): a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.
  • A001701 (program): Generalized Stirling numbers.
  • A001703 (program): Decimal concatenation of n, n+1, and n+2.
  • A001704 (program): a(n) = n concatenated with n + 1.
  • A001705 (program): Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).
  • A001706 (program): Generalized Stirling numbers.
  • A001707 (program): Generalized Stirling numbers.
  • A001708 (program): Generalized Stirling numbers.
  • A001709 (program): Generalized Stirling numbers.
  • A001710 (program): Order of alternating group A_n, or number of even permutations of n letters.
  • A001711 (program): Generalized Stirling numbers.
  • A001712 (program): Generalized Stirling numbers.
  • A001713 (program): Generalized Stirling numbers.
  • A001714 (program): Generalized Stirling numbers.
  • A001715 (program): a(n) = n!/6.
  • A001716 (program): Generalized Stirling numbers.
  • A001717 (program): Generalized Stirling numbers.
  • A001718 (program): Generalized Stirling numbers.
  • A001719 (program): Generalized Stirling numbers.
  • A001720 (program): a(n) = n!/24.
  • A001721 (program): Generalized Stirling numbers.
  • A001722 (program): Generalized Stirling numbers.
  • A001723 (program): Generalized Stirling numbers.
  • A001724 (program): Generalized Stirling numbers.
  • A001725 (program): a(n) = n!/5!.
  • A001729 (program): List of numbers whose digits contain no loops (version 1).
  • A001730 (program): a(n) = n!/6!.
  • A001735 (program): 5 in base 10-n.
  • A001736 (program): 4 in base 10-n.
  • A001737 (program): Squares written in base 2.
  • A001738 (program): a(n) = n^2 written in base 3.
  • A001739 (program): Squares written in base 4.
  • A001740 (program): Squares written in base 5.
  • A001741 (program): Squares written in base 6.
  • A001742 (program): Numbers whose digits contain no loops (version 2).
  • A001744 (program): Numbers n such that every digit contains a loop (version 2).
  • A001745 (program): Numbers such that at least one digit contains a loop (version 2). Also called “holey” or “holy” numbers.
  • A001746 (program): At least one digit contains a loop (version 1).
  • A001747 (program): 2 together with primes multiplied by 2.
  • A001748 (program): a(n) = 3 * prime(n).
  • A001749 (program): Primes multiplied by 4.
  • A001750 (program): Primes multiplied by 5.
  • A001751 (program): Primes together with primes multiplied by 2.
  • A001752 (program): Expansion of 1/((1+x)*(1-x)^5).
  • A001753 (program): Expansion of 1/((1+x)*(1-x)^6).
  • A001754 (program): Lah numbers: a(n) = n!*binomial(n-1,2)/6.
  • A001755 (program): Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
  • A001756 (program): a(n) = A059366(n,n-3) = A059366(n,3) for n >= 3, where the triangle A059366 arises from the expansion of a trigonometric integral.
  • A001757 (program): Expansion of an integral: central elements of rows of triangle in A059366.
  • A001758 (program): Number of quasi-alternating permutations of length n.
  • A001761 (program): a(n) = (2*n)!/(n+1)!.
  • A001762 (program): Number of dissections of a ball.
  • A001763 (program): Number of dissections of a ball: (3n+3)!/(2n+3)!.
  • A001764 (program): a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).
  • A001766 (program): Index of (the image of) the modular group Gamma(n) in PSL_2(Z).
  • A001768 (program): Sorting numbers: number of comparisons for merge insertion sort of n elements.
  • A001769 (program): Expansion of 1/((1+x)*(1-x)^7).
  • A001777 (program): Lah numbers: a(n) = n! * binomial(n-1, 4)/5!.
  • A001778 (program): Lah numbers: a(n) = n!*binomial(n-1,5)/6!.
  • A001779 (program): Expansion of 1/((1+x)(1-x)^8).
  • A001780 (program): Expansion of 1/((1+x)(1-x)^9).
  • A001781 (program): Expansion of 1/((1+x)*(1-x)^10).
  • A001783 (program): n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.
  • A001786 (program): Expansion of 1/((1+x)(1-x)^11).
  • A001787 (program): a(n) = n*2^(n-1).
  • A001788 (program): a(n) = n*(n+1)*2^(n-2).
  • A001789 (program): a(n) = binomial(n,3)*2^(n-3).
  • A001790 (program): Numerators in expansion of 1/sqrt(1-x).
  • A001791 (program): a(n) = binomial coefficient C(2n, n-1).
  • A001792 (program): a(n) = (n+2)*2^(n-1).
  • A001793 (program): a(n) = n*(n+3)*2^(n-3).
  • A001794 (program): Negated coefficients of Chebyshev T polynomials: x^n, n >= 0.
  • A001795 (program): Coefficients of Legendre polynomials.
  • A001796 (program): Coefficients of Legendre polynomials.
  • A001800 (program): Coefficients of Legendre polynomials.
  • A001801 (program): Coefficients of Legendre polynomials.
  • A001803 (program): Numerators in expansion of (1 - x)^(-3/2).
  • A001804 (program): a(n) = n! * C(n,2).
  • A001805 (program): a(n) = n! * binomial(n,3).
  • A001806 (program): a(n) = n! * binomial(n,4).
  • A001807 (program): a(n) = n! * binomial(n,5).
  • A001808 (program): Expansion of 1/((1+x)*(1-x)^12).
  • A001809 (program): a(n) = n! * n(n-1)/4.
  • A001810 (program): a(n) = n!*n*(n-1)*(n-2)/36.
  • A001811 (program): Coefficients of Laguerre polynomials.
  • A001812 (program): Coefficients of Laguerre polynomials.
  • A001813 (program): Quadruple factorial numbers: a(n) = (2n)!/n!.
  • A001814 (program): Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
  • A001815 (program): a(n) = binomial(n,2) * 2^(n-1).
  • A001816 (program): Coefficients of x^n in Hermite polynomial H_{n+4}
  • A001817 (program): G.f.: Sum_{n>0} x^n/(1-x^(3n)) = Sum_{n>=0} x^(3n+1)/(1-x^(3n+1)).
  • A001818 (program): Squares of double factorials: (1*3*5*…*(2n-1))^2 = ((2*n-1)!!)^2.
  • A001819 (program): Central factorial numbers: second right-hand column of triangle A008955.
  • A001822 (program): Expansion of Sum x^(3n+2)/(1-x^(3n+2)), n=0..inf.
  • A001823 (program): Central factorial numbers: column 2 in triangle A008956.
  • A001824 (program): Central factorial numbers.
  • A001826 (program): Number of divisors of n of the form 4k+1.
  • A001831 (program): Number of labeled graded partially ordered sets with n elements of height at most 1.
  • A001834 (program): a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).
  • A001835 (program): a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.
  • A001839 (program): The coding-theoretic function A(n,4,3).
  • A001840 (program): Expansion of x /((1 - x)^2 * (1 - x^3)).
  • A001841 (program): Related to Zarankiewicz’s problem.
  • A001842 (program): Expansion of Sum_{n>=0} x^(4*n+3)/(1 - x^(4*n+3)).
  • A001844 (program): Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.
  • A001845 (program): Centered octahedral numbers (crystal ball sequence for cubic lattice).
  • A001846 (program): Centered 4-dimensional orthoplex numbers (crystal ball sequence for 4-dimensional cubic lattice).
  • A001847 (program): Crystal ball sequence for 5-dimensional cubic lattice.
  • A001848 (program): Crystal ball sequence for 6-dimensional cubic lattice.
  • A001849 (program): Crystal ball sequence for 7-dimensional cubic lattice.
  • A001850 (program): Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
  • A001855 (program): Sorting numbers: maximal number of comparisons for sorting n elements by binary insertion.
  • A001858 (program): Number of forests of trees on n labeled nodes.
  • A001859 (program): Triangular numbers plus quarter-squares: n*(n+1)/2 + floor((n+1)^2/4) (i.e., A000217(n) + A002620(n+1)).
  • A001860 (program): Number of series-reduced planted trees with n+9 nodes and 4 internal nodes.
  • A001861 (program): Expansion of e.g.f. exp(2*(exp(x) - 1)).
  • A001863 (program): Normalized total height of rooted trees with n nodes.
  • A001864 (program): Total height of rooted trees with n labeled nodes.
  • A001865 (program): Number of connected functions on n labeled nodes.
  • A001866 (program): Number of connected graphs with n nodes and n edges.
  • A001867 (program): Number of n-bead necklaces with 3 colors.
  • A001868 (program): Number of n-bead necklaces with 4 colors.
  • A001869 (program): Number of n-bead necklaces with 5 colors.
  • A001870 (program): Expansion of (1-x)/(1 - 3*x + x^2)^2.
  • A001871 (program): Expansion of 1/(1 - 3*x + x^2)^2.
  • A001872 (program): Convolved Fibonacci numbers.
  • A001873 (program): Convolved Fibonacci numbers.
  • A001874 (program): Convolved Fibonacci numbers.
  • A001875 (program): Convolved Fibonacci numbers.
  • A001876 (program): Number of divisors of n of form 5k+1; a(0)=0.
  • A001877 (program): Number of divisors of n of the form 5k+2; a(0) = 0.
  • A001878 (program): Number of divisors of n of form 5k+3; a(0) = 0.
  • A001879 (program): a(n) = (2n+2)!/(n!*2^(n+1)).
  • A001880 (program): Coefficients of Bessel polynomials y_n (x).
  • A001881 (program): Coefficients of Bessel polynomials y_n (x).
  • A001882 (program): a(2n) = a(2n-1) + 2a(2n-2), a(2n+1) = a(2n) + a(2n-1), with a(1) = 2 and a(2) = 3.
  • A001891 (program): Hit polynomials; convolution of natural numbers with Fibonacci numbers F(2), F(3), F(4), ….
  • A001892 (program): Number of permutations of (1,…,n) having n-2 inversions (n>=2).
  • A001893 (program): Number of permutations of (1,…,n) having n-3 inversions (n>=3).
  • A001894 (program): Number of permutations of {1,…,n} having n-4 inversions (n>=4).
  • A001896 (program): Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).
  • A001897 (program): Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).
  • A001898 (program): Denominators of Bernoulli polynomials B(n)(x).
  • A001899 (program): Number of divisors of n of form 5k+4; a(0) = 0.
  • A001900 (program): Successive numerators of Wallis’s approximation to Pi/2 (unreduced).
  • A001901 (program): Successive numerators of Wallis’s approximation to Pi/2 (reduced).
  • A001902 (program): Successive denominators of Wallis’s approximation to Pi/2 (reduced).
  • A001903 (program): Final digit of 7^n.
  • A001906 (program): F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).
  • A001907 (program): Expansion of e.g.f. exp(-x)/(1-4*x).
  • A001908 (program): E.g.f. exp(-x)/(1-5*x).
  • A001909 (program): a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.
  • A001910 (program): a(n) = n*a(n-1) + (n-5)*a(n-2).
  • A001911 (program): a(n) = Fibonacci(n+3) - 2.
  • A001912 (program): Numbers k such that 4*k^2 + 1 is prime.
  • A001917 (program): (p-1)/x, where p = prime(n) and x = ord(2,p), the smallest positive integer such that 2^x == 1 mod p.
  • A001919 (program): Eighth column of quadrinomial coefficients.
  • A001921 (program): a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.
  • A001922 (program): Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).
  • A001923 (program): a(n) = Sum_{k=1..n} k^k.
  • A001924 (program): Apply partial sum operator twice to Fibonacci numbers.
  • A001925 (program): From rook polynomials.
  • A001926 (program): G.f.: (1+x)^2/[(1-x)^4(1-x-x^2)^3].
  • A001932 (program): Sum of Fibonacci (A000045) and Pell (A000129) numbers.
  • A001934 (program): Expansion of 1/theta_4(q)^2 in powers of q.
  • A001935 (program): Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.
  • A001936 (program): Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.
  • A001937 (program): Expansion of (psi(x^2) / psi(-x))^3 in powers of x where psi() is a Ramanujan theta function.
  • A001938 (program): Expansion of k/(4*q^(1/2)) in powers of q, where k defined by sqrt(k) = theta_2(0, q))/theta_3(0, q).
  • A001939 (program): Expansion of (psi(-x) / phi(-x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.
  • A001940 (program): Absolute value of coefficients of an elliptic function.
  • A001941 (program): Absolute values of coefficients of an elliptic function.
  • A001943 (program): Expansion of reciprocal of theta series of E_8 lattice.
  • A001945 (program): a(n+6) = -a(n+5) + a(n+4) + 3a(n+3) + a(n+2) - a(n+1) - a(n). a(n) = sign(n) if abs(n)<=3.
  • A001946 (program): a(n) = 11*a(n-1) + a(n-2).
  • A001947 (program): a(n) = Lucas(5*n+2).
  • A001949 (program): Solutions of a fifth-order probability difference equation.
  • A001950 (program): Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
  • A001951 (program): A Beatty sequence: a(n) = floor(n*sqrt(2)).
  • A001952 (program): A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).
  • A001953 (program): a(n) = floor((n + 1/2) * sqrt(2)).
  • A001954 (program): a(n) = floor((n+1/2)*(2+sqrt(2))); winning positions in the 2-Wythoff game.
  • A001955 (program): Beatty sequence of 1 + 1/sqrt(11).
  • A001956 (program): Beatty sequence of (5+sqrt(13))/2.
  • A001957 (program): u-pile positions in the 3-Wythoff game with i=1.
  • A001958 (program): v-pile numbers of the 3-Wythoff game with i=1.
  • A001959 (program): u-pile numbers for the 3-Wythoff game with i=2.
  • A001960 (program): a(n) = floor((n+2/3)*(5+sqrt(13))/2); v-pile positions in the 3-Wythoff game.
  • A001961 (program): A Beatty sequence: floor(n * (sqrt(5) - 1)).
  • A001962 (program): A Beatty sequence: floor(n * (sqrt(5) + 3)).
  • A001963 (program): Winning positions in the u-pile of the 4-Wythoff game with i=1.
  • A001964 (program): v-pile positions of the 4-Wythoff game with i=1.
  • A001965 (program): u-pile count for the 4-Wythoff game with i=2.
  • A001966 (program): v-pile counts for the 4-Wythoff game with i=2.
  • A001967 (program): u-pile positions for the 4-Wythoff game with i=3.
  • A001968 (program): v-pile positions of the 4-Wythoff game with i=3.
  • A001969 (program): Evil numbers: nonnegative integers with an even number of 1’s in their binary expansion.
  • A001971 (program): Nearest integer to n^2/8.
  • A001972 (program): Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ).
  • A001973 (program): Expansion of (1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)).
  • A001983 (program): Numbers that are the sum of 2 distinct squares: of form x^2 + y^2 with 0 <= x < y.
  • A001993 (program): Number of two-rowed partitions of length 3.
  • A001994 (program): Expansion of 1/((1-x^2)*(1-x^4)^2*(1-x^6)*(1-x^8)*(1-x^10)) (even powers only).
  • A001996 (program): Number of partitions of n into parts 2, 3, 4, 5, 6, 7.
  • A001998 (program): Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.
  • A002001 (program): a(n) = 3*4^(n-1), n>0; a(0)=1.
  • A002002 (program): a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).
  • A002003 (program): a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k).
  • A002004 (program): Davenport-Schinzel numbers of degree 4 on n symbols.
  • A002005 (program): Number of rooted planar cubic maps with 2n vertices.
  • A002011 (program): a(n) = 4*(2n+1)!/n!^2.
  • A002015 (program): a(n) = n^2 reduced mod 100.
  • A002016 (program): Number of first n tetrahedral numbers (A000292) that are relatively prime to n.
  • A002018 (program): From a distribution problem.
  • A002019 (program): a(n) = a(n-1) - (n-1)(n-2)a(n-2).
  • A002020 (program): a(n+1) = a(n) - n*(n-1)*a(n-1), with a(n) = 1 for n <= 3.
  • A002021 (program): Pile of coconuts problem: (n-1)(n^n - 1), n even; n^n - n + 1, n odd.
  • A002022 (program): Pile of coconuts problem.
  • A002023 (program): a(n) = 6*4^n.
  • A002024 (program): k appears k times; a(n) = floor(sqrt(2n) + 1/2).
  • A002026 (program): Generalized ballot numbers (first differences of Motzkin numbers).
  • A002033 (program): Number of perfect partitions of n.
  • A002034 (program): Kempner numbers: smallest positive integer m such that n divides m!.
  • A002035 (program): Numbers that contain primes to odd powers only.
  • A002039 (program): Convolution inverse of A143348.
  • A002041 (program): Expansion of x/((1-x)(1-4x^2)(1-5x)).
  • A002042 (program): a(n) = 7*4^n.
  • A002050 (program): Number of simplices in barycentric subdivision of n-simplex.
  • A002051 (program): Steffensen’s bracket function [n,2].
  • A002053 (program): a(n) = least value of m for which Liouville’s function A002819(m) = -n.
  • A002054 (program): Binomial coefficient C(2n+1, n-1).
  • A002055 (program): Number of diagonal dissections of a convex n-gon into n-4 regions.
  • A002056 (program): Number of diagonal dissections of a convex n-gon into n-5 regions.
  • A002057 (program): Fourth convolution of Catalan numbers: 4*binomial(2n+3,n)/(n+4).
  • A002058 (program): Number of internal triangles in all triangulations of an (n+1)-gon.
  • A002059 (program): Number of partitions of an n-gon into (n-4) parts.
  • A002060 (program): Number of partitions of an n-gon into (n-5) parts.
  • A002061 (program): Central polygonal numbers: a(n) = n^2 - n + 1.
  • A002062 (program): a(n) = Fibonacci(n) + n.
  • A002063 (program): a(n) = 9*4^n.
  • A002064 (program): Cullen numbers: a(n) = n*2^n + 1.
  • A002065 (program): a(n+1) = a(n)^2 + a(n) + 1.
  • A002066 (program): a(n) = 10*4^n.
  • A002081 (program): Numbers congruent to {2, 4, 8, 16} (mod 20).
  • A002082 (program): 2nd differences are periodic.
  • A002083 (program): Narayana-Zidek-Capell numbers: a(n) = 1 for n <= 2. Otherwise a(2n) = 2a(2n-1), a(2n+1) = 2a(2n) - a(n).
  • A002084 (program): Sinh x / cos x = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
  • A002085 (program): From the expansion of sinh x / cos x: a(n) = odd part of A002084(n).
  • A002088 (program): Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.
  • A002089 (program): a(n) = 11*4^n.
  • A002095 (program): Number of partitions of n into nonprime parts.
  • A002102 (program): Number of nonnegative solutions to x^2 + y^2 + z^2 = n.
  • A002104 (program): Logarithmic numbers.
  • A002105 (program): Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.
  • A002107 (program): Expansion of Product_{k>=1} (1 - x^k)^2.
  • A002108 (program): 4th powers written backwards.
  • A002109 (program): Hyperfactorials: Product_{k = 1..n} k^k.
  • A002110 (program): Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
  • A002112 (program): Glaisher’s H numbers.
  • A002113 (program): Palindromes in base 10.
  • A002114 (program): Glaisher’s H’ numbers.
  • A002117 (program): Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
  • A002118 (program): 5th powers written backwards.
  • A002119 (program): Bessel polynomial y_n(-2).
  • A002120 (program): a(1) = 0, a(2) = -2; for n > 2, a(n) + a(n-2) - a(n-3) - a(n-5) - … - a(n-p) = (-1)^(n+1)*n if n is prime, otherwise = 0, where p = largest prime < n.
  • A002121 (program): a(0) = 1, a(1) = 0, a(2) = -1; for n >= 3, a(n) = - a(n-2) + Sum_{ primes p with 3 <= p <= n} a(n-p).
  • A002123 (program): a(1) = 0, a(2) = 0; for n > 2, a(n) - a(n-3) - a(n-5) - … - a(n-p) = n if n is prime, otherwise = 0, where p = largest prime < n.
  • A002124 (program): Number of compositions of n into a sum of odd primes.
  • A002129 (program): Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
  • A002131 (program): Sum of divisors d of n such that n/d is odd.
  • A002133 (program): Number of partitions of n with exactly two part sizes.
  • A002135 (program): Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.
  • A002136 (program): Matrices with 2 rows.
  • A002137 (program): Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.
  • A002138 (program): 6th powers written backwards.
  • A002140 (program): 7th powers written backwards.
  • A002143 (program): Class numbers h(-p) where p runs through the primes p == 3 (mod 4).
  • A002144 (program): Pythagorean primes: primes of form 4*k + 1.
  • A002145 (program): Primes of the form 4*k + 3.
  • A002161 (program): Decimal expansion of square root of Pi.
  • A002162 (program): Decimal expansion of the natural logarithm of 2.
  • A002163 (program): Decimal expansion of square root of 5.
  • A002171 (program): Glaisher’s chi numbers. a(n) = chi(4*n + 1).
  • A002173 (program): a(n) = Sum_{d|n, d == 1 mod 4} d^2 - Sum_{d|n, d == 3 mod 4} d^2.
  • A002175 (program): Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.
  • A002191 (program): Possible values for sum of divisors of n.
  • A002193 (program): Decimal expansion of square root of 2.
  • A002194 (program): Decimal expansion of sqrt(3).
  • A002203 (program): Companion Pell numbers: a(n) = 2*a(n-1) + a(n-2), a(0) = a(1) = 2.
  • A002204 (program): An ill-conditioned determinant.
  • A002212 (program): Number of restricted hexagonal polyominoes with n cells.
  • A002217 (program): Starting with n, repeatedly calculate the sum of prime factors (with repetition) of the previous term, until reaching 0 or a fixed point: a(n) is the number of terms in the resulting sequence.
  • A002232 (program): 8th powers written backwards.
  • A002239 (program): 9th powers written backwards.
  • A002241 (program): 10th powers written backwards.
  • A002246 (program): a(1) = 3; for n > 1, a(n) = 4*phi(n); given a rational number r = p/q, where q>0, (p,q)=1, define its height to be max{|p|,q}; then a(n) = number of rational numbers of height n.
  • A002247 (program): A (6,2)-sequence.
  • A002248 (program): Number of points on y^2 + xy = x^3 + x^2 + x over GF(2^n).
  • A002249 (program): a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1.
  • A002250 (program): a(n) = 4^n - 2*3^n.
  • A002251 (program): Start with the nonnegative integers; then swap L(k) and U(k) for all k >= 1, where L = A000201, U = A001950 (lower and upper Wythoff sequences).
  • A002260 (program): Triangle read by rows: T(n,k) = k for n >= 1, k = 1..n.
  • A002262 (program): Triangle read by rows: T(n,k), 0 <= k <= n, in which row n lists the first n+1 nonnegative integers.
  • A002264 (program): Nonnegative integers repeated 3 times.
  • A002265 (program): Nonnegative integers repeated 4 times.
  • A002266 (program): Integers repeated 5 times.
  • A002267 (program): The 15 supersingular primes: primes dividing order of Monster simple group.
  • A002271 (program): All odd numbers k, 1 < k < n, relatively prime to n are primes.
  • A002275 (program): Repunits: (10^n - 1)/9. Often denoted by R_n.
  • A002276 (program): a(n) = 2*(10^n - 1)/9.
  • A002277 (program): a(n) = 3*(10^n - 1)/9.
  • A002278 (program): a(n) = 4*(10^n - 1)/9.
  • A002279 (program): a(n) = 5*(10^n - 1)/9.
  • A002280 (program): a(n) = 6*(10^n - 1)/9.
  • A002281 (program): a(n) = 7(10^n - 1)/9.
  • A002282 (program): a(n) = 8*(10^n - 1)/9.
  • A002283 (program): a(n) = 10^n - 1.
  • A002288 (program): G.f.: q * Product_{m>=1} (1-q^m)^8*(1-q^2m)^8.
  • A002293 (program): Number of dissections of a polygon: binomial(4*n, n)/(3*n + 1).
  • A002294 (program): a(n) = binomial(5*n, n)/(4*n + 1).
  • A002295 (program): Number of dissections of a polygon: binomial(6n,n)/(5n+1).
  • A002296 (program): Number of dissections of a polygon: binomial(7n,n)/(6n+1).
  • A002297 (program): Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
  • A002298 (program): Denominator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
  • A002299 (program): Binomial coefficients C(2*n+5,5).
  • A002301 (program): a(n) = n! / 3.
  • A002302 (program): Generalized tangent numbers.
  • A002309 (program): Sum of first n fourth powers of odd numbers.
  • A002310 (program): a(n) = 5*a(n-1) - a(n-2).
  • A002312 (program): Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of k^2 + 1 is less than 2*k.
  • A002313 (program): Primes congruent to 1 or 2 modulo 4; or, primes of form x^2 + y^2; or, -1 is a square mod p.
  • A002314 (program): Minimal integer square root of -1 modulo p, where p is the n-th prime of the form 4k+1.
  • A002315 (program): NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n) = A001653(n+1).
  • A002316 (program): Related to Bernoulli numbers.
  • A002317 (program): Related to Genocchi numbers.
  • A002318 (program): Expansion of (1/theta_4(q)^2 -1)/4 in powers of q.
  • A002320 (program): a(n) = 5*a(n-1) - a(n-2).
  • A002321 (program): Mertens’s function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.
  • A002323 (program): ((2^m - 1) / p) mod p, where p = prime(n) and m = ord(2,p).
  • A002324 (program): Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).
  • A002325 (program): Glaisher’s J numbers.
  • A002326 (program): Multiplicative order of 2 mod 2n+1.
  • A002327 (program): Primes of the form k^2 - k - 1.
  • A002328 (program): Numbers n such that n^2 - n - 1 is prime.
  • A002329 (program): Periods of reciprocals of integers prime to 10.
  • A002348 (program): Degree of rational Poncelet porism of n-gon.
  • A002370 (program): a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.
  • A002371 (program): Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).
  • A002372 (program): Goldbach conjecture: number of decompositions of 2n into ordered sums of two odd primes.
  • A002373 (program): Smallest prime in decomposition of 2n into sum of two odd primes.
  • A002374 (program): Largest prime <= n in any decomposition of 2n into a sum of two odd primes.
  • A002375 (program): From Goldbach conjecture: number of decompositions of 2n into an unordered sum of two odd primes.
  • A002378 (program): Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
  • A002379 (program): a(n) = floor(3^n / 2^n).
  • A002380 (program): a(n) = 3^n reduced modulo 2^n.
  • A002381 (program): Numbers of the form (p^2 - 1)/120 where p is 1 or prime.
  • A002382 (program): Numbers of the form (p^2 - 49)/120 where p is prime.
  • A002383 (program): Primes of form k^2 + k + 1.
  • A002384 (program): Numbers n such that n^2 + n + 1 is prime.
  • A002388 (program): Decimal expansion of Pi^2.
  • A002390 (program): Decimal expansion of natural logarithm of golden ratio.
  • A002391 (program): Decimal expansion of natural logarithm of 3.
  • A002397 (program): a(n) = n! * lcm({1, 2, .. n + 1}).
  • A002407 (program): Cuban primes: primes which are the difference of two consecutive cubes.
  • A002408 (program): Expansion of 8-dimensional cusp form.
  • A002409 (program): a(n) = 2^n*C(n+6,6). Number of 6D hypercubes in an (n+6)-dimensional hypercube.
  • A002411 (program): Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.
  • A002412 (program): Hexagonal pyramidal numbers, or greengrocer’s numbers.
  • A002413 (program): Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.
  • A002414 (program): Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.
  • A002415 (program): 4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.
  • A002416 (program): a(n) = 2^(n^2).
  • A002417 (program): 4-dimensional figurate numbers: a(n) = n*binomial(n+2, 3).
  • A002418 (program): 4-dimensional figurate numbers: a(n) = (5*n-1)*binomial(n+2,3)/4.
  • A002419 (program): 4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.
  • A002420 (program): Expansion of sqrt(1 - 4*x) in powers of x.
  • A002421 (program): Expansion of (1-4*x)^(3/2) in powers of x.
  • A002422 (program): Expansion of (1-4*x)^(5/2).
  • A002423 (program): Expansion of (1-4*x)^(7/2).
  • A002424 (program): Expansion of (1-4*x)^(9/2).
  • A002425 (program): Denominator of Pi^(2n)/(Gamma(2n)*(1-2^(-2n))*zeta(2n)).
  • A002426 (program): Central trinomial coefficients: largest coefficient of (1 + x + x^2)^n.
  • A002427 (program): Numerator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
  • A002428 (program): Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + …
  • A002430 (program): Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).
  • A002431 (program): Numerators in Taylor series for cot x.
  • A002436 (program): E.g.f.: Sum_{n >= 0} a(n)*x^(2*n)/(2*n)! = sec(2*x).
  • A002437 (program): a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
  • A002438 (program): Multiples of Euler numbers.
  • A002440 (program): Squares written in base 7.
  • A002441 (program): Squares written in base 8.
  • A002442 (program): Squares written in base 9.
  • A002444 (program): Denominator in Feinler’s formula for unsigned Bernoulli number |B_{2n}|.
  • A002445 (program): Denominators of Bernoulli numbers B_{2n}.
  • A002446 (program): a(n) = 2^(2*n+1) - 2.
  • A002447 (program): Expansion of 1/(1-2*x^2-3*x^3).
  • A002448 (program): Expansion of Jacobi theta function theta_4(x).
  • A002450 (program): a(n) = (4^n - 1)/3.
  • A002451 (program): Expansion of 1/((1-x)*(1-4*x)*(1-9*x)).
  • A002452 (program): a(n) = (9^n - 1)/8.
  • A002453 (program): Central factorial numbers.
  • A002454 (program): Central factorial numbers: a(n) = 4^n (n!)^2.
  • A002455 (program): Central factorial numbers.
  • A002456 (program): Joffe’s central differences of 0, A241171(n,n-1).
  • A002457 (program): a(n) = (2n+1)!/n!^2.
  • A002458 (program): a(n) = binomial(4*n+1, 2*n).
  • A002459 (program): Nearest integer to cosh(n).
  • A002461 (program): Coefficients of Legendre polynomials.
  • A002462 (program): Coefficients of Legendre polynomials.
  • A002463 (program): Coefficients of Legendre polynomials.
  • A002467 (program): The game of Mousetrap with n cards (given n letters and n envelopes, how many ways are there to fill the envelopes so that at least one letter goes into its right envelope?).
  • A002469 (program): The game of Mousetrap with n cards: the number of permutations of n cards in which 2 is the only hit.
  • A002471 (program): Number of partitions of n into a prime and a square.
  • A002472 (program): Number of pairs x,y such that y-x=2, (x,n)=1, (y,n)=1 and 1 <= x <= n.
  • A002473 (program): 7-smooth numbers: positive numbers whose prime divisors are all <= 7.
  • A002474 (program): Denominators of coefficients of odd powers of x of the expansion of Bessel function J_1(x).
  • A002476 (program): Primes of the form 6m + 1.
  • A002477 (program): Wonderful Demlo numbers: a(n) = ((10^n - 1)/9)^2.
  • A002478 (program): Bisection of A000930.
  • A002479 (program): Numbers of form x^2 + 2y^2.
  • A002480 (program): Numbers of form 2x^2 + 3y^2.
  • A002481 (program): Numbers of form x^2 + 6y^2.
  • A002483 (program): Expansion of Jacobi theta function {theta_1}‘(q) in powers of q^(1/4).
  • A002487 (program): Stern’s diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).
  • A002489 (program): a(n) = n^(n^2), or (n^n)^n.
  • A002491 (program): Smallest number of stones in Tchoukaillon (or Mancala, or Kalahari) solitaire that make use of n-th hole.
  • A002492 (program): Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.
  • A002496 (program): Primes of the form k^2 + 1.
  • A002501 (program): a(n) = 7^n - 3*4^n + 2*3^n.
  • A002503 (program): Numbers k such that binomial(2*k,k) is divisible by (k+1)^2.
  • A002504 (program): Numbers x such that 1 + 3x*(x-1) is a (“cuban”) prime (cf. A002407).
  • A002506 (program): Denominators of coefficients of expansion of Bessel function J_2(x).
  • A002513 (program): Number of “cubic partitions” of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x.
  • A002515 (program): Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.
  • A002522 (program): a(n) = n^2 + 1.
  • A002523 (program): a(n) = n^4 + 1.
  • A002524 (program): Number of permutations of length n within distance 2 of a fixed permutation.
  • A002525 (program): Number of permutations according to distance.
  • A002530 (program): a(n) = 4*a(n-2) - a(n-4) for n > 1, a(n) = n for n = 0, 1.
  • A002531 (program): a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1); a(0) = a(1) = 1.
  • A002532 (program): a(n) = 2*a(n-1) + 5*a(n-2), a(0) = 0, a(1) = 1.
  • A002533 (program): a(n) = 2*a(n-1) + 5*a(n-2).
  • A002534 (program): a(n) = 2*a(n-1) + 9*a(n-2).
  • A002535 (program): a(n) = 2*a(n-1) + 9*a(n-2), with a(0)=a(1)=1.
  • A002536 (program): a(n) = 8 a(n-2) - 9 a(n-4).
  • A002537 (program): a(2n) = a(2n-1) + 3a(2n-2), a(2n+1) = 2a(2n) + 3a(2n-1).
  • A002538 (program): Second-order Eulerian numbers «n+1,n-1».
  • A002541 (program): a(n) = Sum_{k=1..n-1} floor((n-k)/k).
  • A002544 (program): a(n) = binomial(2*n+1,n)*(n+1)^2.
  • A002547 (program): Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
  • A002548 (program): Denominators of coefficients for numerical differentiation.
  • A002549 (program): Numerators of coefficients of log(1+x)/sqrt(1+x).
  • A002550 (program): Denominators of coefficients of log(1+x)/sqrt(1+x).
  • A002553 (program): Coefficients for numerical differentiation.
  • A002554 (program): Numerators of coefficients for numerical differentiation.
  • A002555 (program): Denominators of coefficients for numerical differentiation.
  • A002561 (program): a(n) = n^5 + 1.
  • A002570 (program): From a definite integral.
  • A002571 (program): From a definite integral.
  • A002578 (program): Number of integral points in a certain sequence of open quadrilaterals.
  • A002579 (program): Number of integral points in a certain sequence of closed quadrilaterals.
  • A002580 (program): Decimal expansion of cube root of 2.
  • A002581 (program): Decimal expansion of cube root of 3.
  • A002586 (program): Smallest prime factor of 2^n + 1.
  • A002593 (program): a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
  • A002594 (program): a(n) = n^2*(16*n^4-20*n^2+7)/3.
  • A002595 (program): Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
  • A002596 (program): Numerators in expansion of sqrt(1+x). Absolute values give numerators in expansion of sqrt(1-x).
  • A002597 (program): Number of partitions into one kind of 1’s, two kinds of 2’s, and three kinds of 3’s.
  • A002604 (program): a(n) = n^6 + 1.
  • A002605 (program): a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
  • A002618 (program): a(n) = n*phi(n).
  • A002620 (program): Quarter-squares: a(n) = floor(n/2)*ceiling(n/2). Equivalently, a(n) = floor(n^2/4).
  • A002621 (program): Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).
  • A002622 (program): Number of partitions of at most n into at most 5 parts.
  • A002623 (program): Expansion of 1/((1-x)^4*(1+x)).
  • A002624 (program): Expansion of (1-x)^(-3) * (1-x^2)^(-2).
  • A002625 (program): Expansion of 1/((1-x)^3*(1-x^2)^2*(1-x^3)).
  • A002626 (program): Expansion of 1/((1-x)^3 (1-x^2)^2 (1-x^3) (1-x^4)).
  • A002627 (program): a(n) = n*a(n-1) + 1, a(0) = 0.
  • A002628 (program): Number of permutations of length n without 3-sequences.
  • A002629 (program): Number of permutations of length n with one 3-sequence.
  • A002630 (program): Number of permutations of length n with two 3-sequences.
  • A002633 (program): Related to discordant permutations.
  • A002640 (program): Numbers n such that (n^2 + n + 1)/3 is prime.
  • A002648 (program): A variant of the cuban primes: primes p = (x^3 - y^3 )/(x - y) where x = y + 2.
  • A002652 (program): Theta series of Kleinian lattice Z[(1 + sqrt(-7))/ 2] in 1 complex (or 2 real) dimensions.
  • A002654 (program): Number of ways of writing n as a sum of at most two nonzero squares, where order matters; also (number of divisors of n of form 4m+1) - (number of divisors of form 4m+3).
  • A002658 (program): a(0) = a(1) = 1; for n > 0, a(n+1) = a(n)*(a(0) + … + a(n-1)) + a(n)*(a(n) + 1)/2.
  • A002659 (program): a(n) = 2*sigma(n) - 1.
  • A002660 (program): a(n) = Sum_{d|n, d <= 3} d^2 + 3*Sum_{d|n, d>3} d.
  • A002661 (program): Least integer having Radon random number n.
  • A002662 (program): a(n) = 2^n - 1 - n*(n+1)/2.
  • A002663 (program): a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).
  • A002664 (program): a(n) = 2^n - C(n,0)- … - C(n,4).
  • A002665 (program): Continued fraction expansion of Lehmer’s constant.
  • A002671 (program): a(n) = 4^n*(2*n+1)!.
  • A002672 (program): Denominators of central difference coefficients M_{3}^(2n+1).
  • A002673 (program): Numerators of central difference coefficients M_{3}^(2n+1).
  • A002674 (program): a(n) = (2n)!/2.
  • A002675 (program): Numerators of coefficients for central differences M_{4}^(2*n).
  • A002676 (program): Denominators of coefficients for central differences M_{4}^(2*n).
  • A002677 (program): Denominators of coefficients for central differences M_{3}’^(2*n+1).
  • A002678 (program): Numerators of the Taylor coefficients of (e^x-1)^2.
  • A002679 (program): Denominator of 2*Stirling_2(n,2)/n!.
  • A002690 (program): a(n) = (n+1) * (2*n)! / n!.
  • A002691 (program): a(n) = (n+2) * (2n+1) * (2n-1)! / (n-1)!.
  • A002694 (program): Binomial coefficients C(2n, n-2).
  • A002695 (program): P_n’(3), where P_n is n-th Legendre polynomial.
  • A002696 (program): Binomial coefficients C(2n,n-3).
  • A002697 (program): a(n) = n*4^(n-1).
  • A002698 (program): Coefficients of Chebyshev polynomials: n(2n-3)2^(2n-5).
  • A002699 (program): a(n) = n*2^(2*n-1).
  • A002700 (program): Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).
  • A002701 (program): Coefficients for numerical differentiation.
  • A002704 (program): Number of sets with a congruence property.
  • A002705 (program): Sets with a congruence property.
  • A002708 (program): a(n) = Fibonacci(n) mod n.
  • A002714 (program): Number of different keys with n cuts, depths between 1 and 7 and depth difference at most 1 between adjacent cut depths.
  • A002715 (program): An infinite coprime sequence defined by recursion.
  • A002716 (program): An infinite coprime sequence defined by recursion.
  • A002717 (program): a(n) = floor(n(n+2)(2n+1)/8).
  • A002720 (program): Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.
  • A002726 (program): a(n) = Fibonacci(n+1) mod n.
  • A002727 (program): Number of 3 X n binary matrices up to row and column permutations.
  • A002731 (program): Numbers n such that (n^2 + 1)/2 is prime.
  • A002732 (program): Numbers n such that (4n^2 + 1)/5 is prime.
  • A002733 (program): Numbers k such that (k^2 + 1)/10 is prime.
  • A002734 (program): Remove squares!
  • A002736 (program): Apéry numbers: a(n) = n^2*C(2n,n).
  • A002737 (program): a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).
  • A002738 (program): Coefficients for extrapolation.
  • A002739 (program): a(n) = ((2*n-1)!/(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1)).
  • A002740 (program): Number of tree-rooted bridgeless planar maps with two vertices and n faces.
  • A002741 (program): Logarithmic numbers: expansion of the e.g.f. -log(1-x) * e^(-x).
  • A002742 (program): Logarithmic numbers.
  • A002743 (program): Sum of logarithmic numbers.
  • A002744 (program): Sum of logarithmic numbers.
  • A002745 (program): Sum of logarithmic numbers.
  • A002746 (program): Sum of logarithmic numbers.
  • A002747 (program): Logarithmic numbers.
  • A002748 (program): Sum of logarithmic numbers.
  • A002749 (program): Sum of logarithmic numbers.
  • A002750 (program): Sum of logarithmic numbers.
  • A002751 (program): Sum of logarithmic numbers.
  • A002752 (program): a(n) = Fibonacci(n-1) mod n.
  • A002754 (program): Related to coefficient of m in Jacobi elliptic function cn(z, m).
  • A002760 (program): Squares and cubes.
  • A002775 (program): a(n) = n^2 * n!.
  • A002776 (program): Terms in certain determinants.
  • A002783 (program): 2*(3^n - 2^n) + 1.
  • A002789 (program): Number of integer points in a certain quadrilateral scaled by a factor of n.
  • A002791 (program): a(n) = Sum_{d|n, d <= 4} d^2 + 4*Sum_{d|n, d>4} d.
  • A002793 (program): a(n) = 2n*a(n-1) - (n-1)^2*a(n-2).
  • A002797 (program): Number of solutions to a linear inequality.
  • A002798 (program): a(n) = a(n-2)+a(n-3)-a(n-5).
  • A002799 (program): Number of 4-line partitions of n (i.e., planar partitions of n with at most 4 lines).
  • A002801 (program): a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) with a(0) = a(1) = 1.
  • A002802 (program): a(n) = (2*n+3)!/(6*n!*(n+1)!).
  • A002803 (program): a(n) = (2n+4)!/(4!*n!*(n+1)!).
  • A002804 (program): (Presumed) solution to Waring’s problem: g(n) = 2^n + floor((3/2)^n) - 2.
  • A002805 (program): Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
  • A002807 (program): a(n) = Sum_{k=3..n} (k-1)!*C(n,k)/2.
  • A002808 (program): The composite numbers: numbers n of the form x*y for x > 1 and y > 1.
  • A002815 (program): a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
  • A002817 (program): Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.
  • A002818 (program): Nearest integer to exp n^2.
  • A002819 (program): Liouville’s function L(n) = partial sums of A008836.
  • A002820 (program): Number of n X n invertible binary matrices A such that A+I is invertible.
  • A002821 (program): a(n) = nearest integer to n^(3/2).
  • A002822 (program): Numbers m such that 6m-1, 6m+1 are twin primes.
  • A002825 (program): Number of precomplete Post functions.
  • A002865 (program): Number of partitions of n that do not contain 1 as a part.
  • A002866 (program): a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.
  • A002867 (program): a(n) = binomial(n,floor(n/2))*(n+1)!.
  • A002868 (program): Largest number in n-th row of triangle of Lah numbers (A008297 and A271703).
  • A002869 (program): Largest number in n-th row of triangle A019538.
  • A002870 (program): Largest Stirling numbers of second kind: a(n) = max_{k=1..n} S2(n,k).
  • A002871 (program): a(n) = max_{k=0..n} 2^k*A048993(n,k)
  • A002878 (program): Bisection of Lucas sequence: a(n) = L(2*n+1).
  • A002884 (program): Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
  • A002893 (program): a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).
  • A002894 (program): a(n) = binomial(2n, n)^2.
  • A002896 (program): Number of 2n-step polygons on cubic lattice.
  • A002897 (program): a(n) = binomial(2n,n)^3.
  • A002898 (program): Number of n-step closed paths on hexagonal lattice.
  • A002901 (program): n^3 - floor( n/3 ).
  • A002908 (program): High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on square lattice with nearest-neighbor interaction J at temperature T.
  • A002928 (program): Magnetization for square lattice.
  • A002938 (program): The minimal sequence (from solving n^3 - m^2 = a(n)).
  • A002939 (program): a(n) = 2*n*(2*n-1).
  • A002940 (program): Arrays of dumbbells.
  • A002941 (program): Arrays of dumbbells.
  • A002942 (program): a(n) = n^2 written backwards.
  • A002943 (program): a(n) = 2*n*(2*n+1).
  • A002944 (program): a(n) = LCM(1,2,…,n) / n.
  • A002960 (program): The square sieve.
  • A002965 (program): Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).
  • A002970 (program): Numbers n such that 4*n^2 + 9 is prime.
  • A002971 (program): Numbers k such that 4*k^2 + 25 is prime.
  • A002984 (program): a(0) = 1; for n > 0, a(n) = a(n-1) + floor(sqrt(a(n-1))).
  • A002993 (program): Initial digits of squares.
  • A002994 (program): Initial digit of cubes.
  • A002999 (program): Expansion of (1+x*exp(x))^2.
  • A003000 (program): Number of bifix-free (or primary, or unbordered) words of length n over a two-letter alphabet.
  • A003011 (program): Number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.
  • A003013 (program): E.g.f. 1+x*exp(x)+x^2*exp(2*x).
  • A003014 (program): Expansion of e.g.f.: 1 + x*exp(x) + x^2*exp(2*x) + x^3*exp(3*x).
  • A003031 (program): Denominators of expansion of Fresnel integral S(z).
  • A003034 (program): Sylvester’s problem: minimal number of ordinary lines through n points in the plane.
  • A003035 (program): Maximal number of 3-tree rows in n-tree orchard problem.
  • A003036 (program): Number of simplicial arrangements of n lines in the plane (the lines do not pass through a common point, all cells are triangles).
  • A003046 (program): Product of first n Catalan numbers.
  • A003047 (program): a(n) = Catalan(n) * Product a(k), k = 0 . . n-1.
  • A003048 (program): a(n+1) = n*a(n) - (-1)^n.
  • A003052 (program): Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).
  • A003053 (program): Order of orthogonal group O(n, GF(2)).
  • A003056 (program): n appears n+1 times. Also the array A(n,k) = n+k (n >= 0, k >= 0) read by antidiagonals. Also inverse of triangular numbers.
  • A003057 (program): n appears n - 1 times.
  • A003059 (program): k appears 2k-1 times. Also, square root of n, rounded up.
  • A003063 (program): a(n) = 3^(n-1) - 2^n.
  • A003070 (program): a(n) = ceiling(log_2 n!).
  • A003071 (program): Sorting numbers: maximal number of comparisons for sorting n elements by list merging.
  • A003074 (program): Number of different numbers <= n that are sums of 3 positive cubes.
  • A003075 (program): Minimal number of comparisons needed for n-element sorting network.
  • A003076 (program): n-th digit after decimal point of square root of n.
  • A003079 (program): One of the basic cycles in the x->3x-1 (x odd) or x/2 (x even) problem.
  • A003082 (program): Number of multigraphs with 4 nodes and n edges.
  • A003091 (program): a(n) = floor( 2^(n*(n-1)/2) / n! ).
  • A003095 (program): a(n) = a(n-1)^2 + 1 for n >= 1, with a(0) = 0.
  • A003099 (program): a(n) = Sum_{k=0..n} binomial(n,k^2).
  • A003101 (program): a(n) = Sum_{k = 1..n} (n - k + 1)^k.
  • A003105 (program): Schur’s 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.
  • A003106 (program): Number of partitions of n into parts 5k+2 or 5k+3.
  • A003107 (program): Number of partitions of n into Fibonacci parts (with a single type of 1).
  • A003108 (program): Number of partitions of n into cubes.
  • A003114 (program): Number of partitions of n into parts 5k+1 or 5k+4.
  • A003115 (program): a(n) = 4^floor(n/2)*a(n-1) - a(n-2), for n >= 2, with a(0) = a(1) = 1.
  • A003124 (program): One of the basic cycles in the x->3x-1 (x odd) or x/2 (x even) problem.
  • A003128 (program): Number of driving-point impedances of an n-terminal network.
  • A003132 (program): Sum of squares of digits of n.
  • A003136 (program): Loeschian numbers: numbers of the form x^2 + xy + y^2; norms of vectors in A2 lattice.
  • A003138 (program): Nearest integer to 24*(2^n - 1)/n.
  • A003141 (program): Minimal number of arcs whose reversal yields a transitive tournament.
  • A003143 (program): a(2*n) = floor( 17*2^n/14 ), a(2*n+1) = floor( 12*2^n/7 ).
  • A003144 (program): Positions of letter a in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
  • A003145 (program): Positions of letter b in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
  • A003146 (program): Positions of letter c in the tribonacci word abacabaabacababac… generated by a->ab, b->ac, c->a (cf. A092782).
  • A003148 (program): a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.
  • A003149 (program): a(n) = Sum_{k=0..n} k!(n-k)!.
  • A003151 (program): Beatty sequence for 1+sqrt(2); a(n) = floor(n*(1+sqrt(2))).
  • A003152 (program): A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).
  • A003153 (program): a(n) = integer nearest n*(1+sqrt(2)).
  • A003154 (program): Centered 12-gonal numbers. Also star numbers: 6*n*(n-1) + 1.
  • A003156 (program): A self-generating sequence (see Comments for definition).
  • A003157 (program): A self-generating sequence (see Comments in A003156 for the definition).
  • A003158 (program): A self-generating sequence (see Comments in A003156 for the definition).
  • A003159 (program): Numbers n whose binary representation ends in an even number of zeros.
  • A003160 (program): a(1) = a(2) = 1, a(n) = n - a(a(n-1)) - a(a(n-2)).
  • A003161 (program): A binomial coefficient sum.
  • A003165 (program): a(n) = floor(n/2) + 1 - d(n), where d(n) is the number of divisors of n.
  • A003168 (program): Number of blobs with 2n+1 edges.
  • A003169 (program): Number of 2-line arrays; or number of P-graphs with 2n edges.
  • A003176 (program): Integer part of 24(2^n-1)/n.
  • A003177 (program): a(n) = ceiling(24(2^n-1)/n).
  • A003185 (program): a(n) = (4*n+1)(4*n+5).
  • A003188 (program): Decimal equivalent of Gray code for n.
  • A003215 (program): Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).
  • A003221 (program): Number of even permutations of length n with no fixed points.
  • A003222 (program): a(n) = 2^(3*n+1) - 2*n*(2*n+1).
  • A003229 (program): a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.
  • A003230 (program): Expansion of 1/((1-x)*(1-2*x)*(1-x-2*x^3)).
  • A003231 (program): a(n) = floor(n*(sqrt(5)+5)/2).
  • A003232 (program): Expansion of (x-1)*(x^2-4*x-1)/(1-2*x)^2.
  • A003233 (program): Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).
  • A003234 (program): Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.
  • A003235 (program): a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C(k^2,n).
  • A003236 (program): a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C((k+1)^2, n).
  • A003238 (program): Number of rooted trees with n vertices in which vertices at the same level have the same degree.
  • A003239 (program): Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
  • A003242 (program): Number of compositions of n such that no two adjacent parts are equal (Carlitz compositions).
  • A003249 (program): a(n) = A001950(A003234(n)) + 1.
  • A003250 (program): The number m such that A001950(m) = A003231(A003234(n)).
  • A003251 (program): Complement of A003250.
  • A003252 (program): The number m such that A003251(m) = A003231(n).
  • A003253 (program): Complement of A003252.
  • A003256 (program): a(n) is the number m such that A242094(m) = A001950(n).
  • A003257 (program): Complement of A003256.
  • A003258 (program): The number m such that c’(m) = A005206(A003231(n)), where c’(m) = A249115(m) is the m-th positive integer not in A003231.
  • A003259 (program): Complement of A003258.
  • A003261 (program): Woodall (or Riesel) numbers: n*2^n - 1.
  • A003265 (program): Not representable by truncated tribonacci sequence 2, 4, 7, 13, 24, 44, 81, ….
  • A003266 (program): Product of first n nonzero Fibonacci numbers F(1), …, F(n).
  • A003269 (program): a(n) = a(n-1) + a(n-4) with a(0) = 0, a(1) = a(2) = a(3) = 1.
  • A003270 (program): A nonrepetitive sequence.
  • A003274 (program): Number of key permutations of length n: permutations {a_i} with |a_i-a_{i-1}| = 1 or 2.
  • A003277 (program): Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(n) = 1.
  • A003278 (program): Szekeres’s sequence: a(n)-1 in ternary = n-1 in binary; also: a(1) = 1, a(2) = 2, and thereafter a(n) is smallest number k which avoids any 3-term arithmetic progression in a(1), a(2), …, a(n-1), k.
  • A003292 (program): Number of 4-line partitions of n decreasing across rows.
  • A003308 (program): a(n) = 2*n^(n-2).
  • A003312 (program): a(1) = 3; for n>0, a(n+1) = a(n) + floor((a(n)-1)/2).
  • A003314 (program): Binary entropy function: a(1)=0; for n > 1, a(n) = n + min { a(k)+a(n-k) : 1 <= k <= n-1 }.
  • A003318 (program): a(n + 1) = 1 + a( floor(n/1) ) + a( floor(n/2) ) + … + a( floor(n/n) ).
  • A003319 (program): Number of connected permutations of [1..n] (those not fixing [1..j] for 0 < j < n). Also called indecomposable permutations, or irreducible permutations.
  • A003320 (program): a(n) = max_{k=0..n} k^(n-k).
  • A003324 (program): A nonrepetitive sequence.
  • A003325 (program): Numbers that are the sum of 2 positive cubes.
  • A003402 (program): G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)).
  • A003408 (program): a(n) = binomial(3n+6, n).
  • A003409 (program): a(n) = 3*binomial(2n-1,n).
  • A003410 (program): Expansion of (1+x)(1+x^2)/(1-x-x^3).
  • A003411 (program): Losing initial positions in game: two players alternate in removing >= 1 stones; last player wins; first player may not remove all stones; each move <= 3 times previous move.
  • A003413 (program): From a nim-like game.
  • A003415 (program): a(n) = n’ = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(mn) = m*a(n) + n*a(m).
  • A003417 (program): Continued fraction for e.
  • A003418 (program): Least common multiple (or LCM) of {1, 2, …, n} for n >= 1, a(0) = 1.
  • A003422 (program): Left factorials: !n = Sum_{k=0..n-1} k!.
  • A003434 (program): Number of iterations of phi(x) at n needed to reach 1.
  • A003435 (program): Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.
  • A003436 (program): Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
  • A003440 (program): Number of binary vectors with restricted repetitions.
  • A003441 (program): Number of nonequivalent dissections of a polygon into n triangles by nonintersecting diagonals rooted at a cell up to rotation.
  • A003451 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.
  • A003452 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals rooted at a cell up to rotation and reflection.
  • A003453 (program): Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.
  • A003461 (program): Bode numbers multiplied by 10: 4 + 3*floor(2^(n-1)).
  • A003462 (program): a(n) = (3^n - 1)/2.
  • A003463 (program): a(n) = (5^n - 1)/4.
  • A003464 (program): a(n) = (6^n - 1)/5.
  • A003467 (program): Number of minimal covers of an n-set that cover exactly 3 points uniquely.
  • A003468 (program): Number of minimal 3-covers of a labeled n-set.
  • A003469 (program): Number of minimal covers of an (n + 1)-set by a collection of n nonempty subsets, a(n) = A035348(n,n-1).
  • A003470 (program): a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.
  • A003472 (program): a(n) = 2^(n-4)*C(n,4).
  • A003476 (program): a(n) = a(n-1) + 2a(n-3).
  • A003477 (program): Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).
  • A003478 (program): Expansion of 1/(1-2x)(1-x-2x^3).
  • A003479 (program): Expansion of 1/((1-x)*(1-x-2*x^3)).
  • A003480 (program): a(n) = 4*a(n-1) - 2*a(n-2) (n >= 3).
  • A003481 (program): a(n) = 7*a(n-1) - a(n-2) + 5.
  • A003482 (program): a(n) = 7*a(n-1) - a(n-2) + 4, with a(0) = 0, a(1) = 5.
  • A003484 (program): Radon function, also called Hurwitz-Radon numbers.
  • A003485 (program): Hurwitz-Radon function at powers of 2.
  • A003486 (program): a(n) = (n^2 + 1)*3^n.
  • A003499 (program): a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.
  • A003500 (program): a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
  • A003501 (program): a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.
  • A003504 (program): a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).
  • A003506 (program): Triangle of denominators in Leibniz’s Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.
  • A003508 (program): a(1) = 1; for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
  • A003511 (program): A Beatty sequence: floor( n * (1 + sqrt(3))/2 ).
  • A003512 (program): A Beatty sequence: floor(n*(sqrt(3) + 2)).
  • A003516 (program): Binomial coefficients C(2n+1, n-2).
  • A003517 (program): Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.
  • A003518 (program): a(n) = 8*binomial(2*n+1,n-3)/(n+5).
  • A003519 (program): a(n) = 10*C(2n+1, n-4)/(n+6).
  • A003520 (program): a(n) = a(n-1) + a(n-5); a(0) = … = a(4) = 1.
  • A003522 (program): a(n) = Sum_{k=0..n} C(n-k,3k).
  • A003524 (program): Divisors of 2^12 - 1.
  • A003527 (program): Divisors of 2^16 - 1.
  • A003539 (program): a(n)=3*a(n-1)+16 (the first 11 terms are primes).
  • A003555 (program): Sum{1,2,…,(10^n - 1)/9}, or (10^n -1)/9)((10^n -1)/9 +1)/2 (n-th term is the middle 2(n-1) digits of the (n+9)-th term for n > 1).
  • A003557 (program): n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.
  • A003558 (program): Least number m > 0 such that 2^m == +-1 (mod 2n + 1).
  • A003559 (program): Least number m such that 3^m = +- 1 mod 3n + 1.
  • A003560 (program): Least number m such that 4^m = +- 1 mod 4n + 1.
  • A003561 (program): Least number m such that 5^m = +- 1 mod 5n + 1.
  • A003562 (program): Least number m such that 6^m = +- 1 mod 6n + 1.
  • A003564 (program): Least number m such that 8^m = +- 1 mod 8n + 1.
  • A003565 (program): Least number m such that 9^m = +- 1 mod 9n + 1.
  • A003566 (program): Least number m such that 10^m = +- 1 mod 10n + 1.
  • A003568 (program): Least number m such that 12^m = +- 1 mod 12n + 1.
  • A003569 (program): a(n) = least positive number m such that 4^m == +1 or -1 mod 2n + 1, with a(0) = 0 by convention.
  • A003570 (program): a(n) = least positive number m such that 8^m == +1 or -1 mod 2n + 1, with a(0) = 0 by convention.
  • A003571 (program): Order of 3 mod 3n+1.
  • A003572 (program): Order of 3 mod 3n+2.
  • A003573 (program): Order of 4 mod 4n+1.
  • A003574 (program): Order of 4 mod 4n-1.
  • A003575 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=3.
  • A003576 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=4.
  • A003577 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=5.
  • A003578 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=6.
  • A003579 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x) - 1)/b), with b=7.
  • A003580 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=8.
  • A003581 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9.
  • A003582 (program): Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=10.
  • A003583 (program): a(n) = (n+2)*2^(2*n-1) - (n/2)*binomial(2*n,n).
  • A003584 (program): Unicursal (i.e., possessing an Eulerian path) planar rooted maps with n edges.
  • A003586 (program): 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.
  • A003589 (program): a(n) has the property that the sequence b(n) = number of 2’s between successive 3’s is the same as the original sequence.
  • A003592 (program): Numbers of the form 2^i*5^j with i, j >= 0.
  • A003600 (program): Maximal number of pieces obtained by slicing a torus (or a bagel) with n cuts: (n^3 + 3*n^2 + 8*n)/6 (n > 0).
  • A003601 (program): Numbers n such that the average of the divisors of n is an integer: sigma_0(n) divides sigma_1(n). Alternatively, tau(n) (A000005(n)) divides sigma(n) (A000203(n)).
  • A003602 (program): Kimberling’s paraphrases: if n = (2k-1)*2^m then a(n) = k.
  • A003603 (program): Fractal sequence obtained from Fibonacci numbers (or Wythoff array).
  • A003605 (program): Unique monotonic sequence of nonnegative integers satisfying a(a(n)) = 3n.
  • A003608 (program): Add 4, then reverse digits; start with 0.
  • A003619 (program): Not of form [ e^m ], m >= 1.
  • A003622 (program): The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.
  • A003623 (program): Wythoff AB-numbers: floor(floor(n*phi^2)*phi), where phi = (1+sqrt(5))/2.
  • A003625 (program): Primes congruent to {3, 5, 6} mod 7.
  • A003626 (program): Inert rational primes in Q(sqrt(-5)).
  • A003627 (program): Primes of the form 3n-1.
  • A003628 (program): Primes congruent to {5, 7} mod 8.
  • A003629 (program): Primes p == +- 3 (mod 8), or, primes p such that 2 is not a square mod p.
  • A003630 (program): Inert rational primes in Q[sqrt(3)].
  • A003631 (program): Primes congruent to 2 or 3 modulo 5.
  • A003640 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A003657(n).
  • A003641 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A039957(n).
  • A003642 (program): Number of genera of imaginary quadratic field with discriminant -k, k = A191483(n).
  • A003645 (program): a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers.
  • A003657 (program): Discriminants of imaginary quadratic fields, negated.
  • A003658 (program): Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.
  • A003662 (program): a(n) is smallest number != a(j)+a(k), j<k.
  • A003663 (program): a(n) is smallest number != a(j)+a(k), j<k.
  • A003664 (program): a(n) is smallest number larger than a(n-1) and not = a(j)+a(k), j<k.
  • A003665 (program): a(n) = 2^(n-1)*( 2^n + (-1)^n ).
  • A003673 (program): Decimal expansion of fine-structure constant alpha.
  • A003674 (program): 2^(n-1)*( 2^n - (-1)^n ).
  • A003677 (program): Decimal expansion of proton mass (mass units).
  • A003682 (program): Number of (undirected) Hamiltonian paths in the n-ladder graph K_2 X P_n.
  • A003683 (program): a(n) = 2^(n-1)*(2^n - (-1)^n)/3.
  • A003686 (program): Number of genealogical 1-2 rooted trees of height n.
  • A003687 (program): a(n+1) = a(n)-a(1)a(2)…a(n-1), if n>0. a(0)=1, a(1)=2.
  • A003688 (program): a(n) = 3*a(n-1) + a(n-2), with a(1)=1 and a(2)=4.
  • A003689 (program): Number of Hamiltonian paths in K_3 X P_n.
  • A003690 (program): Number of spanning trees in K_3 X P_n.
  • A003691 (program): Number of spanning trees with degrees 1 and 3 in K_3 X P_2n.
  • A003692 (program): Number of trees on n labeled vertices with degree at most 3.
  • A003693 (program): Number of 2-factors in P_4 X P_n.
  • A003698 (program): Number of 2-factors in C_4 X P_n.
  • A003699 (program): Number of Hamiltonian cycles in C_4 X P_n.
  • A003701 (program): Expansion of e.g.f. exp(x)/cos(x).
  • A003703 (program): Expansion of e.g.f. cos(log(1+x)).
  • A003709 (program): E.g.f. cos(sin(x)) (even powers only).
  • A003712 (program): E.g.f. sin(sin(x)) (odd powers only).
  • A003713 (program): Expansion of e.g.f. log(1/(1+log(1-x))).
  • A003714 (program): Fibbinary numbers: if n = F(i1) + F(i2) + … + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + … + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1’s.
  • A003719 (program): Expansion of tan(x)*cosh(x).
  • A003724 (program): Number of partitions of n-set into odd blocks.
  • A003725 (program): E.g.f.: exp( x * exp(-x) ).
  • A003726 (program): Numbers with no 3 adjacent 1’s in binary expansion.
  • A003727 (program): Expansion of e.g.f. exp(x * cosh(x)).
  • A003731 (program): Number of Hamiltonian cycles in C_5 X P_n.
  • A003739 (program): Number of spanning trees in W_5 X P_n.
  • A003747 (program): Number of perfect matchings (or domino tilings) in K_5 X P_2n.
  • A003751 (program): Number of spanning trees in K_5 x P_n.
  • A003753 (program): Number of spanning trees in C_4 X P_n.
  • A003754 (program): Numbers with no adjacent 0’s in binary expansion.
  • A003755 (program): Number of spanning trees in S_4 X P_n.
  • A003757 (program): Number of perfect matchings (or domino tilings) in D_4 X P_(n-1).
  • A003758 (program): Number of 2-factors in D_4 X P_n.
  • A003759 (program): Number of Hamiltonian cycles in D_4 X P_n.
  • A003767 (program): Number of spanning trees in (K_4 - e) X P_n.
  • A003769 (program): Number of perfect matchings (or domino tilings) in K_4 X P_n.
  • A003770 (program): Number of 2-factors in K_4 X P_n.
  • A003771 (program): Number of Hamiltonian cycles in K_4 X P_n.
  • A003773 (program): Number of spanning trees in K_4 X P_n.
  • A003775 (program): Number of perfect matchings (or domino tilings) in P_5 X P_2n.
  • A003777 (program): a(n) = n^3 + n^2 - 1.
  • A003787 (program): Order of universal Chevalley group A_n (3).
  • A003796 (program): Numbers with no 3 adjacent 0’s in binary expansion.
  • A003800 (program): Order of universal Chevalley group A_2 (q), q = prime power.
  • A003815 (program): a(0) = 0, a(n) = a(n-1) XOR n.
  • A003816 (program): a(0) = 0, a(n) = a(n-1) XOR -n.
  • A003817 (program): a(0) = 0, a(n) = a(n-1) OR n.
  • A003823 (program): Power series expansion of the Rogers-Ramanujan continued fraction 1+x/(1+x^2/(1+x^3/(1+x^4/(1+…)))).
  • A003841 (program): Order of universal Chevalley group D_2(q), q = prime power.
  • A003842 (program): The infinite Fibonacci word: start with 1, repeatedly apply the morphism 1->12, 2->1, take limit; or, start with S(0)=2, S(1)=1, and for n>1 define S(n)=S(n-1)S(n-2), then the sequence is S(oo).
  • A003848 (program): Order of (usually) simple Chevalley group D_2(q), q = prime power.
  • A003849 (program): The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit).
  • A003870 (program): Degrees of irreducible representations of symmetric group S_6.
  • A003878 (program): n^4+(9/2)*n^3+n^2-(9/2)*n+1.
  • A003881 (program): Decimal expansion of Pi/4.
  • A003884 (program): Degrees of irreducible representations of group L2(16).
  • A003885 (program): Degrees of irreducible representations of group L2(17).
  • A003886 (program): Degrees of irreducible representations of group L2(19).
  • A003887 (program): Degrees of irreducible representations of group L2(23).
  • A003888 (program): Degrees of irreducible representations of group L2(25).
  • A003889 (program): Degrees of irreducible representations of group L2(27).
  • A003890 (program): Degrees of irreducible representations of group L2(29).
  • A003891 (program): Degrees of irreducible representations of group L2(31).
  • A003892 (program): Degrees of irreducible representations of group L2(32).
  • A003893 (program): a(n) = Fibonacci(n) mod 10.
  • A003931 (program): Order of universal Chevalley group B_2(q), q = prime power.
  • A003938 (program): Order of (usually) simple Chevalley group B_2(q), q = prime power.
  • A003945 (program): Expansion of g.f. (1+x)/(1-2*x).
  • A003946 (program): Expansion of (1+x)/(1-3*x).
  • A003947 (program): Expansion of (1+x)/(1-4*x).
  • A003948 (program): Expansion of (1+x)/(1-5*x).
  • A003949 (program): Expansion of g.f.: (1+x)/(1-6*x).
  • A003950 (program): Expansion of g.f.: (1+x)/(1-7*x).
  • A003951 (program): Expansion of g.f.: (1+x)/(1-8*x).
  • A003952 (program): Expansion of g.f.: (1+x)/(1-9*x).
  • A003953 (program): Expansion of g.f.: (1+x)/(1-10*x).
  • A003954 (program): Expansion of g.f.: (1+x)/(1-11*x).
  • A003955 (program): a(n) = (2*n + 4) * (1*3*5*…*(2*n+1))^2.
  • A003958 (program): If n = Product p(k)^e(k) then a(n) = Product (p(k)-1)^e(k).
  • A003959 (program): If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.
  • A003960 (program): Fully multiplicative with a(p) = [ (p+1)/2 ] for prime p.
  • A003961 (program): Completely multiplicative with a(prime(k)) = prime(k+1).
  • A003962 (program): Completely multiplicative with a(p(k)) = floor( (p(k+1)+1)/2 ) for k-th prime p(k).
  • A003963 (program): Fully multiplicative with a(p) = k if p is the k-th prime.
  • A003965 (program): Fully multiplicative with a(prime(k)) = Fibonacci(k+2).
  • A003966 (program): Möbius transform of A003958.
  • A003967 (program): Inverse Möbius transform of A003958.
  • A003968 (program): Möbius transform of A003959.
  • A003969 (program): Inverse Möbius transform of A003959.
  • A003971 (program): Inverse Möbius transform of A003960.
  • A003972 (program): Moebius transform of A003961; a(n) = phi(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
  • A003973 (program): Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
  • A003975 (program): Inverse Möbius transform of A003962.
  • A003977 (program): Inverse Möbius transform of A003963.
  • A003981 (program): Inverse Möbius transform of A003965.
  • A003982 (program): Table read by rows: 1 if x = y, 0 otherwise, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
  • A003983 (program): Array read by antidiagonals with T(n,k) = min(n,k).
  • A003984 (program): Table of max(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
  • A003985 (program): Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is i AND j.
  • A003986 (program): Table of x OR y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
  • A003987 (program): Table of n XOR m (or Nim-sum of n and m) read by antidiagonals, i.e., with entries in the order (n,m) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
  • A003988 (program): Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is [ i/j ].
  • A003989 (program): Triangle T from the array A(x, y) = gcd(x,y), for x >= 1, y >= 1, read by antidiagonals.
  • A003990 (program): Table of lcm(x,y), read along antidiagonals.
  • A003991 (program): Multiplication table read by antidiagonals: T(i,j) = i*j, i>=1, j>=1.
  • A003992 (program): Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.
  • A003993 (program): Sequence b_3 (n) arising from homology of partitions with even number of blocks.
  • A004000 (program): RATS: Reverse Add Then Sort the digits applied to previous term, starting with 1.
  • A004001 (program): Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1.
  • A004004 (program): a(n) = (3^{2n+1} - 8*n - 3)/16.
  • A004006 (program): a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
  • A004009 (program): Expansion of Eisenstein series E_4(q) (alternate convention E_2(q)); theta series of E_8 lattice.
  • A004011 (program): Theta series of D_4 lattice; Fourier coefficients of Eisenstein series E_{gamma,2}.
  • A004013 (program): Theta series of body-centered cubic (b.c.c.) lattice.
  • A004015 (program): Theta series of face-centered cubic (f.c.c.) lattice.
  • A004016 (program): Theta series of planar hexagonal lattice A_2.
  • A004017 (program): Theta series of E_8 lattice with respect to deep hole.
  • A004018 (program): Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).
  • A004019 (program): a(0) = 0; for n > 0, a(n) = (a(n-1) + 1)^2.
  • A004020 (program): Theta series of square lattice with respect to edge.
  • A004024 (program): Theta series of b.c.c. lattice with respect to deep hole.
  • A004025 (program): Theta series of b.c.c. lattice with respect to long edge.
  • A004040 (program): Inversion of A000257.
  • A004041 (program): Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
  • A004043 (program): The coding-theoretic function A(n,8,8).
  • A004047 (program): The coding-theoretic function A(n,10,9).
  • A004050 (program): Numbers of the form 2^j + 3^k, for j and k >= 0.
  • A004052 (program): The coding-theoretic function A(n,14,8).
  • A004054 (program): Expansion of (1-x)/((1+x)*(1-2*x)*(1-3*x)).
  • A004055 (program): ((p-1)/2)! mod p for odd primes p.
  • A004056 (program): The coding-theoretic function A(n,14,12).
  • A004057 (program): Expansion of (1-x)/( (1+x)*(1-2*x)*(1-3*x)*(1-4*x)).
  • A004058 (program): Expansion of (1-x)/( (1+x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
  • A004068 (program): Number of atoms in a decahedron with n shells.
  • A004070 (program): Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.
  • A004074 (program): a(n) = 2*A004001(n) - n, where A004001 is the Hofstadter-Conway $10000 sequence.
  • A004079 (program): a(n) = maximal m such that an m X n Florentine rectangle exists.
  • A004082 (program): Numbers k such that sin(k-1) <= 0 and sin(k) > 0.
  • A004083 (program): Numbers k such that cos(k-1) <= 0 and cos(k) > 0.
  • A004084 (program): a(n) = n-th positive integer k such that tan(k-1) <= 0 and tan(k) > 0.
  • A004085 (program): Sum of digits of Euler totient function of n.
  • A004086 (program): Read n backwards (referred to as R(n) in many sequences).
  • A004087 (program): Primes written backwards.
  • A004088 (program): Sum of digits of number of partitions of n.
  • A004089 (program): Reverse digits of number of partitions of n.
  • A004090 (program): Sum of digits of Fibonacci numbers.
  • A004091 (program): Fibonacci numbers written backwards.
  • A004092 (program): Sum of digits of even numbers.
  • A004093 (program): Even numbers written backwards.
  • A004094 (program): Powers of 2 written backwards.
  • A004095 (program): Sum of digits of Catalan numbers.
  • A004096 (program): Catalan numbers written backwards.
  • A004097 (program): Sum of digits of Bell numbers.
  • A004098 (program): Bell numbers written backwards.
  • A004099 (program): Sum of digits of Euler numbers.
  • A004116 (program): a(n) = floor((n^2 + 6n - 3)/4).
  • A004117 (program): Numerators of expansion of (1-x)^(-1/3).
  • A004119 (program): a(0)=1; thereafter a(n) = 3*2^(n-1)+1.
  • A004120 (program): Expansion of (1 + x - x^5) / (1 - x)^3.
  • A004123 (program): Number of generalized weak orders on n points.
  • A004125 (program): Sum of remainders of n mod k, for k = 1, 2, 3, …, n.
  • A004126 (program): a(n) = n*(7*n^2 - 1)/6.
  • A004128 (program): a(n) = Sum_{k=1..n} floor(3*n/3^k).
  • A004130 (program): Numerators in expansion of (1-x)^{-1/4}.
  • A004131 (program): Modular postage stamp problem: largest m such that there exists an n-subset S of nonnegative integers such that 0,…,m-1 can be expressed as a mod-m sum of two distinct elements of S.
  • A004134 (program): Denominators in expansion of (1-x)^{-1/4} are 2^a(n).
  • A004138 (program): From a counter moving problem.
  • A004139 (program): Odd primes excluding 5.
  • A004140 (program): Number of nonempty labeled simple graphs on nodes chosen from an n-set.
  • A004141 (program): Norm of a matrix.
  • A004142 (program): n*(3^n-2^n).
  • A004144 (program): Nonhypotenuse numbers (indices of positive squares that are not the sums of 2 distinct nonzero squares).
  • A004146 (program): Alternate Lucas numbers - 2.
  • A004148 (program): Generalized Catalan numbers: a(n+1) = a(n) + Sum_{k=1..n-1} a(k)*a(n-1-k).
  • A004150 (program): Euler numbers written backwards.
  • A004151 (program): Omit trailing zeros from n.
  • A004152 (program): Sum of digits of n!.
  • A004153 (program): Factorial numbers written backwards.
  • A004154 (program): Omit trailing zeros from factorial numbers.
  • A004155 (program): Sum of digits of n-th odd number.
  • A004156 (program): Odd numbers written backwards.
  • A004157 (program): Sum of digits of n-th triangular number.
  • A004158 (program): Triangular numbers written backwards.
  • A004159 (program): Sum of digits of n^2.
  • A004160 (program): Sum of digits of tetrahedral numbers.
  • A004161 (program): Tetrahedral numbers written backwards.
  • A004162 (program): Sum of digits of pentagonal numbers.
  • A004163 (program): Pentagonal numbers written backwards.
  • A004164 (program): Sum of digits of n^3.
  • A004165 (program): Cubes written backwards.
  • A004166 (program): Sum of digits of 3^n.
  • A004167 (program): Powers of 3 written backwards.
  • A004169 (program): Values of m for which a regular polygon with m sides cannot be constructed with ruler and compass.
  • A004171 (program): a(n) = 2^(2n+1).
  • A004174 (program): Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in increasing order).
  • A004175 (program): Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in decreasing order).
  • A004183 (program): Omit 8’s from n.
  • A004184 (program): Omit 9’s from n.
  • A004185 (program): Arrange digits of n in increasing order, then (for n > 0) omit the zeros.
  • A004186 (program): Arrange digits of n in decreasing order.
  • A004187 (program): a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
  • A004188 (program): a(n) = n*(3*n^2 - 1)/2.
  • A004189 (program): a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.
  • A004190 (program): Expansion of 1/(1 - 11*x + x^2).
  • A004191 (program): Expansion of 1/(1 - 12*x + x^2).
  • A004197 (program): Table of min(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
  • A004198 (program): Table of x AND y, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),…
  • A004199 (program): Table of [ x/y ], where (x,y) = (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),…
  • A004200 (program): Continued fraction for Sum_{k>=0} 1/3^(2^k).
  • A004201 (program): Accept one, reject one, accept two, reject two, …
  • A004202 (program): Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.
  • A004207 (program): a(0) = 1, a(n) = sum of digits of all previous terms.
  • A004208 (program): a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!.
  • A004211 (program): Shifts one place left under 2nd-order binomial transform.
  • A004212 (program): Shifts one place left under 3rd-order binomial transform.
  • A004213 (program): Shifts one place left under 4th-order binomial transform.
  • A004214 (program): Positive numbers that are not the sum of three nonzero squares.
  • A004215 (program): Numbers that are the sum of 4 but no fewer nonzero squares.
  • A004216 (program): a(n) = floor(log_10(n)).
  • A004218 (program): log_10(n) rounded up.
  • A004219 (program): a(n) = floor(10*log_10(n)).
  • A004220 (program): 10*log_10 (n) rounded to nearest integer.
  • A004221 (program): 10*log_10 (n) rounded up.
  • A004222 (program): 100*log_10 (n) rounded down.
  • A004223 (program): 100*log_10 (n) rounded to nearest integer.
  • A004224 (program): 100*log_10 (n) rounded up.
  • A004232 (program): a(n) = n^2 + prime(n).
  • A004233 (program): a(n) = ceiling(log(n)).
  • A004235 (program): 10*log(n) rounded to nearest integer.
  • A004236 (program): a(n) = ceiling(10*log(n)).
  • A004239 (program): a(n) = ceiling(100*log(n)).
  • A004247 (program): Multiplication table read by antidiagonals: T(i,j) = i*j (i>=0, j>=0). Alternatively, multiplication triangle read by rows: P(i,j) = j*(i-j) (i>=0, 0<=j<=i).
  • A004248 (program): Table of x^y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), …
  • A004250 (program): Number of partitions of n into 3 or more parts.
  • A004253 (program): a(n) = 5*a(n-1) - a(n-2), with a(1)=1, a(2)=4.
  • A004254 (program): a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.
  • A004255 (program): n(n+1)(n^2 -3n + 6)/8.
  • A004256 (program): a(n) = n^2*(n+1)*(n+2)^2/6.
  • A004257 (program): a(n) = round(log_2(n)).
  • A004259 (program): a(n) = floor(10*log_2(n)).
  • A004260 (program): a(n) = round(10*log_2(n)).
  • A004261 (program): a(n) = ceiling(10*log_2(n)).
  • A004262 (program): a(n) = floor(100*log_2(n)).
  • A004263 (program): a(n) = round(100*log_2(n)).
  • A004264 (program): a(n) = ceiling(100*log_2(n)).
  • A004271 (program): 1, 3 and the nonnegative even numbers.
  • A004272 (program): 1, 3, 5 and the even numbers.
  • A004273 (program): 0 together with odd numbers.
  • A004274 (program): 0, 2 and the odd numbers.
  • A004275 (program): 1 together with nonnegative even numbers.
  • A004276 (program): 0, 2, 4 and the odd numbers.
  • A004277 (program): 1 together with positive even numbers.
  • A004278 (program): 1, 3 and the positive even numbers.
  • A004279 (program): 1, 3, 5 and the even numbers.
  • A004280 (program): 2 together with the odd numbers (essentially the result of the first stage of the sieve of Eratosthenes).
  • A004281 (program): 2, 4 and the odd numbers.
  • A004282 (program): a(n) = n*(n+1)^2*(n+2)^2/12.
  • A004283 (program): Least positive multiple of n written in base 3 using only 0 and 1.
  • A004291 (program): Expansion of (1 + 2*x + x^2)/(1 - 10*x + x^2).
  • A004292 (program): Expansion of (1+x)^2/(1-18*x+x^2).
  • A004293 (program): Expansion of (1+2*x+x^2)/(1-26*x+x^2).
  • A004294 (program): Expansion of (1+2*x+x^2)/(1-34*x+x^2).
  • A004295 (program): Expansion of (1+2*x+x^2)/(1-42*x+x^2).
  • A004296 (program): Expansion of (1+2*x+x^2)/(1-50*x+x^2).
  • A004297 (program): Expansion of (1+2*x+x^2)/(1-58*x+x^2).
  • A004298 (program): Expansion of (1+2*x+x^2)/(1-66*x+x^2).
  • A004299 (program): Expansion of (1+2*x+x^2)/(1-74*x+x^2).
  • A004301 (program): Second-order Eulerian numbers «n,2».
  • A004302 (program): a(n) = n^2*(n+1)^2*(n+2)/12.
  • A004303 (program): a(n) = C(2n-2,n-1)/n - 2^(n-1) + n.
  • A004305 (program): Simple triangulations of a disk: column 4 of square array in A210664.
  • A004310 (program): Binomial coefficient C(2n,n-4).
  • A004311 (program): Binomial coefficient C(2n,n-5).
  • A004312 (program): Binomial coefficient C(2n,n-6).
  • A004313 (program): a(n) = binomial coefficient C(2n, n-7).
  • A004314 (program): a(n) = binomial coefficient C(2n, n - 8).
  • A004315 (program): a(n) = binomial coefficient C(2n, n-9).
  • A004316 (program): a(n) = binomial coefficient C(2n, n-10).
  • A004317 (program): Binomial coefficient C(2n,n-11).
  • A004318 (program): Binomial coefficient C(2n,n-12).
  • A004319 (program): Binomial coefficient C(3n,n-1).
  • A004320 (program): a(n) = n*(n+1)*(n+2)^2/6.
  • A004321 (program): Binomial coefficient C(3n, n-3).
  • A004322 (program): Binomial coefficient C(3n,n-4).
  • A004323 (program): Binomial coefficient C(3n,n-5).
  • A004324 (program): Binomial coefficient C(3n,n-6).
  • A004325 (program): Binomial coefficient C(3n,n-7).
  • A004326 (program): Binomial coefficient C(3n,n-8).
  • A004327 (program): Binomial coefficient C(3n,n-9).
  • A004328 (program): Binomial coefficient C(3n,n-10).
  • A004329 (program): Binomial coefficient C(3n,n-11).
  • A004330 (program): Binomial coefficient C(3n,n-12).
  • A004331 (program): Binomial coefficient C(4n,n-1).
  • A004332 (program): a(n) = C(4n,n-2).
  • A004333 (program): Binomial coefficient C(4n,n-3).
  • A004334 (program): Binomial coefficient C(4n,n-4).
  • A004335 (program): Binomial coefficient C(4n,n-5).
  • A004336 (program): Binomial coefficient C(4n,n-6).
  • A004337 (program): Binomial coefficient C(4n,n-7).
  • A004338 (program): Binomial coefficient C(4n,n-8).
  • A004339 (program): Binomial coefficient C(4n,n-9).
  • A004340 (program): Binomial coefficient C(4n,n-10).
  • A004341 (program): Binomial coefficient C(4n,n-11).
  • A004342 (program): Binomial coefficient C(4n, n-12).
  • A004343 (program): Binomial coefficient C(5n,n-1).
  • A004344 (program): Binomial coefficient C(5n+10,n).
  • A004345 (program): Binomial coefficient C(5n,n-3).
  • A004346 (program): Binomial coefficient C(5n,n-4).
  • A004347 (program): Binomial coefficient C(5n,n-5).
  • A004348 (program): Binomial coefficient C(5n, n-6).
  • A004349 (program): Binomial coefficient C(5n,n-7).
  • A004350 (program): Binomial coefficient C(5n,n-8).
  • A004351 (program): Binomial coefficient C(5*n,n-9).
  • A004352 (program): Binomial coefficient C(5n,n-10).
  • A004353 (program): Binomial coefficient C(5n,n-11).
  • A004354 (program): Binomial coefficient C(5n, n-12).
  • A004355 (program): Binomial coefficient C(6n,n).
  • A004356 (program): Binomial coefficient C(6n,n-1).
  • A004357 (program): a(n) = binomial(6*n,n-2).
  • A004358 (program): Binomial coefficient C(6n,n-3).
  • A004359 (program): Binomial coefficient C(6n,n-4).
  • A004360 (program): Binomial coefficient C(6n,n-5).
  • A004361 (program): Binomial coefficient C(6n,n-6).
  • A004362 (program): Binomial coefficient C(6n,n-7).
  • A004363 (program): Binomial coefficient C(6n,n-8).
  • A004364 (program): Binomial coefficient C(6n,n-9).
  • A004365 (program): Binomial coefficient C(6n,n-10).
  • A004366 (program): Binomial coefficient C(6n,n-11).
  • A004367 (program): Binomial coefficient C(6n,n-12).
  • A004368 (program): Binomial coefficient C(7n,n).
  • A004369 (program): Binomial coefficient C(7n,n-1).
  • A004370 (program): Binomial coefficient C(7n,n-2).
  • A004371 (program): Binomial coefficient C(7n,n-3).
  • A004372 (program): Binomial coefficient C(7n,n-4).
  • A004373 (program): Binomial coefficient C(7n,n-5).
  • A004374 (program): Binomial coefficient C(7n,n-6).
  • A004375 (program): Binomial coefficient C(7n,n-7).
  • A004376 (program): Binomial coefficient C(7n,n-8).
  • A004377 (program): Binomial coefficient C(7n,n-9).
  • A004378 (program): Binomial coefficient C(7n,n-10).
  • A004379 (program): Binomial coefficient C(7n,n-11).
  • A004380 (program): Binomial coefficient C(7n,n-12).
  • A004381 (program): Binomial coefficient C(8n,n).
  • A004382 (program): Binomial coefficient C(8n, n-1).
  • A004383 (program): Binomial coefficient C(8n,n-2).
  • A004384 (program): Binomial coefficient C(8n,n-3).
  • A004385 (program): Binomial coefficient C(8n,n-4).
  • A004386 (program): Binomial coefficient C(8n,n-5).
  • A004387 (program): Binomial coefficient C(8n,n-6).
  • A004388 (program): Binomial coefficient C(8n,n-7).
  • A004389 (program): a(n) = binomial(8*n, n-8).
  • A004390 (program): Binomial coefficient C(8n,n-9).
  • A004391 (program): Binomial coefficient C(8n,n-10).
  • A004392 (program): Binomial coefficient C(8n,n-11).
  • A004393 (program): Binomial coefficient C(8n,n-12).
  • A004395 (program): Ratios of successive terms are 1,1,2,3,3,4,5,5,6,7,7,…
  • A004396 (program): One even number followed by two odd numbers.
  • A004397 (program): a(n) = prime(n) + Fibonacci(n).
  • A004398 (program): a(n) = Fibonacci(n+1) + prime(n).
  • A004399 (program): Fibonacci(n+2) plus n-th prime.
  • A004400 (program): a(n) = 1 + Sum_{k=0..n} 2^k*k!.
  • A004401 (program): Least number of edges in graph containing all trees on n nodes.
  • A004402 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-1).
  • A004403 (program): Expansion of 1/theta_3(q)^2 in powers of q.
  • A004404 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-3).
  • A004405 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-4).
  • A004406 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-5).
  • A004407 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-6).
  • A004408 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-7).
  • A004409 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-8).
  • A004410 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-9).
  • A004411 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-10).
  • A004412 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-11).
  • A004413 (program): Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-12).
  • A004414 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-13).
  • A004415 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-14).
  • A004416 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-15).
  • A004417 (program): Expansion of (Sum x^(n^2), n = -inf .. inf )^(-16).
  • A004418 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-17).
  • A004419 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-18).
  • A004420 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-19).
  • A004421 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-20).
  • A004422 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-21).
  • A004423 (program): Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-22).
  • A004425 (program): Expansion of (Sum x^(n^2), n = -inf .. inf )^(-24).
  • A004426 (program): Arithmetic mean of digits of n (rounded down).
  • A004427 (program): Arithmetic mean of digits of n (rounded up).
  • A004431 (program): Numbers that are the sum of 2 distinct nonzero squares.
  • A004435 (program): Positive integers that are not the sum of 2 distinct square integers.
  • A004439 (program): Numbers that are not the sum of 2 distinct nonzero squares.
  • A004442 (program): Natural numbers, pairs reversed: a(n) = n + (-1)^n; also Nimsum n + 1.
  • A004443 (program): Nimsum n + 2.
  • A004444 (program): Nimsum n + 3.
  • A004445 (program): Nimsum n + 4.
  • A004446 (program): a(n) = Nimsum n + 5.
  • A004447 (program): Nimsum n + 6.
  • A004448 (program): Nimsum n + 7.
  • A004449 (program): Nimsum n + 8.
  • A004450 (program): Nimsum n + 9.
  • A004451 (program): Nimsum n + 10.
  • A004452 (program): Nimsum n + 11.
  • A004453 (program): Nimsum n + 12.
  • A004454 (program): Nimsum n + 13.
  • A004455 (program): Nimsum n + 14.
  • A004456 (program): Nimsum n + 15.
  • A004457 (program): Nimsum n + 16.
  • A004458 (program): Nimsum n + 17.
  • A004459 (program): Nimsum n + 18.
  • A004460 (program): Nimsum n + 19.
  • A004461 (program): Nimsum n + 20.
  • A004462 (program): Nimsum n + 21.
  • A004463 (program): Nimsum n + 22.
  • A004464 (program): Nimsum n + 23.
  • A004465 (program): Nimsum n + 24.
  • A004466 (program): a(n) = n*(5*n^2 - 2)/3.
  • A004467 (program): a(n) = n*(11*n^2 - 5)/6.
  • A004468 (program): a(n) = Nim product 3 * n.
  • A004482 (program): Tersum n + 1 (answer recorded in base 10).
  • A004483 (program): Tersum n + 2.
  • A004488 (program): Tersum n + n.
  • A004492 (program): Tersum n + 3.
  • A004493 (program): Tersum n + 4.
  • A004494 (program): Tersum n + 5.
  • A004495 (program): Tersum n + 6.
  • A004496 (program): Tersum n + 7.
  • A004497 (program): Tersum n + 8.
  • A004498 (program): Tersum n + 9.
  • A004499 (program): Tersum n + 10.
  • A004500 (program): Tersum n + 11.
  • A004501 (program): Tersum n + 12.
  • A004502 (program): Tersum n + 13.
  • A004503 (program): Tersum n + 14.
  • A004504 (program): Tersum n + 15.
  • A004505 (program): Tersum n + 16.
  • A004506 (program): Tersum n + 17.
  • A004507 (program): Tersum n + 18.
  • A004508 (program): Tersum n + 19.
  • A004509 (program): Tersum n + 20.
  • A004510 (program): Tersum n + 21.
  • A004511 (program): Tersum n + 22.
  • A004512 (program): Tersum n + 23.
  • A004513 (program): Tersum n + 24.
  • A004514 (program): Generalized nim sum n + n in base 4.
  • A004515 (program): Generalized nim sum n + n in base 5.
  • A004516 (program): Generalized nim sum n + n in base 6.
  • A004517 (program): Generalized nim sum n + n in base 7.
  • A004518 (program): Generalized nim sum n + n in base 8.
  • A004519 (program): Generalized nim sum n + n in base 9.
  • A004520 (program): Generalized nim sum n + n in base 10.
  • A004521 (program): Generalized nim sum n + n in base 11.
  • A004522 (program): Generalized nim sum n + n in base 12.
  • A004523 (program): Two even followed by one odd; or floor(2n/3).
  • A004524 (program): Three even followed by one odd.
  • A004525 (program): One even followed by three odd.
  • A004526 (program): Nonnegative integers repeated, floor(n/2).
  • A004527 (program): Ratios of successive terms are 1,2,2,3,4,4,5,6,6,…
  • A004528 (program): Ratios of successive terms are 1,2,2,2,3,4,4,4,5,6,6,6,7…
  • A004529 (program): Ratios of successive terms are 1,1,1,2,3,3,3,4,5,5,5,6,…
  • A004531 (program): Number of integer solutions to x^2 + 4 * y^2 = n.
  • A004538 (program): a(n) = 3*n^2 + 3*n - 1.
  • A004539 (program): Expansion of sqrt(2) in base 2.
  • A004540 (program): Expansion of sqrt(2) in base 3.
  • A004541 (program): Expansion of sqrt(2) in base 4.
  • A004542 (program): Expansion of sqrt(2) in base 5.
  • A004543 (program): Expansion of sqrt(2) in base 6.
  • A004544 (program): Expansion of sqrt(2) in base 7.
  • A004545 (program): Expansion of sqrt(2) in base 8.
  • A004546 (program): Expansion of sqrt(2) in base 9.
  • A004547 (program): Expansion of sqrt(3) in base 2.
  • A004548 (program): Expansion of sqrt(3) in base 3.
  • A004549 (program): Expansion of sqrt(3) in base 4.
  • A004550 (program): Expansion of sqrt(3) in base 5.
  • A004551 (program): Expansion of sqrt(3) in base 6.
  • A004552 (program): Expansion of sqrt(3) in base 7.
  • A004553 (program): Expansion of sqrt(3) in base 8.
  • A004554 (program): Expansion of sqrt(3) in base 9.
  • A004555 (program): Expansion of sqrt(5) in base 2.
  • A004556 (program): Expansion of sqrt(5) in base 3.
  • A004557 (program): Expansion of sqrt(5) in base 4.
  • A004558 (program): Expansion of sqrt(5) in base 5.
  • A004559 (program): Expansion of sqrt(5) in base 6.
  • A004560 (program): Expansion of sqrt(5) in base 7.
  • A004561 (program): Expansion of sqrt(5) in base 8.
  • A004562 (program): Expansion of sqrt(5) in base 9.
  • A004563 (program): Expansion of sqrt(6) in base 4.
  • A004564 (program): Expansion of sqrt(6) in base 5.
  • A004565 (program): Expansion of sqrt(6) in base 6.
  • A004566 (program): Expansion of sqrt(6) in base 7.
  • A004567 (program): Expansion of sqrt(6) in base 8.
  • A004568 (program): Expansion of sqrt(6) in base 9.
  • A004569 (program): Expansion of sqrt(7) in base 2.
  • A004570 (program): Expansion of sqrt(7) in base 3.
  • A004571 (program): Expansion of sqrt(7) in base 4.
  • A004572 (program): Expansion of sqrt(7) in base 5.
  • A004573 (program): Expansion of sqrt(7) in base 6.
  • A004574 (program): Expansion of sqrt(7) in base 7.
  • A004575 (program): Expansion of sqrt(7) in base 8.
  • A004576 (program): Expansion of sqrt(7) in base 9.
  • A004578 (program): Expansion of sqrt(8) in base 3.
  • A004579 (program): Expansion of sqrt(8) in base 4.
  • A004580 (program): Expansion of sqrt(8) in base 5.
  • A004581 (program): Expansion of sqrt(8) in base 6.
  • A004582 (program): Expansion of sqrt(8) in base 7.
  • A004583 (program): Expansion of sqrt(8) in base 8.
  • A004584 (program): Expansion of sqrt(8) in base 9.
  • A004585 (program): Expansion of sqrt(10) in base 2.
  • A004586 (program): Expansion of sqrt(10) in base 3.
  • A004587 (program): Expansion of sqrt(10) in base 4.
  • A004588 (program): Expansion of sqrt(10) in base 5.
  • A004589 (program): Expansion of sqrt(10) in base 6.
  • A004590 (program): Expansion of sqrt(10) in base 7.
  • A004591 (program): Expansion of sqrt(10) in base 8.
  • A004592 (program): Expansion of sqrt(10) in base 9.
  • A004593 (program): Expansion of e in base 2.
  • A004595 (program): Expansion of e in base 4.
  • A004596 (program): Expansion of e in base 5.
  • A004599 (program): Expansion of e in base 8.
  • A004601 (program): Expansion of Pi in base 2 (or, binary expansion of Pi).
  • A004603 (program): Expansion of Pi in base 4.
  • A004604 (program): Expansion of Pi in base 5.
  • A004609 (program): Expansion of sqrt(6) in base 2.
  • A004610 (program): Expansion of sqrt(6) in base 3.
  • A004611 (program): Divisible only by primes congruent to 1 mod 3.
  • A004612 (program): Numbers that are divisible only by primes congruent to 2 mod 3.
  • A004613 (program): Numbers that are divisible only by primes congruent to 1 mod 4.
  • A004614 (program): Numbers that are divisible only by primes congruent to 3 mod 4.
  • A004625 (program): Numbers divisible only by primes congruent to 1 mod 8.
  • A004630 (program): Squares written in base 12. (Next term contains a non-decimal character.)
  • A004631 (program): Squares written in base 16. (Next term contains a non-decimal character.)
  • A004632 (program): Cubes written in base 2.
  • A004633 (program): Cubes written in base 3.
  • A004634 (program): Cubes written in base 4.
  • A004635 (program): Cubes written in base 5.
  • A004636 (program): Cubes written in base 6.
  • A004637 (program): Cubes written in base 7.
  • A004638 (program): Cubes written in base 8.
  • A004639 (program): Cubes written in base 9.
  • A004641 (program): Fixed under 0 -> 10, 1 -> 100.
  • A004642 (program): Powers of 2 written in base 3.
  • A004643 (program): Powers of 2 written in base 4.
  • A004645 (program): Powers of 2 written in base 6.
  • A004646 (program): Powers of 2 written in base 7.
  • A004647 (program): Powers of 2 written in base 8.
  • A004648 (program): a(n) = prime(n) mod n.
  • A004649 (program): Prime(n) mod (n-1).
  • A004650 (program): Prime(n) mod (n+1).
  • A004652 (program): Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).
  • A004654 (program): Powers of 2 written in base 15. (Next term contains a non-decimal character.)
  • A004655 (program): Powers of 2 written in base 16.
  • A004656 (program): Powers of 3 written in base 2.
  • A004657 (program): Expansion of g.f.: (1+x^3)*(1+x^4)/((1-x)*(1-x^2)^2*(1-x^4)).
  • A004658 (program): Powers of 3 written in base 4.
  • A004659 (program): Powers of 3 written in base 5.
  • A004660 (program): Powers of 3 written in base 6.
  • A004661 (program): Powers of 3 written in base 7.
  • A004662 (program): Powers of 3 written in base 8.
  • A004663 (program): Powers of 3 written in base 9.
  • A004664 (program): n! + n^2.
  • A004669 (program): Powers of 3 written in base 27.
  • A004676 (program): Primes written in base 2.
  • A004678 (program): Primes written in base 4.
  • A004679 (program): Primes written in base 5.
  • A004680 (program): Primes written in base 6.
  • A004681 (program): Primes written in base 7.
  • A004682 (program): Primes written in base 8.
  • A004683 (program): Primes written in base 9.
  • A004684 (program): Primes written in base 11. (Next term contains a nondecimal character.)
  • A004685 (program): Fibonacci numbers written in base 2.
  • A004686 (program): Fibonacci numbers written in base 3.
  • A004687 (program): Fibonacci numbers written in base 4.
  • A004688 (program): Fibonacci numbers written in base 5.
  • A004689 (program): Fibonacci numbers written in base 6.
  • A004690 (program): Fibonacci numbers written in base 7.
  • A004691 (program): Fibonacci numbers written in base 8.
  • A004692 (program): Fibonacci numbers written in base 9.
  • A004694 (program): Fibonacci numbers written in base 13. (Next term contains a non-decimal character).
  • A004695 (program): a(n) = floor(Fibonacci(n)/2).
  • A004696 (program): a(n) = floor(Fibonacci(n)/3).
  • A004697 (program): a(n) = floor(Fibonacci(n)/4).
  • A004698 (program): a(n) = floor(Fibonacci(n)/5).
  • A004699 (program): a(n) = floor(Fibonacci(n)/6).
  • A004700 (program): Expansion of e.g.f. 1/(3 - exp(x) - exp(2*x)).
  • A004709 (program): Cubefree numbers: numbers that are not divisible by any cube > 1.
  • A004711 (program): Positions of 1’s in binary expansion of Pi/4.
  • A004712 (program): Positions of ones in binary expansion of e-2.
  • A004713 (program): Positions of ones in binary expansion of 1/sqrt(2).
  • A004714 (program): Positions of ones in binary expansion of the reciprocal of the golden ratio (0.618…).
  • A004718 (program): The Danish composer Per Nørgård’s “infinity sequence”, invented in an attempt to unify in a perfect way repetition and variation: a(2n) = -a(n), a(2n+1) = a(n) + 1, a(0) = 0.
  • A004719 (program): Delete all 0’s from n.
  • A004727 (program): Delete all 8’s from the sequence of nonnegative integers.
  • A004728 (program): Delete all 9’s from the sequence of nonnegative integers.
  • A004729 (program): Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).
  • A004730 (program): Numerator of n!!/(n+1)!! (cf. A006882).
  • A004731 (program): Denominator of n!!/(n+1)!! (cf. A006882).
  • A004732 (program): Numerator of n!!/(n+3)!!.
  • A004733 (program): Denominator of n!!/(n+3)!!.
  • A004734 (program): Numerator of average distance traveled by n-dimensional fly.
  • A004735 (program): Denominator of average distance traveled by n-dimensional fly.
  • A004736 (program): Triangle read by rows: row n lists the first n positive integers in decreasing order.
  • A004737 (program): Concatenation of sequences (1,2,…,n-1,n,n-1,…,1) for n >= 1.
  • A004738 (program): Concatenation of sequences (1,2,…,n-1,n,n-1,…,2) for n >= 2.
  • A004739 (program): Concatenation of sequences (1,2,2,…,n-1,n-1,n,n,n-1,n-1,…,2,2,1) for n >= 1.
  • A004741 (program): Concatenation of sequences (1,3,..,2n-1,2n,2n-2,..,2) for n >= 1.
  • A004742 (program): Numbers whose binary expansion does not contain 101.
  • A004743 (program): Numbers whose binary expansion does not contain 110.
  • A004745 (program): Numbers whose binary expansion does not contain 001.
  • A004746 (program): Numbers whose binary expansion does not contain 010.
  • A004748 (program): Binary expansion contains 101.
  • A004749 (program): Numbers whose binary expansion contains the substring ‘110’.
  • A004751 (program): Binary expansion contains 001.
  • A004752 (program): Binary expansion contains 010.
  • A004753 (program): Numbers whose binary expansion contains 100.
  • A004754 (program): Numbers n whose binary expansion starts 10.
  • A004755 (program): Binary expansion starts 11.
  • A004756 (program): Binary expansion starts 100.
  • A004757 (program): Binary expansion starts 101.
  • A004758 (program): Binary expansion starts 110.
  • A004759 (program): Binary expansion starts 111.
  • A004760 (program): List of numbers whose binary expansion does not begin 10.
  • A004761 (program): Numbers n whose binary expansion does not begin with 11.
  • A004762 (program): Numbers whose binary expansion does not begin 100.
  • A004763 (program): Numbers whose binary expansion does not begin 101.
  • A004764 (program): Numbers whose binary expansion does not begin 110.
  • A004765 (program): Numbers whose binary expansion does not begin 111.
  • A004766 (program): Numbers whose binary expansion ends 01.
  • A004767 (program): a(n) = 4*n + 3.
  • A004768 (program): Binary expansion ends 001.
  • A004769 (program): Numbers whose binary expansion ends in 011.
  • A004770 (program): Numbers of form 8n+5; or, numbers whose binary expansion ends in 101.
  • A004771 (program): a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.
  • A004772 (program): Numbers that are not congruent to 1 (mod 4).
  • A004773 (program): Numbers congruent to {0, 1, 2} mod 4: a(n) = floor(4*n/3).
  • A004774 (program): Numbers n whose binary expansion does not end in 001.
  • A004775 (program): Numbers k such that the binary expansion of k does not end in 011.
  • A004776 (program): Numbers not congruent to 5 (mod 8).
  • A004777 (program): Numbers not congruent to 7 mod 8.
  • A004779 (program): Binary expansion contains 3 adjacent 0’s.
  • A004780 (program): Binary expansion contains 2 adjacent 1’s.
  • A004781 (program): Binary expansion contains 3 adjacent 1’s.
  • A004782 (program): 2(2n-3)!/n!(n-1)! is an integer.
  • A004783 (program): 3!(2n-4)!/n!(n-1)! is an integer.
  • A004788 (program): Number of distinct prime divisors of the numbers in row n of Pascal’s triangle.
  • A004793 (program): a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), …, a(n-1), k form an arithmetic progression.
  • A004797 (program): Convolution of A002024 with itself.
  • A004798 (program): Convolution of Fibonacci numbers 1,2,3,5,… with themselves.
  • A004799 (program): Self-convolution of Lucas numbers.
  • A004825 (program): Numbers that are the sum of at most 3 positive cubes.
  • A004826 (program): Numbers that are the sum of at most 4 positive cubes.
  • A004827 (program): Numbers that are the sum of at most 5 positive cubes.
  • A004870 (program): Numbers that are the sum of at most 8 positive 7th powers.
  • A004872 (program): Numbers that are the sum of at most 10 positive 7th powers.
  • A004873 (program): Numbers that are the sum of at most 11 positive 7th powers.
  • A004874 (program): Numbers that are the sum of at most 12 positive 7th powers.
  • A004886 (program): Numbers that are the sum of at most 2 positive 9th powers.
  • A004891 (program): Numbers that are the sum of at most 7 positive 9th powers.
  • A004892 (program): Numbers that are the sum of at most 8 positive 9th powers.
  • A004894 (program): Numbers that are the sum of at most 10 positive 9th powers.
  • A004895 (program): Numbers that are the sum of at most 11 positive 9th powers.
  • A004896 (program): Numbers that are the sum of at most 12 positive 9th powers.
  • A004897 (program): Numbers that are the sum of at most 2 nonzero 10th powers.
  • A004902 (program): Numbers that are the sum of at most 7 nonzero 10th powers.
  • A004903 (program): Numbers that are the sum of at most 8 nonzero 10th powers.
  • A004906 (program): Numbers that are the sum of at most 11 nonzero 10th powers.
  • A004907 (program): Numbers that are the sum of at most 12 nonzero 10th powers.
  • A004908 (program): Numbers that are the sum of at most 2 positive 11th powers.
  • A004919 (program): a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.
  • A004920 (program): Floor of n*phi^5, where phi is the golden ratio, A001622.
  • A004921 (program): Floor of n*phi^6, phi = golden ratio, A001622.
  • A004922 (program): Floor of n*phi^7, where phi is the golden ratio, A001622.
  • A004923 (program): Floor of n*phi^8, where phi is the golden ratio, A001622.
  • A004924 (program): Floor of n*phi^9, where phi is the golden ratio, A001622.
  • A004925 (program): Floor of n*phi^10, where phi is the golden ratio, A001622.
  • A004926 (program): Floor of n*phi^11, where phi is the golden ratio, A001622.
  • A004927 (program): Floor of n*phi^12, where phi is the golden ratio, A001622.
  • A004928 (program): Floor of n*phi^13, where phi is the golden ratio, A001622.
  • A004929 (program): Floor of n*phi^14, where phi is the golden ratio, A001622.
  • A004930 (program): Floor of n*phi^15, where phi is the golden ratio, A001622.
  • A004931 (program): Floor of n*phi^16, where phi is the golden ratio, A001622.
  • A004932 (program): Floor of n*phi^17, where phi is the golden ratio, A001622.
  • A004933 (program): Floor of n*phi^18, where phi is the golden ratio, A001622.
  • A004934 (program): Floor of n*phi^19, where phi is the golden ratio, A001622.
  • A004935 (program): Floor of n*phi^20, where phi is the golden ratio, A001622.
  • A004936 (program): Numerator of (binomial(2*n-2,n-1)/n!)^2.
  • A004937 (program): Nearest integer to n*phi^2, where phi is the golden ratio, A001622.
  • A004938 (program): Nearest integer to n*phi^3, where phi is the golden ratio, A001622.
  • A004939 (program): Nearest integer to n*phi^4, where phi is the golden ratio, A001622.
  • A004940 (program): Nearest integer to n*phi^5, where phi is the golden ratio, A001622.
  • A004941 (program): Nearest integer to n*phi^6, where phi is the golden ratio, A001622.
  • A004942 (program): Nearest integer to n*phi^7, where phi is the golden ratio, A001622.
  • A004943 (program): Nearest integer to n*phi^8, where phi is the golden ratio, A001622.
  • A004944 (program): Nearest integer to n*phi^9, where phi is the golden ratio, A001622.
  • A004945 (program): Nearest integer to n*phi^10, where phi is the golden ratio, A001622.
  • A004946 (program): Nearest integer to n*phi^11, where phi is the golden ratio, A001622.
  • A004947 (program): Nearest integer to n*phi^12, where phi is the golden ratio, A001622.
  • A004948 (program): Nearest integer to n*phi^13, where phi is the golden ratio, A001622.
  • A004949 (program): Nearest integer to n*phi^14, where phi is the golden ratio, A001622.
  • A004950 (program): Nearest integer to n*phi^15, where phi is the golden ratio, A001622.
  • A004951 (program): Nearest integer to n*phi^16, where phi is the golden ratio, A001622.
  • A004952 (program): Nearest integer to n*phi^17, where phi is the golden ratio, A001622.
  • A004953 (program): Nearest integer to n*phi^18, where phi is the golden ratio, A001622.
  • A004954 (program): Nearest integer to n*phi^19, where phi is the golden ratio, A001622.
  • A004955 (program): Nearest integer to n*phi^20, where phi is the golden ratio, A001622.
  • A004956 (program): a(n) = ceiling(n*phi), where phi is the golden ratio, A001622.
  • A004957 (program): a(n) = ceiling(n*phi^2), where phi is the golden ratio, A001622.
  • A004958 (program): a(n) = ceiling(n*phi^3), where phi is the golden ratio, A001622.
  • A004959 (program): a(n) = ceiling(n*phi^4), where phi is the golden ratio, A001622.
  • A004960 (program): a(n) = ceiling(n*phi^5), where phi is the golden ratio, A001622.
  • A004961 (program): a(n) = ceiling(n*phi^6), where phi is the golden ratio.
  • A004962 (program): a(n) = ceiling(n*phi^7), where phi is the golden ratio, A001622.
  • A004963 (program): a(n) = ceiling(n*phi^8), where phi is the golden ratio, A001622.
  • A004964 (program): a(n) = ceiling(n*phi^9), where phi is the golden ratio, A001622.
  • A004965 (program): a(n) = ceiling(n*phi^10), where phi is the golden ratio, A001622.
  • A004966 (program): a(n) = ceiling(n*phi^11), where phi is the golden ratio, A001622.
  • A004967 (program): a(n) = ceiling(n*phi^12), where phi is the golden ratio, A001622.
  • A004968 (program): a(n) = ceiling(n*phi^13), where phi is the golden ratio, A001622.
  • A004969 (program): a(n) = ceiling(n*phi^14), where phi is the golden ratio, A001622.
  • A004970 (program): a(n) = ceiling(n*phi^15), where phi is the golden ratio, A001622.
  • A004971 (program): a(n) = ceiling(n*phi^16), where phi is the golden ratio, A001622.
  • A004972 (program): a(n) = ceiling(n*phi^17), where phi is the golden ratio, A001622.
  • A004973 (program): a(n) = ceiling(n*phi^18), where phi is the golden ratio, A001622.
  • A004974 (program): a(n) = ceiling(n*phi^19), where phi is the golden ratio, A001622.
  • A004975 (program): a(n) = ceiling(n*phi^20), where phi is the golden ratio, A001622.
  • A004976 (program): a(n) = floor(n*phi^3), where phi=(1+sqrt(5))/2.
  • A004981 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 1).
  • A004982 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 3).
  • A004983 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k - 3).
  • A004984 (program): a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).
  • A004985 (program): a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k + 5).
  • A004986 (program): a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 7).
  • A004987 (program): a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1).
  • A004988 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 2).
  • A004989 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).
  • A004990 (program): a(n) = (3^n/n!)*Product_{k=0..n-1}(3*k - 1).
  • A004991 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 4).
  • A004992 (program): a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).
  • A004993 (program): a(n) = (6^n/n!)*Product_{k=0..n-1} (6*k + 1).
  • A004994 (program): a(n) = (6^n/n!)*Product_{k=0..n-1} (6*k + 5).
  • A004995 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} (6*k - 5).
  • A004996 (program): a(n) = 6^n/n! * Product_{k=0..n-1} (6*k - 1).
  • A004997 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} (6*k + 7).
  • A004998 (program): a(n) = (6^n/n!) * Product_{k=0..n-1} ( 6*k + 11 ).
  • A004999 (program): Sums of two nonnegative cubes.
  • A005001 (program): a(0) = 0; for n>0, a(n) = Sum_k={0..n-1} Bell(k), where the Bell numbers Bell(k) are given in A000110.
  • A005002 (program): Number of rhyme schemes (see reference for precise definition).
  • A005003 (program): Number of rhyme schemes (see reference for precise definition).
  • A005004 (program): Davenport-Schinzel numbers of degree n on 3 symbols.
  • A005005 (program): Davenport-Schinzel numbers of degree n on 4 symbols.
  • A005006 (program): Davenport-Schinzel numbers of degree n on 5 symbols.
  • A005008 (program): a(n) = n! - n^2.
  • A005009 (program): a(n) = 7*2^n.
  • A005010 (program): a(n) = 9*2^n.
  • A005011 (program): Shifts one place left under 5th-order binomial transform.
  • A005012 (program): Shifts one place left under 6th-order binomial transform.
  • A005013 (program): a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=4. Alternates Fibonacci (A000045) and Lucas (A000032) sequences for even and odd n.
  • A005014 (program): Certain subgraphs of a directed graph (inverse binomial transform of A005321).
  • A005015 (program): a(n) = 11*2^n.
  • A005016 (program): Certain subgraphs of a directed graph.
  • A005017 (program): Denominator of (binomial(2*n-2,n-1)/n!)^2.
  • A005019 (program): The number of n X n (0,1)-matrices with a 1-width of 1.
  • A005021 (program): Random walks (binomial transform of A006054).
  • A005022 (program): Number of walks of length 2n+6 in the path graph P_7 from one end to the other.
  • A005023 (program): Number of walks of length 2n+7 in the path graph P_8 from one end to the other.
  • A005024 (program): Number of walks of length 2n+8 in the path graph P_9 from one end to the other.
  • A005025 (program): Random walks.
  • A005029 (program): 13*2^n.
  • A005030 (program): a(n) = 5*3^n.
  • A005032 (program): a(n) = 7*3^n.
  • A005041 (program): A self-generating sequence.
  • A005043 (program): Riordan numbers: a(n) = (n-1)*(2*a(n-1) + 3*a(n-2))/(n+1).
  • A005044 (program): Alcuin’s sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).
  • A005045 (program): Number of restricted 3 X 3 matrices with row and column sums n.
  • A005046 (program): Number of partitions of a 2n-set into even blocks.
  • A005051 (program): a(n) = 8*3^n.
  • A005052 (program): 10*3^n.
  • A005053 (program): Expand (1-2*x)/(1-5*x).
  • A005054 (program): a(0) = 1; a(n) = 4*5^(n-1) for n >= 1.
  • A005055 (program): 7*5^n.
  • A005056 (program): a(n) = 3^n + 2^n - 1.
  • A005057 (program): a(n) = 5^n - 2^n.
  • A005058 (program): a(n) = 5^n - 3^n.
  • A005059 (program): a(n) = (5^n - 3^n)/2.
  • A005060 (program): a(n) = 5^n - 4^n.
  • A005061 (program): a(n) = 4^n - 3^n.
  • A005062 (program): a(n) = 6^n - 5^n.
  • A005063 (program): Sum of squares of primes dividing n.
  • A005064 (program): Sum of cubes of primes dividing n.
  • A005065 (program): Sum of 4th powers of primes dividing n.
  • A005066 (program): Sum of squares of odd primes dividing n.
  • A005067 (program): Sum of cubes of odd primes dividing n.
  • A005068 (program): Sum of 4th powers of odd primes dividing n.
  • A005069 (program): Sum of odd primes dividing n.
  • A005070 (program): Sum of primes = 1 (mod 3) dividing n.
  • A005073 (program): Sum of 4th powers of primes = 1 mod 3 dividing n.
  • A005074 (program): Sum of primes = 2 mod 3 dividing n.
  • A005075 (program): Sum of squares of primes = 2 mod 3 dividing n.
  • A005076 (program): Sum of cubes of primes = 2 mod 3 dividing n.
  • A005077 (program): Sum of 4th powers of primes = 2 mod 3 dividing n.
  • A005078 (program): Sum of primes = 1 mod 4 dividing n.
  • A005079 (program): Sum of squares of primes = 1 mod 4 dividing n.
  • A005080 (program): Sum of cubes of primes = 1 mod 4 dividing n.
  • A005081 (program): Sum of 4th powers of primes = 1 mod 4 dividing n.
  • A005082 (program): Sum of primes = 3 mod 4 dividing n.
  • A005083 (program): Sum of squares of primes = 3 mod 4 dividing n.
  • A005084 (program): Sum of cubes of primes = 3 mod 4 dividing n.
  • A005085 (program): Sum of 4th powers of primes = 3 mod 4 dividing n.
  • A005086 (program): Number of Fibonacci numbers 1,2,3,5,… dividing n.
  • A005087 (program): Number of distinct odd primes dividing n.
  • A005088 (program): Number of primes = 1 mod 3 dividing n.
  • A005089 (program): Number of distinct primes == 1 (mod 4) dividing n.
  • A005090 (program): Number of primes == 2 mod 3 dividing n.
  • A005091 (program): Number of distinct primes = 3 mod 4 dividing n.
  • A005092 (program): Sum of Fibonacci numbers 1,2,3,5,… that divide n.
  • A005093 (program): Sum of squares of Fibonacci numbers 1,2,3,5,… that divide n.
  • A005094 (program): Number of distinct primes of the form 4k+1 dividing n minus number of distinct primes of the form 4k+3 dividing n.
  • A005095 (program): a(n) = n! + n.
  • A005096 (program): a(n) = n! - n.
  • A005097 (program): (Odd primes - 1)/2.
  • A005098 (program): Numbers k such that 4k + 1 is prime.
  • A005099 (program): (( Primes == -1 mod 4 ) + 1)/4.
  • A005100 (program): Deficient numbers: numbers k such that sigma(k) < 2k.
  • A005101 (program): Abundant numbers (sum of divisors of m exceeds 2m).
  • A005117 (program): Squarefree numbers: numbers that are not divisible by a square greater than 1.
  • A005118 (program): Number of simple allowable sequences on 1..n containing the permutation 12…n.
  • A005122 (program): Numbers n such that 8n - 1 is prime.
  • A005123 (program): Numbers n such that 8n + 1 is prime.
  • A005124 (program): Numbers n such that 8n + 3 is prime.
  • A005125 (program): Numbers n such that 8n - 3 is prime.
  • A005126 (program): a(n) = 2^n + n + 1.
  • A005131 (program): A generalized continued fraction for Euler’s number e.
  • A005140 (program): Number of n-dimensional determinant 4 lattices.
  • A005141 (program): Number of genera of forms with |determinant| = n.
  • A005145 (program): n copies of n-th prime.
  • A005152 (program): Rotation distance between binary trees on n nodes.
  • A005153 (program): Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.
  • A005159 (program): a(n) = 3^n*Catalan(n).
  • A005165 (program): Alternating factorials: n! - (n-1)! + (n-2)! - … 1!.
  • A005168 (program): n-th derivative of x^x at 1, divided by n.
  • A005171 (program): Characteristic function of nonprimes: 0 if n is prime, else 1.
  • A005173 (program): Number of trees of subsets of an n-set.
  • A005174 (program): Number of trees of subsets of an n-set.
  • A005178 (program): Number of domino tilings of 4 X (n-1) board.
  • A005181 (program): a(n) = ceiling(exp((n-1)/2)).
  • A005182 (program): a(n) = floor(e^((n-1)/2)).
  • A005183 (program): a(n) = n*2^(n-1) + 1.
  • A005187 (program): a(n) = a(floor(n/2)) + n; also denominators in expansion of 1/sqrt(1-x) are 2^a(n); also 2n - number of 1’s in binary expansion of 2n.
  • A005189 (program): Number of n-term 2-sided generalized Fibonacci sequences.
  • A005190 (program): Central quadrinomial coefficients: largest coefficient of (1 + x + x^2 + x^3)^n.
  • A005191 (program): Central pentanomial coefficients: largest coefficient of (1 + x + … + x^4)^n.
  • A005193 (program): Balanced labeled graphs.
  • A005203 (program): Fibonacci numbers (or rabbit sequence) converted to decimal.
  • A005205 (program): Coding Fibonacci numbers.
  • A005206 (program): Hofstadter G-sequence: a(0) = 0; a(n) = n - a(a(n-1)) for n > 0.
  • A005207 (program): a(n) = (F(2*n-1) + F(n+1))/2 where F(n) is a Fibonacci number.
  • A005209 (program): Multilevel sieve: at k-th step, accept k numbers, reject k, accept k, …
  • A005210 (program): a(n) = |a(n-1) + 2a(n-2) - n|.
  • A005212 (program): n! if n is odd otherwise 0 (from the Taylor series for sin x).
  • A005213 (program): Number of symmetric, reduced unit interval schemes with n+1 intervals (n>=1).
  • A005214 (program): Triangular numbers together with squares (excluding 0).
  • A005225 (program): Number of permutations of length n with equal cycles.
  • A005232 (program): Expansion of (1-x+x^2)/((1-x)^2*(1-x^2)*(1-x^4)).
  • A005233 (program): A finite sequence associated with the Lie algebra A_5.
  • A005237 (program): Numbers n such that n and n+1 have the same number of divisors.
  • A005246 (program): a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.
  • A005247 (program): a(n) = 3*a(n-2) - a(n-4), a(0)=2, a(1)=1, a(2)=3, a(3)=2. Alternates Lucas (A000032) and Fibonacci (A000045) sequences for even and odd n.
  • A005248 (program): Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).
  • A005249 (program): Determinant of inverse Hilbert matrix.
  • A005251 (program): a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
  • A005252 (program): a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k,2k).
  • A005253 (program): Number of binary words not containing ..01110…
  • A005254 (program): Number of weighted voting procedures.
  • A005255 (program): Atkinson-Negro-Santoro sequence: a(n+1) = 2*a(n) - a(n-floor(n/2+1)).
  • A005256 (program): Number of weighted voting procedures.
  • A005257 (program): Number of weighted voting procedures.
  • A005258 (program): Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).
  • A005259 (program): Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.
  • A005260 (program): a(n) = Sum_{k = 0..n} binomial(n,k)^4.
  • A005261 (program): a(n) = Sum_{k = 0..n} C(n,k)^5.
  • A005262 (program): a(n) = floor((7*2^(n+1)-9*n-10)/3).
  • A005267 (program): a(n) = -1 + a(0)a(1)…a(n-1) if n>0. a(0)=3.
  • A005279 (program): Numbers having divisors d,e with d < e < 2*d.
  • A005283 (program): Number of permutations of (1,…,n) having n-5 inversions (n>=5).
  • A005284 (program): Number of permutations of (1,…,n) having n-6 inversions (n>=6).
  • A005285 (program): Number of permutations of (1,…,n) having n-7 inversions (n>=7).
  • A005286 (program): a(n) = (n + 3)*(n^2 + 6*n + 2)/6.
  • A005287 (program): Number of permutations of [n] with four inversions.
  • A005288 (program): a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.
  • A005311 (program): Solution to Berlekamp’s switching game (or lightbulb game) on an n X n board.
  • A005313 (program): Maximal sum of inverse squares of the singular values of triangular anti-Hadamard matrices of order n.
  • A005314 (program): For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).
  • A005317 (program): a(n) = (2^n + C(2*n,n))/2.
  • A005319 (program): a(n) = 6*a(n-1) - a(n-2).
  • A005320 (program): a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 3.
  • A005321 (program): Upper triangular n X n (0,1)-matrices with no zero rows or columns.
  • A005322 (program): Column of Motzkin triangle.
  • A005323 (program): Column of Motzkin triangle.
  • A005324 (program): Column of Motzkin triangle A026300.
  • A005325 (program): Column of Motzkin triangle.
  • A005327 (program): Certain subgraphs of a directed graph (inverse binomial transform of A005321).
  • A005328 (program): Certain subgraphs of a directed graph.
  • A005329 (program): a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.
  • A005331 (program): Certain subgraphs of a directed graph (binomial transform of A005321).
  • A005337 (program): Number of ways in which n identical balls can be distributed among 4 boxes in a row such that each pair of adjacent boxes contains at least 4 balls.
  • A005349 (program): Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.
  • A005351 (program): Base -2 representation for n regarded as base 2, then evaluated.
  • A005352 (program): Base -2 representation of -n reinterpreted as binary.
  • A005353 (program): Number of 2 X 2 matrices with entries mod n and nonzero determinant.
  • A005356 (program): Number of low discrepancy sequences in base 2.
  • A005357 (program): Number of low discrepancy sequences in base 3.
  • A005358 (program): Number of low discrepancy sequences in base 5.
  • A005359 (program): a(n) = n! if n is even, otherwise 0 (from Taylor series for cos x).
  • A005361 (program): Product of exponents of prime factorization of n.
  • A005367 (program): a(n) = 2*(2^n + 1)*(2^(n+1) - 1).
  • A005369 (program): a(n) = 1 if n is of the form m(m+1), else 0.
  • A005370 (program): a(n) = Fibonacci(Fibonacci(n+1) + 1).
  • A005371 (program): a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
  • A005372 (program): a(n) = L(L(n+1)+1), where L(n) are Lucas numbers A000032.
  • A005374 (program): Hofstadter H-sequence: a(n) = n - a(a(a(n-1))).
  • A005375 (program): a(0) = 0; a(n) = n - a(a(a(a(n-1)))) for n > 0.
  • A005377 (program): Number of low discrepancy sequences in base 4.
  • A005378 (program): The female of a pair of recurrences.
  • A005379 (program): The male of a pair of recurrences.
  • A005380 (program): Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).
  • A005381 (program): Numbers k such that k and k-1 are composite.
  • A005382 (program): Primes p such that 2p-1 is also prime.
  • A005383 (program): Primes p such that (p+1)/2 is prime.
  • A005384 (program): Sophie Germain primes p: 2p+1 is also prime.
  • A005385 (program): Safe primes p: (p-1)/2 is also prime.
  • A005386 (program): Area of n-th triple of squares around a triangle.
  • A005387 (program): Number of partitional matroids on n elements.
  • A005388 (program): Number of degree-n permutations of order a power of 2.
  • A005389 (program): Number of Hamiltonian circuits on 2n times 4 rectangle.
  • A005403 (program): Number of protruded partitions of n with largest part at most 2.
  • A005408 (program): The odd numbers: a(n) = 2*n + 1.
  • A005409 (program): Number of polynomials of height n: a(1)=1, a(2)=1, a(3)=4, a(n) = 2*a(n-1) + a(n-2) + 2 for n >= 4.
  • A005410 (program): a(n) = largest integer m such that every n-point interval order contains an m-point semiorder.
  • A005416 (program): Vertex diagrams of order 2n.
  • A005418 (program): Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch’s triangle A034851; also number of caterpillar graphs on n+2 vertices.
  • A005425 (program): a(n) = 2*a(n-1) + (n-1)*a(n-2).
  • A005427 (program): Josephus problem: numbers m such that, when m people are arranged on a circle and numbered 1 through m, the final survivor when we remove every 4th person is one of the first three people.
  • A005428 (program): a(n) = ceiling((1 + sum of preceding terms) / 2) starting with a(0) = 1.
  • A005429 (program): Apéry numbers: n^3*C(2n,n).
  • A005430 (program): Apéry numbers: n*C(2*n,n).
  • A005431 (program): Embeddings of n-bouquet in sphere.
  • A005437 (program): Column of Kempner tableau.
  • A005438 (program): Column of Kempner tableau.
  • A005442 (program): a(n) = n!*Fibonacci(n+1).
  • A005443 (program): a(n) = n! * Fibonacci(n).
  • A005448 (program): Centered triangular numbers: a(n) = 3n(n-1)/2 + 1.
  • A005449 (program): Second pentagonal numbers: a(n) = n*(3*n + 1)/2.
  • A005450 (program): Numerator of (1 + Gamma(n))/n.
  • A005453 (program): A finite sequence associated with the Lie algebra B_4.
  • A005460 (program): a(n) = (3*n+4)*(n+3)!/24.
  • A005461 (program): Number of simplices in barycentric subdivision of n-simplex.
  • A005462 (program): Number of simplices in barycentric subdivision of n-simplex.
  • A005463 (program): Number of simplices in barycentric subdivision of n-simplex.
  • A005464 (program): Number of simplices in barycentric subdivision of n-simplex.
  • A005465 (program): Number of n-dimensional hypotheses allowing for conditional independence.
  • A005471 (program): Primes of the form m^2 + 3m + 9, where m can be positive or negative.
  • A005473 (program): Primes of form k^2 + 4.
  • A005475 (program): a(n) = n*(5*n+1)/2.
  • A005476 (program): a(n) = n*(5*n - 1)/2.
  • A005477 (program): a(n) = 2^(n-1)*(2^n - 1)*Product_{j=1..n-1} (2^j + 1).
  • A005480 (program): Decimal expansion of cube root of 4.
  • A005481 (program): Decimal expansion of cube root of 5.
  • A005482 (program): Decimal expansion of cube root of 7.
  • A005486 (program): Decimal expansion of cube root of 6.
  • A005490 (program): Number of partitions of [n] where the first k elements are marked (0 <= k <= n-1) and at least k blocks contain their own index.
  • A005491 (program): a(n) = n^3 + 3*n + 1.
  • A005492 (program): From expansion of falling factorials.
  • A005493 (program): 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.
  • A005494 (program): 3-Bell numbers: E.g.f.: exp(3*z + exp(z) - 1).
  • A005498 (program): Triangulations of the disk G_{2,n}.
  • A005508 (program): Number of unrooted triangulations with reflection symmetry of a disk with one internal node and n+3 nodes on the boundary.
  • A005512 (program): Number of series-reduced labeled trees with n nodes.
  • A005513 (program): Number of n-bead bracelets (turnover necklaces) of two colors with 6 red beads and n-6 black beads.
  • A005517 (program): Smallest label f(T) given to a rooted tree T with n nodes in Matula-Goebel labeling.
  • A005521 (program): 1 + (sum of first n odd primes - n)/2.
  • A005522 (program): a(n) = 1 + L(n) + F(2*n-1) with {L(n)}_{n>=0} the Lucas numbers (A000032) and F(2*n-1)_{n>=0} the bisected Fibonacci numbers (A001519).
  • A005527 (program): Rational points on curves of genus n over GF(2).
  • A005528 (program): Størmer numbers or arc-cotangent irreducible numbers: numbers k such that the largest prime factor of k^2 + 1 is >= 2*k.
  • A005529 (program): Primitive prime factors of the sequence k^2 + 1 (A002522) in the order that they are found.
  • A005531 (program): Decimal expansion of fifth root of 2.
  • A005532 (program): Decimal expansion of fifth root of 3.
  • A005533 (program): Decimal expansion of fifth root of 4.
  • A005534 (program): Decimal expansion of fifth root of 5.
  • A005536 (program): a(0) = 0; thereafter a(2n) = n - a(n) - a(n-1), a(2n+1) = n - 2a(n) + 1.
  • A005554 (program): Sums of successive Motzkin numbers.
  • A005557 (program): Number of walks on square lattice.
  • A005558 (program): a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
  • A005559 (program): Number of walks on square lattice.
  • A005560 (program): Number of walks on square lattice.
  • A005561 (program): Number of walks on square lattice.
  • A005562 (program): Number of walks on square lattice.
  • A005563 (program): a(n) = n*(n+2) = (n+1)^2 - 1.
  • A005564 (program): Number of n-step walks on square lattice in the first quadrant which finish at distance n-3 from the x-axis.
  • A005565 (program): Number of walks on square lattice.
  • A005566 (program): Number of walks of length n on square lattice, starting at origin, staying in first quadrant.
  • A005567 (program): Number of walks on square lattice.
  • A005568 (program): Product of two successive Catalan numbers C(n)*C(n+1).
  • A005570 (program): Number of walks on cubic lattice.
  • A005571 (program): Number of walks on cubic lattice.
  • A005572 (program): Number of walks on cubic lattice starting and finishing on the xy plane and never going below it.
  • A005573 (program): Number of walks on cubic lattice (starting from origin and not going below xy plane).
  • A005574 (program): Numbers k such that k^2 + 1 is prime.
  • A005578 (program): a(2*n) = 2*a(2*n-1), a(2*n+1) = 2*a(2*n)-1.
  • A005581 (program): a(n) = (n-1)*n*(n+4)/6.
  • A005582 (program): a(n) = n*(n+1)*(n+2)*(n+7)/24.
  • A005583 (program): Coefficients of Chebyshev polynomials.
  • A005584 (program): Coefficients of Chebyshev polynomials.
  • A005585 (program): 5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.
  • A005586 (program): a(n) = n*(n+4)*(n+5)/6.
  • A005587 (program): a(n) = n*(n+5)*(n+6)*(n+7)/24.
  • A005590 (program): a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n+1) - a(n).
  • A005592 (program): a(n) = F(2n+1) + F(2n-1) - 1.
  • A005593 (program): a(n) = (F(2n+1) + F(2n-1) + F(n+3) - 2)/2, where F() = Fibonacci numbers A000045.
  • A005594 (program): States of a dynamic storage system.
  • A005595 (program): States of a dynamic storage system.
  • A005598 (program): a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).
  • A005599 (program): Running sum of every third term in the {+1,-1}-version of Thue-Morse sequence A010060.
  • A005601 (program): Decimal expansion of proton-to-electron mass ratio.
  • A005605 (program): a(n) = a(n-1) + (-1)^(n-1) * a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
  • A005609 (program): Number of Boolean functions realized by cascades of n gates.
  • A005610 (program): Number of Boolean functions realized by cascades of n gates.
  • A005612 (program): Number of Boolean functions of n variables that are variously called “unate cascades” or “1-decision list functions” or “read-once threshold functions”.
  • A005614 (program): The binary complement of the infinite Fibonacci word A003849. Start with 1, apply 0->1, 1->10, iterate, take limit.
  • A005618 (program): a(n) = 6*a(n-1) - 8.
  • A005619 (program): Number of Boolean functions realized by n-input cascades.
  • A005631 (program): Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
  • A005647 (program): Salié numbers.
  • A005649 (program): Expansion of e.g.f. (2 - e^x)^(-2).
  • A005650 (program): Number of “magic squares” of order n (see comment line for exact definition).
  • A005652 (program): Sum of 2 terms is never a Fibonacci number.
  • A005653 (program): Sum of 2 terms is never a Fibonacci number.
  • A005654 (program): Number of bracelets (turn over necklaces) with n red, 1 pink and n-1 blue beads; also reversible strings with n red and n-1 blue beads; also next-to-central column in Losanitsch’s triangle A034851.
  • A005656 (program): Number of bracelets (turn over necklaces) with n red, 1 pink and n - 3 blue beads; also reversible strings with n red and n-3 blue beads.
  • A005665 (program): Tower of Hanoi with 3 pegs and cyclic moves only (clockwise).
  • A005666 (program): Tower of Hanoi with 3 pegs and cyclic moves only (counterclockwise).
  • A005667 (program): Numerators of continued fraction convergents to sqrt(10).
  • A005668 (program): Denominators of continued fraction convergents to sqrt(10).
  • A005672 (program): a(n) = Fibonacci(n+1) - 2^floor(n/2).
  • A005673 (program): F(n+1)-2^[ (n+1)/2 ] -2^[ n/2 ] +1.
  • A005674 (program): a(n) = 2^(n-1) + 2^[ n/2 ] + 2^[ (n-1)/2 ] - F(n+3).
  • A005676 (program): Sum C(n-k,4*k), k = 0..n.
  • A005678 (program): A squarefree ternary sequence.
  • A005679 (program): A squarefree (or Thue-Morse) ternary sequence: closed under a->abc, b->ac, c->b.
  • A005680 (program): A squarefree ternary sequence.
  • A005681 (program): A squarefree quaternary sequence.
  • A005682 (program): Number of Twopins positions.
  • A005683 (program): Numbers of Twopins positions.
  • A005684 (program): Number of Twopins positions.
  • A005685 (program): Number of Twopins positions.
  • A005686 (program): Number of Twopins positions.
  • A005689 (program): Number of Twopins positions.
  • A005698 (program): Positions of remoteness 2 in Beans-Don’t-Talk.
  • A005700 (program): a(n) = C(n)*C(n+2)-C(n+1)^2 where C() are the Catalan numbers A000108.
  • A005701 (program): Number of exterior points formed by extending diagonals of n-gon in general position.
  • A005704 (program): Number of partitions of 3n into powers of 3.
  • A005705 (program): Number of partitions of 4*n into powers of 4.
  • A005706 (program): Number of partitions of 5n into powers of 5.
  • A005708 (program): a(n) = a(n-1) + a(n-6), with a(i) = 1 for i = 0..5.
  • A005709 (program): a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.
  • A005710 (program): a(n) = a(n-1) + a(n-8), with a(i) = 1 for i = 0..7.
  • A005711 (program): a(n) = a(n-1) + a(n-9) for n >= 9; a(n) = 1 for n=0..7; a(8) = 2.
  • A005712 (program): Coefficient of x^4 in expansion of (1+x+x^2)^n.
  • A005713 (program): Define strings S(0)=0, S(1)=11, S(n) = S(n-1)S(n-2); iterate.
  • A005714 (program): Coefficient of x^6 in expansion of (1+x+x^2)^n.
  • A005715 (program): Coefficient of x^7 in expansion of (1+x+x^2)^n.
  • A005716 (program): Coefficient of x^8 in expansion of (1+x+x^2)^n
  • A005717 (program): Construct triangle in which n-th row is obtained by expanding (1 + x + x^2)^n and take the next-to-central column.
  • A005718 (program): Quadrinomial coefficients: C(2+n,n) + C(3+n,n) + C(4+n,n).
  • A005719 (program): Quadrinomial coefficients.
  • A005720 (program): Quadrinomial coefficients.
  • A005721 (program): Central quadrinomial coefficients.
  • A005722 (program): a(n) = (prime(n) - 1)^2.
  • A005723 (program): Quadrinomial coefficients.
  • A005724 (program): Quadrinomial coefficients.
  • A005725 (program): Quadrinomial coefficients.
  • A005726 (program): Quadrinomial coefficients.
  • A005727 (program): n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.
  • A005728 (program): Number of fractions in Farey series of order n.
  • A005732 (program): a(n) = binomial(n+3,6) + binomial(n+1,5) + binomial(n,5).
  • A005744 (program): G.f.: x*(1+x-x^2)/((1-x)^4*(1+x)).
  • A005752 (program): a(n) = n^2 + n*floor(n*tau) - floor(n*tau)^2.
  • A005758 (program): Number of partitions of n into parts of 12 kinds.
  • A005766 (program): a(n) = cost of minimal multiplication-cost addition chain for n.
  • A005767 (program): Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
  • A005773 (program): Number of directed animals of size n (or directed n-ominoes in standard position).
  • A005774 (program): Number of directed animals of size n (k=1 column of A038622); number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, where s(0) = 2; also sum of row n+1 of array T in A026323.
  • A005775 (program): Number of compact-rooted directed animals of size n having 3 source points.
  • A005779 (program): a(n) = largest integer such that every tournament on n nodes contains a consistent set of n arcs.
  • A005783 (program): Number of 3-covers of an n-set.
  • A005789 (program): 3-dimensional Catalan numbers.
  • A005790 (program): 4-dimensional Catalan numbers.
  • A005798 (program): Expansion of (theta_2(q)/theta_3(q))^4/16 in powers of q.
  • A005802 (program): Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).
  • A005803 (program): Second-order Eulerian numbers: a(n) = 2^n - 2*n.
  • A005807 (program): Sum of adjacent Catalan numbers.
  • A005809 (program): a(n) = binomial(3n,n).
  • A005810 (program): a(n) = binomial(4n,n).
  • A005811 (program): Number of runs in binary expansion of n (n>0); number of 1’s in Gray code for n.
  • A005812 (program): Weight of balanced ternary representation of n.
  • A005817 (program): a(n) = C(floor(n/2 + 1/2))*C(floor(n/2 + 1)) where C(i) = Catalan numbers A000108.
  • A005818 (program): Numbers n that are primitive solutions to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
  • A005819 (program): Number of words of length n in a certain language.
  • A005821 (program): a(n) = [ tau*a(n-1) ] + a(n-2).
  • A005823 (program): Numbers whose ternary expansion contains no 1’s.
  • A005824 (program): a(n) = 5a(n-2) - 2a(n-4).
  • A005825 (program): Numerators in a worst case of a Jacobi symbol algorithm.
  • A005826 (program): Worst case of a Jacobi symbol algorithm.
  • A005827 (program): Worst case of a Jacobi symbol algorithm.
  • A005829 (program): a(n) = [ tau*a(n-1) ] + a(n-2).
  • A005830 (program): a(n) = floor(tau*a(n-1)) + a(n-2) where tau is the golden ratio.
  • A005831 (program): a(n+1) = a(n) * (a(n-1) + 1).
  • A005833 (program): a(n) = [ tau*a(n-2) ] + a(n-1).
  • A005834 (program): a(n) = floor( tau*a(n-2) ) + a(n-1) where tau is the golden ratio.
  • A005836 (program): Numbers whose base 3 representation contains no 2.
  • A005840 (program): Expansion of (1-x)*e^x/(2-e^x).
  • A005843 (program): The nonnegative even numbers: a(n) = 2n.
  • A005846 (program): Primes of the form n^2 + n + 41.
  • A005855 (program): The coding-theoretic function A(n,10,7).
  • A005856 (program): The coding-theoretic function A(n,10,8).
  • A005857 (program): The coding-theoretic function A(n,12,7).
  • A005860 (program): The coding-theoretic function A(n,12,10).
  • A005861 (program): The coding-theoretic function A(n,14,9).
  • A005862 (program): The coding-theoretic function A(n,14,10).
  • A005867 (program): a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).
  • A005868 (program): Molien series for 3-dimensional representation of Z2 X (double cover of A6), u.g.g.r. # 27 of Shephard and Todd.
  • A005869 (program): Theta series of b.c.c. lattice with respect to short edge.
  • A005872 (program): Theta series of hexagonal close-packing with respect to octahedral hole.
  • A005875 (program): Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).
  • A005876 (program): Theta series of cubic lattice with respect to edge.
  • A005877 (program): Theta series of cubic lattice with respect to square.
  • A005878 (program): Theta series of cubic lattice with respect to deep hole.
  • A005879 (program): Theta series of D_4 lattice with respect to deep hole.
  • A005880 (program): Theta series of D_4 lattice with respect to edge.
  • A005881 (program): Theta series of planar hexagonal lattice (A2) with respect to edge.
  • A005882 (program): Theta series of planar hexagonal lattice (A2) with respect to deep hole.
  • A005883 (program): Theta series of square lattice with respect to deep hole.
  • A005884 (program): Theta series of f.c.c. lattice with respect to edge.
  • A005885 (program): Theta series of f.c.c. lattice with respect to triangle.
  • A005886 (program): Theta series of f.c.c. lattice with respect to tetrahedral hole.
  • A005887 (program): Theta series of f.c.c. lattice with respect to octahedral hole.
  • A005891 (program): Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.
  • A005892 (program): Truncated square numbers: 7*n^2 + 4*n + 1.
  • A005893 (program): Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).
  • A005894 (program): Centered tetrahedral numbers.
  • A005897 (program): a(n) = 6*n^2 + 2 for n > 0, a(0)=1.
  • A005898 (program): Centered cube numbers: n^3 + (n+1)^3.
  • A005899 (program): Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2,
  • A005900 (program): Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
  • A005901 (program): Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.
  • A005902 (program): Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
  • A005903 (program): Number of points on surface of dodecahedron: 30n^2 + 2 for n > 0.
  • A005904 (program): Centered dodecahedral numbers.
  • A005905 (program): Number of points on surface of truncated tetrahedron: 14n^2 + 2 for n>0, a(0)=1.
  • A005906 (program): Truncated tetrahedral numbers: a(n) = (1/6)*(n+1)*(23*n^2 + 19*n + 6).
  • A005907 (program): a(n) = [ tau*a(n-2) ] + a(n-1).
  • A005908 (program): a(n) = floor( phi*a(n-1) ) + floor( phi*a(n-2) ), where phi is the golden ratio.
  • A005909 (program): a(n) = [ tau*a(n-1) ] + [ tau*a(n-2) ].
  • A005910 (program): Truncated octahedral numbers: 16*n^3 - 33*n^2 + 24*n - 6.
  • A005911 (program): Number of points on surface of truncated cube: 46n^2 + 2.
  • A005912 (program): Truncated cube numbers.
  • A005913 (program): a(n) = [ tau*a(n-1) ] + [ tau*a(n-2) ].
  • A005914 (program): Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).
  • A005915 (program): Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).
  • A005917 (program): Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
  • A005918 (program): Number of points on surface of square pyramid: 3*n^2 + 2 (n>0).
  • A005919 (program): Number of points on surface of tricapped prism: 7n^2 + 2 for n > 0, a(0)=1.
  • A005920 (program): Tricapped prism numbers.
  • A005921 (program): From solution to a difference equation.
  • A005922 (program): a(1)=1; a(n) = n!*Fibonacci(n+2), n > 1.
  • A005923 (program): From solution to a difference equation.
  • A005928 (program): G.f.: s(1)^3/s(3), where s(k) = eta(q^k) and eta(q) is Dedekind’s function, cf. A010815.
  • A005929 (program): Theta series of hexagonal net with respect to midpoint of edge.
  • A005930 (program): Theta series of D_5 lattice.
  • A005940 (program): The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1’s that are followed by k-1 0’s.
  • A005941 (program): Inverse of the Doudna sequence A005940.
  • A005942 (program): a(2n) = a(n) + a(n+1), a(2n+1) = 2a(n+1), if n >= 2.
  • A005943 (program): Factor complexity (number of subwords of length n) of the Golay-Rudin-Shapiro binary word A020987.
  • A005945 (program): Number of n-step mappings with 4 inputs.
  • A005947 (program): Tumbling distance for n-input mappings with 2 steps.
  • A005968 (program): Sum of cubes of first n Fibonacci numbers.
  • A005969 (program): Sum of fourth powers of Fibonacci numbers.
  • A005970 (program): Partial sums of squares of Lucas numbers.
  • A005971 (program): Partial sums of cubes of Lucas numbers.
  • A005972 (program): Partial sums of fourth powers of Lucas numbers.
  • A005985 (program): Length of longest trail (i.e., path with all distinct edges) on the edges of an n-cube.
  • A005989 (program): Values B(2,n)/4 of Gandhi polynomials defined by B(x,0)=x and B(x,n) = x^2 (B(x+1,n-1) - B(x,n-1)).
  • A005990 (program): a(n) = (n-1)*(n+1)!/6.
  • A005993 (program): Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).
  • A005994 (program): Alkane (or paraffin) numbers l(7,n).
  • A005995 (program): Alkane (or paraffin) numbers l(8,n).
  • A005996 (program): G.f.: 2*(1-x^3)/((1-x)^5*(1+x)^2).
  • A005997 (program): Number of paraffins.
  • A005998 (program): Number of paraffins.
  • A005999 (program): Number of paraffins.
  • A006000 (program): a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.
  • A006001 (program): Number of paraffins.
  • A006002 (program): a(n) = n*(n+1)^2/2.
  • A006003 (program): a(n) = n*(n^2 + 1)/2.
  • A006004 (program): a(n) = C(n+2,3) + C(n,3) + C(n-1,3).
  • A006005 (program): The odd prime numbers together with 1.
  • A006007 (program): 4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.
  • A006008 (program): Number of inequivalent ways to color vertices of a regular tetrahedron using <= n colors.
  • A006009 (program): Number of paraffins.
  • A006010 (program): Number of paraffins (see Losanitsch reference for precise definition).
  • A006011 (program): a(n) = n^2*(n^2 - 1)/4.
  • A006012 (program): a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.
  • A006013 (program): a(n) = binomial(3*n+1,n)/(n+1).
  • A006015 (program): Nim product 2*n.
  • A006022 (program): Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.
  • A006040 (program): a(n) = Sum_{i=0..n} (n!/(n-i)!)^2.
  • A006041 (program): a(n+1) = (n^2 - 1)*a(n) + n + 1.
  • A006043 (program): A traffic light problem: expansion of 2/(1 - 3*x)^3.
  • A006044 (program): a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).
  • A006046 (program): Total number of odd entries in first n rows of Pascal’s triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). For n>0, a(n) = Sum_{i=0..n-1} 2^wt(i).
  • A006047 (program): Number of entries in n-th row of Pascal’s triangle not divisible by 3.
  • A006048 (program): Number of entries in first n rows of Pascal’s triangle not divisible by 3.
  • A006049 (program): Numbers k such that k and k+1 have the same number of distinct prime divisors.
  • A006051 (program): Square hex numbers.
  • A006053 (program): a(n) = a(n-1) + 2*a(n-2) - a(n-3).
  • A006054 (program): a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
  • A006060 (program): Triangular star numbers.
  • A006061 (program): Star numbers (A003154) that are squares.
  • A006062 (program): Star-hex numbers.
  • A006068 (program): a(n) is Gray-coded into n.
  • A006071 (program): Maximal length of rook tour on an n X n board.
  • A006072 (program): Numbers with mirror symmetry about middle.
  • A006077 (program): (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.
  • A006078 (program): Number of triangulated (n+2)-gons rooted at an exterior edge.
  • A006079 (program): Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.
  • A006080 (program): Number of rooted projective plane trees with n nodes.
  • A006081 (program): Number of line-rooted projective plane trees with n nodes.
  • A006088 (program): a(n) = (2^n + 2) a(n-1) (kissing number of Barnes-Wall lattice in dimension 2^n).
  • A006089 (program): Coefficients of elliptic function cn.
  • A006090 (program): Expansion of bracket function.
  • A006091 (program): a(n) = n^n - n + 1.
  • A006093 (program): a(n) = prime(n) - 1.
  • A006094 (program): Products of 2 successive primes.
  • A006095 (program): Gaussian binomial coefficient [n,2] for q=2.
  • A006096 (program): Gaussian binomial coefficient [ n,3 ] for q=2.
  • A006097 (program): Gaussian binomial coefficient [ n,4 ] for q=2.
  • A006098 (program): Gaussian binomial coefficient [ 2n,n ] for q=2.
  • A006099 (program): Gaussian binomial coefficient [ n, n/2 ] for q=2.
  • A006100 (program): Gaussian binomial coefficient [ n,2 ] for q=3.
  • A006101 (program): Gaussian binomial coefficient [ n,3 ] for q=3.
  • A006102 (program): Gaussian binomial coefficient [ n,4 ] for q=3.
  • A006105 (program): Gaussian binomial coefficient [ n,2 ] for q=4.
  • A006106 (program): Gaussian binomial coefficient [ n,3 ] for q = 4.
  • A006107 (program): Gaussian binomial coefficient [ n,4 ] for q = 4.
  • A006110 (program): Gaussian binomial coefficient [ n,5 ] for q = 2.
  • A006111 (program): Gaussian binomial coefficient [ n,2 ] for q=5.
  • A006112 (program): Gaussian binomial coefficient [ n,3 ] for q = 5.
  • A006113 (program): Gaussian binomial coefficient [ n,4 ] for q = 5.
  • A006116 (program): Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.
  • A006117 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=3.
  • A006118 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=4.
  • A006119 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=5.
  • A006120 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=6.
  • A006121 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=7.
  • A006122 (program): Sum of Gaussian binomial coefficients [ n,k ] for q=8.
  • A006124 (program): a(n) = 3 + n/2 + 7*n^2/2.
  • A006125 (program): a(n) = 2^(n*(n-1)/2).
  • A006127 (program): a(n) = 2^n + n.
  • A006129 (program): a(0), a(1), a(2), … satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.
  • A006130 (program): a(n) = a(n-1) + 3*a(n-2) for n > 1, a(0) = a(1) = 1.
  • A006131 (program): a(n) = a(n-1) + 4*a(n-2), a(0) = a(1) = 1.
  • A006134 (program): a(n) = Sum_{k=0..n} binomial(2*k,k).
  • A006137 (program): a(n) = 1 + n/2 + 9*n^2/2.
  • A006138 (program): a(n) = a(n-1) + 3*a(n-2).
  • A006139 (program): n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.
  • A006149 (program): Number of Dyck paths.
  • A006152 (program): Exponential generating function x*exp(x/(1-x)).
  • A006153 (program): E.g.f.: 1/(1-x*exp(x)).
  • A006154 (program): Number of labeled ordered partitions of an n-set into odd parts.
  • A006155 (program): Expansion of e.g.f. 1/(2-x-e^x).
  • A006157 (program): a(n+1) = (n-1)*a(n) + n*n!.
  • A006165 (program): a(1) = a(2) = 1; thereafter a(2n+1) = a(n+1) + a(n), a(2n) = 2a(n).
  • A006166 (program): a(0)=0, a(1)=a(2)=1; for n >= 1, a(3n+2) = 2a(n+1) + a(n), a(3n+1) = a(n+1) + 2a(n), a(3n) = 3a(n).
  • A006171 (program): Number of factorization patterns of polynomials of degree n over integers.
  • A006172 (program): a(n) = 1 + F(2*n+1) + (-1)^n*L(n).
  • A006183 (program): a(n) = (n+1)*a(n-1) + (2-n)*a(n-2).
  • A006184 (program): Number of cycles in the complement of a path.
  • A006186 (program): Number of pair-coverings with largest block size 4.
  • A006189 (program): Number of self-avoiding walks of any length from NW to SW corners of a grid or lattice with n rows and 3 columns.
  • A006190 (program): a(n) = 3*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
  • A006191 (program): Number of paths on square lattice.
  • A006192 (program): Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of 3 X n board.
  • A006197 (program): Least number not dividing binomial(2n,n).
  • A006198 (program): Number of partitions into pairs.
  • A006199 (program): Bessel polynomial {y_n}’(-1).
  • A006200 (program): Number of partitions into pairs.
  • A006212 (program): Number of down-up permutations of n+3 starting with n+1.
  • A006213 (program): Number of down-up permutations of n+4 starting with n+1.
  • A006216 (program): Number of down-up permutations of n+4 starting with 4.
  • A006217 (program): Number of down-up permutations of n+5 starting with 5.
  • A006218 (program): a(n) = Sum_{k=1..n} floor(n/k); also Sum_{k=1..n} d(k), where d = number of divisors (A000005); also number of solutions to x*y = z with 1 <= x,y,z <= n.
  • A006221 (program): From Apery continued fraction for zeta(3): zeta(3)=6/(5-1^6/(117-2^6/(535-3^6/(1463…))).
  • A006222 (program): 11*n^2 + 11*n + 3.
  • A006228 (program): Expansion of exp(arcsin(x)).
  • A006230 (program): Bitriangular permutations.
  • A006231 (program): a(n) = Sum_{k=2..n} n(n-1)…(n-k+1)/k.
  • A006234 (program): a(n) = n*3^(n-4).
  • A006235 (program): Complexity of doubled cycle (regarding case n = 2 as a multigraph).
  • A006236 (program): n^(n-2)*(n+2)^(n-1).
  • A006238 (program): Complexity of (or spanning trees in) a 3 X n grid.
  • A006239 (program): Row 3 of array in A212801.
  • A006244 (program): Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).
  • A006252 (program): Expansion of e.g.f. 1/(1 - log(1+x)).
  • A006253 (program): Number of perfect matchings (or domino tilings) in C_4 X P_n.
  • A006254 (program): Numbers k such that 2k-1 is prime.
  • A006256 (program): a(n) = Sum_{k=0..n} binomial(3k,k)*binomial(3n-3k,n-k).
  • A006257 (program): Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.
  • A006261 (program): a(n) = Sum_{k=0..5} C(n,k).
  • A006264 (program): Diagonal length function.
  • A006277 (program): a(n) = (a(n-1) + 1)*a(n-2).
  • A006278 (program): a(n) is the product of the first n primes congruent to 1 (mod 4).
  • A006279 (program): Denominators of convergents to Cahen’s constant: a(n+2) = a(n)^2*a(n+1) + a(n).
  • A006280 (program): Partial quotients in continued fraction expansion of Cahen’s constant.
  • A006282 (program): Sorting numbers: number of comparisons in Batcher’s parallel sort.
  • A006287 (program): Sum of squares of digits of ternary representation of n.
  • A006288 (program): Loxton-van der Poorten sequence: base-4 representation contains only -1, 0, +1.
  • A006298 (program): Number of genus 2 rooted maps with 1 face with n vertices.
  • A006308 (program): Coefficients of period polynomials.
  • A006318 (program): Large Schröder numbers (or large Schroeder numbers, or big Schroeder numbers).
  • A006319 (program): Royal paths in a lattice (convolution of A006318).
  • A006320 (program): Royal paths in a lattice.
  • A006321 (program): Royal paths in a lattice.
  • A006322 (program): 4-dimensional analog of centered polygonal numbers.
  • A006323 (program): 4-dimensional analog of centered polygonal numbers.
  • A006324 (program): a(n) = n*(n + 1)*(2*n^2 + 2*n - 1)/6.
  • A006325 (program): 4-dimensional analog of centered polygonal numbers.
  • A006326 (program): Total preorders.
  • A006327 (program): a(n) = Fibonacci(n) - 3. Number of total preorders.
  • A006328 (program): Total preorders.
  • A006331 (program): a(n) = n*(n+1)*(2*n+1)/3.
  • A006332 (program): From the enumeration of corners.
  • A006333 (program): From the enumeration of corners.
  • A006334 (program): From the enumeration of corners.
  • A006335 (program): a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
  • A006337 (program): An “eta-sequence”: a(n) = floor( (n+1)*sqrt(2) ) - floor( n*sqrt(2) ).
  • A006338 (program): An “eta-sequence”: floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2).
  • A006340 (program): An “eta-sequence”: [ (n+1)*tau + 1/2 ] - [ n*tau + 1/2 ], tau = (1 + sqrt(5))/2.
  • A006342 (program): Coloring a circuit with 4 colors.
  • A006347 (program): a(n) = (n+1) a(n-1) + (-1)^n.
  • A006348 (program): a(n) = (n+2)*a(n-1) + (-1)^n.
  • A006352 (program): Coefficients in expansion of Eisenstein series E_2 (also called E_1 or G_2).
  • A006353 (program): Expansion of (phi(-q^3) * psi(q))^3 / (phi(-q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
  • A006355 (program): Number of binary vectors of length n containing no singletons.
  • A006356 (program): a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.
  • A006357 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
  • A006358 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.
  • A006359 (program): Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.
  • A006364 (program): Numbers n with an even number of 1’s in binary, ignoring last bit.
  • A006367 (program): Number of binary vectors of length n+1 beginning with 0 and containing just 1 singleton.
  • A006368 (program): The “amusical permutation” of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.
  • A006369 (program): a(n) = 2*n/3 for n divisible by 3, otherwise a(n) = round(4*n/3). Or, equivalently, a(3*n-2) = 4*n-3, a(3*n-1) = 4*n-1, a(3*n) = 2*n.
  • A006370 (program): The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.
  • A006380 (program): Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns.
  • A006411 (program): Number of nonseparable tree-rooted planar maps with n + 2 edges and 3 vertices.
  • A006414 (program): Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.
  • A006416 (program): Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.
  • A006419 (program): a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).
  • A006428 (program): Number of loopless tree-rooted planar maps with 3 vertices and n faces and no isthmuses.
  • A006438 (program): Expansion of e.g.f. 1/sqrt(1-8x+x^2).
  • A006442 (program): Expansion of 1/sqrt(1 - 10*x + x^2).
  • A006446 (program): Numbers k such that floor(sqrt(k)) divides k.
  • A006449 (program): Row sums of Fibonacci-Pascal triangle in A045995.
  • A006450 (program): Prime-indexed primes: primes with prime subscripts.
  • A006451 (program): Numbers k such that k*(k+1)/2 + 1 is a square.
  • A006452 (program): a(n) = 6*a(n-2) - a(n-4).
  • A006453 (program): Expansion of 1/sqrt(1 - 12x + x^2).
  • A006454 (program): Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
  • A006456 (program): Number of compositions (ordered partitions) of n into squares.
  • A006457 (program): Number of elements in Z[ i ] whose ‘smallest algorithm’ is <= n.
  • A006460 (program): Image of n after 3k iterates of ‘3x+1’ map (k large).
  • A006463 (program): Convolve natural numbers with characteristic function of triangular numbers.
  • A006464 (program): Continued fraction for Sum_{n>=0} 1/4^(2^n).
  • A006468 (program): Number of rooted planar maps with 4 faces and n vertices and no isthmuses.
  • A006470 (program): Number of tree-rooted planar maps with 3 faces and n vertices and no isthmuses.
  • A006472 (program): a(n) = n!*(n-1)!/2^(n-1).
  • A006474 (program): Related to Ramsey numbers.
  • A006477 (program): Number of partitions of n with at least 1 odd and 1 even part.
  • A006478 (program): a(n) = a(n-1) + a(n-2) + F(n) - 1, a(0) = a(1) = 0, where F() = Fibonacci numbers A000045.
  • A006479 (program): From variance of Fibonacci search.
  • A006480 (program): De Bruijn’s S(3,n): (3n)!/(n!)^3.
  • A006481 (program): Euler characteristics of polytopes.
  • A006483 (program): a(n) = Fibonacci(n)*2^n + 1.
  • A006484 (program): a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
  • A006490 (program): a(1) = 1, a(2) = 0; for n > 2, a(n) = n*Fibonacci(n-2) (with the convention Fibonacci(0)=0, Fibonacci(1)=1).
  • A006491 (program): Generalized Lucas numbers.
  • A006492 (program): Generalized Lucas numbers.
  • A006493 (program): Generalized Lucas numbers.
  • A006495 (program): Real part of (1 + 2*i)^n, where i is sqrt(-1).
  • A006496 (program): Imaginary part of (1+2i)^n.
  • A006497 (program): a(n) = 3*a(n-1) + a(n-2) with a(0) = 2, a(1) = 3.
  • A006498 (program): a(n) = a(n-1) + a(n-3) + a(n-4), a(0) = a(1) = a(2) = 1, a(3) = 2.
  • A006499 (program): Number of restricted circular combinations.
  • A006500 (program): Restricted combinations.
  • A006501 (program): Expansion of (1+x^2) / ( (1-x)^2 * (1-x^3)^2 ).
  • A006503 (program): a(n) = n*(n+1)*(n+8)/6.
  • A006504 (program): Coefficient of x^4 in (1-x-x^2)^(-n).
  • A006505 (program): Number of partitions of an n-set into boxes of size >2.
  • A006507 (program): a(n+1) = a(n) + sum of digits of a(n), with a(1)=7.
  • A006512 (program): Greater of twin primes.
  • A006513 (program): Limit of the image of n after 2k iterates of `(3x+1)/2’ map as k grows.
  • A006516 (program): a(n) = 2^(n-1)*(2^n - 1), n >= 0.
  • A006519 (program): Highest power of 2 dividing n.
  • A006520 (program): Partial sums of A006519.
  • A006522 (program): 4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.
  • A006527 (program): a(n) = (n^3 + 2*n)/3.
  • A006528 (program): a(n) = (n^4 + n^2 + 2*n)/4.
  • A006530 (program): Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.
  • A006532 (program): Numbers whose sum of divisors is a square.
  • A006542 (program): a(n) = binomial(n,3)*binomial(n-1,3)/4.
  • A006547 (program): Sum ((-1)^(i+1)*binomial(n,i)*2^i*(2*i-1)!,i=1..n).
  • A006548 (program): (2*n)!-Sum ((-1)^(i+1)*binomial(n,i)*2^i*(2*n-1)!,i=1..n).
  • A006551 (program): Maximal Eulerian numbers.
  • A006564 (program): Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.
  • A006565 (program): Number of ways to color vertices of a hexagon using <= n colors, allowing only rotations.
  • A006566 (program): Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.
  • A006577 (program): Number of halving and tripling steps to reach 1 in ‘3x+1’ problem, or -1 if 1 is never reached.
  • A006578 (program): Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).
  • A006579 (program): a(n) = Sum_{k=1..n-1} gcd(n,k).
  • A006580 (program): a(n) = Sum_{k=1..n-1} lcm(k,n-k).
  • A006581 (program): a(n) = Sum_{k=1..n-1} (k AND n-k).
  • A006582 (program): a(n) = Sum_{k=1..n-1} k XOR n-k.
  • A006583 (program): a(n) = Sum_{k=1..n-1} (k OR n-k).
  • A006584 (program): If n mod 2 = 0 then n*(n^2-4)/12 else n*(n^2-1)/12.
  • A006586 (program): a(n) = Sum_{k=1..n} floor((2n-1)/(2k+1)).
  • A006587 (program): a(n) = 3*2^(2*n)*(3*n)!/((2*n)!*n!).
  • A006588 (program): a(n) = 4^n*(3*n)!/((2*n)!*n!).
  • A006589 (program): a(n) = (n+3)*2^n - 1.
  • A006590 (program): a(n) = Sum_{k=1..n} ceiling(n/k).
  • A006591 (program): a(n) = Sum_{k=1..n} nearest integer to n/k (if n/k is midway between two numbers take the smaller).
  • A006592 (program): a(n) = 10*n^3 - 6*n^2.
  • A006594 (program): A Beatty sequence: [ n(1 + 1/e) ].
  • A006595 (program): a(n) = (n+2)!/4 + n!/2.
  • A006597 (program): a(n) = n^2*(5*n-3)/2.
  • A006603 (program): Generalized Fibonacci numbers.
  • A006604 (program): Generalized Fibonacci numbers.
  • A006605 (program): Number of modes of connections of 2n points.
  • A006617 (program): Zarankiewicz’s problem.
  • A006620 (program): Zarankiewicz’s problem.
  • A006621 (program): Zarankiewicz’s problem k_3(n,n+1).
  • A006629 (program): Self-convolution 4th power of A001764, which enumerates ternary trees.
  • A006630 (program): From generalized Catalan numbers.
  • A006631 (program): From generalized Catalan numbers.
  • A006632 (program): a(n) = 3*binomial(4*n-1,n-1)/(4*n-1).
  • A006633 (program): From generalized Catalan numbers.
  • A006634 (program): From generalized Catalan numbers.
  • A006635 (program): From generalized Catalan numbers.
  • A006636 (program): From generalized Catalan numbers.
  • A006637 (program): From generalized Catalan numbers.
  • A006645 (program): Self-convolution of Pell numbers (A000129).
  • A006646 (program): Exponential self-convolution of Pell numbers.
  • A006659 (program): Number of closed meander systems of order n+1 with n components.
  • A006666 (program): Number of halving steps to reach 1 in ‘3x+1’ problem, or -1 if this never happens.
  • A006667 (program): Number of tripling steps to reach 1 from n in ‘3x+1’ problem, or -1 if 1 is never reached.
  • A006668 (program): Exponential self-convolution of Pell numbers (divided by 2).
  • A006671 (program): Edge-distinguishing chromatic number of cycle with n nodes.
  • A006672 (program): Ramsey numbers.
  • A006675 (program): Number of paths through an array.
  • A006677 (program): Number of planted binary phylogenetic trees with n labels.
  • A006681 (program): Number of binary phylogenetic trees with n labels.
  • A006684 (program): Convolve Fibonacci and Pell numbers.
  • A006695 (program): a(2n)=2*a(2n-2)^2-1, a(2n+1)=2a(2n)-1, a(0)=2.
  • A006697 (program): Number of subwords of length n in infinite word generated by a -> aab, b -> b.
  • A006720 (program): Somos-4 sequence: a(0)=a(1)=a(2)=a(3)=1; for n >= 4, a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
  • A006721 (program): Somos-5 sequence: a(n) = (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
  • A006722 (program): Somos-6 sequence: a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-4) + a(n-3)^2) / a(n-6), a(0) = … = a(5) = 1.
  • A006723 (program): Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = … = a(6) = 1.
  • A006769 (program): Elliptic divisibility sequence associated with elliptic curve “37a1”: y^2 + y = x^3 - x and multiples of the point (0,0).
  • A006788 (program): a(n) = floor(2^(n-1)/n).
  • A006833 (program): Decimal expansion of neutron-to-electron mass ratio.
  • A006834 (program): Decimal expansion of neutron-to-proton mass ratio.
  • A006847 (program): Number of extreme points of the set of n X n symmetric doubly-stochastic matrices.
  • A006857 (program): a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5).
  • A006858 (program): Expansion of x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^7.
  • A006859 (program): From paths in the plane.
  • A006862 (program): Euclid numbers: 1 + product of the first n primes.
  • A006863 (program): Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers.
  • A006864 (program): Number of Hamiltonian cycles in P_4 X P_n.
  • A006865 (program): Number of Hamiltonian cycles in P_5 X P_{2n}: a(n) = 11a(n-1)+2a(n-3).
  • A006875 (program): Non-seed mu-atoms of period n in Mandelbrot set.
  • A006881 (program): Squarefree semiprimes: Numbers that are the product of two distinct primes.
  • A006882 (program): Double factorials n!!: a(n) = n*a(n-2) for n > 1, a(0) = a(1) = 1.
  • A006888 (program): a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1.
  • A006892 (program): Representation as a sum of squares requires n squares with greedy algorithm.
  • A006893 (program): Smallest number whose representation requires n triangular numbers with greedy algorithm; also number of 1-2 rooted trees of height n.
  • A006894 (program): Number of planted 3-trees of height < n.
  • A006896 (program): a(n) is the number of hierarchical linear models on n labeled factors allowing 2-way interactions (but no higher order interactions); or the number of simple labeled graphs with nodes chosen from an n-set.
  • A006898 (program): a(n) = Sum_{k=0..n} C(n,k)*2^(k*(k+1)/2).
  • A006899 (program): Numbers of the form 2^i or 3^j.
  • A006902 (program): a(n) = (2n)! * Sum_{k=0..n} (-1)^k * binomial(n,k) / (n+k)!.
  • A006904 (program): a(n) = a(n-1) + 2*a(n-2) + (-1)^n.
  • A006906 (program): a(n) is the sum of products of terms in all partitions of n.
  • A006918 (program): a(n) = binomial(n+3, 3)/4, n odd; n(n+2)(n+4)/24, n even.
  • A006921 (program): Diagonals of Pascal’s triangle mod 2 interpreted as binary numbers.
  • A006922 (program): Expansion of 1/eta(q)^24; Fourier coefficients of T_{14}.
  • A006928 (program): a(n) = length of (n+1)st run, with initial terms 1, 2.
  • A006932 (program): Number of permutations of [n] with at least one strong fixed point (a permutation p of {1,2,…,n} is said to have j as a strong fixed point if p(k) < j for k < j and p(k) > j for k > j).
  • A006939 (program): Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).
  • A006940 (program): Rows of Pascal’s triangle mod 3.
  • A006943 (program): Rows of Sierpiński’s triangle (Pascal’s triangle mod 2).
  • A006946 (program): Independence number of De Bruijn graph of order n on two symbols.
  • A006949 (program): A well-behaved cousin of the Hofstadter sequence: a(n) = a(n - 1 - a(n-1)) + a(n - 2 - a(n-2)) for n > 2 with a(0) = a(1) = a(2) = 1.
  • A006950 (program): G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).
  • A006953 (program): a(n) = denominator of Bernoulli(2n)/(2n).
  • A006954 (program): Denominators of Bernoulli numbers B_0, B_1, B_2, B_4, B_6, …
  • A006955 (program): Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
  • A006956 (program): Denominator of (2n+1)(2n+2) B_{2n}, where B_n are the Bernoulli numbers. Also denominators of the asymptotic expansion of the polygamma function psi’’‘(z).
  • A006960 (program): Reverse and Add! sequence starting with 196.
  • A006963 (program): Number of planar embedded labeled trees with n nodes: (2n-3)!/(n-1)! for n >= 2, a(1) = 1.
  • A006974 (program): Coefficients of Chebyshev T polynomials: a(n) = A053120(n+8, n), n >= 0.
  • A006975 (program): Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+10, n), n >= 0.
  • A006976 (program): Coefficients of Chebyshev T polynomials: a(n) = A053120(n+12, n), n >= 0.
  • A006977 (program): Cellular automaton with Rule 230: 000, 001, 010, 011, …, 111 -> 0,1,1,0,0,1,1,1.
  • A006978 (program): Successive states of the Rule 110 cellular automaton defined by 000, 001, 010, 011, …, 111 -> 0,1,1,1,0,1,1,0 when started with a single ON cell.
  • A006995 (program): Binary palindromes: numbers whose binary expansion is palindromic.
  • A006996 (program): C(2n,n) mod 3.
  • A006998 (program): Partitioning integers to avoid arithmetic progressions of length 3.
  • A006999 (program): Partitioning integers to avoid arithmetic progressions of length 3.
  • A007000 (program): Number of partitions of n into Fibonacci parts (with 2 types of 1).
  • A007001 (program): Trajectory of 1 under the morphism 1 -> 12, 2 -> 123, 3 -> 1234, etc.
  • A007004 (program): a(n) = (3*n)! / ((n+1)*(n!)^3).
  • A007007 (program): Valence of graph of maximal intersecting families of sets.
  • A007008 (program): Chvatal conjecture for radius of graph of maximal intersecting sets.
  • A007009 (program): Number of 3-voter voting schemes with n linearly ranked choices.
  • A007019 (program): a(n) = (2n+1)! / 2^n.
  • A007039 (program): Number of cyclic binary n-bit strings with no alternating substring of length > 2.
  • A007040 (program): Number of (marked) cyclic n-bit binary strings containing no runs of length > 2.
  • A007042 (program): Left diagonal of partition triangle A047812.
  • A007044 (program): Left diagonal of partition triangle A047812.
  • A007047 (program): Number of chains in power set of n-set.
  • A007051 (program): a(n) = (3^n + 1)/2.
  • A007052 (program): Number of order-consecutive partitions of n.
  • A007054 (program): Super ballot numbers: 6(2n)!/(n!(n+2)!).
  • A007060 (program): Number of ways n couples can sit in a row without any spouses next to each other.
  • A007062 (program): Let P(n) of a sequence s(1),s(2),s(3),… be obtained by leaving s(1),…,s(n) fixed and reversing every n consecutive terms thereafter; apply P(2) to 1,2,3,… to get PS(2), then apply P(3) to PS(2) to get PS(3), then apply P(4) to PS(3), etc. The limit of PS(n) is A007062.
  • A007064 (program): Numbers not of form “nearest integer to n*tau”, tau = (1+sqrt(5))/2.
  • A007066 (program): a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2.
  • A007067 (program): Nearest integer to n*tau.
  • A007068 (program): a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2.
  • A007069 (program): First column of spectral array W(sqrt 2).
  • A007070 (program): a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.
  • A007071 (program): First row of 2-shuffle of spectral array W( sqrt 2 ).
  • A007073 (program): First column of array associated with lexicographically justified array.
  • A007088 (program): The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.
  • A007089 (program): Numbers in base 3.
  • A007090 (program): Numbers in base 4.
  • A007091 (program): Numbers in base 5.
  • A007092 (program): Numbers in base 6.
  • A007093 (program): Numbers in base 7.
  • A007094 (program): Numbers in base 8.
  • A007095 (program): Numbers in base 9.
  • A007106 (program): Number of labeled odd degree trees with 2n nodes.
  • A007123 (program): Number of connected unit interval graphs with n nodes; also number of bracelets (turnover necklaces) with n black beads and n-1 white beads.
  • A007147 (program): Number of self-dual 2-colored necklaces with 2n beads.
  • A007148 (program): Number of self-complementary 2-colored bracelets (turnover necklaces) with 2n beads.
  • A007160 (program): Number of diagonal dissections of a convex (n+6)-gon into n regions.
  • A007165 (program): Number of P-graphs with 2n edges.
  • A007179 (program): Dual pairs of integrals arising from reflection coefficients.
  • A007185 (program): Automorphic numbers ending in digit 5: a(n) = 5^(2^n) mod 10^n.
  • A007191 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = -24.
  • A007202 (program): Crystal ball sequence for hexagonal close-packing.
  • A007204 (program): Crystal ball sequence for D_4 lattice.
  • A007223 (program): Number of distinct perforation patterns for deriving (v,b) = (n+2,n) punctured convolutional codes from (2,1).
  • A007224 (program): Number of distinct perforation patterns for deriving (v,b) = (n+3,n) punctured convolutional codes from (2,1).
  • A007226 (program): a(n) = 2*det(M(n; -1))/det(M(n; 0)), where M(n; m) is the n X n matrix with (i,j)-th element equal to 1/binomial(n + i + j + m, n).
  • A007228 (program): a(n) = 3*binomial(4*n,n)/(n+1).
  • A007238 (program): Length of longest chain of subgroups in S_n.
  • A007244 (program): McKay-Thompson series of class 3B for the Monster group.
  • A007246 (program): McKay-Thompson series of class 2B for the Monster group.
  • A007248 (program): McKay-Thompson series of class 4C for the Monster group.
  • A007249 (program): McKay-Thompson series of class 4D for the Monster group.
  • A007252 (program): McKay-Thompson series of class 5B for the Monster group with a(0) = 0.
  • A007255 (program): McKay-Thompson series of class 6B for Monster.
  • A007257 (program): McKay-Thompson series of class 6D for Monster.
  • A007258 (program): McKay-Thompson series of class 6E for Monster (and, apart from signs, of class 12B).
  • A007259 (program): Expansion of Product_{m>=1} (1 + q^m)^(-8).
  • A007262 (program): McKay-Thompson series of class 6c for Monster.
  • A007272 (program): Super ballot numbers: 60(2n)!/(n!(n+3)!).
  • A007281 (program): Number of `(n,2)’-sequences of length 2n.
  • A007283 (program): a(n) = 3*2^n.
  • A007286 (program): E.g.f.: (sin x + cos 2x) / cos 3x.
  • A007290 (program): a(n) = 2*binomial(n,3).
  • A007291 (program): Series expansion for rectilinear polymers on square lattice.
  • A007293 (program): Dimension of space of weight systems of chord diagrams.
  • A007294 (program): Number of partitions of n into nonzero triangular numbers.
  • A007297 (program): Number of connected graphs on n labeled nodes on a circle with straight-line edges that don’t cross.
  • A007298 (program): Sums of consecutive Fibonacci numbers.
  • A007302 (program): Optimal cost function between two processors at distance n.
  • A007304 (program): Sphenic numbers: products of 3 distinct primes.
  • A007305 (program): Numerators of Farey (or Stern-Brocot) tree fractions.
  • A007306 (program): Denominators of Farey tree fractions (i.e., the Stern-Brocot subtree in the range [0,1]).
  • A007307 (program): a(n) = a(n-2) + a(n-3).
  • A007309 (program): a(n)=a(n-2)+a(n-3).
  • A007310 (program): Numbers congruent to 1 or 5 mod 6.
  • A007317 (program): Binomial transform of Catalan numbers.
  • A007318 (program): Pascal’s triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
  • A007325 (program): G.f.: Product_{k>0} (1-x^(5k-1))*(1-x^(5k-4))/((1-x^(5k-2))*(1-x^(5k-3))).
  • A007331 (program): Fourier coefficients of E_{infinity,4}.
  • A007334 (program): Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
  • A007339 (program): a(n) = n! - n^3.
  • A007345 (program): Number of Havender tableaux of height 2 with n columns.
  • A007369 (program): Numbers n such that sigma(x) = n has no solution.
  • A007378 (program): a(n), for n >= 2, is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = 2n.
  • A007380 (program): Number of 5th-order maximal independent sets in path graph.
  • A007381 (program): 7th-order maximal independent sets in path graph.
  • A007382 (program): Number of strict (-1)st-order maximal independent sets in path graph.
  • A007383 (program): Number of strict first-order maximal independent sets in path graph.
  • A007384 (program): Number of strict 3rd-order maximal independent sets in path graph.
  • A007385 (program): Number of strict 5th-order maximal independent sets in path graph.
  • A007386 (program): Number of strict 7th-order maximal independent sets in path graph.
  • A007387 (program): Number of 3rd-order maximal independent sets in cycle graph.
  • A007390 (program): Number of strict (-1)st-order maximal independent sets in cycle graph.
  • A007391 (program): Number of strict first-order maximal independent sets in cycle graph.
  • A007395 (program): Constant sequence: the all 2’s sequence.
  • A007396 (program): Add 2, then reverse digits!.
  • A007397 (program): Add 5, then reverse digits!.
  • A007398 (program): Add 7, then reverse digits.
  • A007399 (program): Add 8, then reverse digits!.
  • A007400 (program): Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931…
  • A007401 (program): Add n-1 to n-th term of ‘n appears n times’ sequence (A002024).
  • A007403 (program): a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^3 = (n+2)*2^(3*n-1) - 3*2^(n-2)*n*binomial(2*n,n).
  • A007404 (program): Decimal expansion of Sum_{n>=0} 1/2^(2^n).
  • A007405 (program): Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=2.
  • A007406 (program): Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^2.
  • A007407 (program): a(n) = denominator of Sum_{k=1..n} 1/k^2.
  • A007408 (program): Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.
  • A007409 (program): Denominators of Sum_{k=1..n} 1/k^3.
  • A007410 (program): Numerator of Sum_{k=1..4} k^(-4).
  • A007412 (program): The noncubes: a(n) = n + floor((n + floor(n^(1/3)))^(1/3)).
  • A007413 (program): A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.
  • A007415 (program): Expand sin x / exp x = x-x^2+x^3/3-x^5/30+… and invert nonzero coefficients.
  • A007417 (program): If k appears, 3k does not.
  • A007420 (program): Berstel sequence: a(n+1) = 2*a(n) - 4*a(n-1) + 4*a(n-2).
  • A007421 (program): Liouville’s function: parity of number of primes dividing n (with multiplicity).
  • A007422 (program): Multiplicatively perfect numbers j: product of divisors of j is j^2.
  • A007423 (program): a(n) = mu(n) + 1, where mu is the Moebius function.
  • A007424 (program): a(n) = 1 if n is squarefree, otherwise 2.
  • A007425 (program): d_3(n), or tau_3(n), the number of ordered factorizations of n as n = r s t.
  • A007426 (program): d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu.
  • A007427 (program): Moebius transform applied twice to sequence 1,0,0,0,….
  • A007428 (program): Moebius transform applied thrice to sequence 1,0,0,0,….
  • A007429 (program): Inverse Moebius transform applied twice to natural numbers.
  • A007430 (program): Inverse Moebius transform applied thrice to natural numbers.
  • A007431 (program): a(n) = Sum_{d|n} phi(d)*mu(n/d).
  • A007432 (program): Moebius transform applied thrice to natural numbers.
  • A007433 (program): Inverse Moebius transform applied twice to squares.
  • A007434 (program): Jordan function J_2(n) (a generalization of phi(n)).
  • A007435 (program): Inverse Moebius transform of Fibonacci numbers 1,1,2,3,5,8,…
  • A007437 (program): Inverse Moebius transform of triangular numbers.
  • A007438 (program): Moebius transform of triangular numbers.
  • A007439 (program): Number of planted trees: all sub-rooted trees from any node are identical; non-root, non-leaf nodes an even distance from the root are of degree 2.
  • A007440 (program): Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ….
  • A007442 (program): Inverse binomial transform of primes.
  • A007443 (program): Binomial transform of primes.
  • A007444 (program): Moebius transform of primes.
  • A007445 (program): Inverse Moebius transform of primes.
  • A007450 (program): Decimal expansion of 1/17.
  • A007452 (program): Expand cos x / exp x and invert nonzero coefficients.
  • A007455 (program): Number of subsequences of [ 1,…,n ] in which each odd number has an even neighbor.
  • A007456 (program): Number of days required to spread gossip to n people.
  • A007457 (program): Number of (j,k): j+k=n, (j,n)=(k,n)=1, j,k squarefree.
  • A007465 (program): Exponential-convolution of triangular numbers with themselves.
  • A007466 (program): Exponential-convolution of natural numbers with themselves.
  • A007468 (program): Sum of next n primes.
  • A007472 (program): Shifts 2 places left when binomial transform is applied twice.
  • A007473 (program): Dimension of space of Vassiliev knot invariants of order n.
  • A007476 (program): Shifts 2 places left under binomial transform.
  • A007477 (program): Shifts 2 places left when convolved with itself.
  • A007478 (program): Dimension of primitive Vassiliev knot invariants of order n.
  • A007480 (program): a(n) = denominator of sum_{k=1..n} k^(-4).
  • A007481 (program): Number of subsequences of [ 1,…,n ] in which each even number has an odd neighbor.
  • A007482 (program): a(n) is the number of subsequences of [ 1, …, 2n ] in which each odd number has an even neighbor.
  • A007483 (program): a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=1, a(1)=5.
  • A007484 (program): a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=2, a(1)=7.
  • A007486 (program): a(n) = a(n-1) + a(n-2) + a(n-3).
  • A007487 (program): Sum of 9th powers.
  • A007489 (program): a(n) = Sum_{k=1..n} k!.
  • A007491 (program): Smallest prime > n^2.
  • A007492 (program): Fibonacci(n) - (-1)^n.
  • A007493 (program): Decimal expansion of Wallis’ number, the real root of x^3 - 2*x - 5.
  • A007494 (program): Numbers that are congruent to 0 or 2 mod 3.
  • A007495 (program): Josephus problem: survivors.
  • A007496 (program): Numbers n such that the decimal expansions of 2^n and 5^n contain no 0’s (probably 33 is last term).
  • A007500 (program): Primes whose reversal in base 10 is also prime (called “palindromic primes” by D. Wells, although that name usually refers to A002385). Also called reversible primes.
  • A007501 (program): a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2.
  • A007502 (program): Les Marvin sequence: a(n) = F(n)+(n-1)*F(n-1), F() = Fibonacci numbers.
  • A007503 (program): Number of subgroups of dihedral group: sigma(n) + d(n).
  • A007504 (program): Sum of the first n primes.
  • A007509 (program): Numerator of Sum_{k=0..n} (-1)^k/(2*k+1).
  • A007510 (program): Single (or isolated or non-twin) primes: Primes p such that neither p-2 nor p+2 is prime.
  • A007517 (program): a(n) = phi(n) * (sigma(n) - n).
  • A007518 (program): a(n) = floor(n*(n+2)*(2*n-1)/8).
  • A007519 (program): Primes of form 8n+1, that is, primes congruent to 1 mod 8.
  • A007520 (program): Primes == 3 (mod 8).
  • A007521 (program): Primes of the form 8k + 5.
  • A007522 (program): Primes of the form 8n+7, that is, primes congruent to -1 mod 8.
  • A007525 (program): Decimal expansion of log_2 e.
  • A007526 (program): a(n) = n(a(n-1) + 1), a(0) = 0.
  • A007528 (program): Primes of the form 6k-1.
  • A007531 (program): a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).
  • A007533 (program): a(n) = (5n+1)^2 + 4n+1.
  • A007538 (program): A self-generating sequence: there are a(n) 3’s between successive 2’s.
  • A007543 (program): Frequency of n-th largest distance in N times N grid, N > n.
  • A007554 (program): Unique attractor for (RIGHT then MOBIUS) transform.
  • A007555 (program): Number of standard paths of length n in composition poset.
  • A007556 (program): Number of 8-ary trees with n vertices.
  • A007559 (program): Triple factorial numbers (3*n-2)!!! with leading 1 added.
  • A007564 (program): Shifts left when INVERT transform applied thrice.
  • A007566 (program): a(n+1) = (2n+3)*a(n) - 2n*a(n-1) + 8n, a(0) = 1, a(1) = 3.
  • A007568 (program): Knopfmacher expansion of 2/3: a(n+1) = a(n-1)(a(n)+1)-1.
  • A007570 (program): a(n) = F(F(n)), where F is a Fibonacci number.
  • A007572 (program): Generalization of the golden ratio (expansion of (5-13x)/((1+x)(1-4x))).
  • A007574 (program): Patterns in a dual ring.
  • A007581 (program): a(n) = (2^n+1)*(2^n+2)/6.
  • A007582 (program): a(n) = 2^(n-1)*(1+2^n).
  • A007583 (program): a(n) = (2^(2*n + 1) + 1)/3.
  • A007584 (program): 9-gonal (or enneagonal) pyramidal numbers: a(n) = n*(n+1)*(7*n-4)/6.
  • A007585 (program): 10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.
  • A007586 (program): 11-gonal (or hendecagonal) pyramidal numbers: n*(n+1)*(3*n-2)/2.
  • A007587 (program): 12-gonal (or dodecagonal) pyramidal numbers: n(n+1)(10n-7)/6.
  • A007588 (program): Stella octangula numbers: a(n) = n*(2*n^2 - 1).
  • A007590 (program): a(n) = floor(n^2/2).
  • A007591 (program): Numbers k such that k^2 + 4 is prime.
  • A007595 (program): a(n) = C_n / 2 if n is even or ( C_n + C_((n-1)/2) ) / 2 if n is odd, where C = Catalan numbers (A000108).
  • A007598 (program): Squared Fibonacci numbers: F(n)^2 where F = A000045.
  • A007600 (program): Minimal number of subsets in a separating family for a set of n elements.
  • A007601 (program): Positions where A007600 increases.
  • A007605 (program): Sum of digits of n-th prime.
  • A007606 (program): Take 1, skip 2, take 3, etc.
  • A007607 (program): Skip 1, take 2, skip 3, etc.
  • A007609 (program): Values taken by the sigma function A000203, listed with multiplicity and in ascending order.
  • A007611 (program): a(n) = n! + 2^n.
  • A007612 (program): a(n+1) = a(n) + digital root (A010888) of a(n).
  • A007613 (program): a(n) = (8^n + 2(-1)^n)/3.
  • A007618 (program): a(n) = a(n-1) + sum of digits of a(n-1), a(1) = 5.
  • A007619 (program): Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.
  • A007623 (program): Integers written in factorial base.
  • A007624 (program): Numbers m such that the product of proper divisors of m = m^k, k>1.
  • A007634 (program): Numbers n such that n^2 + n + 41 is composite.
  • A007635 (program): Primes of form n^2 + n + 17.
  • A007636 (program): Numbers k such that k^2 + k + 17 is composite.
  • A007637 (program): Primes of form 3n^2-3n+23.
  • A007638 (program): Numbers k such that 3*k^2 - 3*k + 23 is composite.
  • A007639 (program): Primes of form 2n^2 - 2n + 19.
  • A007640 (program): Numbers k such that 2*k^2 - 2*k + 19 is composite.
  • A007641 (program): Primes of the form 2*k^2 + 29.
  • A007642 (program): Numbers k such that 2*k^2 +29 is composite.
  • A007645 (program): Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).
  • A007652 (program): Final digit of prime(n).
  • A007654 (program): Numbers k such that the standard deviation of 1,…,k is an integer.
  • A007655 (program): Standard deviation of A007654.
  • A007660 (program): a(n) = a(n-1)*a(n-2) + 1 with a(0) = a(1) = 0.
  • A007661 (program): Triple factorial numbers a(n) = n!!!, defined by a(n) = n*a(n-3), a(0) = a(1) = 1, a(2) = 2. Sometimes written n!3.
  • A007662 (program): Quadruple factorial numbers n!!!!: a(n) = n*a(n-4).
  • A007663 (program): Fermat quotients: (2^(p-1)-1)/p, where p=prime(n).
  • A007664 (program): Reve’s puzzle: number of moves needed to solve the Towers of Hanoi puzzle with 4 pegs and n disks, according to the Frame-Stewart algorithm.
  • A007665 (program): Tower of Hanoi with 5 pegs.
  • A007667 (program): The sum of both two and three consecutive squares.
  • A007672 (program): a(n) = A002034(n)!/n.
  • A007674 (program): Numbers n such that n and n+1 are squarefree.
  • A007675 (program): Numbers m such that m, m+1 and m+2 are squarefree.
  • A007676 (program): Numerators of convergents to e.
  • A007677 (program): Denominators of convergents to e.
  • A007679 (program): If n mod 4 = 0 then 2^(n-1)+1 elif n mod 4 = 2 then 2^(n-1)-1 else 2^(n-1).
  • A007680 (program): a(n) = (2n+1)*n!.
  • A007681 (program): a(n) = (2*n+1)^2*n!.
  • A007685 (program): a(n) = Product_{k=1..n} binomial(2*k,k).
  • A007689 (program): a(n) = 2^n + 3^n.
  • A007692 (program): Numbers that are the sum of 2 nonzero squares in 2 or more ways.
  • A007693 (program): Primes p such that 6*p + 1 is also prime.
  • A007694 (program): Numbers k such that phi(k) divides k.
  • A007696 (program): Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).
  • A007698 (program): a(n) = 22*a(n-1) - 3*a(n-2) + 18*a(n-3) - 11*a(n-4). Deviates from A007699 at the 1403rd term.
  • A007699 (program): Pisot sequence E(10,219): a(n) = nearest integer to a(n-1)^2 / a(n-2), starting 10, 219, … Deviates from A007698 at 1403rd term.
  • A007700 (program): Numbers n such that n, 2n+1, and 4n+3 all prime.
  • A007701 (program): a(0) = 0; for n > 0, a(n) = n^n*2^((n-1)^2).
  • A007704 (program): a(n+2) = (a(n) - 1)*a(n+1) + 1.
  • A007706 (program): a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)).
  • A007715 (program): Number of 5-leaf rooted trees with n levels.
  • A007724 (program): Even minus odd extensions of truncated 3 X 2n grid diagram.
  • A007728 (program): 5th binary partition function.
  • A007729 (program): 6th binary partition function.
  • A007730 (program): 7th binary partition function.
  • A007733 (program): Period of binary representation of 1/n. Also, multiplicative order of 2 modulo the odd part of n (= A000265(n)).
  • A007735 (program): Period of base 4 representation of 1/n.
  • A007737 (program): Period of repeating digits of 1/n in base 6.
  • A007739 (program): Period of repeating digits of 1/n in base 8.
  • A007742 (program): a(n) = n*(4*n+1).
  • A007744 (program): Expansion of (1+6*x)/(1-4*x)^(7/2).
  • A007745 (program): a(n) = n OR n^2 (applied to binary expansions).
  • A007750 (program): Nonnegative integers n such that n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 is a square.
  • A007751 (program): Even bisection of A007750.
  • A007752 (program): Odd bisection of A007750.
  • A007754 (program): Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.
  • A007757 (program): Dwork-Kontsevich sequence evaluated at 2*n.
  • A007758 (program): a(n) = 2^n*n^2.
  • A007762 (program): Number of domino tilings of a certain region.
  • A007770 (program): Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1.
  • A007774 (program): Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.
  • A007775 (program): Numbers not divisible by 2, 3 or 5.
  • A007778 (program): a(n) = n^(n+1).
  • A007781 (program): a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
  • A007793 (program): Number of conjugacy classes of compact Cartan subgroups in Sp_{2n}(F), where p>n and the p-adic field F contains all r-th roots of unity for all r <= 2n.
  • A007794 (program): Juxtapose pairs of primes (starting at 1).
  • A007795 (program): Juxtapose pairs of primes.
  • A007798 (program): Expected number of random moves in Tower of Hanoi problem with n disks starting with a randomly chosen position and ending at a position with all disks on the same peg.
  • A007800 (program): From a problem in AI planning: a(n) = 4+a(n-1)+a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-6)-a(n-7), n>7.
  • A007805 (program): a(n) = Fibonacci(6*n + 3)/2.
  • A007807 (program): A variation on Euclid: a(n)=g(n)-1, where g(0)=0, g(1)=1, g(n+1)=g(n)(g(n-1)+1).
  • A007808 (program): Number of directed column-convex polyominoes of height n: a(k+1)=(k+1)*a(k)+(a(1)+…+a(k)).
  • A007814 (program): Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.
  • A007817 (program): Number of abstract simplicial 2-complexes on {1,2,3,…,n+4} which triangulate a Moebius band in such a way that all vertices lie on the boundary and are traversed in the order 1,2,3,… as one goes around the boundary.
  • A007818 (program): Maximal number of bonds joining n nodes in simple cubic lattice.
  • A007819 (program): a(n) = Sum_{j=1..n} binomial(n^2, j).
  • A007820 (program): Stirling numbers of second kind S(2n,n).
  • A007821 (program): Primes p such that pi(p) is not prime.
  • A007823 (program): A007824(n)/16.
  • A007824 (program): a(n) = f(a(n-1)), with f(m) = Sum i*b(i)*2^(i-1), m = Sum b(i)*2^i, and starting value 16.
  • A007830 (program): a(n) = (n+3)^n.
  • A007831 (program): Number of edge-labeled series-reduced trees with n nodes.
  • A007840 (program): Number of factorizations of permutations of n letters into ordered cycles.
  • A007843 (program): Least positive integer k for which 2^n divides k!.
  • A007844 (program): Least positive integer k for which 3^n divides k!.
  • A007845 (program): Least positive integer k for which 5^n divides k!.
  • A007851 (program): Number of elements w of the Weyl group D(n) such that the roots sent negative by w span an Abelian subalgebra of the Lie algebra.
  • A007852 (program): Antichains in rooted plane trees on n nodes.
  • A007854 (program): G.f.: 1/(1 - 3*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.
  • A007856 (program): Subtrees in rooted plane trees on n nodes.
  • A007857 (program): Number of independent sets in rooted plane trees on n nodes.
  • A007858 (program): G.f. is 1 - 1/f(x), where f(x) = 1+x+3*x^2+9*x^3+32*x^4+… is 1/x times g.f. for A063020.
  • A007859 (program): Number of matchings in rooted plane trees on n nodes.
  • A007862 (program): Number of triangular numbers that divide n.
  • A007863 (program): Number of hybrid binary trees with n internal nodes.
  • A007868 (program): Number of inverse pairs of elements in symmetric group S_n, or pairs of total orders on n nodes (average of A000085 and A000142).
  • A007875 (program): Number of ways of writing n as p*q, with p <= q, gcd(p, q) = 1.
  • A007876 (program): a(2n-1) = n*a(2n-2), a(2n) = n*a(2n-1) + 1.
  • A007877 (program): Period 4 zigzag sequence: repeat [0,1,2,1].
  • A007879 (program): Chimes made by clock striking the hour and half-hour.
  • A007882 (program): Number of lattice points inside circle of radius n is 4(a(n)+n)-3.
  • A007886 (program): Number of cycles induced by iterating the Gray-coding of an n-bit number: a(n+1) = a(n) + ( 2^n / C_n), where C_n = least power of 2 >= n (C_n is the length of the cycle).
  • A007887 (program): a(n) = Fibonacci(n) mod 9.
  • A007889 (program): Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i<j<k are both (i,j) and (j,k) edges.
  • A007891 (program): A Kutz sequence.
  • A007892 (program): A Kutz sequence.
  • A007893 (program): A Kutz sequence.
  • A007895 (program): Number of terms in the Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
  • A007899 (program): Coordination sequence for hexagonal close-packing.
  • A007900 (program): Coordination sequence for D_4 lattice.
  • A007904 (program): Crystal ball sequence for diamond.
  • A007907 (program): Concatenation of sequence (1, 2, …, floor((n-1)/2), floor(n/2), floor(n/2)-1, …, 1) for n >= 1.
  • A007908 (program): Triangle of the gods: to get a(n), concatenate the decimal numbers 1,2,3,…,n.
  • A007909 (program): Expansion of (1-x)/(1-2*x+x^2-2*x^3).
  • A007910 (program): Expansion of 1/((1-2*x)*(1+x^2)).
  • A007911 (program): a(n) = (n-1)!! - (n-2)!!.
  • A007912 (program): Quantum factorials: (n-1)!! - (n-2)!! (mod n).
  • A007913 (program): Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square.
  • A007916 (program): Numbers that are not perfect powers.
  • A007917 (program): Version 1 of the “previous prime” function: largest prime <= n.
  • A007918 (program): Least prime >= n (version 1 of the “next prime” function).
  • A007920 (program): Smallest number k such that n + k is prime.
  • A007921 (program): Numbers that are not the difference of two primes.
  • A007923 (program): Lengths increase by 1, digits cycle through positive digits.
  • A007925 (program): a(n) = n^(n+1) - (n+1)^n.
  • A007928 (program): Numbers containing an even digit.
  • A007929 (program): Odd numbers containing an even digit.
  • A007931 (program): Numbers that contain only 1’s and 2’s. Nonempty binary strings of length n in lexicographic order.
  • A007932 (program): Numbers that contain only 1’s, 2’s and 3’s.
  • A007943 (program): Concatenation of sequence (1,3,..,2n-1,2n,2n-2,..,2).
  • A007945 (program): Expansion of (2-x-2*x^2)/((1-x)*(1-x+x^2)).
  • A007946 (program): a(n) = 6*(2*n+1)! / ((n!)^2*(n+3)).
  • A007947 (program): Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
  • A007948 (program): Largest cubefree number dividing n.
  • A007949 (program): Greatest k such that 3^k divides n. Or, 3-adic valuation of n.
  • A007950 (program): Binary sieve: delete every 2nd number, then every 4th, 8th, etc.
  • A007952 (program): Generated by a sieve: keep first number, drop every 2nd, keep first, drop every 3rd, keep first, drop every 4th, etc.
  • A007953 (program): Digital sum (i.e., sum of digits) of n; also called digsum(n).
  • A007954 (program): Product of decimal digits of n.
  • A007955 (program): Product of divisors of n.
  • A007956 (program): Product of the proper divisors of n.
  • A007957 (program): Numbers that contain an odd digit.
  • A007958 (program): Even numbers with at least one odd digit.
  • A007961 (program): n written in base where place values are positive squares.
  • A007971 (program): INVERTi transform of central trinomial coefficients (A002426).
  • A007972 (program): Number of permutations that are 2 “block reversals” away from 12…n.
  • A007978 (program): Least non-divisor of n.
  • A007979 (program): Expansion of (1+x^2)(1+x^4)/((1-x)^2*(1-x^2)*(1-x^3)).
  • A007980 (program): Expansion of (1+x^2)/((1-x)^2*(1-x^3)).
  • A007981 (program): Number of nonsplit type 2 metacyclic 2-groups of order 2^n.
  • A007983 (program): Number of non-Abelian metacyclic groups of order p^n (p odd).
  • A007987 (program): Number of irreducible words of length 2n in the free group with generators x,y such that the total degree of x and the total degree of y both equal zero.
  • A007988 (program): Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)).
  • A007993 (program): Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
  • A007997 (program): a(n) = ceiling((n-3)(n-4)/6).
  • A008000 (program): Coordination sequence T1 for Zeolite Code ABW and ATN.
  • A008013 (program): Coordination sequence occurring in Zeolite Codes AFG, CAN, LIO, LOS.
  • A008062 (program): a(n) = maximal value of m such that an n X m radar array exists. (A (0,1) matrix A such that any horizontal shift of A overlaps A in at most a single 1.)
  • A008084 (program): Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO.
  • A008123 (program): Coordination sequence T1 for Zeolite Code KFI.
  • A008130 (program): a(n) = floor(n/3)*ceiling(n/3).
  • A008133 (program): a(n) = floor(n/3)*floor((n+1)/3).
  • A008137 (program): Coordination sequence T1 for Zeolite Code LTA and RHO.
  • A008160 (program): Coordination sequence T1 for Zeolite Code MER.
  • A008217 (program): a(n) = floor(n/4)*floor((n+1)/4).
  • A008218 (program): Floor(n/4)*floor((n+1)/4)*floor((n+2)/4).
  • A008233 (program): a(n) = floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4).
  • A008238 (program): a(n) = floor(n/4)*ceiling(n/4).
  • A008253 (program): Coordination sequence for diamond.
  • A008255 (program): Coordination sequence T2 for feldspar.
  • A008259 (program): Coordination sequence T2 for Moganite, also for BGB1.
  • A008260 (program): Coordination sequence for Paracelsian.
  • A008261 (program): Coordination sequence for quartz.
  • A008264 (program): Coordination sequence for tridymite, lonsdaleite, and wurtzite.
  • A008266 (program): Coordination sequence T1 for Zeolite Code GIS.
  • A008269 (program): Number of strings on n symbols in Stockhausen problem.
  • A008270 (program): Total length of strings on n symbols in Stockhausen problem.
  • A008279 (program): Triangle T(n,k) = n!/(n-k)! (0 <= k <= n) read by rows, giving number of permutations of n things k at a time.
  • A008280 (program): Boustrophedon version of triangle of Euler-Bernoulli or Entringer numbers read by rows.
  • A008281 (program): Triangle of Euler-Bernoulli or Entringer numbers read by rows.
  • A008282 (program): Triangle of Euler-Bernoulli or Entringer numbers read by rows: T(n,k) is the number of down-up permutations of n+1 starting with k+1.
  • A008287 (program): Triangle of quadrinomial coefficients, row n is the sequence of coefficients of (1 + x + x^2 + x^3)^n.
  • A008288 (program): Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals.
  • A008290 (program): Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).
  • A008291 (program): Triangle of rencontres numbers.
  • A008292 (program): Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.
  • A008297 (program): Triangle of Lah numbers.
  • A008310 (program): Triangle of coefficients of Chebyshev polynomials T_n(x).
  • A008311 (program): Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).
  • A008312 (program): Triangle of coefficients of Chebyshev polynomials U_n(x).
  • A008313 (program): Triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
  • A008314 (program): Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials.
  • A008315 (program): Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
  • A008328 (program): Number of divisors of prime(n)-1.
  • A008329 (program): Number of divisors of p+1, p prime.
  • A008330 (program): phi(p-1), as p runs through the primes.
  • A008331 (program): a(n) = phi(prime(n)+1).
  • A008332 (program): Sum of divisors of p-1, p prime.
  • A008333 (program): Sum of divisors of p+1, p prime.
  • A008334 (program): Number of distinct primes dividing p-1, where p = n-th prime.
  • A008335 (program): Number of primes dividing p+1 as p runs through the primes.
  • A008336 (program): a(n+1) = a(n)/n if n|a(n) else a(n)*n, a(1) = 1.
  • A008339 (program): a(1)=1; for n >= 1, a(n+1) = lcm(a(n),n) / gcd(a(n),n).
  • A008343 (program): a(1)=1; thereafter a(n+1) = a(n)-n if a(n) >= n otherwise a(n+1) = a(n)+n.
  • A008344 (program): a(1)=0; thereafter a(n+1) = a(n) - n if a(n) >= n otherwise a(n+1) = a(n) + n.
  • A008345 (program): a(n+1) = a(n)-b(n+1) if a(n) >= b(n+1) else a(n)+b(n+1), where {b(n)} are the triangular numbers A000217.
  • A008346 (program): a(n) = Fibonacci(n) + (-1)^n.
  • A008347 (program): a(n) = Sum_{i=0..n-1} (-1)^i * prime(n-i).
  • A008348 (program): a(0)=0; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n).
  • A008351 (program): a(n) is the concatenation of a(n-1) and a(n-2) with a(1)=1, a(2)=2.
  • A008352 (program): a(n) is formed by concatenating a(n-2) and a(n-1), with a(0) = 1, a(1) = 2;
  • A008353 (program): 2^n*(2^(n+1) - n - 1).
  • A008354 (program): a(n) = (5*n^2 + 1)*n^2 / 6.
  • A008355 (program): Coordination sequence for D_5 lattice.
  • A008356 (program): Crystal ball sequence for D_5 lattice.
  • A008363 (program): a(n) = floor(n/5)*ceiling(n/5).
  • A008364 (program): 11-rough numbers: not divisible by 2, 3, 5 or 7.
  • A008365 (program): Smallest prime factor is >= 13.
  • A008366 (program): Smallest prime factor is >= 17.
  • A008368 (program): Number of orbits on points that are at n steps from the origin in the f.c.c. lattice.
  • A008369 (program): Number of orbits on points that are at n steps from 0 in D_4 lattice.
  • A008380 (program): 4*(2n-1)!*H(2n), where H(n) = Sum 1/i are harmonic numbers.
  • A008381 (program): floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5).
  • A008382 (program): a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5).
  • A008383 (program): Coordination sequence for A_4 lattice.
  • A008384 (program): Crystal ball sequence for A_4 lattice.
  • A008385 (program): Coordination sequence for A_5 lattice.
  • A008386 (program): Crystal ball sequence for A_5 lattice.
  • A008387 (program): Coordination sequence for A_6 lattice.
  • A008388 (program): Crystal ball sequence for A_6 lattice.
  • A008389 (program): Coordination sequence for A_7 lattice.
  • A008390 (program): Crystal ball sequence for A_7 lattice.
  • A008391 (program): Coordination sequence for A_8 lattice.
  • A008392 (program): Crystal ball sequence for A_8 lattice.
  • A008393 (program): Coordination sequence for A_9 lattice.
  • A008394 (program): Crystal ball sequence for A_9 lattice.
  • A008395 (program): Coordination sequence for A_10 lattice.
  • A008396 (program): Crystal ball sequence for A_10 lattice.
  • A008401 (program): Coordination sequence for {E_6}* lattice.
  • A008402 (program): Crystal ball sequence for {E_6}* lattice.
  • A008410 (program): a(0) = 1, a(n) = 480*sigma_7(n).
  • A008412 (program): Coordination sequence for 4-dimensional cubic lattice (points on surface of 4-dimensional cross-polytope).
  • A008413 (program): Coordination sequence for 5-dimensional cubic lattice.
  • A008414 (program): Coordination sequence for 6-dimensional cubic lattice.
  • A008415 (program): Coordination sequence for 7-dimensional cubic lattice.
  • A008416 (program): Coordination sequence for 8-dimensional cubic lattice.
  • A008417 (program): Crystal ball sequence for 8-dimensional cubic lattice.
  • A008418 (program): Coordination sequence for 9-dimensional cubic lattice.
  • A008419 (program): Crystal ball sequence for 9-dimensional cubic lattice.
  • A008420 (program): Coordination sequence for 10-dimensional cubic lattice.
  • A008421 (program): Crystal ball sequence for 10-dimensional cubic lattice.
  • A008427 (program): Theta series of {D_8}* lattice.
  • A008428 (program): Theta series of D_6 lattice.
  • A008429 (program): Theta series of D_7 lattice.
  • A008430 (program): Theta series of D_8 lattice.
  • A008431 (program): Theta series of D_9 lattice.
  • A008432 (program): Theta series of D_10 lattice.
  • A008437 (program): Expansion of Jacobi theta constant theta_2^3 /8.
  • A008438 (program): Sum of divisors of 2*n + 1.
  • A008439 (program): Expansion of Jacobi theta constant theta_2^5 /32.
  • A008440 (program): Expansion of Jacobi theta constant theta_2^6 /(64q^(3/2)).
  • A008441 (program): Number of ways of writing n as the sum of 2 triangular numbers.
  • A008442 (program): Expansion of Jacobi theta constant (theta_2(2z))^2/4.
  • A008443 (program): Number of ordered ways of writing n as the sum of 3 triangular numbers.
  • A008451 (program): Number of ways of writing n as a sum of 7 squares.
  • A008452 (program): Number of ways of writing n as a sum of 9 squares.
  • A008453 (program): Number of ways of writing n as a sum of 11 squares.
  • A008454 (program): Tenth powers: a(n) = n^10.
  • A008455 (program): 11th powers: a(n) = n^11.
  • A008456 (program): 12th powers: a(n) = n^12.
  • A008457 (program): a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^3.
  • A008458 (program): Coordination sequence for hexagonal lattice.
  • A008459 (program): Square the entries of Pascal’s triangle.
  • A008460 (program): Take sum of squares of digits of previous term; start with 6.
  • A008461 (program): Take sum of squares of digits of previous term.
  • A008462 (program): Take sum of squares of digits of previous term; start with 8.
  • A008463 (program): Take sum of squares of digits of previous term; start with 9.
  • A008464 (program): a(n) = 2^(2n+3) - 2^n*(n+3).
  • A008466 (program): a(n) = 2^n - Fibonacci(n+2).
  • A008468 (program): a(n) = n OR n^3 (applied to binary expansions).
  • A008472 (program): Sum of the distinct primes dividing n.
  • A008473 (program): If n = Product (p_j^k_j) then a(n) = Product (p_j + k_j).
  • A008474 (program): If n = Product (p_j^k_j) then a(n) = Sum (p_j + k_j).
  • A008475 (program): If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
  • A008476 (program): If n = Product (p_j^k_j) then a(n) = Sum (k_j^p_j).
  • A008477 (program): If n = Product (p_j^k_j) then a(n) = Product (k_j^p_j).
  • A008480 (program): Number of ordered prime factorizations of n.
  • A008482 (program): Coefficients in expansion of (x-1)*(1+x)^(n-1), n > 0.
  • A008483 (program): Number of partitions of n into parts >= 3.
  • A008485 (program): Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.
  • A008486 (program): Expansion of (1 + x + x^2)/(1 - x)^2.
  • A008487 (program): Expansion of (1-x^5) / (1-x)^5.
  • A008488 (program): Expansion of (1-x^6) / (1-x)^6.
  • A008489 (program): Expansion of (1-x^7)/(1-x)^7.
  • A008490 (program): Expansion of (1-x^8) / (1-x)^8.
  • A008491 (program): Expansion of (1-x^9 ) / (1-x)^9.
  • A008492 (program): Expansion of (1-x^10) / (1-x)^10.
  • A008493 (program): Expansion of (1-x^11) / (1-x)^11.
  • A008494 (program): Expansion of (1-x^12) / (1-x)^12.
  • A008495 (program): Expansion of (1-x^13) / (1-x)^13.
  • A008496 (program): a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5).
  • A008497 (program): a(n) = floor(n/5)*floor((n+1)/5).
  • A008498 (program): 4-dimensional centered tetrahedral numbers.
  • A008499 (program): Number of 5-dimensional centered tetrahedral numbers.
  • A008500 (program): 6-dimensional centered tetrahedral numbers.
  • A008501 (program): 7-dimensional centered tetrahedral numbers.
  • A008502 (program): 8-dimensional centered tetrahedral numbers.
  • A008503 (program): 9-dimensional centered tetrahedral numbers.
  • A008504 (program): 10-dimensional centered tetrahedral numbers.
  • A008505 (program): 11-dimensional centered tetrahedral numbers.
  • A008506 (program): 12-dimensional centered tetrahedral numbers.
  • A008507 (program): Number of odd composite numbers less than n-th odd prime.
  • A008508 (program): Number of odd primes less than n-th odd composite number.
  • A008511 (program): Number of points on surface of 4-dimensional cube.
  • A008512 (program): Number of points on the surface of 5-dimensional cube.
  • A008513 (program): Number of points on surface of 6-dimensional cube.
  • A008514 (program): 4-dimensional centered cube numbers.
  • A008515 (program): 5-dimensional centered cube numbers.
  • A008516 (program): 6-dimensional centered cube numbers.
  • A008518 (program): Triangle of Eulerian numbers with rows multiplied by 1 + x.
  • A008522 (program): Numbers that contain the letter `t’.
  • A008527 (program): Coordination sequence for body-centered tetragonal lattice.
  • A008528 (program): Coordination sequence for 4-dimensional RR-centered di-isohexagonal orthogonal lattice.
  • A008529 (program): Coordination sequence for 4-dimensional face-centered cubic orthogonal lattice.
  • A008530 (program): Coordination sequence for 4-dimensional primitive di-isohexagonal orthogonal lattice.
  • A008531 (program): Coordination sequence for {A_4}* lattice.
  • A008532 (program): Coordination sequence for 4-dimensional I-centered cubic orthogonal lattice.
  • A008533 (program): Coordination sequence for {A_5}* lattice.
  • A008534 (program): Coordination sequence for {A_6}* lattice.
  • A008535 (program): Coordination sequence for {A_7}* lattice.
  • A008538 (program): Numbers that contain the letter ‘s’.
  • A008539 (program): Numbers that do not contain the letter `s’.
  • A008540 (program): Numbers that contain the letter `f’.
  • A008541 (program): Numbers that do not contain the letter `f’.
  • A008542 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).
  • A008543 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).
  • A008544 (program): Triple factorial numbers: Product_{k=0..n-1} (3*k+2).
  • A008545 (program): Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).
  • A008546 (program): Quintuple factorial numbers: Product_{k = 0..n-1} (5*k + 4).
  • A008548 (program): Quintuple factorial numbers: Product_{k=0..n-1} (5*k+1).
  • A008549 (program): Number of ways of choosing at most n-1 items from a set of size 2*n+1.
  • A008550 (program): Table T(n,k), n>=0 and k>=0, read by antidiagonals: the k-th column given by the k-th Narayana polynomial.
  • A008553 (program): Numbers that contain the letter `y’.
  • A008556 (program): Triangle of coefficients of Legendre polynomials 2^n P_n (x).
  • A008557 (program): Repeatedly convert from decimal to octal.
  • A008558 (program): Repeatedly convert from decimal to octal.
  • A008560 (program): a(1) = 2; to get a(n), n >= 2, convert a(n-1) from base 3 to base 2.
  • A008574 (program): a(0) = 1, thereafter a(n) = 4n.
  • A008576 (program): Coordination sequence for planar net 4.8.8.
  • A008577 (program): Crystal ball sequence for planar net 4.8.8.
  • A008578 (program): Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).
  • A008579 (program): Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.
  • A008580 (program): Crystal ball sequence for planar net 3.6.3.6.
  • A008581 (program): Molien series for 6-dimensional complex reflection group 4.U_4 (3) of order 2^9 .3^7 .5.7.
  • A008583 (program): Molien series for Weyl group E_7.
  • A008584 (program): Molien series for Weyl group E_6.
  • A008585 (program): a(n) = 3*n.
  • A008586 (program): Multiples of 4.
  • A008587 (program): Multiples of 5: a(n) = 5 * n.
  • A008588 (program): Nonnegative multiples of 6.
  • A008589 (program): Multiples of 7.
  • A008590 (program): Multiples of 8.
  • A008591 (program): Multiples of 9: a(n) = 9*n.
  • A008592 (program): Multiples of 10: a(n) = 10 * n.
  • A008593 (program): Multiples of 11.
  • A008594 (program): Multiples of 12: a(n) = 12*n.
  • A008595 (program): Multiples of 13.
  • A008596 (program): Multiples of 14.
  • A008597 (program): Multiples of 15.
  • A008598 (program): Multiples of 16.
  • A008599 (program): Multiples of 17.
  • A008600 (program): Multiples of 18.
  • A008601 (program): Multiples of 19.
  • A008602 (program): Multiples of 20.
  • A008603 (program): Multiples of 21.
  • A008604 (program): Multiples of 22.
  • A008605 (program): Multiples of 23.
  • A008606 (program): Multiples of 24.
  • A008607 (program): Multiples of 25.
  • A008609 (program): a(n) = n + max_{0 <= i <n} ((n-i)*a(i)), a(0) = 1.
  • A008610 (program): Molien series of 4-dimensional representation of cyclic group of order 4 over GF(2) (not Cohen-Macaulay).
  • A008611 (program): a(n) = a(n-3) + 1, with a(0)=a(2)=1, a(1)=0.
  • A008612 (program): Molien series of 2-dimensional representation of SL(2,3).
  • A008613 (program): Molien series for 3-dimensional representation of A_5.
  • A008615 (program): a(n) = floor(n/2) - floor(n/3).
  • A008616 (program): Expansion of 1/((1-x^2)(1-x^5)).
  • A008617 (program): Expansion of 1/((1-x^2)(1-x^7)).
  • A008618 (program): Expansion of 1/((1-x^2)(1-x^9)).
  • A008619 (program): Positive integers repeated.
  • A008620 (program): Positive integers repeated three times.
  • A008621 (program): Expansion of 1/((1-x)*(1-x^4)).
  • A008622 (program): Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)).
  • A008624 (program): Expansion of (1+x^3)/((1-x^2)*(1-x^4)) = (1-x+x^2)/((1+x)*(1-x)^2*(1+x^2)).
  • A008625 (program): G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^6)*(1-x^7)) (or (1+x^5)(1+x^6)/((1-x^3)*(1-x^4)*(1-x^7))).
  • A008627 (program): Molien series for A_4.
  • A008628 (program): Molien series for A_5.
  • A008630 (program): Molien series for A_7.
  • A008636 (program): Number of partitions of n into at most 7 parts.
  • A008637 (program): Number of partitions of n into at most 8 parts.
  • A008638 (program): Number of partitions of n into at most 9 parts.
  • A008639 (program): Number of partitions of n into at most 10 parts.
  • A008642 (program): Quarter-squares repeated.
  • A008643 (program): Molien series for group of 4 X 4 upper triangular matrices over GF(2).
  • A008644 (program): Molien series of 5 X 5 upper triangular matrices over GF( 2 ).
  • A008645 (program): Molien series of 6 X 6 upper triangular matrices over GF( 2 ).
  • A008646 (program): Molien series for cyclic group of order 5.
  • A008647 (program): Expansion of g.f.: (1+x^9)/((1-x^4)*(1-x^6)).
  • A008648 (program): Molien series of 3 X 3 upper triangular matrices over GF( 5 ).
  • A008649 (program): Molien series of 3 X 3 upper triangular matrices over GF( 3 ).
  • A008650 (program): Molien series of 4 X 4 upper triangular matrices over GF( 3 ).
  • A008651 (program): Molien series of binary icosahedral group.
  • A008652 (program): Molien series for group of 3 X 3 upper triangular matrices over GF( 4 ).
  • A008653 (program): Theta series of direct sum of 2 copies of hexagonal lattice.
  • A008658 (program): Theta series of direct sum of 2 copies of D_4 lattice in powers of q^2.
  • A008666 (program): Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)).
  • A008667 (program): Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
  • A008668 (program): Molien series for 4-dimensional reflection group [3,3,5] of order 14400.
  • A008669 (program): Molien series for 4-dimensional complex reflection group of order 7680 (in powers of x^4).
  • A008670 (program): Molien series for Weyl group F_4.
  • A008671 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^7)).
  • A008672 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)).
  • A008673 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)).
  • A008674 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)).
  • A008675 (program): Expansion of 1/( Product_{j=0..5} (1-x^(2*j+1)) ).
  • A008676 (program): Expansion of 1/((1-x^3)*(1-x^5)).
  • A008677 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)).
  • A008678 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)).
  • A008679 (program): Expansion of 1/((1-x^3)*(1-x^4)).
  • A008680 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)).
  • A008681 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)).
  • A008682 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^6)).
  • A008683 (program): Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.
  • A008687 (program): Number of 1’s in 2’s complement representation of -n.
  • A008705 (program): Coefficient of x^n in (Product_{m=1..n}(1-x^m))^n.
  • A008706 (program): Coordination sequence for 3.3.3.4.4 planar net.
  • A008718 (program): Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).
  • A008719 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).
  • A008720 (program): Molien series for 3-dimensional group [2,5] = *225.
  • A008721 (program): Molien series for 3-dimensional group [2,7] = *227.
  • A008722 (program): Molien series for 3-dimensional group [2,9] = *229.
  • A008723 (program): Molien series for 3-dimensional group [2,11] = *2 2 11.
  • A008724 (program): a(n) = floor(n^2/12).
  • A008725 (program): Molien series for 3-dimensional group [2,n] = *22n.
  • A008726 (program): Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.
  • A008727 (program): Molien series for 3-dimensional group [2,n] = *22n.
  • A008728 (program): Molien series for 3-dimensional group [2,n ] = *22n.
  • A008729 (program): Molien series for 3-dimensional group [2, n] = *22n.
  • A008730 (program): Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
  • A008731 (program): Molien series for 3-dimensional group [2, n] = *22n.
  • A008732 (program): Molien series for 3-dimensional group [2,n] = *22n.
  • A008733 (program): Molien series for 3-dimensional group [2+, n] = 2*(n/2).
  • A008734 (program): Molien series for 3-dimensional group [2+,n ] = 2*(n/2).
  • A008735 (program): Molien series for 3-dimensional group [2+,n ] = 2*(n/2).
  • A008736 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
  • A008737 (program): a(n) = floor(n/6)*ceiling(n/6).
  • A008738 (program): a(n) = floor((n^2 + 1)/5).
  • A008739 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
  • A008740 (program): Molien series for 3-dimensional group [2+,n] = 2*(n/2).
  • A008742 (program): Molien series for 3-dimensional group [3,3 ]+ = 332.
  • A008743 (program): Molien series for 3-dimensional group [3,4]+ = 432.
  • A008747 (program): Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)).
  • A008748 (program): Expansion of (1 + x^5) / ((1-x) * (1-x^2) * (1-x^3)) in powers of x.
  • A008749 (program): Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)).
  • A008750 (program): Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)).
  • A008751 (program): Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)).
  • A008752 (program): Expansion of (1+x^9)/((1-x)*(1-x^2)*(1-x^3)).
  • A008753 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)).
  • A008754 (program): Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)).
  • A008755 (program): Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)).
  • A008756 (program): Expansion of (1+x^13)/((1-x)*(1-x^2)*(1-x^3)).
  • A008757 (program): Expansion of (1+x^14)/((1-x)*(1-x^2)*(1-x^3)).
  • A008758 (program): Expansion of (1+x^15)/((1-x)*(1-x^2)*(1-x^3)).
  • A008759 (program): Expansion of (1+x^16)/(1-x)/(1-x^2)/(1-x^3).
  • A008760 (program): Expansion of (1+x^17)/((1-x)*(1-x^2)*(1-x^3)).
  • A008761 (program): Expansion of (1+x^18)/((1-x)*(1-x^2)*(1-x^3)).
  • A008762 (program): Expansion of (1+x)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008763 (program): Expansion of g.f.: x^4/((1-x)*(1-x^2)^2*(1-x^3)).
  • A008764 (program): Number of 3 X 3 symmetric stochastic matrices under row and column permutations.
  • A008765 (program): Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008766 (program): Expansion of (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008767 (program): a(n) = floor(n/7)*ceiling(n/7).
  • A008768 (program): Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008769 (program): Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008770 (program): Expansion of (1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008771 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008772 (program): Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008773 (program): Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
  • A008776 (program): Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
  • A008778 (program): a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.
  • A008779 (program): Number of n-dimensional partitions of 5.
  • A008780 (program): a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).
  • A008784 (program): Numbers n such that sqrt(-1) mod n exists; or, numbers n that are primitively represented by x^2 + y^2.
  • A008785 (program): a(n) = (n+4)^n.
  • A008786 (program): a(n) = (n+5)^n.
  • A008787 (program): a(n) = (n + 6)^n.
  • A008788 (program): a(n) = n^(n+2).
  • A008789 (program): a(n) = n^(n+3).
  • A008790 (program): a(n) = n^(n+4).
  • A008791 (program): a(n) = n^(n+5).
  • A008794 (program): Squares repeated; a(n) = floor(n/2)^2.
  • A008795 (program): Molien series for 3-dimensional representation of dihedral group D_6 of order 6.
  • A008796 (program): Molien series for 3-dimensional group [2,3]+ = 223; also for group H_{1,2} of order 384.
  • A008797 (program): Molien series for group [2,4]+ = 224.
  • A008798 (program): Molien series for group [2,5]+ = 225.
  • A008799 (program): Molien series for group [2,6]+ = 226.
  • A008800 (program): Molien series for group [2,7]+ = 227.
  • A008801 (program): Molien series for group [2,8]+ = 228.
  • A008802 (program): Molien series for group [2,9]+ = 229.
  • A008803 (program): Molien series for group [2,10]+ = 2 2 10.
  • A008804 (program): Expansion of 1/((1-x)^2*(1-x^2)*(1-x^4)).
  • A008805 (program): Triangular numbers repeated.
  • A008806 (program): Expansion of (1+x^3)/((1-x^2)^2*(1-x^3)).
  • A008807 (program): Expansion of (1+x^5)/((1-x^2)^2*(1-x^5)).
  • A008808 (program): Expansion of (1+x^7)/((1-x^2)^2*(1-x^7)).
  • A008809 (program): Expansion of (1+x^9)/((1-x^2)^2*(1-x^9)).
  • A008810 (program): a(n) = ceiling(n^2/3).
  • A008811 (program): Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
  • A008812 (program): Expansion of (1+x^5)/((1-x)^2*(1-x^5)).
  • A008813 (program): Expansion of (1+x^6)/((1-x)^2*(1-x^6)).
  • A008814 (program): Expansion of (1+x^7)/((1-x)^2*(1-x^7)).
  • A008815 (program): Expansion of (1+x^8)/((1-x)^2*(1-x^8)).
  • A008816 (program): Expansion of (1+x^9)/((1-x)^2*(1-x^9)).
  • A008817 (program): Expansion of (1+x^10)/((1-x)^2*(1-x^10)).
  • A008818 (program): Expansion of (1+2*x^3+x^4)/((1-x^2)^2*(1-x^4)); Molien series for 3-dimensional representation of group 2x = [ 2+,4+ ] = CC_4 = C4.
  • A008819 (program): Expansion of (1+2*x^5+x^8)/((1-x^2)^2*(1-x^8)).
  • A008820 (program): Expansion of (1+2*x^7+x^12)/((1-x^2)^2*(1-x^12)).
  • A008821 (program): Expansion of (1+2*x^9+x^16)/((1-x^2)^2*(1-x^16)).
  • A008822 (program): Expansion of (1 + 2*x^2 + x^3)/((1 - x)^2*(1 - x^3)).
  • A008823 (program): Expansion of (1+2*x^3+x^5)/((1-x)^2*(1-x^5)).
  • A008824 (program): Expansion of (1+2*x^4+x^7)/((1-x)^2*(1-x^7)).
  • A008825 (program): Expansion of (1+2*x^5+x^9)/((1-x)^2*(1-x^9)).
  • A008827 (program): Coefficients from fractional iteration of exp(x) -1.
  • A008830 (program): Discrete logarithm of n to the base 2 modulo 11.
  • A008831 (program): Discrete logarithm of n to the base 2 modulo 13.
  • A008832 (program): Discrete logarithm of n to the base 2 modulo 19.
  • A008833 (program): Largest square dividing n.
  • A008834 (program): Largest cube dividing n.
  • A008835 (program): Largest 4th power dividing n.
  • A008836 (program): Liouville’s function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).
  • A008837 (program): a(n) = p*(p-1)/2 for p = prime(n).
  • A008838 (program): a(n) = floor(n/8)*ceiling(n/8).
  • A008839 (program): Numbers k such that the decimal expansion of 5^k contains no zeros.
  • A008843 (program): Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.
  • A008844 (program): Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.
  • A008845 (program): Numbers k such that k+1 and k/2+1 are squares.
  • A008846 (program): Hypotenuses of primitive Pythagorean triangles.
  • A008851 (program): Congruent to 0 or 1 mod 5.
  • A008852 (program): Numbers n such that n^2 and n have same last 2 digits.
  • A008854 (program): Numbers that are congruent to {0, 1, 4} mod 5.
  • A008857 (program): a(n) = floor(n/9)*ceiling(n/9).
  • A008859 (program): a(n) = Sum_{k=0..6} C(n,k).
  • A008860 (program): a(n) = Sum_{k=0..7} binomial(n,k).
  • A008861 (program): a(n) = Sum_{k=0..8} C(n,k).
  • A008862 (program): a(n) = Sum_{k=0..9} C(n,k).
  • A008863 (program): a(n) = Sum_{k=0..10} C(n,k).
  • A008864 (program): a(n) = prime(n) + 1.
  • A008865 (program): a(n) = n^2 - 2.
  • A008866 (program): Prime(A052928(n+1)) + (-1)^n* prime(A109613(n)).
  • A008867 (program): Triangle of truncated triangular numbers: k-th term in n-th row is number of dots in hexagon of sides k, n-k, k, n-k, k, n-k.
  • A008873 (program): 3x+1 sequence starting at 97.
  • A008874 (program): 3x+1 sequence starting at 63.
  • A008875 (program): 3x+1 sequence starting at 95.
  • A008876 (program): 3x+1 sequence starting at 81.
  • A008877 (program): 3x+1 sequence starting at 57.
  • A008878 (program): 3x+1 sequence starting at 39.
  • A008879 (program): 3x+1 sequence starting at 87.
  • A008880 (program): 3x + 1 sequence starting at 33.
  • A008881 (program): a(n) = Product_{j=0..5} floor((n+j)/6).
  • A008882 (program): 3x+1 sequence starting at 99.
  • A008883 (program): 3x+1 sequence starting at 51.
  • A008884 (program): 3x+1 sequence starting at 27.
  • A008885 (program): Aliquot sequence starting at 30.
  • A008886 (program): Aliquot sequence starting at 42.
  • A008887 (program): Aliquot sequence starting at 60.
  • A008891 (program): Aliquot sequence starting at 180.
  • A008893 (program): Number of equilateral triangles formed by triples of points taken from a hexagonal chunk of side n in the hexagonal lattice.
  • A008894 (program): 3x - 1 sequence starting at 36.
  • A008895 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008896 (program): 3x - 1 sequence starting at 66.
  • A008897 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008898 (program): Trajectory of 84 under the map x -> x/2 for x even, x -> 3x - 1 for x odd.
  • A008899 (program): x -> x/2 if x even, x -> 3x - 1 if x odd.
  • A008900 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008901 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008902 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008903 (program): x->x/2 if x even, x->3x-1 if x odd.
  • A008904 (program): a(n) is the final nonzero digit of n!.
  • A008905 (program): Leading digit of n!.
  • A008906 (program): Number of digits in n! excluding final zeros.
  • A008908 (program): (1 + number of halving and tripling steps to reach 1 in the Collatz (3x+1) problem), or -1 if 1 is never reached.
  • A008909 (program): Join 2n points on a line with n arcs above the line; form graph with the arcs as nodes, joining 2 nodes when the arcs cross. a(n) is the number of cases in which the graph is a path.
  • A008911 (program): a(n) = n^2*(n^2 - 1)/6.
  • A008912 (program): Truncated triangular numbers (of form n*(n-3)/2 - k^2+k*n+1 for 1<=k<n).
  • A008914 (program): Order of simple Chevalley group G_2 (q), q = prime power.
  • A008931 (program): Expansion of (2/(1+sqrt(1-36*x)))^(1/3).
  • A008935 (program): If 2n = Sum 2^e(k) then a(n) = Sum e(k)^2.
  • A008936 (program): Expansion of (1 - 2*x -x^4)/(1 - 2*x)^2 in powers of x.
  • A008937 (program): a(n) = Sum_{k=0..n} T(k) where T(n) are the tribonacci numbers A000073.
  • A008949 (program): Triangle read by rows of partial sums of binomial coefficients: T(n,k) = Sum_{i=0..k} binomial(n,i) (0 <= k <= n); also dimensions of Reed-Muller codes.
  • A008952 (program): Leading digit of 2^n.
  • A008953 (program): a(n) is the leading digit of the n-th triangular number, n*(n+1)/2.
  • A008954 (program): Final digit of triangular number n*(n+1)/2.
  • A008959 (program): Final digit of squares: a(n) = n^2 mod 10.
  • A008960 (program): Final digit of cubes: n^3 mod 10.
  • A008963 (program): Initial digit of Fibonacci number F(n).
  • A008965 (program): Number of necklaces of sets of beads containing a total of n beads.
  • A008966 (program): a(n) = 1 if n is squarefree, otherwise 0.
  • A008967 (program): Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon’s statistic. Irregular triangle read by rows.
  • A008973 (program): Fibonacci number F(n) to power F(n).
  • A008975 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 10.
  • A008977 (program): a(n) = (4*n)!/(n!)^4.
  • A008978 (program): a(n) = (5*n)!/(n!)^5.
  • A008998 (program): a(n) = 2*a(n-1) + a(n-3), with a(0)=1 and a(1)=2.
  • A008999 (program): a(n) = 2*a(n-1) + a(n-4).
  • A009000 (program): Ordered hypotenuse numbers (squares are sums of 2 distinct nonzero squares).
  • A009001 (program): Expansion of e.g.f: (1+x)*cos(x).
  • A009002 (program): Expansion of (1+x)/cos(x).
  • A009003 (program): Hypotenuse numbers (squares are sums of 2 nonzero squares).
  • A009005 (program): All natural numbers except 1, 2 and 4.
  • A009006 (program): Expansion of e.g.f.: 1 + tan(x).
  • A009014 (program): Expansion of E.g.f.: (1 + x)/(1 + x + x^2/2).
  • A009015 (program): Expansion of E.g.f.: cos(x*cos(x)) (even powers only).
  • A009017 (program): Expansion of e.g.f. cos(x*exp(x)).
  • A009024 (program): Expansion of e.g.f.: x*cos(log(1+x)).
  • A009027 (program): Expansion of cos(log(1+x))/exp(x).
  • A009041 (program): Ordered legs of Pythagorean triangles.
  • A009042 (program): Expansion of x*cos(sin(x)), odd terms only.
  • A009045 (program): Expansion of cos(sin(x))/exp(x).
  • A009046 (program): Expansion of cos(sin(x)*cos(x)), even terms only.
  • A009056 (program): Numbers >= 3.
  • A009061 (program): Expansion of e.g.f. cos(sinh(x)*exp(x)).
  • A009070 (program): Ordered sides of Pythagorean triangles.
  • A009087 (program): Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).
  • A009096 (program): Ordered perimeters of Pythagorean triangles.
  • A009097 (program): Expansion of e.g.f. cos(x)*cos(log(1+x)).
  • A009101 (program): Fixed point when iterating the function f on n, where f(x) = x + product of digits of x.
  • A009102 (program): Expansion of e.g.f. cos(x)/(1+x).
  • A009108 (program): Expansion of e.g.f. cos(x)/cosh(log(1+x)).
  • A009116 (program): Expansion of e.g.f. cos(x) / exp(x).
  • A009117 (program): Expansion of e.g.f.: 1/2 + exp(-4*x)/2.
  • A009120 (program): a(n) = (4n)!/(2n)!.
  • A009121 (program): Expansion of e.g.f. cosh(exp(x)*x).
  • A009124 (program): Expansion of e.g.f. cosh(log(1+sinh(x))).
  • A009126 (program): Expansion of e.g.f. cosh(log(1+tanh(x))).
  • A009128 (program): Expansion of e.g.f. cosh(log(1+x))*cos(x).
  • A009129 (program): Perimeter of more than one Pythagorean triangle.
  • A009131 (program): Expansion of e.g.f. cosh(log(1+x))/cosh(x).
  • A009132 (program): Expansion of e.g.f. cosh(log(1+x))/exp(x).
  • A009152 (program): Expansion of e.g.f. cosh(sinh(x))/exp(x).
  • A009153 (program): Expansion of e.g.f. cosh(sinh(x)*exp(x)).
  • A009174 (program): Expansion of e.g.f.: cosh(x)*cos(log(1+x)).
  • A009175 (program): Expansion of cosh(x)*cos(sin(x)).
  • A009177 (program): Numbers that are the hypotenuses of more than one Pythagorean triangle.
  • A009178 (program): Expansion of cosh(x)*cosh(log(1+x)).
  • A009179 (program): E.g.f. cosh(x)/(1+x).
  • A009183 (program): Expansion of e.g.f.: cosh(x)/cosh(log(1+x)).
  • A009188 (program): Short leg of more than one Pythagorean triangle.
  • A009191 (program): a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).
  • A009194 (program): a(n) = gcd(n, sigma(n)).
  • A009195 (program): a(n) = gcd(n, phi(n)).
  • A009205 (program): a(n) = gcd(d(n), sigma(n)).
  • A009213 (program): a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler’s totient function (A000010).
  • A009218 (program): Expansion of exp(sinh(log(1+x))).
  • A009223 (program): a(n) = gcd(sigma(n), phi(n)).
  • A009224 (program): Expansion of exp(sinh(x))*x.
  • A009227 (program): Expansion of e.g.f.: exp(sinh(x))/exp(x).
  • A009229 (program): Expansion of e.g.f. exp(sinh(x)*cosh(x)).
  • A009230 (program): a(n) = lcm(n, d(n)).
  • A009233 (program): Expansion of e.g.f. exp(sinh(x)*x) (even powers only).
  • A009235 (program): E.g.f. exp( sinh(x) / exp(x) ) = exp( (1-exp(-2*x))/2 ).
  • A009236 (program): E.g.f. exp(sinh(x)^2) (even powers only).
  • A009242 (program): a(n) = lcm(n, sigma(n)).
  • A009262 (program): a(n) = lcm(n, phi(n)).
  • A009278 (program): a(n) = lcm(d(n), sigma(n)).
  • A009279 (program): a(n) = lcm(d(n), phi(n)).
  • A009280 (program): Expansion of exp(x)*cos(log(1+x)).
  • A009281 (program): Expansion of exp(x)*cosh(log(1+x)).
  • A009283 (program): E.g.f.: exp(x + sinh(x)).
  • A009286 (program): a(n) = lcm(sigma(n), phi(n)).
  • A009294 (program): Expansion of e.g.f.: exp(x)/cosh(log(1+x)).
  • A009306 (program): Expansion of e.g.f.: log(1 + exp(x)*x).
  • A009334 (program): E.g.f. log(1+sin(x))*exp(x).
  • A009337 (program): Expansion of e.g.f.: log(1+sin(x))/exp(x).
  • A009362 (program): Expansion of log(1 + sinh(x)/exp(x)).
  • A009383 (program): Expansion of log(1+tanh(log(1+x))).
  • A009390 (program): Expansion of e.g.f.: log(1 + tanh(x))*exp(x).
  • A009405 (program): Expansion of log(1+x)*cos(log(1+x)).
  • A009410 (program): E.g.f. log(1+x)*cos(x).
  • A009416 (program): Expansion of e.g.f. log(1+x)*cosh(x).
  • A009429 (program): E.g.f. log(1+x)/cos(x).
  • A009430 (program): Expansion of log(1+x)/cosh(log(1+x)).
  • A009435 (program): Expansion of e.g.f.: log(1+x)/cosh(x).
  • A009440 (program): a(n) is the concatenation of n and 6n.
  • A009441 (program): a(n) is the concatenation of n and 7n.
  • A009444 (program): E.g.f. log(1 + x*exp(-x)).
  • A009445 (program): a(n) = (2*n+1)!.
  • A009446 (program): E.g.f. sin(x*cos(x)) (odd powers only)
  • A009448 (program): E.g.f. sin(x*exp(x)).
  • A009454 (program): Expansion of e.g.f. sin(log(1+x)).
  • A009455 (program): Expansion of sin(log(1+x))*cos(x).
  • A009456 (program): Expansion of sin(log(1+x))*cosh(x).
  • A009457 (program): Expansion of sin(log(1+x))*exp(x).
  • A009458 (program): Expansion of sin(log(1+x))*log(1+x).
  • A009461 (program): Expansion of e.g.f.: sin(log(1+x))/exp(x).
  • A009470 (program): a(n) is the concatenation of n and 8n.
  • A009474 (program): a(n) is the concatenation of n and 9n.
  • A009478 (program): Expansion of sin(sin(x))*x.
  • A009481 (program): Expansion of sin(sin(x)*cos(x)).
  • A009496 (program): Expansion of e.g.f. sin(sinh(x)*exp(x)).
  • A009531 (program): Expansion of the e.g.f. sin(x)*(1+x).
  • A009532 (program): Expansion of sin(x)*cos(log(1+x)).
  • A009537 (program): Expansion of sin(x)*cosh(log(1+x)).
  • A009545 (program): E.g.f. sin(x)*exp(x).
  • A009546 (program): Expansion of e.g.f. sin(x)*sin(sin(x)) (even powers only).
  • A009551 (program): Expansion of sin(x)/(1-x).
  • A009557 (program): Expansion of e.g.f. sin(x)/cosh(log(1+x)).
  • A009564 (program): E.g.f. sin(x^2)/2, coefficients of x^(4*n + 2).
  • A009565 (program): Expansion of e.g.f. sinh(exp(x)*x).
  • A009568 (program): Expansion of e.g.f.: sinh(log(1+sinh(x))).
  • A009570 (program): Expansion of e.g.f. sinh(log(1+tanh(x))).
  • A009572 (program): Expansion of e.g.f. sinh(log(1+x))*cos(x).
  • A009573 (program): Expansion of e.g.f. sinh(log(1+x))*cosh(x).
  • A009574 (program): Expansion of e.g.f. sinh(log(1+x))*exp(x).
  • A009575 (program): E.g.f. sinh(log(1+x))*log(1+x).
  • A009576 (program): Expansion of e.g.f. sinh(log(1+x))/cos(x).
  • A009577 (program): Expansion of e.g.f. sinh(log(1+x))/cosh(x).
  • A009578 (program): E.g.f. sinh(log(1+x))/exp(x). Unsigned sequence gives degrees of (finite by nilpotent) representations of Braid groups.
  • A009598 (program): Expansion of e.g.f. sinh(sinh(x))*exp(x).
  • A009599 (program): Expansion of e.g.f. sinh(sinh(x)*exp(x)).
  • A009618 (program): Expansion of sinh(x)*cos(log(1+x)).
  • A009621 (program): Expansion of sinh(x)*cosh(log(1+x)).
  • A009623 (program): Expansion of sinh(x).exp(sinh(x)).
  • A009628 (program): Expansion of sinh(x)/(1+x).
  • A009632 (program): Expansion of sinh(x)/cosh(log(1+x)).
  • A009641 (program): a(n) = Product_{i=0..6} floor((n+i)/7).
  • A009661 (program): Smallest number m such that m^m+1 is divisible by n.
  • A009694 (program): a(n) = Product_{i=0..7} floor((n+i)/8).
  • A009714 (program): a(n) = Product_{i=0..8} floor((n+i)/9).
  • A009724 (program): Denominators of Taylor series for 1/(sin x + tan x).
  • A009725 (program): Expansion of e.g.f.: tan(x)*(1+x).
  • A009731 (program): Expansion of tan(x)*cosh(log(1+x)).
  • A009739 (program): E.g.f. tan(x)*exp(x).
  • A009744 (program): Expansion of e.g.f. tan(x)*sin(x) (even powers only).
  • A009747 (program): E.g.f. tan(x)*sinh(x) (even powers only).
  • A009752 (program): Expansion of e.g.f. tan(x)*x (even powers only).
  • A009753 (program): Expansion of tan(x)/(1+x).
  • A009759 (program): Expansion of (3 - 21*x + 4*x^2)/((x-1)*(x^2 - 6*x + 1)).
  • A009764 (program): Tan(x)^2 = sum(n>=0, a(n)*x^(2*n)/(2*n)! ).
  • A009766 (program): Catalan’s triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).
  • A009769 (program): Expansion of tanh(log(1+1/x)).
  • A009775 (program): Exponential generating function is tanh(log(1+x)).
  • A009776 (program): E.g.f.: tanh(log(1+x))*cos(x).
  • A009777 (program): E.g.f. tanh(log(1+x))*cosh(x).
  • A009778 (program): Expansion of e.g.f.: tanh(log(1+x))*exp(x).
  • A009779 (program): Expansion of e.g.f.: tanh(log(1+x))*log(1+x).
  • A009782 (program): E.g.f.: expansion of tanh(log(1+x))/exp(x).
  • A009832 (program): Expansion of e.g.f. tanh(x)*exp(x).
  • A009838 (program): Expansion of e.g.f.: tanh(x)/(1+x).
  • A009843 (program): E.g.f. x/cos(x) (odd powers only).
  • A009925 (program): Coordination sequence for CaF2(2), F position.
  • A009926 (program): Coordination sequence for CaF2(2), Ca position.
  • A009940 (program): a(n) = n!*L_{n}(1), where L_{n}(x) is the n-th Laguerre polynomial.
  • A009942 (program): Coordination sequence for Ni2In, Position Ni2.
  • A009943 (program): Coordination sequence for NiAs(1), As position.
  • A009945 (program): Coordination sequence for NiAs(2), As position.
  • A009946 (program): Coordination sequence for NiAs(2), Ni position.
  • A009947 (program): Sequence of nonnegative integers, but insert n/2 after every even number n.
  • A009948 (program): Coordination sequence for alpha-Nd, Position Nd1.
  • A009955 (program): Coordination sequence for FeS2-Marcasite, Fe position.
  • A009964 (program): Powers of 20.
  • A009965 (program): Powers of 21.
  • A009966 (program): Powers of 22.
  • A009967 (program): Powers of 23.
  • A009968 (program): Powers of 24: a(n) = 24^n.
  • A009969 (program): Powers of 25.
  • A009970 (program): Powers of 26.
  • A009971 (program): Powers of 27.
  • A009972 (program): Powers of 28.
  • A009973 (program): Powers of 29.
  • A009974 (program): Powers of 30.
  • A009975 (program): Powers of 31: a(n) = 31^n.
  • A009976 (program): Powers of 32.
  • A009977 (program): Powers of 33.
  • A009978 (program): Powers of 34.
  • A009979 (program): Powers of 35.
  • A009980 (program): Powers of 36.
  • A009981 (program): Powers of 37.
  • A009982 (program): Powers of 38.
  • A009983 (program): Powers of 39.
  • A009984 (program): Powers of 40.
  • A009985 (program): Powers of 41.
  • A009986 (program): Powers of 42.
  • A009987 (program): Powers of 43.
  • A009988 (program): Powers of 44.
  • A009989 (program): Powers of 45.
  • A009990 (program): Powers of 46.
  • A009991 (program): Powers of 47.
  • A009992 (program): Powers of 48: a(n) = 48^n.
  • A009994 (program): Numbers with digits in nondecreasing order.
  • A009998 (program): Triangle in which j-th entry in i-th row is (j+1)^(i-j).
  • A009999 (program): Triangle in which j-th entry in i-th row is (i+1-j)^j, 0<=j<=i.
  • A010000 (program): a(0) = 1, a(n) = n^2 + 2 for n > 0.
  • A010001 (program): a(0) = 1, a(n) = 5*n^2 + 2 for n>0.
  • A010002 (program): a(0) = 1, a(n) = 9*n^2 + 2 for n>0.
  • A010003 (program): a(0) = 1, a(n) = 11*n^2 + 2 for n>0.
  • A010004 (program): a(0) = 1, a(n) = 13*n^2 + 2 for n>0.
  • A010005 (program): a(0) = 1, a(n) = 15*n^2 + 2 for n>0.
  • A010006 (program): Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.
  • A010007 (program): a(0) = 1, a(n) = 17*n^2 + 2 for n>0.
  • A010008 (program): a(0) = 1, a(n) = 18*n^2 + 2 for n>0.
  • A010009 (program): a(0) = 1, a(n) = 19*n^2 + 2 for n>0.
  • A010010 (program): a(0) = 1, a(n) = 20*n^2 + 2 for n>0.
  • A010011 (program): a(0) = 1, a(n) = 21*n^2 + 2 for n>0.
  • A010012 (program): a(0) = 1, a(n) = 22*n^2 + 2 for n>0.
  • A010013 (program): a(0) = 1, a(n) = 23*n^2 + 2 for n>0.
  • A010014 (program): a(0) = 1, a(n) = 24*n^2 + 2 for n>0.
  • A010015 (program): a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.
  • A010016 (program): a(0) = 1, a(n) = 26*n^2 + 2 for n>0.
  • A010017 (program): a(0) = 1, a(n) = 27*n^2 + 2 for n>0.
  • A010018 (program): a(0) = 1, a(n) = 28*n^2 + 2 for n>0.
  • A010019 (program): a(0) = 1, a(n) = 29*n^2 + 2 for n>0.
  • A010020 (program): a(0) = 1, a(n) = 31*n^2 + 2 for n>0.
  • A010021 (program): a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.
  • A010022 (program): a(0) = 1, a(n) = 40*n^2 + 2 for n>0.
  • A010023 (program): a(0) = 1, a(n) = 42*n^2 + 2 for n>0.
  • A010024 (program): Coordination sequence for squashed {D_5}* lattice, perhaps the smallest example of a “non-superficial” lattice.
  • A010025 (program): Crystal ball sequence for squashed {D_5}^* lattice, perhaps the smallest example of a “non-superficial” lattice.
  • A010027 (program): Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
  • A010035 (program): a(n) = 2*3^(2*n)-3^n.
  • A010036 (program): Sum of 2^n, …, 2^(n+1) - 1.
  • A010037 (program): Numbers n such that gcd(n^5 + 5, (n+1)^5 + 5) > 1.
  • A010049 (program): Second-order Fibonacci numbers.
  • A010050 (program): a(n) = (2n)!.
  • A010051 (program): Characteristic function of primes: 1 if n is prime, else 0.
  • A010052 (program): Characteristic function of squares: a(n) = 1 if n is a square, otherwise 0.
  • A010053 (program): a(n) = 4^n*(2*n+1)!*(n!)^2/(n+1).
  • A010054 (program): a(n) = 1 if n is a triangular number, otherwise 0.
  • A010055 (program): 1 if n is a prime power p^k (k >= 0), otherwise 0.
  • A010056 (program): Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.
  • A010057 (program): a(n) = 1 if n is a cube, else 0.
  • A010058 (program): 1 if n is a Catalan number else 0.
  • A010059 (program): Another version of the Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0’s and 1’s.
  • A010060 (program): Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0’s and 1’s.
  • A010061 (program): Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.
  • A010062 (program): a(0)=1; thereafter a(n+1) = a(n) + number of 1’s in binary representation of a(n).
  • A010063 (program): a(n+1) = a(n) + sum of digits in base 3 representation of a(n), with a(0) = 1.
  • A010064 (program): Base 4 self or Colombian numbers (not of form k + sum of base 4 digits of k).
  • A010065 (program): a(n+1) = a(n) + sum of digits in base 4 representation of a(n), with a(0) = 1.
  • A010066 (program): a(n+1) = a(n) + sum of digits in base 5 representation of a(n).
  • A010068 (program): a(n+1) = a(n) + sum of digits in base 6 representation of a(n).
  • A010069 (program): a(n+1) = a(n) + sum of digits in base 7 representation of a(n).
  • A010071 (program): a(n+1) = a(n) + sum of digits in base 8 representation of a(n).
  • A010072 (program): a(n+1) = a(n) + sum of digits in base 9 representation of a(n).
  • A010073 (program): a(n) = sum of base-6 digits of a(n-1) + sum of base-6 digits of a(n-2); a(0)=0, a(1)=1.
  • A010074 (program): a(n) = sum of base-7 digits of a(n-1) + sum of base-7 digits of a(n-2).
  • A010075 (program): a(n) = sum of base-8 digits of a(n-1) + sum of base-8 digits of a(n-2).
  • A010076 (program): a(n) = sum of base-9 digits of a(n-1) + sum of base-9 digits of a(n-2).
  • A010077 (program): a(n) = sum of digits of a(n-1) + sum of digits of a(n-2); a(0) = 0, a(1) = 1.
  • A010078 (program): Shortest representation of -n in 2’s-complement format.
  • A010079 (program): Coordination sequence for net formed by holes in D_4 lattice.
  • A010094 (program): Triangle of Euler-Bernoulli or Entringer numbers.
  • A010096 (program): log2*(n) (version 1): number of times floor(log_2(x)) is used in floor(log_2(floor(log_2(…(floor(log_2(n)))…)))) = 0.
  • A010098 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=3.
  • A010099 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=4.
  • A010100 (program): a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=10.
  • A010121 (program): Continued fraction for sqrt(7).
  • A010122 (program): Continued fraction for sqrt(13).
  • A010123 (program): Continued fraction for sqrt(14).
  • A010124 (program): Continued fraction for sqrt(19).
  • A010125 (program): Continued fraction for sqrt(21).
  • A010126 (program): Continued fraction for sqrt(22).
  • A010127 (program): Continued fraction for sqrt(23).
  • A010128 (program): Continued fraction for sqrt(29).
  • A010129 (program): Continued fraction for sqrt(31).
  • A010130 (program): Continued fraction for sqrt(32).
  • A010131 (program): Continued fraction for sqrt(33).
  • A010132 (program): Continued fraction for sqrt(34).
  • A010133 (program): Continued fraction for sqrt(41).
  • A010135 (program): Continued fraction for sqrt(45).
  • A010137 (program): Continued fraction for sqrt(47).
  • A010138 (program): Continued fraction for sqrt(52).
  • A010139 (program): Continued fraction for sqrt(53).
  • A010140 (program): Continued fraction for sqrt(54).
  • A010141 (program): Continued fraction for sqrt(55).
  • A010142 (program): Continued fraction for sqrt(57).
  • A010143 (program): Continued fraction for sqrt(58).
  • A010144 (program): Continued fraction for sqrt(59).
  • A010146 (program): Continued fraction for sqrt(62).
  • A010148 (program): Continued fraction for sqrt(69).
  • A010149 (program): Continued fraction for sqrt(70).
  • A010150 (program): Continued fraction for sqrt(71).
  • A010152 (program): Continued fraction for sqrt(74).
  • A010153 (program): Continued fraction for sqrt(75) (or 5*sqrt(3)).
  • A010155 (program): Continued fraction for sqrt(77).
  • A010156 (program): Continued fraction for sqrt(78).
  • A010157 (program): Continued fraction for sqrt(79).
  • A010158 (program): Continued fraction for sqrt(85).
  • A010160 (program): Continued fraction for sqrt(88).
  • A010161 (program): Continued fraction for sqrt(89).
  • A010162 (program): Continued fraction for sqrt(91).
  • A010163 (program): Continued fraction for sqrt(92).
  • A010164 (program): Continued fraction for sqrt(93).
  • A010166 (program): Continued fraction for sqrt(95).
  • A010167 (program): Continued fraction for sqrt(96).
  • A010169 (program): Continued fraction for sqrt(98).
  • A010170 (program): Continued fraction for sqrt(99).
  • A010173 (program): Continued fraction for sqrt(107).
  • A010174 (program): Continued fraction for sqrt(108).
  • A010176 (program): Continued fraction for sqrt(111).
  • A010177 (program): Continued fraction for sqrt(112).
  • A010178 (program): Continued fraction for sqrt(113).
  • A010179 (program): Continued fraction for sqrt(114).
  • A010180 (program): Continued fraction for sqrt(115).
  • A010182 (program): Continued fraction for sqrt(117).
  • A010183 (program): Continued fraction for sqrt(118).
  • A010184 (program): Continued fraction for sqrt(119).
  • A010186 (program): Continued fraction for sqrt(125).
  • A010187 (program): Continued fraction for sqrt(126).
  • A010189 (program): Continued fraction for sqrt(128).
  • A010191 (program): Continued fraction for sqrt(131).
  • A010194 (program): Continued fraction for sqrt(135).
  • A010195 (program): Continued fraction for sqrt(136).
  • A010196 (program): Continued fraction for sqrt(137).
  • A010197 (program): Continued fraction for sqrt(138).
  • A010199 (program): Continued fraction for sqrt(140).
  • A010200 (program): Continued fraction for sqrt(141).
  • A010201 (program): Continued fraction for sqrt(142).
  • A010204 (program): Continued fraction for sqrt(153).
  • A010207 (program): Continued fraction for sqrt(158).
  • A010208 (program): Continued fraction for sqrt(159).
  • A010209 (program): Continued fraction for sqrt(160).
  • A010211 (program): Continued fraction for sqrt(162).
  • A010213 (program): Continued fraction for sqrt(165).
  • A010215 (program): Continued fraction for sqrt(167).
  • A010217 (program): Continued fraction for sqrt(173).
  • A010218 (program): Continued fraction for sqrt(174).
  • A010219 (program): Continued fraction for sqrt(175).
  • A010220 (program): Continued fraction for sqrt(176).
  • A010221 (program): Continued fraction for sqrt(177).
  • A010222 (program): Continued fraction for sqrt(178).
  • A010225 (program): Continued fraction for sqrt(183).
  • A010227 (program): Continued fraction for sqrt(185).
  • A010229 (program): Continued fraction for sqrt(187).
  • A010230 (program): Continued fraction for sqrt(188).
  • A010231 (program): Continued fraction for sqrt(189).
  • A010234 (program): Continued fraction for sqrt(192).
  • A010236 (program): Continued fraction for sqrt(194).
  • A010238 (program): Maximal size of binary code of length n and asymmetric distance 3.
  • A010334 (program): Maximal size of binary code of length n and asymmetric distance 4.
  • A010362 (program): Class B multi-edge stars with n edges and 2 odd unlabeled roots.
  • A010365 (program): Class B multi-edge stars with n edges and 2 odd labeled roots.
  • A010368 (program): Number of points of L1 norm 2n in Hamming code version of E_8 lattice.
  • A010370 (program): a(n) = binomial(2*n, n)^2 / (1-2*n).
  • A010381 (program): Squares mod 19.
  • A010384 (program): Squares mod 22.
  • A010385 (program): Squares mod 23.
  • A010387 (program): Squares mod 25.
  • A010388 (program): Squares mod 26.
  • A010389 (program): Squares mod 27.
  • A010391 (program): Squares mod 29.
  • A010392 (program): Squares mod 31.
  • A010394 (program): Squares mod 33.
  • A010395 (program): Squares mod 34.
  • A010396 (program): Squares mod 35.
  • A010398 (program): Squares mod 37.
  • A010399 (program): Squares mod 38.
  • A010400 (program): Squares mod 39.
  • A010402 (program): Squares mod 41.
  • A010403 (program): Squares mod 42.
  • A010404 (program): Squares mod 43.
  • A010405 (program): Squares mod 44.
  • A010406 (program): Squares mod 45.
  • A010407 (program): Squares mod 46.
  • A010408 (program): Squares mod 47.
  • A010410 (program): Squares mod 49.
  • A010411 (program): Squares mod 50.
  • A010412 (program): Squares mod 51.
  • A010413 (program): Squares mod 52.
  • A010414 (program): Squares mod 53.
  • A010415 (program): Squares mod 54.
  • A010416 (program): Squares mod 55.
  • A010417 (program): Squares mod 56.
  • A010418 (program): Squares mod 57.
  • A010419 (program): Squares mod 58.
  • A010420 (program): Squares mod 59.
  • A010421 (program): Squares mod 60.
  • A010422 (program): Squares mod 61.
  • A010423 (program): Squares mod 62.
  • A010424 (program): Squares mod 63.
  • A010425 (program): Squares mod 64.
  • A010426 (program): Squares mod 65.
  • A010427 (program): Squares mod 66.
  • A010428 (program): Squares mod 67.
  • A010429 (program): Squares mod 68.
  • A010430 (program): Squares mod 69.
  • A010431 (program): Squares mod 70.
  • A010433 (program): Squares mod 72.
  • A010435 (program): Squares mod 74.
  • A010436 (program): Squares mod 75.
  • A010437 (program): Squares mod 76.
  • A010438 (program): Squares mod 77.
  • A010439 (program): Squares mod 78.
  • A010440 (program): Squares mod 79.
  • A010441 (program): Squares mod 80.
  • A010442 (program): Squares mod 81.
  • A010443 (program): Squares mod 82.
  • A010444 (program): Squares mod 83.
  • A010445 (program): Squares mod 84.
  • A010446 (program): Squares mod 85.
  • A010447 (program): Squares mod 86.
  • A010448 (program): Squares mod 87.
  • A010449 (program): Squares mod 88.
  • A010451 (program): Squares mod 90.
  • A010452 (program): Squares mod 91.
  • A010453 (program): Squares mod 92.
  • A010454 (program): Squares mod 93.
  • A010455 (program): Squares mod 94.
  • A010456 (program): Squares mod 95.
  • A010457 (program): Squares mod 96.
  • A010459 (program): Squares mod 98.
  • A010460 (program): Squares mod 99.
  • A010461 (program): Squares mod 100.
  • A010462 (program): Squares mod 30.
  • A010464 (program): Decimal expansion of square root of 6.
  • A010465 (program): Decimal expansion of square root of 7.
  • A010466 (program): Decimal expansion of square root of 8.
  • A010467 (program): Decimal expansion of square root of 10.
  • A010468 (program): Decimal expansion of square root of 11.
  • A010469 (program): Decimal expansion of square root of 12.
  • A010470 (program): Decimal expansion of square root of 13.
  • A010471 (program): Decimal expansion of square root of 14.
  • A010472 (program): Decimal expansion of square root of 15.
  • A010473 (program): Decimal expansion of square root of 17.
  • A010474 (program): Decimal expansion of square root of 18.
  • A010475 (program): Decimal expansion of square root of 19.
  • A010476 (program): Decimal expansion of square root of 20.
  • A010477 (program): Decimal expansion of square root of 21.
  • A010478 (program): Decimal expansion of square root of 22.
  • A010479 (program): Decimal expansion of square root of 23.
  • A010480 (program): Decimal expansion of square root of 24.
  • A010481 (program): Decimal expansion of square root of 26.
  • A010482 (program): Decimal expansion of square root of 27.
  • A010483 (program): Decimal expansion of square root of 28.
  • A010484 (program): Decimal expansion of square root of 29.
  • A010485 (program): Decimal expansion of square root of 30.
  • A010486 (program): Decimal expansion of square root of 31.
  • A010487 (program): Decimal expansion of square root of 32.
  • A010488 (program): Decimal expansion of square root of 33.
  • A010489 (program): Decimal expansion of square root of 34.
  • A010490 (program): Decimal expansion of square root of 35.
  • A010491 (program): Decimal expansion of square root of 37.
  • A010492 (program): Decimal expansion of square root of 38.
  • A010493 (program): Decimal expansion of square root of 39.
  • A010494 (program): Decimal expansion of square root of 40.
  • A010495 (program): Decimal expansion of square root of 41.
  • A010496 (program): Decimal expansion of square root of 42.
  • A010497 (program): Decimal expansion of square root of 43.
  • A010498 (program): Decimal expansion of square root of 44.
  • A010499 (program): Decimal expansion of square root of 45.
  • A010500 (program): Decimal expansion of square root of 46.
  • A010501 (program): Decimal expansion of square root of 47.
  • A010502 (program): Decimal expansion of square root of 48.
  • A010503 (program): Decimal expansion of 1/sqrt(2).
  • A010504 (program): Decimal expansion of square root of 51.
  • A010505 (program): Decimal expansion of square root of 52.
  • A010506 (program): Decimal expansion of square root of 53.
  • A010507 (program): Decimal expansion of square root of 54.
  • A010508 (program): Decimal expansion of square root of 55.
  • A010509 (program): Decimal expansion of square root of 56.
  • A010510 (program): Decimal expansion of square root of 57.
  • A010511 (program): Decimal expansion of square root of 58.
  • A010512 (program): Decimal expansion of square root of 59.
  • A010513 (program): Decimal expansion of square root of 60.
  • A010514 (program): Decimal expansion of square root of 61.
  • A010515 (program): Decimal expansion of square root of 62.
  • A010516 (program): Decimal expansion of square root of 63.
  • A010517 (program): Decimal expansion of square root of 65.
  • A010518 (program): Decimal expansion of square root of 66.
  • A010519 (program): Decimal expansion of square root of 67.
  • A010520 (program): Decimal expansion of square root of 68.
  • A010521 (program): Decimal expansion of square root of 69.
  • A010522 (program): Decimal expansion of square root of 70.
  • A010523 (program): Decimal expansion of square root of 71.
  • A010524 (program): Decimal expansion of square root of 72.
  • A010525 (program): Decimal expansion of square root of 73.
  • A010526 (program): Decimal expansion of square root of 74.
  • A010527 (program): Decimal expansion of sqrt(3)/2.
  • A010528 (program): Decimal expansion of square root of 76.
  • A010529 (program): Decimal expansion of square root of 77.
  • A010530 (program): Decimal expansion of square root of 78.
  • A010531 (program): Decimal expansion of square root of 79.
  • A010532 (program): Decimal expansion of square root of 80.
  • A010533 (program): Decimal expansion of square root of 82.
  • A010534 (program): Decimal expansion of square root of 83.
  • A010535 (program): Decimal expansion of square root of 84.
  • A010536 (program): Decimal expansion of square root of 85.
  • A010537 (program): Decimal expansion of square root of 86.
  • A010538 (program): Decimal expansion of square root of 87.
  • A010539 (program): Decimal expansion of square root of 88.
  • A010540 (program): Decimal expansion of square root of 89.
  • A010541 (program): Decimal expansion of square root of 90.
  • A010542 (program): Decimal expansion of square root of 91.
  • A010543 (program): Decimal expansion of square root of 92.
  • A010544 (program): Decimal expansion of square root of 93.
  • A010545 (program): Decimal expansion of square root of 94.
  • A010546 (program): Decimal expansion of square root of 95.
  • A010547 (program): Decimal expansion of square root of 96.
  • A010548 (program): Decimal expansion of square root of 97.
  • A010549 (program): Decimal expansion of square root of 98.
  • A010550 (program): Decimal expansion of square root of 99.
  • A010551 (program): Multiply successively by 1,1,2,2,3,3,4,4,…, n >= 1, a(0) = 1.
  • A010552 (program): Multiply successively by 1 (once), 2 (twice), 3 (thrice), etc.
  • A010553 (program): a(n) = tau(tau(n)).
  • A010554 (program): a(n) = phi(phi(n)), where phi is the Euler totient function.
  • A010555 (program): a(n) = 1 if n is the product of an even number of distinct primes, otherwise a(n) = -1.
  • A010578 (program): Maximal size of binary code of length n correcting 3 unidirectional errors.
  • A010581 (program): Decimal expansion of cube root of 9.
  • A010582 (program): Decimal expansion of cube root of 10.
  • A010583 (program): Decimal expansion of cube root of 11.
  • A010584 (program): Decimal expansion of cube root of 12.
  • A010585 (program): Decimal expansion of cube root of 13.
  • A010586 (program): Decimal expansion of cube root of 14.
  • A010587 (program): Decimal expansion of cube root of 15.
  • A010588 (program): Decimal expansion of cube root of 16.
  • A010589 (program): Decimal expansion of cube root of 17.
  • A010590 (program): Decimal expansion of cube root of 18.
  • A010591 (program): Decimal expansion of cube root of 19.
  • A010592 (program): Decimal expansion of cube root of 20.
  • A010593 (program): Decimal expansion of cube root of 21.
  • A010594 (program): Decimal expansion of cube root of 22.
  • A010595 (program): Decimal expansion of cube root of 23.
  • A010596 (program): Decimal expansion of cube root of 24.
  • A010597 (program): Decimal expansion of cube root of 25.
  • A010598 (program): Decimal expansion of cube root of 26.
  • A010599 (program): Decimal expansion of cube root of 28.
  • A010600 (program): Decimal expansion of cube root of 29.
  • A010601 (program): Decimal expansion of cube root of 30.
  • A010602 (program): Decimal expansion of cube root of 31.
  • A010603 (program): Decimal expansion of cube root of 32.
  • A010604 (program): Decimal expansion of cube root of 33.
  • A010605 (program): Decimal expansion of cube root of 34.
  • A010606 (program): Decimal expansion of cube root of 35.
  • A010607 (program): Decimal expansion of cube root of 36.
  • A010608 (program): Decimal expansion of cube root of 37.
  • A010609 (program): Decimal expansion of cube root of 38.
  • A010610 (program): Decimal expansion of cube root of 39.
  • A010611 (program): Decimal expansion of cube root of 40.
  • A010612 (program): Decimal expansion of cube root of 41.
  • A010613 (program): Decimal expansion of cube root of 42.
  • A010614 (program): Decimal expansion of cube root of 43.
  • A010615 (program): Decimal expansion of cube root of 44.
  • A010616 (program): Decimal expansion of cube root of 45.
  • A010617 (program): Decimal expansion of cube root of 46.
  • A010618 (program): Decimal expansion of cube root of 47.
  • A010619 (program): Decimal expansion of cube root of 48.
  • A010620 (program): Decimal expansion of cube root of 49.
  • A010621 (program): Decimal expansion of cube root of 50.
  • A010622 (program): Decimal expansion of cube root of 51.
  • A010623 (program): Decimal expansion of cube root of 52.
  • A010624 (program): Decimal expansion of cube root of 53.
  • A010625 (program): Decimal expansion of cube root of 54.
  • A010626 (program): Decimal expansion of cube root of 55.
  • A010627 (program): Decimal expansion of cube root of 56.
  • A010628 (program): Decimal expansion of cube root of 57.
  • A010629 (program): Decimal expansion of cube root of 58.
  • A010630 (program): Decimal expansion of cube root of 59.
  • A010631 (program): Decimal expansion of cube root of 60.
  • A010632 (program): Decimal expansion of cube root of 61.
  • A010633 (program): Decimal expansion of cube root of 62.
  • A010634 (program): Decimal expansion of cube root of 63.
  • A010635 (program): Decimal expansion of cube root of 65.
  • A010636 (program): Decimal expansion of cube root of 66.
  • A010637 (program): Decimal expansion of cube root of 67.
  • A010638 (program): Decimal expansion of cube root of 68.
  • A010639 (program): Decimal expansion of cube root of 69.
  • A010640 (program): Decimal expansion of cube root of 70.
  • A010641 (program): Decimal expansion of cube root of 71.
  • A010642 (program): Decimal expansion of cube root of 72.
  • A010643 (program): Decimal expansion of cube root of 73.
  • A010644 (program): Decimal expansion of cube root of 74.
  • A010645 (program): Decimal expansion of cube root of 75.
  • A010646 (program): Decimal expansion of cube root of 76.
  • A010647 (program): Decimal expansion of cube root of 77.
  • A010648 (program): Decimal expansion of cube root of 78.
  • A010649 (program): Decimal expansion of cube root of 79.
  • A010650 (program): Decimal expansion of cube root of 80.
  • A010651 (program): Decimal expansion of cube root of 81.
  • A010652 (program): Decimal expansion of cube root of 82.
  • A010653 (program): Decimal expansion of cube root of 83.
  • A010654 (program): Decimal expansion of cube root of 84.
  • A010655 (program): Decimal expansion of cube root of 85.
  • A010656 (program): Decimal expansion of cube root of 86.
  • A010657 (program): Decimal expansion of cube root of 87.
  • A010658 (program): Decimal expansion of cube root of 88.
  • A010659 (program): Decimal expansion of cube root of 89.
  • A010660 (program): Decimal expansion of cube root of 90.
  • A010661 (program): Decimal expansion of cube root of 91.
  • A010662 (program): Decimal expansion of cube root of 92.
  • A010663 (program): Decimal expansion of cube root of 93.
  • A010664 (program): Decimal expansion of cube root of 94.
  • A010665 (program): Decimal expansion of cube root of 95.
  • A010666 (program): Decimal expansion of cube root of 96.
  • A010667 (program): Decimal expansion of cube root of 97.
  • A010668 (program): Decimal expansion of cube root of 98.
  • A010669 (program): Decimal expansion of cube root of 99.
  • A010670 (program): Decimal expansion of cube root of 100.
  • A010671 (program): Maximal size of binary code of length n correcting 4 unidirectional errors.
  • A010673 (program): Period 2: repeat [0, 2].
  • A010674 (program): Period 2: repeat (0,3).
  • A010675 (program): Period 2: repeat (0,4).
  • A010676 (program): Period 2: repeat [0, 5].
  • A010677 (program): Period 2: repeat (0,6).
  • A010678 (program): Period 2: repeat (0,7).
  • A010679 (program): Period 2: repeat (0,8).
  • A010680 (program): Decimal expansion of 1/11.
  • A010681 (program): Period 2: repeat (0,10).
  • A010683 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), …} and never pass below y = x. Sequence gives S(n-1,n) = number of ‘Schröder’ trees with n+1 leaves and root of degree 2.
  • A010684 (program): Period 2: repeat (1,3); offset 0.
  • A010685 (program): Period 2: repeat (1,4).
  • A010686 (program): Periodic sequence: repeat [1, 5].
  • A010687 (program): Repeat (1,6): Period 2.
  • A010688 (program): Period 2: repeat (1,7).
  • A010689 (program): Periodic sequence: Repeat 1, 8.
  • A010690 (program): Period 2: repeat (1,9).
  • A010691 (program): Period 2: repeat (1,10).
  • A010692 (program): Constant sequence: a(n) = 10.
  • A010693 (program): Periodic sequence: Repeat 2,3.
  • A010694 (program): Period 2: repeat (2,4).
  • A010695 (program): Period 2: repeat (2,5).
  • A010696 (program): Periodic sequence: Repeat 2,6.
  • A010697 (program): Period 2: repeat (2,7).
  • A010698 (program): Period 2: repeat (2,8).
  • A010699 (program): Period 2: repeat (2,9).
  • A010700 (program): Period 2: repeat (2,10).
  • A010701 (program): Constant sequence: the all 3’s sequence.
  • A010702 (program): Period 2: repeat (3,4).
  • A010703 (program): Period 2: repeat (3,5).
  • A010704 (program): Period 2: repeat (3,6).
  • A010705 (program): Period 2: repeat (3,7).
  • A010706 (program): Period 2: repeat (3,8).
  • A010707 (program): Period 2: repeat (3,9).
  • A010708 (program): Period 2: repeat (3,10).
  • A010709 (program): Constant sequence: the all 4’s sequence.
  • A010710 (program): Period 2: repeat (4,5).
  • A010711 (program): Period 2: repeat (4,6).
  • A010712 (program): Period 2: repeat (4,7).
  • A010713 (program): Period 2: repeat (4,8).
  • A010714 (program): Period 2: repeat (4,9).
  • A010715 (program): Period 2: repeat (4,10).
  • A010716 (program): Constant sequence: the all 5’s sequence.
  • A010717 (program): Period 2: repeat (5,6).
  • A010718 (program): Periodic sequence: repeat [5, 7].
  • A010719 (program): Period 2: repeat {5,8}.
  • A010720 (program): Period 2: repeat (5,9).
  • A010721 (program): Period 2: repeat (5,10).
  • A010722 (program): Constant sequence: the all 6’s sequence.
  • A010723 (program): Period 2: repeat (6,7).
  • A010724 (program): Period 2: repeat (6,8).
  • A010725 (program): Period 2: repeat (6,9).
  • A010726 (program): Period 2: repeat (6,10).
  • A010727 (program): Constant sequence: the all 7’s sequence.
  • A010728 (program): Period 2: repeat (7,8).
  • A010729 (program): a(n) = 8 - (-1)^n.
  • A010730 (program): a(n) = (17 -3*(-1)^n)/2.
  • A010731 (program): Constant sequence: the all 8’s sequence.
  • A010732 (program): (17-(-1)^n)/2.
  • A010733 (program): Period 2: repeat (8,10).
  • A010734 (program): Constant sequence: the all 9’s sequence.
  • A010735 (program): Period 2: repeat (9,10).
  • A010736 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x. Sequence gives S(n-2,n).
  • A010737 (program): a(n) = 2*a(n-2) + 1.
  • A010738 (program): Shifts 2 places right under binomial transform.
  • A010739 (program): Shifts 2 places left under inverse binomial transform.
  • A010748 (program): Shifts 4 places right under inverse binomial transform.
  • A010749 (program): Shifts 5 places right under inverse binomial transform.
  • A010750 (program): Shifts 6 places right under inverse binomial transform.
  • A010751 (program): Up once, down twice, up three times, down four times, …
  • A010752 (program): Sum along upward diagonal of Pascal triangle to center.
  • A010753 (program): Sum along upward diagonal of Pascal triangle up to (but not including) center.
  • A010754 (program): Sum along upward diagonal of Pascal triangle to halfway point.
  • A010755 (program): Sum along upward diagonal of Pascal triangle up to (but not including) halfway point.
  • A010756 (program): Sum along upward diagonal of Pascal triangle from (but not including) center.
  • A010757 (program): Sum along upward diagonal of Pascal triangle from center.
  • A010758 (program): Sum along upward diagonal of Pascal triangle from (but not including) halfway point.
  • A010759 (program): Sum along upward diagonal of Pascal triangle from halfway point.
  • A010761 (program): a(n) = floor(n/2) + floor(n/3).
  • A010762 (program): a(n) = floor( n/2 ) * floor( n/3 ).
  • A010763 (program): a(n) = binomial(2n+1, n+1) - 1.
  • A010764 (program): a(n) = floor(n/2) mod floor(n/3).
  • A010765 (program): a(n) = floor(n/2)^floor(n/3).
  • A010766 (program): Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.
  • A010767 (program): Decimal expansion of 4th root of 2.
  • A010768 (program): Decimal expansion of 6th root of 2.
  • A010769 (program): Decimal expansion of 7th root of 2.
  • A010770 (program): Decimal expansion of 8th root of 2.
  • A010771 (program): Decimal expansion of 9th root of 2.
  • A010772 (program): Decimal expansion of 10th root of 2.
  • A010773 (program): Decimal expansion of 11th root of 2.
  • A010774 (program): Decimal expansion of 12th root of 2.
  • A010775 (program): Decimal expansion of 13th root of 2.
  • A010776 (program): Decimal expansion of 14th root of 2.
  • A010783 (program): Triangle of numbers floor(n/(n-k)).
  • A010785 (program): Repdigit numbers, or numbers with repeated digits.
  • A010786 (program): Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).
  • A010790 (program): a(n) = n!*(n+1)!.
  • A010791 (program): a(n) = n!*(n+2)!/2.
  • A010792 (program): a(n) = n!*(n+3)! / 3!.
  • A010793 (program): a(n) = n!*(n+4)! / 4!.
  • A010794 (program): a(n) = n!*(n+5)!/5!.
  • A010795 (program): a(n) = n!*(n+6)! / 6!.
  • A010796 (program): a(n) = n!*(n+1)!/2.
  • A010797 (program): n!.(n+1)!.(n+2)! / 2!.3!.
  • A010798 (program): n!.(n+1)!.(n+2)!.(n+3)! / 2!.3!.4!.
  • A010800 (program): n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)! / 2!*3!*4!*5!*6!.
  • A010801 (program): 13th powers: a(n) = n^13.
  • A010802 (program): 14th powers: a(n) = n^14.
  • A010803 (program): 15th powers: a(n) = n^15.
  • A010804 (program): 16th powers: a(n) = n^16.
  • A010805 (program): 17th powers: a(n) = n^17.
  • A010806 (program): 18th powers: a(n) = n^18.
  • A010807 (program): 19th powers: a(n) = n^19.
  • A010808 (program): 20th powers: a(n) = n^20.
  • A010809 (program): 21st powers: a(n) = n^21.
  • A010810 (program): 22nd powers: a(n) = n^22.
  • A010811 (program): 23rd powers: a(n) = n^23.
  • A010812 (program): 24th powers: a(n) = n^24.
  • A010813 (program): 25th powers: a(n) = n^25.
  • A010814 (program): Perimeters of integer-sided right triangles.
  • A010815 (program): From Euler’s Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).
  • A010816 (program): Expansion of Product_{k>=1} (1 - x^k)^3.
  • A010817 (program): Expansion of Product_{k>=1} (1 - x^k)^9.
  • A010818 (program): Expansion of Product (1 - x^k)^10 in powers of x.
  • A010819 (program): Expansion of Product_{k>=1} (1 - x^k)^11.
  • A010820 (program): Expansion of Product_{k>=1} (1 - x^k)^13.
  • A010821 (program): Expansion of Product_{k>=1} (1 - x^k)^14.
  • A010822 (program): Expansion of Product_{k>=1} (1 - x^k)^15.
  • A010823 (program): Expansion of Product_{k>=1} (1 - x^k)^17.
  • A010824 (program): Expansion of Product_{k>=1} (1 - x^k)^18.
  • A010825 (program): Expansion of Product_{k>=1} (1 - x^k)^19.
  • A010826 (program): Expansion of Product_{k>=1} (1 - x^k)^20.
  • A010827 (program): Expansion of Product_{k>=1} (1 - x^k)^21.
  • A010828 (program): Expansion of Product_{k>=1} (1 - x^k)^22.
  • A010829 (program): Expansion of Product_{k>=1} (1 - x^k)^23.
  • A010830 (program): Expansion of Product_{k>=1} (1-x^k )^25.
  • A010831 (program): Expansion of Product (1-x^k )^26.
  • A010832 (program): Expansion of Product_{k>=1} (1-x^k )^27.
  • A010833 (program): Expansion of Product (1-x^k )^28.
  • A010834 (program): Expansion of Product_{k>=1} (1-x^k )^29.
  • A010835 (program): Expansion of Product (1-x^k)^30.
  • A010836 (program): Expansion of Product_{k>=1} (1-x^k )^31.
  • A010837 (program): Expansion of Product (1-x^k )^32.
  • A010838 (program): Expansion of Product (1-x^k )^44.
  • A010839 (program): Expansion of Product_{k >= 1} (1-x^k)^48.
  • A010840 (program): Expansion of Product (1-x^k )^40.
  • A010841 (program): Expansion of Product_{k>=1} (1-x^k)^64.
  • A010842 (program): Expansion of e.g.f.: exp(2*x)/(1-x).
  • A010843 (program): Incomplete Gamma Function at -3.
  • A010844 (program): a(n) = 2*n*a(n-1) + 1 with a(0) = 1.
  • A010845 (program): a(n) = 3*n*a(n-1) + 1, a(0) = 1.
  • A010846 (program): Number of numbers <= n whose set of prime factors is a subset of the set of prime factors of n.
  • A010847 (program): Number of numbers <= n with a prime factor that does not divide n.
  • A010848 (program): Number of numbers k <= n such that at least one prime factor of n is not a prime factor of k.
  • A010849 (program): Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x. Sequence gives S(n-3,n).
  • A010850 (program): Constant sequence: a(n) = 11.
  • A010851 (program): Constant sequence: a(n) = 12.
  • A010852 (program): Constant sequence: a(n) = 13.
  • A010853 (program): Constant sequence: a(n) = 14.
  • A010854 (program): Constant sequence: a(n) = 15.
  • A010855 (program): Constant sequence: a(n) = 16.
  • A010856 (program): Constant sequence: a(n) = 17.
  • A010857 (program): Constant sequence: a(n) = 18.
  • A010858 (program): Constant sequence: a(n) = 19.
  • A010859 (program): Constant sequence: a(n) = 20.
  • A010860 (program): Constant sequence: a(n) = 21.
  • A010861 (program): Constant sequence: a(n) = 22.
  • A010862 (program): Constant sequence: a(n) = 23.
  • A010863 (program): Constant sequence: a(n) = 24.
  • A010864 (program): Constant sequence: a(n) = 25.
  • A010865 (program): Constant sequence: a(n) = 26.
  • A010866 (program): Constant sequence: a(n) = 27.
  • A010867 (program): Constant sequence: a(n) = 28.
  • A010868 (program): Constant sequence: a(n) = 29.
  • A010869 (program): Constant sequence: a(n) = 30.
  • A010870 (program): Constant sequence: a(n) = 31.
  • A010871 (program): Constant sequence: a(n) = 32.
  • A010872 (program): a(n) = n mod 3.
  • A010873 (program): a(n) = n mod 4.
  • A010874 (program): a(n) = n mod 5.
  • A010875 (program): a(n) = n mod 6.
  • A010876 (program): a(n) = n mod 7.
  • A010877 (program): a(n) = n mod 8.
  • A010878 (program): a(n) = n mod 9.
  • A010879 (program): Final digit of n.
  • A010880 (program): a(n) = n mod 11.
  • A010881 (program): Simple periodic sequence: n mod 12.
  • A010882 (program): Period 3: repeat [1, 2, 3].
  • A010883 (program): Simple periodic sequence: repeat 1,2,3,4.
  • A010884 (program): Period 5: repeat [1,2,3,4,5].
  • A010885 (program): Period 6: repeat [1, 2, 3, 4, 5, 6].
  • A010886 (program): Period 7: repeat [1, 2, 3, 4, 5, 6, 7].
  • A010887 (program): Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.
  • A010888 (program): Digital root of n (repeatedly add the digits of n until a single digit is reached).
  • A010889 (program): Simple periodic sequence: repeat 1,2,3,4,5,6,7,8,9,10.
  • A010891 (program): Inverse of 5th cyclotomic polynomial.
  • A010892 (program): Inverse of 6th cyclotomic polynomial. A period 6 sequence.
  • A010895 (program): Minimal scope of a (2,n) difference triangle.
  • A010900 (program): Pisot sequence E(4,13): a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A010901 (program): Pisot sequences E(4,7), P(4,7).
  • A010902 (program): Pisot sequence E(14,23), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
  • A010903 (program): Pisot sequence E(3,13): a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
  • A010904 (program): Pisot sequence E(4,14): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=14.
  • A010905 (program): Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15.
  • A010907 (program): Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
  • A010908 (program): Pisot sequence E(4,21), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
  • A010909 (program): Pisot sequence E(4,25): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=25.
  • A010910 (program): Pisot sequence E(4,27): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=27.
  • A010911 (program): Pisot sequence E(3,11), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
  • A010912 (program): Pisot sequences E(3,7), P(3,7).
  • A010913 (program): Pisot sequence E(3,17), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
  • A010914 (program): Pisot sequence E(5,17), a(n) = floor(a(n-1)^2 / a(n-2) + 1/2).
  • A010915 (program): Pisot sequence E(6,16), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A010916 (program): Pisot sequence E(8,10), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A010917 (program): Pisot sequence E(5,21), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A010918 (program): Shallit sequence S(8,55): a(n) = floor(a(n-1)^2/a(n-2) + 1).
  • A010919 (program): Pisot sequence T(4,13), a(n) = floor(a(n-1)^2/a(n-2)).
  • A010920 (program): Pisot sequence T(3,13), a(n) = floor( a(n-1)^2/a(n-2) ).
  • A010921 (program): Shallit sequence S(3,13), a(n)=[ a(n-1)^2/a(n-2)+1 ].
  • A010922 (program): Pisot sequence T(14,23), a(n)=[ a(n-1)^2/a(n-2) ].
  • A010923 (program): Shallit sequence S(14,23), a(n)=[ a(n-1)^2/a(n-2)+1 ].
  • A010924 (program): Pisot sequence E(8,55), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
  • A010925 (program): Pisot sequence T(5,21), a(n) = floor( a(n-1)^2/a(n-2) ).
  • A010926 (program): Binomial coefficients C(10,n).
  • A010927 (program): Binomial coefficient C(11,n).
  • A010928 (program): Binomial coefficient C(12,n).
  • A010929 (program): Binomial coefficient C(13,n).
  • A010930 (program): Binomial coefficient C(14,n).
  • A010931 (program): Binomial coefficient C(15,n).
  • A010932 (program): Binomial coefficient C(16,n).
  • A010933 (program): Binomial coefficient C(17,n).
  • A010934 (program): Binomial coefficient C(18,n).
  • A010935 (program): Binomial coefficient C(19,n).
  • A010936 (program): Binomial coefficient C(20,n).
  • A010937 (program): Binomial coefficient C(21,n).
  • A010938 (program): Binomial coefficient C(22,n).
  • A010939 (program): Binomial coefficient C(23,n).
  • A010940 (program): Binomial coefficient C(24,n).
  • A010941 (program): Binomial coefficient C(25,n).
  • A010942 (program): Binomial coefficient C(26,n).
  • A010943 (program): Binomial coefficient C(27,n).
  • A010944 (program): Binomial coefficient C(28,n).
  • A010945 (program): Binomial coefficient C(29,n).
  • A010946 (program): Binomial coefficient C(30,n).
  • A010947 (program): Binomial coefficient C(31,n).
  • A010948 (program): Binomial coefficient C(32,n).
  • A010949 (program): Binomial coefficient C(33,n).
  • A010950 (program): Binomial coefficient C(34,n).
  • A010951 (program): Binomial coefficient C(35,n).
  • A010952 (program): Binomial coefficient C(36,n).
  • A010953 (program): Binomial coefficient C(37,n).
  • A010954 (program): Binomial coefficient C(38,n).
  • A010955 (program): Binomial coefficient C(39,n).
  • A010956 (program): Binomial coefficient C(40,n).
  • A010957 (program): Binomial coefficient C(41,n).
  • A010958 (program): Binomial coefficient C(42,n).
  • A010959 (program): Binomial coefficient C(43,n).
  • A010960 (program): Binomial coefficient C(44,n).
  • A010961 (program): Binomial coefficient C(45,n).
  • A010962 (program): Binomial coefficient C(46,n).
  • A010963 (program): Binomial coefficient C(47,n).
  • A010964 (program): Binomial coefficient C(48,n).
  • A010965 (program): a(n) = binomial(n,12).
  • A010966 (program): a(n) = binomial(n,13).
  • A010967 (program): a(n) = binomial coefficient C(n,14).
  • A010968 (program): a(n) = binomial(n,15).
  • A010969 (program): a(n) = binomial(n,16).
  • A010970 (program): a(n) = binomial(n,17).
  • A010971 (program): a(n) = binomial(n,18).
  • A010972 (program): a(n) = binomial(n,19).
  • A010973 (program): a(n) = binomial(n,20).
  • A010974 (program): a(n) = binomial(n,21).
  • A010975 (program): a(n) = binomial(n,22).
  • A010976 (program): Binomial coefficient C(n,23).
  • A010977 (program): a(n) = binomial coefficient C(n,24).
  • A010978 (program): a(n) = binomial(n,25).
  • A010979 (program): Binomial coefficient C(n,26).
  • A010980 (program): a(n) = binomial(n,27).
  • A010981 (program): Binomial coefficient C(n,28).
  • A010982 (program): Binomial coefficient C(n,29).
  • A010983 (program): Binomial coefficient C(n,30).
  • A010984 (program): Binomial coefficient C(n,31).
  • A010985 (program): Binomial coefficient C(n,32).
  • A010986 (program): Binomial coefficient C(n,33).
  • A010987 (program): Binomial coefficient C(n,34).
  • A010988 (program): Binomial coefficient C(n,35).
  • A010989 (program): Binomial coefficient C(n,36).
  • A010990 (program): Binomial coefficient C(n,37).
  • A010991 (program): Binomial coefficient C(n,38).
  • A010992 (program): Binomial coefficient C(n,39).
  • A010993 (program): Binomial coefficient C(n,40).
  • A010994 (program): a(n) = binomial coefficient C(n,41).
  • A010995 (program): Binomial coefficient C(n,42).
  • A010996 (program): Binomial coefficient C(n,43).
  • A010997 (program): a(n) = binomial coefficient C(n,44).
  • A010998 (program): a(n) = binomial coefficient C(n,45).
  • A010999 (program): a(n) = binomial coefficient C(n,46).
  • A011000 (program): a(n) = binomial coefficient C(n,47).
  • A011001 (program): Binomial coefficient C(n,48).
  • A011002 (program): Decimal expansion of 4th root of 3.
  • A011003 (program): Decimal expansion of 4th root of 5.
  • A011004 (program): Decimal expansion of 4th root of 6.
  • A011005 (program): Decimal expansion of 4th root of 7.
  • A011006 (program): Decimal expansion of 4th root of 8.
  • A011007 (program): Decimal expansion of 4th root of 10.
  • A011008 (program): Decimal expansion of 4th root of 11.
  • A011009 (program): Decimal expansion of 4th root of 12.
  • A011010 (program): Decimal expansion of 4th root of 13.
  • A011011 (program): Decimal expansion of 4th root of 14.
  • A011012 (program): Decimal expansion of 4th root of 15.
  • A011013 (program): Decimal expansion of 4th root of 17.
  • A011014 (program): Decimal expansion of 4th root of 18.
  • A011015 (program): Decimal expansion of 4th root of 19.
  • A011016 (program): Decimal expansion of 4th root of 20.
  • A011017 (program): Decimal expansion of 4th root of 21.
  • A011018 (program): Decimal expansion of 4th root of 22.
  • A011019 (program): Decimal expansion of 4th root of 23.
  • A011020 (program): Decimal expansion of 4th root of 24.
  • A011021 (program): Decimal expansion of 4th root of 26.
  • A011022 (program): Decimal expansion of 4th root of 27.
  • A011023 (program): Decimal expansion of 4th root of 28.
  • A011024 (program): Decimal expansion of 4th root of 29.
  • A011025 (program): Decimal expansion of 4th root of 30.
  • A011026 (program): Decimal expansion of 4th root of 31.
  • A011027 (program): Decimal expansion of 4th root of 32.
  • A011028 (program): Decimal expansion of 4th root of 33.
  • A011029 (program): Decimal expansion of 4th root of 34.
  • A011030 (program): Decimal expansion of 4th root of 35.
  • A011031 (program): Decimal expansion of 4th root of 37.
  • A011032 (program): Decimal expansion of 4th root of 38.
  • A011033 (program): Decimal expansion of 4th root of 39.
  • A011034 (program): Decimal expansion of 4th root of 40.
  • A011035 (program): Decimal expansion of 4th root of 41.
  • A011036 (program): Decimal expansion of 4th root of 42.
  • A011037 (program): Decimal expansion of 4th root of 43.
  • A011038 (program): Decimal expansion of 4th root of 44.
  • A011039 (program): Decimal expansion of 4th root of 45.
  • A011040 (program): Decimal expansion of 4th root of 46.
  • A011041 (program): Decimal expansion of 4th root of 47.
  • A011042 (program): Decimal expansion of 4th root of 48.
  • A011043 (program): Decimal expansion of 4th root of 50.
  • A011044 (program): Decimal expansion of 4th root of 51.
  • A011045 (program): Decimal expansion of 4th root of 52.
  • A011046 (program): Decimal expansion of 4th root of 53.
  • A011047 (program): Decimal expansion of 4th root of 54.
  • A011048 (program): Decimal expansion of 4th root of 55.
  • A011049 (program): Decimal expansion of 4th root of 56.
  • A011050 (program): Decimal expansion of 4th root of 57.
  • A011051 (program): Decimal expansion of 4th root of 58.
  • A011052 (program): Decimal expansion of 4th root of 59.
  • A011053 (program): Decimal expansion of 4th root of 60.
  • A011054 (program): Decimal expansion of 4th root of 61.
  • A011055 (program): Decimal expansion of 4th root of 62.
  • A011056 (program): Decimal expansion of 4th root of 63.
  • A011057 (program): Decimal expansion of 4th root of 65.
  • A011058 (program): Decimal expansion of 4th root of 66.
  • A011059 (program): Decimal expansion of 4th root of 67.
  • A011060 (program): Decimal expansion of 4th root of 68.
  • A011061 (program): Decimal expansion of 4th root of 69.
  • A011062 (program): Decimal expansion of 4th root of 70.
  • A011063 (program): Decimal expansion of 4th root of 71.
  • A011064 (program): Decimal expansion of 4th root of 72.
  • A011065 (program): Decimal expansion of 4th root of 73.
  • A011066 (program): Decimal expansion of 4th root of 74.
  • A011067 (program): Decimal expansion of 4th root of 75.
  • A011068 (program): Decimal expansion of 4th root of 76.
  • A011069 (program): Decimal expansion of 4th root of 77.
  • A011070 (program): Decimal expansion of 4th root of 78.
  • A011071 (program): Decimal expansion of 4th root of 79.
  • A011072 (program): Decimal expansion of 4th root of 80.
  • A011073 (program): Decimal expansion of 4th root of 82.
  • A011074 (program): Decimal expansion of 4th root of 83.
  • A011075 (program): Decimal expansion of 4th root of 84.
  • A011076 (program): Decimal expansion of 4th root of 85.
  • A011077 (program): Decimal expansion of 4th root of 86.
  • A011078 (program): Decimal expansion of 4th root of 87.
  • A011079 (program): Decimal expansion of 4th root of 88.
  • A011080 (program): Decimal expansion of 4th root of 89.
  • A011081 (program): Decimal expansion of 4th root of 90.
  • A011082 (program): Decimal expansion of 4th root of 91.
  • A011083 (program): Decimal expansion of 4th root of 92.
  • A011084 (program): Decimal expansion of 4th root of 93.
  • A011085 (program): Decimal expansion of 4th root of 94.
  • A011086 (program): Decimal expansion of 4th root of 95.
  • A011087 (program): Decimal expansion of 4th root of 96.
  • A011088 (program): Decimal expansion of 4th root of 97.
  • A011089 (program): Decimal expansion of 4th root of 98.
  • A011090 (program): Decimal expansion of 4th root of 99.
  • A011091 (program): Decimal expansion of 5th root of 6.
  • A011092 (program): Decimal expansion of 5th root of 7.
  • A011093 (program): Decimal expansion of 5th root of 8.
  • A011094 (program): Decimal expansion of 5th root of 9.
  • A011095 (program): Decimal expansion of 5th root of 10.
  • A011096 (program): Decimal expansion of 5th root of 11.
  • A011097 (program): Decimal expansion of 5th root of 12.
  • A011098 (program): Decimal expansion of 5th root of 13.
  • A011099 (program): Decimal expansion of 5th root of 14.
  • A011100 (program): Decimal expansion of 5th root of 15.
  • A011101 (program): Decimal expansion of 5th root of 16.
  • A011102 (program): Decimal expansion of 5th root of 17.
  • A011103 (program): Decimal expansion of 5th root of 18.
  • A011104 (program): Decimal expansion of 5th root of 19.
  • A011105 (program): Decimal expansion of 5th root of 20.
  • A011106 (program): Decimal expansion of 5th root of 21.
  • A011107 (program): Decimal expansion of 5th root of 22.
  • A011108 (program): Decimal expansion of 5th root of 23.
  • A011109 (program): Decimal expansion of 5th root of 24.
  • A011110 (program): Decimal expansion of 5th root of 25.
  • A011111 (program): Decimal expansion of 5th root of 26.
  • A011112 (program): Decimal expansion of 5th root of 27.
  • A011113 (program): Decimal expansion of 5th root of 28.
  • A011114 (program): Decimal expansion of 5th root of 29.
  • A011115 (program): Decimal expansion of 5th root of 30.
  • A011116 (program): Decimal expansion of 5th root of 31.
  • A011117 (program): Triangle of numbers S(x,y) = number of lattice paths from (0,0) to (x,y) that use step set { (0,1), (1,0), (2,0), (3,0), ….} and never pass below y = x.
  • A011118 (program): Decimal expansion of 5th root of 33.
  • A011119 (program): Decimal expansion of 5th root of 34.
  • A011120 (program): Decimal expansion of 5th root of 35.
  • A011121 (program): Decimal expansion of 5th root of 36.
  • A011122 (program): Decimal expansion of 5th root of 37.
  • A011123 (program): Decimal expansion of 5th root of 38.
  • A011124 (program): Decimal expansion of 5th root of 39.
  • A011125 (program): Decimal expansion of 5th root of 40.
  • A011126 (program): Decimal expansion of 5th root of 41.
  • A011127 (program): Decimal expansion of 5th root of 42.
  • A011128 (program): Decimal expansion of 5th root of 43.
  • A011129 (program): Decimal expansion of 5th root of 44.
  • A011130 (program): Decimal expansion of 5th root of 45.
  • A011131 (program): Decimal expansion of 5th root of 46.
  • A011132 (program): Decimal expansion of 5th root of 47.
  • A011133 (program): Decimal expansion of 5th root of 48.
  • A011134 (program): Decimal expansion of 5th root of 49.
  • A011135 (program): Decimal expansion of 5th root of 50.
  • A011136 (program): Decimal expansion of 5th root of 51.
  • A011137 (program): Decimal expansion of 5th root of 52.
  • A011138 (program): Decimal expansion of 5th root of 53.
  • A011139 (program): Decimal expansion of 5th root of 54.
  • A011140 (program): Decimal expansion of 5th root of 55.
  • A011141 (program): Decimal expansion of 5th root of 56.
  • A011142 (program): Decimal expansion of 5th root of 57.
  • A011143 (program): Decimal expansion of 5th root of 58.
  • A011144 (program): Decimal expansion of 5th root of 59.
  • A011145 (program): Decimal expansion of 5th root of 60.
  • A011146 (program): Decimal expansion of 5th root of 61.
  • A011147 (program): Decimal expansion of 5th root of 62.
  • A011148 (program): Decimal expansion of 5th root of 63.
  • A011149 (program): Decimal expansion of 5th root of 64.
  • A011150 (program): Decimal expansion of 5th root of 65.
  • A011151 (program): Decimal expansion of 5th root of 66.
  • A011152 (program): Decimal expansion of 5th root of 67.
  • A011153 (program): Decimal expansion of 5th root of 68.
  • A011154 (program): Decimal expansion of 5th root of 69.
  • A011155 (program): Decimal expansion of 5th root of 70.
  • A011156 (program): Decimal expansion of 5th root of 71.
  • A011157 (program): Decimal expansion of 5th root of 72.
  • A011158 (program): Decimal expansion of 5th root of 73.
  • A011159 (program): Decimal expansion of 5th root of 74.
  • A011160 (program): Decimal expansion of 5th root of 75.
  • A011161 (program): Decimal expansion of 5th root of 76.
  • A011162 (program): Decimal expansion of 5th root of 77.
  • A011163 (program): Decimal expansion of 5th root of 78.
  • A011164 (program): Decimal expansion of 5th root of 79.
  • A011165 (program): Decimal expansion of 5th root of 80.
  • A011166 (program): Decimal expansion of 5th root of 81.
  • A011167 (program): Decimal expansion of 5th root of 82.
  • A011168 (program): Decimal expansion of 5th root of 83.
  • A011169 (program): Decimal expansion of 5th root of 84.
  • A011170 (program): Decimal expansion of 5th root of 85.
  • A011171 (program): Decimal expansion of 5th root of 86.
  • A011172 (program): Decimal expansion of 5th root of 87.
  • A011173 (program): Decimal expansion of 5th root of 88.
  • A011174 (program): Decimal expansion of 5th root of 89.
  • A011175 (program): Decimal expansion of 5th root of 90.
  • A011176 (program): Decimal expansion of 5th root of 91.
  • A011177 (program): Decimal expansion of 5th root of 92.
  • A011178 (program): Decimal expansion of 5th root of 93.
  • A011179 (program): Decimal expansion of 5th root of 94.
  • A011180 (program): Decimal expansion of 5th root of 95.
  • A011181 (program): Decimal expansion of 5th root of 96.
  • A011182 (program): Decimal expansion of 5th root of 97.
  • A011183 (program): Decimal expansion of 5th root of 98.
  • A011184 (program): Decimal expansion of 5th root of 99.
  • A011186 (program): Decimal expansion of 7th root of 4.
  • A011188 (program): Decimal expansion of 9th root of 4.
  • A011190 (program): Decimal expansion of 11th root of 4.
  • A011192 (program): Decimal expansion of 13th root of 4.
  • A011195 (program): a(n) = n*(n+1)*(2*n+1)*(3*n+1)/6.
  • A011197 (program): a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(4*n+1)/6.
  • A011199 (program): a(n) = (n+1)*(2*n+1)*(3*n+1).
  • A011200 (program): Decimal expansion of 6th root of 5.
  • A011201 (program): Decimal expansion of 7th root of 5.
  • A011202 (program): Decimal expansion of 8th root of 5.
  • A011203 (program): Decimal expansion of 9th root of 5.
  • A011204 (program): Decimal expansion of 10th root of 5.
  • A011205 (program): Decimal expansion of 11th root of 5.
  • A011206 (program): Decimal expansion of 12th root of 5.
  • A011207 (program): Decimal expansion of 13th root of 5.
  • A011215 (program): Decimal expansion of 6th root of 6.
  • A011216 (program): Decimal expansion of 7th root of 6.
  • A011217 (program): Decimal expansion of 8th root of 6.
  • A011218 (program): Decimal expansion of 9th root of 6.
  • A011219 (program): Decimal expansion of 10th root of 6.
  • A011220 (program): Decimal expansion of 11th root of 6.
  • A011221 (program): Decimal expansion of 12th root of 6.
  • A011222 (program): Decimal expansion of 13th root of 6.
  • A011230 (program): Decimal expansion of 6th root of 7.
  • A011231 (program): Decimal expansion of 7th root of 7.
  • A011232 (program): Decimal expansion of 8th root of 7.
  • A011233 (program): Decimal expansion of 9th root of 7.
  • A011234 (program): Decimal expansion of 10th root of 7.
  • A011235 (program): Decimal expansion of 11th root of 7.
  • A011236 (program): Decimal expansion of 12th root of 7.
  • A011237 (program): Decimal expansion of 13th root of 7.
  • A011245 (program): a(n) = (n+1)*(2*n+1)*(3*n+1)*(4*n+1).
  • A011246 (program): Decimal expansion of 7th root of 8.
  • A011247 (program): Decimal expansion of 8th root of 8.
  • A011248 (program): Twice A000364.
  • A011249 (program): Decimal expansion of 10th root of 8.
  • A011250 (program): Decimal expansion of 11th root of 8.
  • A011252 (program): Decimal expansion of 13th root of 8.
  • A011261 (program): Decimal expansion of 7th root of 9.
  • A011262 (program): In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse).
  • A011263 (program): Decimal expansion of 9th root of 9.
  • A011264 (program): In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).
  • A011265 (program): Decimal expansion of 11th root of 9.
  • A011266 (program): a(n) = 2^(n*(n-1)/2)*n!.
  • A011267 (program): Decimal expansion of 13th root of 9.
  • A011270 (program): Hybrid binary rooted trees with n nodes whose root is labeled by “n”.
  • A011275 (program): Decimal expansion of 6th root of 10.
  • A011276 (program): Decimal expansion of 7th root of 10.
  • A011277 (program): Decimal expansion of 8th root of 10.
  • A011278 (program): Decimal expansion of 9th root of 10.
  • A011279 (program): Decimal expansion of 10th root of 10.
  • A011280 (program): Decimal expansion of 11th root of 10.
  • A011281 (program): Decimal expansion of 12th root of 10.
  • A011282 (program): Decimal expansion of 13th root of 10.
  • A011283 (program): Decimal expansion of 14th root of 10.
  • A011290 (program): Decimal expansion of 6th root of 11.
  • A011291 (program): Decimal expansion of 7th root of 11.
  • A011292 (program): Decimal expansion of 8th root of 11.
  • A011293 (program): Decimal expansion of 9th root of 11.
  • A011294 (program): Decimal expansion of 10th root of 11.
  • A011295 (program): Decimal expansion of 11th root of 11.
  • A011296 (program): Decimal expansion of 12th root of 11.
  • A011305 (program): Decimal expansion of 6th root of 12.
  • A011306 (program): Decimal expansion of 7th root of 12.
  • A011307 (program): Decimal expansion of 8th root of 12.
  • A011308 (program): Decimal expansion of 9th root of 12.
  • A011309 (program): Decimal expansion of 10th root of 12.
  • A011310 (program): Decimal expansion of 11th root of 12.
  • A011311 (program): Decimal expansion of 12th root of 12.
  • A011320 (program): Decimal expansion of 6th root of 13.
  • A011321 (program): Decimal expansion of 7th root of 13.
  • A011322 (program): Decimal expansion of 8th root of 13.
  • A011323 (program): Decimal expansion of 9th root of 13.
  • A011324 (program): Decimal expansion of 10th root of 13.
  • A011325 (program): Decimal expansion of 11th root of 13.
  • A011326 (program): Decimal expansion of 12th root of 13.
  • A011327 (program): Decimal expansion of 13th root of 13.
  • A011335 (program): Decimal expansion of 6th root of 14.
  • A011336 (program): Decimal expansion of 7th root of 14.
  • A011337 (program): Decimal expansion of 8th root of 14.
  • A011338 (program): Decimal expansion of 9th root of 14.
  • A011339 (program): Decimal expansion of 10th root of 14.
  • A011340 (program): Decimal expansion of 11th root of 14.
  • A011341 (program): Decimal expansion of 12th root of 14.
  • A011350 (program): Decimal expansion of 6th root of 15.
  • A011351 (program): Decimal expansion of 7th root of 15.
  • A011352 (program): Decimal expansion of 8th root of 15.
  • A011353 (program): Decimal expansion of 9th root of 15.
  • A011354 (program): Decimal expansion of 10th root of 15.
  • A011355 (program): Decimal expansion of 11th root of 15.
  • A011356 (program): Decimal expansion of 12th root of 15.
  • A011357 (program): Decimal expansion of 13th root of 15.
  • A011365 (program): Reciprocal of g.f. for A007863.
  • A011366 (program): Decimal expansion of 7th root of 16.
  • A011367 (program): Expansion of (1-x^2-x^3)/(1-2*x-5*x^2-4*x^3-x^4).
  • A011368 (program): Decimal expansion of 9th root of 16.
  • A011369 (program): a(n+1) = a(n) - F(n) if > 0, otherwise a(n) + F(n), where F() are Fibonacci numbers; a(0) = 0.
  • A011370 (program): Decimal expansion of 11th root of 16.
  • A011371 (program): a(n) = n minus (number of 1’s in binary expansion of n). Also highest power of 2 dividing n!.
  • A011372 (program): Decimal expansion of 13th root of 16.
  • A011373 (program): Number of 1’s in binary expansion of Fibonacci(n).
  • A011375 (program): Length of n-th term in A006960.
  • A011377 (program): Expansion of 1/((1-x)*(1-2*x)*(1-x^2)).
  • A011379 (program): a(n) = n^2*(n+1).
  • A011380 (program): Decimal expansion of 6th root of 17.
  • A011381 (program): Decimal expansion of 7th root of 17.
  • A011382 (program): Decimal expansion of 8th root of 17.
  • A011383 (program): Decimal expansion of 9th root of 17.
  • A011384 (program): Decimal expansion of 10th root of 17.
  • A011385 (program): Decimal expansion of 11th root of 17.
  • A011386 (program): Decimal expansion of 12th root of 17.
  • A011387 (program): Decimal expansion of 13th root of 17.
  • A011395 (program): Decimal expansion of 6th root of 18.
  • A011396 (program): Decimal expansion of 7th root of 18.
  • A011397 (program): Decimal expansion of 8th root of 18.
  • A011398 (program): Decimal expansion of 9th root of 18.
  • A011399 (program): Decimal expansion of 10th root of 18.
  • A011400 (program): Decimal expansion of 11th root of 18.
  • A011401 (program): Decimal expansion of 12th root of 18.
  • A011402 (program): Decimal expansion of 13th root of 18.
  • A011410 (program): Decimal expansion of 6th root of 19.
  • A011411 (program): Decimal expansion of 7th root of 19.
  • A011412 (program): Decimal expansion of 8th root of 19.
  • A011413 (program): Decimal expansion of 9th root of 19.
  • A011414 (program): Decimal expansion of 10th root of 19.
  • A011415 (program): Decimal expansion of 11th root of 19.
  • A011416 (program): Decimal expansion of 12th root of 19.
  • A011417 (program): Decimal expansion of 13th root of 19.
  • A011418 (program): Decimal expansion of 14th root of 19.
  • A011425 (program): Decimal expansion of 6th root of 20.
  • A011426 (program): Decimal expansion of 7th root of 20.
  • A011427 (program): Decimal expansion of 8th root of 20.
  • A011428 (program): Decimal expansion of 9th root of 20.
  • A011429 (program): Decimal expansion of 10th root of 20.
  • A011430 (program): Decimal expansion of 11th root of 20.
  • A011431 (program): Decimal expansion of 12th root of 20.
  • A011446 (program): Decimal expansion of 27th root of 27.
  • A011455 (program): Sum 2^Fibonacci(i), i=2..n.
  • A011531 (program): Numbers that contain a digit 1 in their decimal representation.
  • A011532 (program): Numbers that contain a 2.
  • A011533 (program): Numbers that contain a 3.
  • A011534 (program): Numbers that contain a 4.
  • A011535 (program): Numbers that contain a 5.
  • A011536 (program): Numbers that contain a 6.
  • A011537 (program): Numbers that contain at least one 7.
  • A011538 (program): Numbers that contain an 8.
  • A011539 (program): “9ish numbers”: decimal representation contains at least one nine.
  • A011540 (program): Numbers that contain a digit 0.
  • A011543 (program): Decimal expansion of e truncated to n places.
  • A011544 (program): Decimal expansion of e rounded to n places.
  • A011545 (program): Decimal expansion of Pi truncated to n places.
  • A011546 (program): Decimal expansion of Pi rounded to n places.
  • A011547 (program): Decimal expansion of sqrt(2) truncated to n places.
  • A011548 (program): Decimal expansion of sqrt(2) rounded to n places.
  • A011549 (program): Decimal expansion of sqrt(3) truncated to n places.
  • A011550 (program): Decimal expansion of sqrt(3) rounded to n places.
  • A011551 (program): Decimal expansion of phi truncated to n places.
  • A011552 (program): Decimal expansion of phi rounded to n places.
  • A011557 (program): Powers of 10: a(n) = 10^n.
  • A011558 (program): Expansion of (x + x^3)/(1 + x + … + x^4) mod 2.
  • A011582 (program): Legendre symbol (n,11).
  • A011583 (program): Legendre symbol (n,13).
  • A011584 (program): Legendre symbol (n,17).
  • A011585 (program): Legendre symbol (n,19).
  • A011587 (program): Legendre symbol (n,29).
  • A011588 (program): Legendre symbol (n,31).
  • A011592 (program): Legendre symbol (n,47).
  • A011600 (program): Legendre symbol (n,83).
  • A011603 (program): Legendre symbol (n,101).
  • A011605 (program): Legendre symbol (n,107).
  • A011609 (program): Legendre symbol (n,131).
  • A011611 (program): Legendre symbol (n,139).
  • A011612 (program): Legendre symbol (n,149).
  • A011615 (program): Legendre symbol (n,163).
  • A011617 (program): Legendre symbol (n,173).
  • A011618 (program): Legendre symbol (n,179).
  • A011619 (program): Legendre symbol (n,181).
  • A011622 (program): Legendre symbol (n,197).
  • A011624 (program): Legendre symbol (n,211).
  • A011626 (program): Legendre symbol (n,227).
  • A011632 (program): 28th cyclotomic polynomial.
  • A011634 (program): 35th cyclotomic polynomial.
  • A011635 (program): 42nd cyclotomic polynomial.
  • A011636 (program): 45th cyclotomic polynomial.
  • A011637 (program): 60th cyclotomic polynomial.
  • A011638 (program): 63rd cyclotomic polynomial.
  • A011639 (program): 65th cyclotomic polynomial.
  • A011640 (program): 66th cyclotomic polynomial.
  • A011641 (program): 70th cyclotomic polynomial.
  • A011642 (program): 77th cyclotomic polynomial.
  • A011643 (program): 84th cyclotomic polynomial.
  • A011644 (program): 85th cyclotomic polynomial.
  • A011645 (program): 90th cyclotomic polynomial.
  • A011646 (program): 93rd cyclotomic polynomial.
  • A011647 (program): 95th cyclotomic polynomial.
  • A011648 (program): 99th cyclotomic polynomial.
  • A011649 (program): 102nd cyclotomic polynomial.
  • A011652 (program): 114th cyclotomic polynomial.
  • A011653 (program): 115th cyclotomic polynomial.
  • A011654 (program): 119th cyclotomic polynomial.
  • A011655 (program): Period 3: repeat [0, 1, 1].
  • A011656 (program): A binary m-sequence: expansion of reciprocal of x^3 + x^2 + 1 (mod 2), shifted by 2 initial 0’s.
  • A011657 (program): A binary m-sequence: expansion of reciprocal of x^3 + x + 1 (mod 2, shifted by 2 initial 0’s).
  • A011658 (program): Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2).
  • A011659 (program): A binary m-sequence: expansion of reciprocal of x^4+x+1.
  • A011660 (program): A binary m-sequence: expansion of reciprocal of x^5+x^4+x^2+x+1.
  • A011661 (program): A binary m-sequence: expansion of reciprocal of x^5+x^3+x^2+x+1.
  • A011662 (program): A binary m-sequence: expansion of reciprocal of x^5 + x^2 + 1.
  • A011663 (program): A binary m-sequence: expansion of reciprocal of x^5+x^4+x^3+x+1.
  • A011664 (program): A binary m-sequence: expansion of reciprocal of x^5+x^3+1.
  • A011665 (program): A binary m-sequence: expansion of the reciprocal of x^5+x^4+x^3+x^2+1.
  • A011666 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^4+x+1.
  • A011667 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^3+x^2+1.
  • A011668 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^2+x+1.
  • A011669 (program): A binary m-sequence: expansion of reciprocal of x^6+x+1.
  • A011670 (program): A binary m-sequence: expansion of reciprocal of x^6+x^4+x^3+x+1.
  • A011671 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+x^4+x^2+1.
  • A011672 (program): Expansion of reciprocal of x^6+x^3+1 (mod 2).
  • A011673 (program): A binary m-sequence: expansion of reciprocal of x^6+x^5+1.
  • A011674 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^4+x^3+x^2+1.
  • A011675 (program): A binary m-sequence: expansion of reciprocal of x^7+x^4+1.
  • A011676 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^4+x^2+1.
  • A011677 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^2+x+1.
  • A011678 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^3+x+1.
  • A011679 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^4+x+1.
  • A011680 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^4+x^2+x+1.
  • A011681 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^3+x^2+x+1.
  • A011682 (program): A binary m-sequence: expansion of reciprocal of x^7+x+1.
  • A011683 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^4+x^3+x^2+x+1.
  • A011684 (program): A binary m-sequence: expansion of reciprocal of x^7+x^4+x^3+x^2+1.
  • A011685 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^3+x+1.
  • A011686 (program): A binary m-sequence: expansion of reciprocal of x^7 + x^6 + 1.
  • A011687 (program): A binary m-sequence: expansion of reciprocal of x^7 + x^6 + x^5 + x^4 + 1.
  • A011688 (program): A binary m-sequence: expansion of reciprocal of x^7+x^5+x^4+x^3+1.
  • A011689 (program): A binary m-sequence: expansion of reciprocal of x^7+x^3+x^2+x+1.
  • A011690 (program): A binary m-sequence: expansion of reciprocal of x^7+x^3+1.
  • A011691 (program): A binary m-sequence: expansion of reciprocal of x^7+x^6+x^5+x^2+1.
  • A011692 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^4+x^3+x^2+x+1.
  • A011693 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^4+x^3+1.
  • A011694 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^3+1.
  • A011695 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x^2+1.
  • A011696 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x^3+1.
  • A011697 (program): A binary m-sequence: expansion of reciprocal of x^8+x^4+x^3+x^2+1.
  • A011698 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+x^2+x+1.
  • A011699 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x+1.
  • A011700 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^3+x+1.
  • A011701 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^4+x^3+x^2+x+1.
  • A011702 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^4+x^3+x^2+1.
  • A011703 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^4+x^3+x^2+1.
  • A011704 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^3+x^2+1.
  • A011705 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^3+x^2+1.
  • A011706 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^2+1.
  • A011707 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^4+x^2+x+1.
  • A011708 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^3+x^2+x+1.
  • A011709 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^2+x+1.
  • A011710 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x+1.
  • A011711 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^2+x+1.
  • A011712 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^5+x^4+1.
  • A011713 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x+1.
  • A011714 (program): A binary m-sequence: expansion of reciprocal of x^8+x^4+x^3+x+1.
  • A011715 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+1.
  • A011716 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^6+x^5+x^4+x+1.
  • A011717 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^3+x^2+1.
  • A011718 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^4+x^3+x+1.
  • A011719 (program): A binary m-sequence: expansion of reciprocal of x^8+x^5+x^3+x+1.
  • A011720 (program): A binary m-sequence: expansion of reciprocal of x^8+x^7+x^4+x^3+x^2+x+1.
  • A011721 (program): A binary m-sequence: expansion of reciprocal of x^8+x^6+x^5+x^3+1.
  • A011722 (program): A binary m-sequence: expansion of reciprocal of x^9+x^4+1.
  • A011724 (program): A binary m-sequence: expansion of reciprocal of x^11 + x^2 + 1 (mod 2, shifted by 10 initial 0’s).
  • A011746 (program): Expansion of (1 + x^2)/(1 + x^2 + x^5) mod 2.
  • A011747 (program): Expansion of (1 + x^2 + x^4)/(1 + x^2 + x^3 + x^4 + x^5) mod 2.
  • A011748 (program): Expansion of (1 + x^2 + x^4)/(1 + x + x^2 + x^4 + x^5) mod 2.
  • A011749 (program): Expansion of 1/(1 + x^3 + x^5) mod 2.
  • A011750 (program): Expansion of (1 + x^2)/(1 + x + x^2 + x^3 + x^5) mod 2.
  • A011751 (program): Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2.
  • A011754 (program): Number of ones in the binary expansion of 3^n.
  • A011755 (program): a(n) = Sum_{k=1..n} k*phi(k).
  • A011756 (program): a(n) = prime(n(n+1)/2).
  • A011757 (program): a(n) = prime(n^2).
  • A011758 (program): Barker sequence of length 13.
  • A011759 (program): Barker sequence of length 13.
  • A011760 (program): Elevator buttons in U.S.A.: Positive integers except 13.
  • A011761 (program): a(n) = a(n-1) + a(n-3), with a(0) = a(1) = 1, a(2) = 5.
  • A011763 (program): Days in year in proleptic Gregorian calendar.
  • A011765 (program): Period 4: repeat [0, 0, 0, 1].
  • A011767 (program): From studying monochromatic solutions to x3-x2=x2-x1+2n.
  • A011769 (program): a(0) = 1, a(n+1) = 3 * a(n) - F(n)*(F(n) + 1), where F(n) = A000045(n) is n-th Fibonacci number.
  • A011772 (program): Smallest number m such that m(m+1)/2 is divisible by n.
  • A011773 (program): Variant of Carmichael’s lambda function: a(p1^e1*…*pN^eN) = lcm((p1-1)*p1^(e1-1), …, (pN-1)*pN^(eN-1)).
  • A011776 (program): a(1) = 1; for n > 1, a(n) is defined by the property that n^a(n) divides n! but n^(a(n)+1) does not.
  • A011779 (program): Expansion of 1/((1-x)^3*(1-x^3)^2).
  • A011780 (program): Expansion of 1/(1-2*x)^3/(1-x^2)^2.
  • A011781 (program): Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).
  • A011782 (program): Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
  • A011785 (program): Number of 3 X 3 matrices whose determinant is 1 mod n.
  • A011791 (program): Number of directed animals on a certain lattice.
  • A011794 (program): Triangle defined by a(n+1,k)=a(n,k-1)+a(n-1,k), a(n,1)=1, a(1,k)=1, a(2,k)=min(2,k).
  • A011795 (program): a(n) = floor(C(n,4)/5).
  • A011796 (program): Number of irreducible alternating Euler sums of depth 6 and weight 6+2n.
  • A011797 (program): a(n) = floor(C(n,6)/7).
  • A011800 (program): Number of labeled forests of n nodes each component of which is a path.
  • A011818 (program): Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,…,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }).
  • A011819 (program): M-sequences m_0,m_1,m_2,m_3 with m_1 < n.
  • A011826 (program): f-vectors for simplicial complexes of dimension at most 1 (graphs) on at most n-1 vertices.
  • A011827 (program): f-vectors for simplicial complexes of dimension at most 2 on at most n-1 vertices.
  • A011842 (program): a(n) = floor(n(n-1)(n-2)/24).
  • A011843 (program): a(n) = floor(binomial(n,5)/6).
  • A011844 (program): [ C(n,7)/8 ].
  • A011845 (program): a(n) = floor( binomial(n,8)/9).
  • A011846 (program): a(n) = floor( binomial(n,9)/10 ).
  • A011847 (program): Triangle of numbers read by rows: T(n,k) = floor( C(n,k)/(k+1) ), where k=0..n-1 and n >= 1.
  • A011848 (program): a(n) = floor(binomial(n,2)/2).
  • A011849 (program): a(n) = floor(binomial(n,3)/3).
  • A011850 (program): a(n) = floor(binomial(n,4)/4).
  • A011851 (program): a(n) = floor(binomial(n,5)/5).
  • A011852 (program): a(n) = floor(binomial(n,6)/6).
  • A011853 (program): [ binomial(n,7)/7 ].
  • A011854 (program): a(n) = floor(binomial(n,8)/8).
  • A011855 (program): a(n) = floor(binomial(n,9)/9).
  • A011856 (program): a(n) = floor(binomial(n,10)/10).
  • A011857 (program): Triangle of numbers [ C(n,k)/k ], k=1..n-1.
  • A011858 (program): a(n) = floor( n*(n-1)/5 ).
  • A011860 (program): Floor( n(n-1)/7 ).
  • A011861 (program): a(n) = floor(n(n-1)/8).
  • A011862 (program): a(n) = floor(n*(n-1)/9).
  • A011863 (program): Nearest integer to (n/2)^4.
  • A011864 (program): a(n) = floor(n*(n - 1)/11).
  • A011865 (program): a(n) = floor( n*(n - 1)/12 ).
  • A011866 (program): a(n) = floor(n*(n-1)/13).
  • A011867 (program): a(n) = floor(n*(n-1)/14).
  • A011868 (program): a(n) = floor(n*(n-1)/15).
  • A011869 (program): a(n) = floor(n*(n-1)/16).
  • A011870 (program): a(n) = floor(n*(n-1)/17).
  • A011871 (program): [ n(n-1)/18 ].
  • A011872 (program): [ n(n-1)/19 ].
  • A011873 (program): a(n) = floor(n(n-1)/20).
  • A011874 (program): a(n) = floor(n*(n-1)/21).
  • A011875 (program): Floor( n*(n-1)/22 ).
  • A011876 (program): [ n(n-1)/23 ].
  • A011877 (program): a(n) = floor(n*(n-1)/24).
  • A011878 (program): a(n) = floor( n(n-1)/25 ).
  • A011879 (program): a(n) = floor( n(n-1)/26 ).
  • A011880 (program): a(n) = floor(n*(n-1)/27).
  • A011881 (program): a(n) = floor(n*(n-1)/28).
  • A011882 (program): [ n(n-1)/29 ].
  • A011883 (program): a(n) = floor(n*(n-1)/30).
  • A011884 (program): Floor(n(n - 1)/31).
  • A011885 (program): [ n(n-1)/32 ].
  • A011886 (program): a(n) = floor(n*(n-1)*(n-2)/4).
  • A011887 (program): [ n(n-1)(n-2)/5 ].
  • A011888 (program): Partial sums of A011863.
  • A011889 (program): a(n) = floor(n*(n-1)*(n-2)/7).
  • A011890 (program): [ n(n-1)(n-2)/8 ].
  • A011891 (program): a(n) = floor( n*(n-1)*(n-2)/9 ).
  • A011892 (program): [ n(n-1)(n-2)/10 ].
  • A011893 (program): [ n(n-1)(n-2)/11 ].
  • A011894 (program): a(n) = floor(n(n-1)(n-2)/12).
  • A011895 (program): a(n) = floor(n*(n-1)*(n-2)/13).
  • A011896 (program): [ n(n-1)(n-2)/14 ].
  • A011897 (program): a(n) = floor(n*(n-1)*(n-2)/15).
  • A011898 (program): a(n) = floor(n*(n-1)*(n-2)/16).
  • A011899 (program): a(n) = floor(n*(n-1)*(n-2)/17).
  • A011900 (program): a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3.
  • A011901 (program): [ n(n-1)(n-2)/19 ].
  • A011902 (program): [ n(n-1)(n-2)/20 ].
  • A011903 (program): a(n) = floor(n*(n-1)*(n-2)/21).
  • A011904 (program): [ n(n-1)(n-2)/22 ].
  • A011905 (program): [ n(n-1)(n-2)/23 ].
  • A011906 (program): If b(n) is A011900(n) and c(n) is A001109(n), then a(n) = b(n)*c(n) = b(n) + (b(n)+1) + (b(n)+2) + … + c(n).
  • A011907 (program): [ n(n-1)(n-2)/25 ].
  • A011908 (program): [ n(n-1)(n-2)/26 ].
  • A011909 (program): a(n) = floor( n*(n-1)*(n-2)/27 ).
  • A011910 (program): Floor( n(n-1)(n-2)/28 ).
  • A011911 (program): [ n(n-1)(n-2)/29 ].
  • A011912 (program): a(n) = floor(n(n-1)(n-2)/30).
  • A011913 (program): a(n) = floor(n*(n - 1)*(n - 2)/31).
  • A011914 (program): a(n) = floor(n*(n - 1)*(n - 2)/32).
  • A011915 (program): a(n) = floor(n(n-1)(n-2)(n-3)/5).
  • A011916 (program): a(n) = ((b(n)-1)+sqrt(3*b(n)^2-4*b(n)+1))/2, where b(n) is A011922(n).
  • A011917 (program): [ n(n-1)(n-2)(n-3)/7 ].
  • A011918 (program): a(n) = A011916(n) + A011922(n) - 1.
  • A011919 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/9).
  • A011920 (program): a(n) = b(n)*(b(n)+1) = b(n) + … + c(n), where b(n) = A011916(n), c(n) = A011918(n).
  • A011921 (program): [ n(n-1)(n-2)(n-3)/11 ].
  • A011922 (program): a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
  • A011923 (program): [ n(n-1)(n-2)(n-3)/13 ].
  • A011924 (program): Floor[n(n-1)(n-2)(n-3)/14].
  • A011925 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/15).
  • A011926 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/16).
  • A011927 (program): [ n(n-1)(n-2)(n-3)/17 ].
  • A011928 (program): a(n) = floor(n(n-1)(n-2)(n-3)/18).
  • A011929 (program): a(n) = floor(n(n-1)(n-2)(n-3)/19).
  • A011930 (program): a(n) = floor(n(n-1)(n-2)(n-3)/20).
  • A011931 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/21).
  • A011932 (program): [ n(n-1)(n-2)(n-3)/22 ].
  • A011933 (program): a(n) = floor( n*(n-1)*(n-2)*(n-3)/23 ).
  • A011934 (program): a(n) = |1^3 - 2^3 + 3^3 - 4^3 + … + (-1)^(n+1)*n^3|.
  • A011935 (program): [ n(n-1)(n-2)(n-3)/25 ].
  • A011936 (program): a(n) = floor( n(n-1)(n-2)(n-3)/26 ).
  • A011937 (program): [ n(n-1)(n-2)(n-3)/27 ].
  • A011938 (program): a(n) = floor( n*(n-1)*(n-2)*(n-3)/28 ).
  • A011939 (program): [ n(n-1)(n-2)(n-3)/29 ].
  • A011940 (program): a(n) = floor(n(n-1)(n-2)(n-3)/30).
  • A011941 (program): a(n) = floor(n*(n-1)*(n-2)*(n-3)/31).
  • A011942 (program): [ n(n-1)(n-2)(n-3)/32 ].
  • A011943 (program): Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
  • A011944 (program): a(n) = 14*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
  • A011945 (program): Areas of almost-equilateral Heronian triangles (integral side lengths m-1, m, m+1 and integral area).
  • A011946 (program): Number of Barlow packings with group P63/mmc(S) that repeat after 4n layers.
  • A011947 (program): Number of Barlow packings with group P63/mmc(O) that repeat after 4n+2 layers.
  • A011960 (program): Number of ferrites M_2Y_n that repeat after 6n+10 layers.
  • A011965 (program): Second differences of Bell numbers.
  • A011966 (program): Third differences of Bell numbers.
  • A011967 (program): 4th differences of Bell numbers.
  • A011968 (program): Apply (1+Shift) to Bell numbers.
  • A011969 (program): Apply (1+Shift)^2 to Bell numbers.
  • A011970 (program): Apply (1+Shift)^3 to Bell numbers.
  • A011971 (program): Aitken’s array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).
  • A011972 (program): Sequence formed by reading rows of triangle defined in A011971.
  • A011973 (program): Irregular triangle of numbers read by rows: {binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials.
  • A011974 (program): 2 followed by the numbers that are the sum of 2 successive primes.
  • A011975 (program): Covering numbers C(n,3,2).
  • A011978 (program): Covering numbers C(n,6,2) (next term is <= 15).
  • A012000 (program): Expansion of 1/sqrt(1 - 4*x + 16*x^2).
  • A012007 (program): cosh(log(cos(x))) = 1+3/4!*x^4+30/6!*x^6+693/8!*x^8+25260/10!*x^10…
  • A012019 (program): E.g.f.: exp(sin(arctan(x))).
  • A012020 (program): Expansion of e.g.f.: sin(sin(arctan(x))) (odd powers only).
  • A012022 (program): Expansion of e.g.f.: arctan(sin(arctan(x))) (odd powers only).
  • A012023 (program): Expansion of e.g.f. cos(sin(arctan(x))) (even powers).
  • A012024 (program): E.g.f. sinh(sin(arctan(x))) (odd powers only).
  • A012025 (program): E.g.f. arcsinh(sin(arctan(x))) = arcsinh(x/(1+x^2)^(1/2)) (odd powers only).
  • A012027 (program): E.g.f. cosh(sin(arctan(x))) = cosh(x/sqrt(1+x^2)) (even powers only).
  • A012125 (program): Expansion of x/ (1-4*x+16*x^2)^(3/2).
  • A012132 (program): Numbers z such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x,y.
  • A012150 (program): Expansion of e.g.f. exp(tan(arcsin(x))).
  • A012244 (program): a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.
  • A012245 (program): Characteristic function of factorial numbers; also decimal expansion of Liouville’s number or Liouville’s constant.
  • A012249 (program): Volume of a certain rational polytope whose points with given denominator count certain sets of Standard Tableaux.
  • A012250 (program): A012249(2n) divided by 2^(2n-1).
  • A012393 (program): E.g.f. arctanh(tan(x)*tan(x)) (even powers only).
  • A012493 (program): Take every 5th term of Padovan sequence A000931, beginning with the fifth term.
  • A012509 (program): E.g.f.: -log(cos(x)*cos(x)) (even powers only).
  • A012770 (program): -log(cosh(x)*cos(x))=-4/4!*x^4-544/8!*x^8-707584/12!*x^12…
  • A012772 (program): Take every 5th term of Padovan sequence A000931, beginning with the sixth term.
  • A012781 (program): Take every 5th term of Padovan sequence A000931, beginning with the second term.
  • A012814 (program): Take every 5th term of Padovan sequence A000931, beginning with the third term.
  • A012816 (program): E.g.f. arctan(sec(x)*sinh(x)) (odd powers only).
  • A012853 (program): Expansion of sec(x)^2+sech(x)^2 in powers of x^4.
  • A012855 (program): a(0) = 0, a(1) = 1, a(2) = 1; thereafter a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3).
  • A012858 (program): Numerator of [x^(4n+2)] in the Taylor series log(cosec(x)*sinh(x))= x^2/3 +2*x^6/2835 +2*x^10/467775 +4*x^14/127702575 +..
  • A012864 (program): Take every 5th term of Padovan sequence A000931, beginning with the first term.
  • A012866 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
  • A012870 (program): Numerator of [x^(4n+2)] in the Taylor series -log(cot(x)*tanh(x))= 2*x^2/3 +124*x^6/2835 +292*x^10/66825 +65528*x^14/127702575 -…
  • A012880 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
  • A012886 (program): a(n+3) = 5*a(n+2)-4*a(n+1)+a(n).
  • A012899 (program): E.g.f.: exp(arcsin(x)+log(x+1)).
  • A012960 (program): Expansion of e.g.f. exp(arctan(x)+log(x+1)).
  • A013013 (program): exp(sinh(x)+log(x+1))=1+2*x+3/2!*x^2+5/3!*x^3+13/4!*x^4+37/5!*x^5…
  • A013104 (program): sin(arcsinh(x)+arctan(x))=2*x-11/3!*x^3+185/5!*x^5-6785/7!*x^7…
  • A013108 (program): cos(arcsinh(x)+arctan(x))=1-4/2!*x^2+40/4!*x^4-1030/6!*x^6+51160/8!*x^8…
  • A013155 (program): Expansion of e.g.f.: exp(arctanh(x)+log(x+1))=1+2*x+3/2!*x^2+6/3!*x^3+21/4!*x^4+90/5!*x^5…
  • A013170 (program): Expansion of e.g.f.: exp(arctanh(x)+arcsin(x)).
  • A013174 (program): exp(arctanh(x) + arctan(x)) = 1 + 2*x + 4/2!*x^2 + 8/3!*x^3 + 16/4!*x^4 + 80/5!*x^5 +…
  • A013175 (program): sin(arctanh(x)+arctan(x))=2*x-8/3!*x^3+80/5!*x^5-4160/7!*x^7…
  • A013179 (program): cos(arctanh(x)+arctan(x))=1-4/2!*x^2+16/4!*x^4-640/6!*x^6+21760/8!*x^8…
  • A013299 (program): -sinh(log(x+1)-arctanh(x)) = 1/2!*x^2 + 6/4!*x^4 + 135/6!*x^6 + 6300/8!*x^8 + …
  • A013302 (program): E.g.f.: cosh(log(x+1)-arctanh(x)) (even powers only).
  • A013304 (program): sech(log(x+1)-arctanh(x))=1-3/4!*x^4-90/6!*x^6-4095/8!*x^8…
  • A013326 (program): Expansion of -(2*x^3-x^2+x-1)/(x^4-3*x^3+3*x^2-3*x+1).
  • A013397 (program): exp(arcsin(x)-log(x+1))=1+1/2!*x^2-1/3!*x^3+9/4!*x^4-25/5!*x^5…
  • A013430 (program): Expansion of e.g.f. exp(arcsin(x)-arctanh(x)).
  • A013436 (program): cosh(arcsin(x)-arctanh(x))=1+10/6!*x^6+840/8!*x^8+87750/10!*x^10…
  • A013459 (program): Expansion of e.g.f. exp(arctan(x) - log(x+1)).
  • A013462 (program): Expansion of e.g.f.: exp(arctan(x)-arctanh(x))=1-4/3!*x^3+160/6!*x^6-1440/7!*x^7…
  • A013463 (program): E.g.f.: sin(arctan(x) - arctanh(x)) (odd powers only).
  • A013465 (program): cos(arctan(x)-arctanh(x))=1-160/6!*x^6-691200/10!*x^10+3942400/12!*x^12…
  • A013488 (program): Expansion of e.g.f.: exp(sinh(x)-log(x+1))=1+1/2!*x^2-1/3!*x^3+9/4!*x^4-33/5!*x^5…
  • A013492 (program): exp(arcsinh(x)-log(x+1)) = 1+1/2!*x^2-3/3!*x^3+9/4!*x^4-45/5!*x^5…
  • A013498 (program): Number of permutations in S_n with a certain property.
  • A013499 (program): a(n) = 2*n^n, n >= 2, otherwise a(n) = 1.
  • A013523 (program): Denominator of [x^(2n+1)] in the Taylor expansion arcsinh(cosec(x) - cot(x)).
  • A013525 (program): E.g.f.: x + (gdinv x - sinh x)/2, where gdinv = inverse-Gudermannian. Sequence has odd-indexed coefficients; others are zero.
  • A013574 (program): Minimal scope of an (n,2) difference triangle.
  • A013575 (program): Minimal scope of an (n,3) difference triangle.
  • A013576 (program): Minimal scope of an (n,4) difference triangle.
  • A013580 (program): Triangle formed in same way as Pascal’s triangle (A007318) except 1 is added to central element in even-numbered rows.
  • A013588 (program): Smallest positive integer not the determinant of an n X n {0,1}-matrix.
  • A013609 (program): Triangle of coefficients in expansion of (1+2*x)^n.
  • A013610 (program): Triangle of coefficients in expansion of (1+3*x)^n.
  • A013611 (program): Triangle of coefficients in expansion of (1+4x)^n.
  • A013612 (program): Triangle of coefficients in expansion of (1+5x)^n.
  • A013613 (program): Triangle of coefficients in expansion of (1+6x)^n.
  • A013614 (program): Triangle of coefficients in expansion of (1+7x)^n.
  • A013615 (program): Triangle of coefficients in expansion of (1+8x)^n.
  • A013616 (program): Triangle of coefficients in expansion of (1+9x)^n.
  • A013617 (program): Triangle of coefficients in expansion of (1+10x)^n.
  • A013618 (program): Triangle of coefficients in expansion of (1+11x)^n.
  • A013619 (program): Triangle of coefficients in expansion of (1+12x)^n.
  • A013620 (program): Triangle of coefficients in expansion of (2+3x)^n.
  • A013621 (program): Triangle of coefficients in expansion of (2+5x)^n.
  • A013622 (program): Triangle of coefficients in expansion of (3+5x)^n.
  • A013623 (program): Triangle of coefficients in expansion of (2+7x)^n.
  • A013624 (program): Triangle of coefficients in expansion of (3+7x)^n.
  • A013625 (program): Triangle of coefficients in expansion of (4+7x)^n.
  • A013626 (program): Triangle of coefficients in expansion of (5+7x)^n.
  • A013627 (program): Triangle of coefficients in expansion of (6+7x)^n.
  • A013628 (program): Triangle of coefficients in expansion of (4+5x)^n.
  • A013632 (program): Difference between n and the next prime greater than n.
  • A013633 (program): nextprime(n) - prevprime(n).
  • A013634 (program): a(n) = nextprime(n) + n.
  • A013635 (program): a(n) = prevprime(n) + n.
  • A013636 (program): n*nextprime(n).
  • A013637 (program): n*prevprime(n).
  • A013638 (program): a(n) = prevprime(n)*nextprime(n).
  • A013654 (program): Each term of the period of continued fraction for sqrt(n) divides n.
  • A013655 (program): a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.
  • A013656 (program): a(n) = n*(9*n-2).
  • A013661 (program): Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.
  • A013662 (program): Decimal expansion of zeta(4).
  • A013664 (program): Decimal expansion of zeta(6).
  • A013697 (program): Second term in continued fraction for zeta(n).
  • A013698 (program): a(n) = binomial(3*n+2, n-1).
  • A013708 (program): a(n) = 3^(2n+1).
  • A013709 (program): a(n) = 4^(2n+1).
  • A013710 (program): a(n) = 5^(2*n + 1).
  • A013711 (program): a(n) = 6^(2n+1).
  • A013712 (program): a(n) = 7^(2*n + 1).
  • A013713 (program): a(n) = 8^(2n+1).
  • A013714 (program): a(n) = 9^(2*n + 1).
  • A013715 (program): a(n) = 10^(2n+1).
  • A013716 (program): a(n) = 11^(2*n + 1).
  • A013717 (program): a(n) = 12^(2*n + 1).
  • A013718 (program): a(n) = 13^(2*n + 1).
  • A013719 (program): a(n) = 14^(2*n + 1).
  • A013720 (program): a(n) = 15^(2*n + 1).
  • A013721 (program): a(n) = 16^(2*n + 1).
  • A013722 (program): a(n) = 17^(2*n + 1).
  • A013723 (program): a(n) = 18^(2*n + 1).
  • A013724 (program): a(n) = 19^(2*n + 1).
  • A013725 (program): a(n) = 20^(2*n + 1).
  • A013726 (program): a(n) = 21^(2*n + 1).
  • A013727 (program): a(n) = 22^(2*n + 1).
  • A013728 (program): a(n) = 23^(2*n + 1).
  • A013729 (program): a(n) = 24^(2*n + 1).
  • A013730 (program): a(n) = 2^(3n+1).
  • A013731 (program): a(n) = 2^(3*n+2).
  • A013732 (program): a(n) = 3^(3*n + 1).
  • A013733 (program): a(n) = 3^(3n+2).
  • A013734 (program): a(n) = 4^(3*n+1).
  • A013735 (program): a(n) = 4^(3*n+2).
  • A013736 (program): a(n) = 5^(3*n + 1).
  • A013737 (program): a(n) = 5^(3*n + 2).
  • A013738 (program): a(n) = 6^(3*n + 1).
  • A013739 (program): a(n) = 6^(3*n + 2).
  • A013740 (program): a(n) = 7^(3*n + 1).
  • A013741 (program): a(n) = 7^(3*n + 2).
  • A013742 (program): a(n) = 8^(3*n + 1).
  • A013743 (program): a(n) = 8^(3*n + 2).
  • A013744 (program): a(n) = 9^(3*n + 1).
  • A013745 (program): a(n) = 9^(3*n + 2).
  • A013746 (program): a(n) = 10^(3*n + 1).
  • A013747 (program): a(n) = 10^(3*n + 2).
  • A013748 (program): a(n) = 11^(3*n + 1).
  • A013749 (program): a(n) = 11^(3*n + 2).
  • A013750 (program): a(n) = 12^(3*n + 1).
  • A013753 (program): a(n) = 13^(3*n + 2).
  • A013754 (program): a(n) = 14^(3*n + 1).
  • A013755 (program): a(n) = 14^(3*n + 2).
  • A013756 (program): a(n) = 15^(3*n + 1).
  • A013757 (program): a(n) = 15^(3*n + 2).
  • A013758 (program): a(n) = 16^(3n+1).
  • A013761 (program): a(n) = 17^(3*n + 2).
  • A013766 (program): 20^(3n+1).
  • A013767 (program): a(n) = 20^(3*n + 2).
  • A013768 (program): a(n) = 21^(3*n + 1).
  • A013769 (program): a(n) = 21^(3*n + 2).
  • A013770 (program): a(n) = 22^(3*n + 1).
  • A013771 (program): a(n) = 22^(3*n + 2).
  • A013772 (program): a(n) = 23^(3*n + 1).
  • A013776 (program): a(n) = 2^(4*n+1).
  • A013777 (program): a(n) = 2^(4*n + 3).
  • A013778 (program): a(n) = 3^(4*n + 1).
  • A013779 (program): a(n) = 3^(4*n + 3).
  • A013780 (program): a(n) = 4^(4*n + 1).
  • A013781 (program): a(n) = 4^(4*n + 3).
  • A013782 (program): a(n) = 5^(4*n + 1).
  • A013783 (program): a(n) = 5^(4*n + 3).
  • A013784 (program): a(n) = 6^(4*n + 1).
  • A013785 (program): a(n) = 6^(4n+3).
  • A013786 (program): a(n) = 7^(4*n + 1).
  • A013787 (program): a(n) = 7^(4*n + 3).
  • A013788 (program): a(n) = 8^(4*n + 1).
  • A013789 (program): a(n) = 8^(4*n + 3).
  • A013790 (program): a(n) = 9^(4*n + 1).
  • A013791 (program): a(n) = 9^(4*n + 3).
  • A013792 (program): a(n) = 10^(4*n + 1).
  • A013794 (program): a(n) = 11^(4n+1).
  • A013796 (program): a(n) = 12^(4*n + 1).
  • A013822 (program): a(n) = 2^(5*n + 1).
  • A013823 (program): a(n) = 2^(5*n + 2).
  • A013824 (program): a(n) = 2^(5*n + 3).
  • A013825 (program): a(n) = 2^(5*n + 4).
  • A013826 (program): a(n) = 3^(5*n + 1).
  • A013827 (program): a(n) = 3^(5*n + 2).
  • A013828 (program): a(n) = 3^(5*n + 3).
  • A013829 (program): a(n) = 3^(5*n + 4).
  • A013830 (program): a(n) = 4^(5*n + 1).
  • A013831 (program): a(n) = 4^(5n+2).
  • A013832 (program): a(n) = 4^(5*n + 3).
  • A013833 (program): a(n) = 4^(5*n + 4).
  • A013834 (program): a(n) = 5^(5*n + 1).
  • A013835 (program): a(n) = 5^(5*n + 2).
  • A013836 (program): a(n) = 5^(5*n + 3).
  • A013837 (program): a(n) = 5^(5*n + 4).
  • A013838 (program): a(n) = 6^(5*n + 1).
  • A013839 (program): a(n) = 6^(5n+2).
  • A013840 (program): a(n) = 6^(5*n + 3).
  • A013841 (program): a(n) = 6^(5*n + 4).
  • A013842 (program): a(n) = 7^(5*n + 1).
  • A013843 (program): a(n) = 7^(5*n + 2).
  • A013915 (program): a(n) = F(n) + L(n) + n, where F(n) (A000045) and L(n) (A000204) are Fibonacci and Lucas numbers respectively.
  • A013919 (program): Numbers n such that sum of first n composites is composite.
  • A013920 (program): Composite numbers k such that the sum of all composites <= k is composite.
  • A013921 (program): Composite numbers that are equal to the sum of the first k composites for some k.
  • A013926 (program): a(n) = (2*n)! * D_{2*n}, where D_{2*n} = (1/Pi) * Integral_{x=0..oo} [1 - x^(2*n) / Product_{j=1..n} (x^2+j^2)] dx.
  • A013928 (program): Number of (positive) squarefree numbers < n.
  • A013929 (program): Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
  • A013936 (program): a(n) = Sum_{k=1..n} floor(n/k^2).
  • A013937 (program): a(n) = Sum_{k=1..n} floor(n/k^3).
  • A013938 (program): a(n) = Sum_{k=1..n} floor(n/k^4).
  • A013939 (program): Partial sums of sequence A001221 (number of distinct primes dividing n).
  • A013940 (program): a(n) = Sum_{k=1..n} floor(n/prime(k)^2).
  • A013941 (program): a(n) = Sum_{k = 1..n} floor(n/prime(k)^3).
  • A013942 (program): Triangle of numbers T(n,k) = floor(2n/k), k=1..2n, read by rows.
  • A013945 (program): Least d such that period of continued fraction for sqrt(d) contains n (n^2+2 if n odd, (n/2)^2+1 if n even).
  • A013946 (program): Least d for which the number with continued fraction [n,n,n,n…] is in Q(sqrt(d)).
  • A013947 (program): Positions of 1’s in Kolakoski sequence (A000002).
  • A013948 (program): Positions of 2’s in Kolakoski sequence (A000002).
  • A013954 (program): a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
  • A013955 (program): a(n) = sigma_7(n), the sum of the 7th powers of the divisors of n.
  • A013956 (program): sigma_8(n), the sum of the 8th powers of the divisors of n.
  • A013957 (program): sigma_9(n), the sum of the 9th powers of the divisors of n.
  • A013958 (program): a(n) = sigma_10(n), the sum of the 10th powers of the divisors of n.
  • A013959 (program): a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.
  • A013960 (program): a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.
  • A013961 (program): a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
  • A013962 (program): a(n) = sigma_14(n), the sum of the 14th powers of the divisors of n.
  • A013963 (program): a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.
  • A013964 (program): a(n) = sigma_16(n), the sum of the 16th powers of the divisors of n.
  • A013965 (program): a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.
  • A013966 (program): a(n) = sigma_18(n), the sum of the 18th powers of the divisors of n.
  • A013967 (program): a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.
  • A013968 (program): a(n) = sigma_20(n), the sum of the 20th powers of the divisors of n.
  • A013969 (program): a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.
  • A013970 (program): a(n) = sum of 22nd powers of divisors of n.
  • A013971 (program): a(n) = sum of 23rd powers of divisors of n.
  • A013972 (program): a(n) = sum of 24th powers of divisors of n.
  • A013973 (program): Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).
  • A013974 (program): Eisenstein series E_10(q) (alternate convention E_5(q)).
  • A013979 (program): Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).
  • A013981 (program): Number of commutative elements in Coxeter group H_n.
  • A013982 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5).
  • A013983 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6).
  • A013984 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7).
  • A013985 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8).
  • A013986 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
  • A013987 (program): Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
  • A013989 (program): a(n) = (n+1)*(a(n-1)/n + a(n-2)), with a(0)=1, a(1)=2.
  • A013999 (program): From applying the “rational mean” to the number e.
  • A014001 (program): Pisot sequence E(7,15), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
  • A014002 (program): Pisot sequence E(8,14), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
  • A014003 (program): Pisot sequence E(9,15), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A014004 (program): Pisot sequence E(9,17), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
  • A014005 (program): Pisot sequence E(9,19), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
  • A014006 (program): Pisot sequence E(10,18), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
  • A014007 (program): Pisot sequence E(10,21), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
  • A014008 (program): Pisot sequence E(10,22), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
  • A014009 (program): First differences of Shallit sequence S(3,7) (A020730).
  • A014010 (program): Linear recursion relative of Shallit sequence S(2,6).
  • A014016 (program): Expansion of inverse of 7th cyclotomic polynomial; period 7: repeat [1, -1, 0, 0, 0, 0, 0].
  • A014017 (program): Inverse of 8th cyclotomic polynomial.
  • A014018 (program): Inverse of 9th cyclotomic polynomial.
  • A014019 (program): Inverse of 10th cyclotomic polynomial.
  • A014020 (program): Inverse of 11th cyclotomic polynomial.
  • A014021 (program): Inverse of 12th cyclotomic polynomial.
  • A014022 (program): Inverse of 13th cyclotomic polynomial.
  • A014023 (program): Inverse of 14th cyclotomic polynomial.
  • A014024 (program): Inverse of 15th cyclotomic polynomial.
  • A014025 (program): Expansion of the inverse of the 16th cyclotomic polynomial.
  • A014026 (program): Inverse of 17th cyclotomic polynomial.
  • A014027 (program): Inverse of 18th cyclotomic polynomial.
  • A014028 (program): Inverse of 19th cyclotomic polynomial.
  • A014029 (program): Inverse of 20th cyclotomic polynomial.
  • A014030 (program): Inverse of 21st cyclotomic polynomial.
  • A014031 (program): Inverse of 22nd cyclotomic polynomial.
  • A014032 (program): Inverse of 23rd cyclotomic polynomial.
  • A014033 (program): Inverse of 24th cyclotomic polynomial.
  • A014034 (program): Inverse of 25th cyclotomic polynomial.
  • A014035 (program): Inverse of 26th cyclotomic polynomial.
  • A014036 (program): Inverse of 27th cyclotomic polynomial.
  • A014037 (program): Inverse of 28th cyclotomic polynomial.
  • A014038 (program): Inverse of 29th cyclotomic polynomial.
  • A014039 (program): Inverse of 30th cyclotomic polynomial.
  • A014040 (program): Inverse of 31st cyclotomic polynomial.
  • A014041 (program): Inverse of 32nd cyclotomic polynomial.
  • A014043 (program): Inverse of 34th cyclotomic polynomial.
  • A014045 (program): Inverse of 36th cyclotomic polynomial.
  • A014047 (program): Inverse of 38th cyclotomic polynomial.
  • A014049 (program): Inverse of 40th cyclotomic polynomial.
  • A014050 (program): a(n) = (n^2+1)^n.
  • A014051 (program): Inverse of 42nd cyclotomic polynomial.
  • A014052 (program): a(n) = floor((n+1/n)^n).
  • A014053 (program): Inverse of 44th cyclotomic polynomial.
  • A014054 (program): Inverse of 45th cyclotomic polynomial.
  • A014055 (program): Inverse of 46th cyclotomic polynomial.
  • A014056 (program): Nearest integer to (n + 1/n)^n.
  • A014057 (program): Inverse of 48th cyclotomic polynomial.
  • A014058 (program): a(n) = ceiling((n+1/n)^n).
  • A014059 (program): Inverse of 50th cyclotomic polynomial.
  • A014061 (program): Inverse of 52nd cyclotomic polynomial.
  • A014062 (program): a(n) = binomial(n^2, n).
  • A014063 (program): Inverse of 54th cyclotomic polynomial.
  • A014065 (program): Inverse of 56th cyclotomic polynomial.
  • A014067 (program): Inverse of 58th cyclotomic polynomial.
  • A014068 (program): a(n) = binomial(n*(n+1)/2, n).
  • A014069 (program): Inverse of 60th cyclotomic polynomial.
  • A014070 (program): a(n) = binomial(2^n, n).
  • A014071 (program): Inverse of 62nd cyclotomic polynomial.
  • A014072 (program): Inverse of 63rd cyclotomic polynomial.
  • A014076 (program): Odd nonprimes.
  • A014081 (program): a(n) is the number of occurrences of ‘11’ in binary expansion of n.
  • A014082 (program): Number of occurrences of ‘111’ in binary expansion of n.
  • A014084 (program): Inverse of 75th cyclotomic polynomial.
  • A014085 (program): Number of primes between n^2 and (n+1)^2.
  • A014089 (program): Sum of a square and a prime.
  • A014091 (program): Numbers that are the sum of 2 primes.
  • A014092 (program): Numbers that are not the sum of 2 primes.
  • A014093 (program): Inverse of 84th cyclotomic polynomial.
  • A014097 (program): a(n) = a(n-1)+a(n-4).
  • A014098 (program): a(n)=a(n-1)+a(n-4).
  • A014099 (program): Inverse of 90th cyclotomic polynomial.
  • A014101 (program): a(n) = a(n-1) + a(n-4), starting 1,1,1,3.
  • A014103 (program): Expansion of (eta(q^2) / eta(q))^24 in powers of q.
  • A014105 (program): Second hexagonal numbers: a(n) = n*(2*n + 1).
  • A014106 (program): a(n) = n*(2*n + 3).
  • A014107 (program): a(n) = n*(2*n-3).
  • A014109 (program): Number of possible circular rhymes of n strophes.
  • A014110 (program): Number of ordered ways of writing n as a sum of 4 squares of natural numbers.
  • A014112 (program): a(n) = n*(n-1) + (n-2)*(n-3) + … + 1*0 + 1 for n odd; otherwise, a(n) = n*(n-1) + (n-2)*(n-3) + … + 2*1.
  • A014113 (program): a(n) = a(n-1) + 2*a(n-2) with a(0)=0, a(1)=2.
  • A014118 (program): Write in binary and read in ternary!.
  • A014125 (program): Bisection of A001400.
  • A014126 (program): Number of partitions of 2*n into at most 4 parts.
  • A014129 (program): Inverse of 120th cyclotomic polynomial.
  • A014130 (program): ((n+3)!/6)*product( 2*k+1, k=0..n).
  • A014131 (program): a(n) = 2*a(n-1) if n odd else 2*a(n-1) + 6.
  • A014132 (program): Complement of triangular numbers (A000217); also array T(n,k) = ((n+k)^2 + n-k)/2, n, k > 0, read by antidiagonals.
  • A014133 (program): Sum of a square and a triangular number.
  • A014134 (program): Numbers that are not the sum of a square (A000290) and a triangular number (A000217).
  • A014135 (program): Inverse of 126th cyclotomic polynomial.
  • A014137 (program): Partial sums of Catalan numbers (A000108).
  • A014138 (program): Partial sums of (Catalan numbers starting 1, 2, 5, …).
  • A014140 (program): Apply partial sum operator twice to Catalan numbers.
  • A014143 (program): Partial sums of A014138.
  • A014144 (program): Apply partial sum operator twice to factorials.
  • A014145 (program): Partial sums of A007489.
  • A014146 (program): Partial sums of A003136.
  • A014148 (program): a(n) = Sum_{m=1..n} Sum_{k=1..m} prime(k).
  • A014150 (program): Apply partial sum operator thrice to primes.
  • A014151 (program): Apply partial sum operator thrice to Catalan numbers.
  • A014153 (program): Expansion of 1/((1-x)^2*Product_{k>=1} (1-x^k)).
  • A014155 (program): Sum of a nonnegative cube and a triangular number.
  • A014156 (program): Numbers that are not the sum of a nonnegative cube and a triangular number.
  • A014159 (program): Inverse of 150th cyclotomic polynomial.
  • A014160 (program): Apply partial sum operator thrice to partition numbers.
  • A014161 (program): Apply partial sum operator 4 times to partition numbers.
  • A014162 (program): Apply partial sum operator thrice to Fibonacci numbers.
  • A014166 (program): Apply partial sum operator 4 times to Fibonacci numbers.
  • A014176 (program): Decimal expansion of the silver mean, 1+sqrt(2).
  • A014177 (program): Inverse of 168th cyclotomic polynomial.
  • A014178 (program): a(n) = Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k).
  • A014180 (program): Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k)^2.
  • A014181 (program): Numbers > 9 with all digits the same.
  • A014182 (program): Expansion of e.g.f. exp(1-x-exp(-x)).
  • A014186 (program): Squares of palindromes.
  • A014187 (program): Cubes of palindromes.
  • A014188 (program): Fourth powers of palindromes.
  • A014189 (program): Inverse of 180th cyclotomic polynomial.
  • A014190 (program): Palindromes in base 3 (written in base 10).
  • A014192 (program): Palindromes in base 4 (written in base 10).
  • A014193 (program): n-th prime + mu(n).
  • A014198 (program): Number of integer solutions to x^2 + y^2 <= n excluding (0,0).
  • A014200 (program): Number of solutions to x^2 + y^2 <= n, excluding (0,0), divided by 4.
  • A014201 (program): Number of solutions to x^2+x*y+y^2 <= n excluding (0,0).
  • A014202 (program): Number of solutions to x^2 + x*y + y^2 <= n, excluding (0,0), divided by 6.
  • A014203 (program): Sum {i^2+j^2+k^2}, i^2+j^2+k^2 <= n.
  • A014205 (program): (1/12)*(n+5)*(n+1)*n^2.
  • A014206 (program): a(n) = n^2 + n + 2.
  • A014208 (program): Next prime after n-th Fibonacci number.
  • A014209 (program): a(n) = n^2 + 3*n - 1.
  • A014213 (program): Floor((e/2)^n).
  • A014215 (program): [ sqrt(3/2)^n ].
  • A014217 (program): a(n) = floor(phi^n), where phi = (1+sqrt(5))/2 is the golden ratio.
  • A014220 (program): Next prime after n^3.
  • A014228 (program): Product of 3 successive Catalan numbers.
  • A014231 (program): (Product of 3 successive Catalan numbers)/2.
  • A014235 (program): Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].
  • A014236 (program): Expansion of g.f.: 2*x*(1-x)/((1-2*x)*(1-2*x^2)).
  • A014237 (program): a(n) = (n-th prime) - (n-th nonprime).
  • A014238 (program): a(n) = (n-th number that is 1 or prime) - (n-th composite number).
  • A014241 (program): a(n) = ((n+1)-st Fibonacci number) - (n-th non-Fibonacci number).
  • A014242 (program): (n-th Fibonacci number that is not 1) - (n-th number that is 1 or not a Fibonacci number).
  • A014243 (program): a(n) = ((n+1)-st Lucas number) - (n-th non-Lucas number).
  • A014244 (program): (n-th Lucas number that is not 1) - (n-th number that is 1 or not a Lucas number).
  • A014245 (program): a(n) = (n-th term of Beatty sequence for (3+sqrt(3))/2) - (n-th term of Beatty sequence for sqrt(3)).
  • A014252 (program): a(n) = b(n) - c(n) where b(n) is the n-th Lucas number greater than 3 and c(n) is the n-th number not in sequence b( ).
  • A014253 (program): a(n) = b(n)^2, where b(n) = b(n-1)^2 + b(n-2)^2 (A000283).
  • A014255 (program): Expansion of (1+2*x+3*x^2)/((1-x)*(1-x^2)^2).
  • A014257 (program): Product of digits of 2^n.
  • A014258 (program): Iccanobif numbers: add previous two terms and reverse the sum.
  • A014259 (program): Iccanobif numbers: add reversal of a(n-1) to a(n-2).
  • A014260 (program): Iccanobif numbers: add a(n-1) to reversal of a(n-2).
  • A014261 (program): Numbers that contain odd digits only.
  • A014263 (program): Numbers that contain even digits only.
  • A014283 (program): a(n) = Fibonacci(n) - n^2.
  • A014284 (program): Partial sums of primes, if 1 is regarded as a prime (as it was until quite recently, see A008578).
  • A014285 (program): a(n) = Sum_{j=1..n} j*prime(j).
  • A014286 (program): a(n) = Sum_{j=0..n} j*Fibonacci(j).
  • A014288 (program): a(n) = floor(Sum_{k=0..n} k!/2), or floor( A003422(n+1)/2 ).
  • A014291 (program): Imaginary Rabbits: imaginary part of a(0)=i; a(1)=-i; a(n) = a(n-1) + i*a(n-2), with i = sqrt(-1).
  • A014292 (program): a(n) = 2*a(n-1) - a(n-2) - a(n-4) with a(0) = a(1) = 0, a(2) = 1, a(3) = 2.
  • A014293 (program): a(n) = n^(n+1)-n+1.
  • A014297 (program): a(n) = n! * C(n+2, 2) * 2^(n+1).
  • A014298 (program): a(n) = 2^n * (3n)! / (2n+1)!.
  • A014300 (program): Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
  • A014301 (program): Number of internal nodes of even outdegree in all ordered rooted trees with n edges.
  • A014302 (program): a(n) = prime(n)*(prime(n-1)-1)/2.
  • A014303 (program): a(n) = prime(n)*(prime(n+1)-1)/2.
  • A014304 (program): Expansion of e.g.f. 1/sqrt(exp(x)*(2-exp(x))).
  • A014306 (program): a(n) = 0 if n of form m(m+1)(m+2)/6, otherwise 1.
  • A014307 (program): Expansion of the e.g.f. sqrt(exp(x) / (2 - exp(x))).
  • A014309 (program): a(n) = (n+2)*(n+1)*(n^2 + 7*n - 12)/24.
  • A014311 (program): Numbers with exactly 3 ones in binary expansion.
  • A014312 (program): Numbers with exactly 4 ones in binary expansion.
  • A014313 (program): Numbers with exactly 5 ones in binary expansion.
  • A014314 (program): Number of up steps in all length n left factors of Dyck paths.
  • A014316 (program): Convolution of Catalan numbers and squares.
  • A014317 (program): Inverse of 308th cyclotomic polynomial.
  • A014318 (program): Convolution of Catalan numbers and powers of 2.
  • A014334 (program): Exponential convolution of Fibonacci numbers with themselves.
  • A014335 (program): Exponential convolution of Fibonacci numbers with themselves (divided by 2).
  • A014336 (program): Three-fold exponential convolution of Fibonacci numbers with themselves.
  • A014337 (program): Three-fold exponential convolution of Fibonacci numbers with themselves (divided by 6).
  • A014368 (program): a(n) = bc, where n = C(b,2)+C(c,1), b>c>=0.
  • A014369 (program): a(n) = bcd, where n = C(b,3)+C(c,2)+C(d,1), b>c>d>=0.
  • A014370 (program): If n = binomial(b,2)+binomial(c,1), b>c>=0 then a(n) = binomial(b+1,3)+binomial(c+1,2).
  • A014373 (program): Inverse of 364th cyclotomic polynomial.
  • A014390 (program): Final 2 digits of 7^n.
  • A014391 (program): Final digit of 8^n.
  • A014392 (program): Final 2 digits of 8^n.
  • A014393 (program): Final 2 digits of 9^n.
  • A014401 (program): Denominators of coefficients of expansion of Bessel function J_3(x).
  • A014402 (program): Numbers found in denominators of expansion of Airy function Ai(x).
  • A014403 (program): Numbers found in denominators of expansion of Airy function Bi(x).
  • A014409 (program): Number of inequivalent ways (mod D_4) a pair of checkers can be placed on an n X n board.
  • A014410 (program): Elements in Pascal’s triangle (by row) that are not 1.
  • A014411 (program): Triangular array formed from elements to right of middle of rows of Pascal’s triangle that are not 1.
  • A014413 (program): Triangular array formed from elements to right of middle of Pascal’s triangle.
  • A014414 (program): Odd elements in Pascal’s triangle that are not 1.
  • A014417 (program): Representation of n in base of Fibonacci numbers (the Zeckendorf representation of n). Also, binary words starting with 1 not containing 11, with the word 0 added.
  • A014419 (program): Write n in base of Catalan numbers, then interpret as if written in base 3.
  • A014421 (program): Odd elements in Pascal’s triangle.
  • A014428 (program): Even elements in Pascal’s triangle.
  • A014430 (program): Subtract 1 from Pascal’s triangle, read by rows.
  • A014431 (program): a(1) = 1, a(2) = 2, a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
  • A014432 (program): a(n) = Sum_{i=1..n-1} a(i)*a(n-1-i), with a(0) = 1, a(1) = 3.
  • A014433 (program): a(n) = sum(i=0..n-1, a(i)*a(n-i) ), a(0) = 1, a(1)=4.
  • A014434 (program): Sum[ a[ i ]a[ n-i ],{i,0,n-1} ], a[ 0 ] == 1, a[ 1 ]==5.
  • A014435 (program): Sum( a(i)*a(n-i), i=0..n-1 ), with a(0)=1, a(1)=6.
  • A014436 (program): Inverse of 427th cyclotomic polynomial.
  • A014437 (program): Odd Fibonacci numbers.
  • A014442 (program): Largest prime factor of n^2 + 1.
  • A014445 (program): Even Fibonacci numbers; or, Fibonacci(3*n).
  • A014447 (program): Odd Lucas numbers.
  • A014448 (program): Even Lucas numbers: L(3n).
  • A014449 (program): Numbers in the triangle of Eulerian numbers (A008292) that are not 1.
  • A014450 (program): Even numbers in the triangle of Eulerian numbers.
  • A014455 (program): Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 1, 0; 0, 0, 2 ]. Number of integer solutions to x^2 + y^2 + 2*z^2 = n.
  • A014459 (program): Odd numbers in the triangle of Eulerian numbers.
  • A014461 (program): Odd numbers in the triangle of Eulerian numbers that are not 1.
  • A014462 (program): Triangular array formed from elements to left of middle of Pascal’s triangle.
  • A014463 (program): Triangular array formed from elements to left of middle of rows of Pascal’s triangle that are not 1.
  • A014465 (program): A063691 without zeros.
  • A014473 (program): Pascal’s triangle - 1.
  • A014475 (program): Triangular array formed from odd elements to right of middle of rows of Pascal’s triangle.
  • A014476 (program): Triangular array formed from even elements to right of middle of rows of Pascal’s triangle.
  • A014477 (program): Expansion of (1 + 2*x)/(1 - 2*x)^3.
  • A014479 (program): Exponential generating function = (1+2*x)/(1-2*x)^3.
  • A014480 (program): Expansion of (1+2*x)/(1-2*x)^2.
  • A014481 (program): a(n) = 2^n*n!*(2*n+1).
  • A014483 (program): Expansion of (1+2*x) / (1-2*x)^4.
  • A014484 (program): Expansion of (1+2x)/(1-2x)^4 (E.g.f.).
  • A014485 (program): Inverse of 476th cyclotomic polynomial.
  • A014486 (program): List of totally balanced sequences of 2n binary digits written in base 10. Binary expansion of each term contains n 0’s and n 1’s and reading from left to right (the most significant to the least significant bit), the number of 0’s never exceeds the number of 1’s.
  • A014491 (program): a(n) = gcd(n, 2^n - 1).
  • A014493 (program): Odd triangular numbers.
  • A014494 (program): Even triangular numbers.
  • A014495 (program): Central binomial coefficient - 1.
  • A014499 (program): Number of 1’s in binary representation of n-th prime.
  • A014506 (program): Inverse of 497th cyclotomic polynomial.
  • A014508 (program): a(n) = floor( n! / e ).
  • A014509 (program): Truncation of Bernoulli number: floor(|B_2n|) * sign(B_2n).
  • A014523 (program): Number of Hamiltonian paths in a 4 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
  • A014524 (program): Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
  • A014528 (program): Neither == 0 (mod 4) nor a power of 3.
  • A014531 (program): Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.
  • A014532 (program): Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 3rd column from the center.
  • A014533 (program): Form array in which n-th row is obtained by expanding (1 + x + x^2)^n and taking the 4th column from the center.
  • A014541 (program): Inverse of 532nd cyclotomic polynomial.
  • A014549 (program): Decimal expansion of 1 / M(1,sqrt(2)) (Gauss’s constant).
  • A014550 (program): Binary reflected Gray code.
  • A014551 (program): Jacobsthal-Lucas numbers.
  • A014553 (program): Maximal multiplicative persistence (or length) of any n-digit number.
  • A014557 (program): Multiplicity of K_3 in K_n.
  • A014566 (program): Sierpiński numbers of the first kind: n^n + 1.
  • A014567 (program): Numbers k such that k and sigma(k) are relatively prime, where sigma(k) = sum of divisors of k (A000203).
  • A014571 (program): Consider the Morse-Thue sequence (A010060) as defining a binary constant and convert it to decimal.
  • A014574 (program): Average of twin prime pairs.
  • A014577 (program): The regular paper-folding sequence (or dragon curve sequence).
  • A014578 (program): Binary expansion of Thue constant (or Roth’s constant).
  • A014591 (program): a(n) = floor(n^2/12 + 5/4).
  • A014601 (program): Numbers congruent to 0 or 3 mod 4.
  • A014605 (program): Partial sums of A001935; at one time this was conjectured to agree with A007478.
  • A014606 (program): a(n) = (3n)!/(6^n).
  • A014608 (program): a(n) = (4n)!/(24^n).
  • A014609 (program): a(n) = (5n)!/(5!^n).
  • A014610 (program): Tetranacci numbers arising in connection with current algebras sp(2)_n.
  • A014612 (program): Numbers that are the product of exactly three (not necessarily distinct) primes.
  • A014613 (program): Numbers that are products of 4 primes.
  • A014614 (program): Numbers that are products of 5 primes (or 5-almost primes, a generalization of semiprimes).
  • A014616 (program): a(n) = solution to the postage stamp problem with 2 denominations and n stamps.
  • A014619 (program): Exponential generating function is -f(x) * int(exp(exp(-t)-1),t,0,x) where f(x) = exp(1-x-exp(-x)) is an exponential generating function for A014182.
  • A014625 (program): Inverse of 616th cyclotomic polynomial.
  • A014626 (program): Number of intersection points of diagonals of an n-gon in general position, plus number of vertices.
  • A014628 (program): Number of segments (and sides) created by diagonals of an n-gon in general position.
  • A014629 (program): Number of segments created by diagonals of n-gon.
  • A014632 (program): Odd pentagonal numbers.
  • A014633 (program): Even pentagonal numbers.
  • A014634 (program): a(n) = (2*n+1)*(4*n+1).
  • A014635 (program): a(n) = 2*n*(4*n - 1).
  • A014637 (program): Odd heptagonal numbers (A000566).
  • A014640 (program): Even heptagonal numbers (A000566).
  • A014641 (program): Odd octagonal numbers: (2n+1)*(6n+1).
  • A014642 (program): Even octagonal numbers: a(n) = 4*n*(3*n-1).
  • A014653 (program): Inverse of 644th cyclotomic polynomial.
  • A014657 (program): Numbers m that divide 2^k + 1 for some nonnegative k.
  • A014659 (program): Odd numbers that do not divide 2^k + 1 for any k >= 1.
  • A014661 (program): Numbers that do not divide 2^k + 1 for any k>0.
  • A014664 (program): Order of 2 modulo the n-th prime.
  • A014668 (program): a(1) = 1, a(n) = Sum_{k=1..n-1} Sum_{d|k} a(d).
  • A014673 (program): Smallest prime factor of greatest proper divisor of n.
  • A014675 (program): The infinite Fibonacci word (start with 1, apply 1->2, 2->21, take limit).
  • A014677 (program): First differences of A001468.
  • A014679 (program): G.f.: (1+x^3)^2/((1-x^2)*(1-x^3)*(1-x^4)).
  • A014681 (program): Fix 0; exchange even and odd numbers.
  • A014682 (program): The Collatz or 3x+1 function: a(n) = n/2 if n is even, otherwise (3n+1)/2.
  • A014683 (program): In the sequence of positive integers add 1 to each prime number.
  • A014684 (program): In the sequence of positive integers subtract 1 from each prime number.
  • A014685 (program): In sequence of positive integers add 1 to first prime and subtract 1 from 2nd prime; add 1 to 3rd prime and subtract 1 from 4th prime and so on.
  • A014686 (program): In sequence of prime numbers add 1 to first prime, 3rd prime, fifth prime, … then subtract 1 from 2nd prime, fourth prime, sixth prime and so on.
  • A014687 (program): In sequence of odd primes add 1 to first prime, 3rd prime, 5th prime, … then subtract 1 from 2nd prime, fourth prime, sixth prime and so on.
  • A014688 (program): a(n) = n-th prime + n.
  • A014689 (program): a(n) = prime(n)-n, the number of nonprimes less than prime(n).
  • A014690 (program): a(n) = n + prime(n+1).
  • A014692 (program): a(n) = prime(n) - (n-1).
  • A014693 (program): In sequence of prime numbers add 1 to first number, 2 to 3rd number, 3 to 5th number, … then subtract 1 from 2nd number, 2 from 4th number, 3 from 6th number and so on.
  • A014694 (program): a(n) = prime(n+1) - (-1)^n*ceiling(n/2).
  • A014695 (program): Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
  • A014701 (program): Number of multiplications to compute n-th power by the Chandah-sutra method.
  • A014705 (program): Expansion of ((theta_2)^4 + (theta_3)^4) / eta(z/2)^4.
  • A014707 (program): a(4n) = 0, a(4n+2) = 1, a(2n+1) = a(n).
  • A014709 (program): The regular paper-folding (or dragon curve) sequence.
  • A014710 (program): The regular paper-folding (or dragon curve) sequence.
  • A014717 (program): a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
  • A014718 (program): a(n) = (F(n+1)+L(n)+n)^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).
  • A014719 (program): Squares of elements in Pascal triangle (by row) that are not 1.
  • A014720 (program): Squares of elements to right of central element in Pascal triangle (by row) that are not 1.
  • A014721 (program): Squares of elements to left of the central element in Pascal triangle (by row).
  • A014725 (program): Squares of odd elements in Pascal triangle that are not 1.
  • A014726 (program): Squares of odd elements in Pascal triangle.
  • A014727 (program): Squares of even elements in Pascal’s triangle A007318.
  • A014728 (program): Squares of odd Fibonacci numbers.
  • A014729 (program): Squares of even Fibonacci numbers.
  • A014730 (program): Squares of odd Lucas numbers.
  • A014731 (program): Squares of even Lucas numbers.
  • A014732 (program): Squares of numbers in triangle of Eulerian numbers that are not 1.
  • A014733 (program): Squares of even numbers in triangle of Eulerian numbers.
  • A014734 (program): Squares of odd numbers in triangle of Eulerian numbers.
  • A014735 (program): Squares of odd numbers in triangle of Eulerian numbers that are not 1.
  • A014736 (program): Squares of odd triangular numbers.
  • A014737 (program): Inverse of 728th cyclotomic polynomial.
  • A014738 (program): Squares of even triangular numbers.
  • A014739 (program): Expansion of (1+x^2)/(1-2*x+x^3).
  • A014742 (program): Expansion of (1+x^2)/(1 - 2*x - 2*x^2 + x^3).
  • A014743 (program): Expansion of (1+x)/(1-x-x^2-x^4-x^5).
  • A014751 (program): Inverse of 742nd cyclotomic polynomial.
  • A014760 (program): Squares of numbers in array formed from odd elements to the right of middle of rows of Pascal triangle that are not 1.
  • A014761 (program): Squares of numbers in array formed from odd elements to the right of middle of rows of Pascal triangle.
  • A014762 (program): Squares of numbers in array formed from even elements to the right of middle of rows of Pascal triangle.
  • A014766 (program): Numbers k such that the 3k shuffle group does not accomplish a perfect shuffle.
  • A014769 (program): Squares of odd pentagonal numbers.
  • A014770 (program): Squares of even pentagonal numbers.
  • A014771 (program): Squares of odd hexagonal numbers.
  • A014772 (program): Squares of even hexagonal numbers.
  • A014773 (program): Squares of odd heptagonal numbers.
  • A014775 (program): Expansion of exp ( - x - (1/2)*x^2 - (1/6)*x^3).
  • A014785 (program): a(n) = Sum_{0<=k<=n} ceiling(k^2/n).
  • A014787 (program): Expansion of Jacobi theta constant (theta_2/2)^12.
  • A014792 (program): Squares of even heptagonal numbers.
  • A014793 (program): Squares of odd octagonal numbers.
  • A014794 (program): Squares of even octagonal numbers.
  • A014795 (program): Squares of odd tetrahedral numbers.
  • A014796 (program): Squares of even tetrahedral numbers (A015220).
  • A014797 (program): Squares of odd square pyramidal numbers.
  • A014798 (program): Squares of even square pyramidal numbers.
  • A014799 (program): Squares of odd pentagonal pyramidal numbers.
  • A014800 (program): Squares of even pentagonal pyramidal numbers.
  • A014801 (program): Squares of odd hexagonal pyramidal numbers.
  • A014803 (program): Squares of even hexagonal pyramidal numbers.
  • A014805 (program): Expansion of Jacobi theta constant (theta_2/2)^16.
  • A014809 (program): Expansion of Jacobi theta constant (theta_2/2)^24.
  • A014811 (program): a(n) = Sum_{k=1..n-1} ceiling(k^2/n).
  • A014813 (program): a(n) = Sum_{k=0..n} ceiling(k^3/n).
  • A014816 (program): a(n) = Sum_{k=1..n} ceiling(k^4/n).
  • A014817 (program): a(n) = Sum_{k=1..n} floor(k^2/n).
  • A014818 (program): a(n) is the sum over all floor(k^3/n), k=0 to n inclusive.
  • A014819 (program): a(n) = Sum_{k=1..n} floor(k^4/n).
  • A014820 (program): a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2.
  • A014821 (program): Inverse of 812th cyclotomic polynomial.
  • A014822 (program): Numbers k such that k divides s(k), where s(1)=1, s(j)=10*s(j-1)+j (A014824).
  • A014824 (program): a(0) = 0; for n>0, a(n) = 10*a(n-1) + n.
  • A014825 (program): a(n) = 4*a(n-1) + n with n > 1, a(1)=1.
  • A014827 (program): a(1)=1, a(n) = 5*a(n-1) + n.
  • A014829 (program): a(1)=1, a(n) = 6*a(n-1) + n.
  • A014830 (program): a(1)=1; for n > 1, a(n) = 7*a(n-1) + n.
  • A014831 (program): a(1)=1; for n>1, a(n) = 8*a(n-1)+n.
  • A014832 (program): a(1)=1; for n>1, a(n) = 9*a(n-1)+n.
  • A014833 (program): a(n) = 2^n - n(n+1)/2.
  • A014835 (program): Inverse of 826th cyclotomic polynomial.
  • A014836 (program): Sum modulo n of all the digits of n in every base from 2 to n-1.
  • A014837 (program): Sum of all the digits of n in every base from 2 to n-1.
  • A014844 (program): a(n) = 2^n - n*(n-1)/2.
  • A014846 (program): 2^(n-1) - n*(n+1)/2.
  • A014847 (program): Numbers k such that k-th Catalan number C(2k,k)/(k+1) is divisible by k.
  • A014848 (program): n^2 - floor( n/2 ).
  • A014851 (program): Numbers k that divide s(k), where s(1)=1, s(j)=4*s(j-1)+j.
  • A014855 (program): Numbers k that divide s(k), where s(1)=1, s(j)=8*s(j-1)+j.
  • A014863 (program): Inverse of 854th cyclotomic polynomial.
  • A014866 (program): Numbers k that divide s(k), where s(1)=1, s(j)=16*s(j-1)+j.
  • A014871 (program): Numbers k that divide s(k), where s(1)=1, s(j)=20*s(j-1)+j.
  • A014873 (program): Numbers k that divide s(k), where s(1)=1, s(j)=22*s(j-1)+j.
  • A014877 (program): Inverse of 868th cyclotomic polynomial.
  • A014881 (program): a(1)=1, a(n) = 11*a(n-1)+n.
  • A014882 (program): a(1) = 1, a(n) = 12*a(n-1) + n.
  • A014896 (program): a(1) = 1, a(n) = 13*a(n-1) + n.
  • A014897 (program): a(1)=1, a(n) = 14*a(n-1) + n.
  • A014898 (program): a(1)=1, a(n) = 15*a(n-1) + n.
  • A014899 (program): a(n) = (16^(n+1) - 15*n - 16)/225.
  • A014900 (program): a(1)=1, a(n)=17*a(n-1)+n.
  • A014901 (program): a(1)=1, a(n) = 18*a(n-1) + n.
  • A014903 (program): a(1)=1, a(n) = 19*a(n-1) + n.
  • A014904 (program): a(1)=1, a(n) = 20*a(n-1) + n.
  • A014905 (program): a(1)=1, a(n) = 21*a(n-1) + n.
  • A014907 (program): a(1)=1, a(n) = 22*a(n-1) + n.
  • A014909 (program): a(1)=1, a(n) = 23*a(n-1) + n.
  • A014913 (program): a(1)=1, a(n) = 24*a(n-1) + n.
  • A014914 (program): a(1)=1, a(n) = 25*a(n-1) + n.
  • A014915 (program): a(1)=1, a(n) = n*3^(n-1) + a(n-1).
  • A014916 (program): a(1)=1, a(n) = n*4^(n-1) + a(n-1).
  • A014917 (program): a(1)=1, a(n) = n*5^(n-1) + a(n-1).
  • A014918 (program): a(1)=1, a(n) = n*6^(n-1) + a(n-1).
  • A014920 (program): a(1)=1, a(n) = n*7^(n-1) + a(n-1).
  • A014921 (program): a(1)=1, a(n) = n*8^(n-1) + a(n-1).
  • A014923 (program): a(1) = 1, a(n) = n*9^(n-1) + a(n-1).
  • A014925 (program): Number of zeros in numbers 1 to 111…1 (n+1 digits).
  • A014926 (program): a(1)=1, a(n) = n*11^(n-1) + a(n-1).
  • A014927 (program): a(1)=1, a(n) = n*12^(n-1) + a(n-1).
  • A014928 (program): a(1)=1, a(n)=n*13^(n-1)+a(n-1).
  • A014929 (program): a(1)=1, a(n) = n*14^(n-1) + a(n-1).
  • A014930 (program): a(1)=1, a(n) = n*15^(n-1) + a(n-1).
  • A014931 (program): a(1)=1, a(n) = n*16^(n-1) + a(n-1).
  • A014934 (program): a(1)=1, a(n)=n*17^(n-1)+a(n-1).
  • A014935 (program): a(1)=1, a(n) = n*18^(n-1) + a(n-1).
  • A014936 (program): a(1)=1, a(n) = n*19^(n-1) + a(n-1).
  • A014937 (program): a(1)=1, a(n)=n*20^(n-1)+a(n-1).
  • A014938 (program): a(1)=1, a(n) = n*21^(n-1) + a(n-1).
  • A014940 (program): a(1)=1, a(n)=n*22^(n-1)+a(n-1).
  • A014941 (program): a(1)=1, a(n) = n*23^(n-1) + a(n-1).
  • A014942 (program): ( 1+24^n*(23*n-1) ) / 529.
  • A014943 (program): a(1)=1, a(n)=n*25^(n-1)+a(n-1).
  • A014961 (program): Inverse of 952nd cyclotomic polynomial.
  • A014963 (program): Exponential of Mangoldt function M(n): a(n) = 1 unless n is a prime or prime power when a(n) = that prime.
  • A014964 (program): a(n) = lcm(n, 2^(n-1)).
  • A014965 (program): a(n) = lcm(n, Fibonacci(n)).
  • A014968 (program): Expansion of (1/theta_4 - 1)/2.
  • A014969 (program): Expansion of (theta_3(q) / theta_4(q))^2 in powers of q.
  • A014972 (program): Expansion of (theta_3(q) / theta_4(q) )^4 in powers of q; also of 1 / (1 - lambda(z)).
  • A014973 (program): a(n) = n / gcd(n, (n-1)!).
  • A014977 (program): Expansion of Molien series for automorphism group (2.Weyl(E6)) of E6 lattice.
  • A014979 (program): Numbers that are both triangular and pentagonal.
  • A014980 (program): a(n+1) = floor(a(n)/2) * ceiling(a(n)/2), a(0) = 5.
  • A014981 (program): a(n) = c(prime(n))/prime(n), where c = Perrin sequence A001608 (starting 0,2,3,…) and prime(n) is the n-th prime.
  • A014983 (program): a(n) = (1 - (-3)^n)/4.
  • A014985 (program): a(n) = (1 - (-4)^n)/5.
  • A014986 (program): a(n) = (1 - (-5)^n)/6.
  • A014987 (program): a(n) = (1 - (-6)^n)/7.
  • A014989 (program): a(n) = (1 - (-7)^n)/8.
  • A014990 (program): a(n) = (1 - (-8)^n)/9.
  • A014991 (program): a(n) = (1 - (-9)^n)/10.
  • A014992 (program): a(n) = (1 - (-10)^n)/11.
  • A014993 (program): a(n) = (1 - (-11)^n)/12.
  • A014994 (program): a(n) = (1 - (-12)^n)/13.
  • A015000 (program): q-integers for q=-13.
  • A015001 (program): q-factorial numbers for q=3.
  • A015002 (program): q-factorial numbers for q=4.
  • A015003 (program): Inverse of 994th cyclotomic polynomial.
  • A015004 (program): q-factorial numbers for q=5.
  • A015005 (program): q-factorial numbers for q=6.
  • A015006 (program): q-factorial numbers for q=7.
  • A015007 (program): q-factorial numbers for q=8.
  • A015008 (program): q-factorial numbers for q=9.
  • A015009 (program): q-factorial numbers for q=10.
  • A015011 (program): q-factorial numbers for q=11.
  • A015013 (program): q-factorial numbers for q=-2.
  • A015015 (program): q-factorial numbers for q=-3.
  • A015017 (program): q-factorial numbers for q=-4.
  • A015018 (program): q-factorial numbers for q=-5.
  • A015019 (program): q-factorial numbers for q=-6.
  • A015020 (program): q-factorial numbers for q=-7.
  • A015022 (program): q-factorial numbers for q=-8.
  • A015023 (program): q-factorial numbers for q=-9.
  • A015025 (program): q-factorial numbers for q=-10.
  • A015026 (program): q-factorial numbers for q=-11.
  • A015027 (program): q-factorial numbers for q=-12.
  • A015030 (program): q-Catalan numbers (binomial version) for q=2.
  • A015045 (program): Inverse of 1036th cyclotomic polynomial.
  • A015049 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^2.
  • A015050 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^3.
  • A015051 (program): Let m = A013929(n); then a(n) = smallest k such that m divides k^4.
  • A015052 (program): a(n) is the smallest positive integer m such that m^5 is divisible by n.
  • A015053 (program): Smallest positive integer for which n divides a(n)^6.
  • A015073 (program): Inverse of 1064th cyclotomic polynomial.
  • A015120 (program): Inverse of 1111th cyclotomic polynomial.
  • A015128 (program): Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.
  • A015142 (program): Inverse of 1133rd cyclotomic polynomial.
  • A015152 (program): Sum of (Gaussian) q-binomial coefficients for q=-2.
  • A015154 (program): Sum of (Gaussian) q-binomial coefficients for q=-3.
  • A015155 (program): Sum of (Gaussian) q-binomial coefficients for q=-4.
  • A015157 (program): Inverse of 1148th cyclotomic polynomial.
  • A015167 (program): Sum of (Gaussian) q-binomial coefficients for q=-5.
  • A015169 (program): Sum of (Gaussian) q-binomial coefficients for q=-6.
  • A015170 (program): Sum of (Gaussian) q-binomial coefficients for q=-7.
  • A015172 (program): Sum of (Gaussian) q-binomial coefficients for q=-8.
  • A015173 (program): Sum of (Gaussian) q-binomial coefficients for q=-9.
  • A015174 (program): Sum of (Gaussian) q-binomial coefficients for q=-10.
  • A015176 (program): Sum of (Gaussian) q-binomial coefficients for q=-11.
  • A015177 (program): Sum of (Gaussian) q-binomial coefficients for q=-12.
  • A015178 (program): Sum of (Gaussian) q-binomial coefficients for q=-13.
  • A015180 (program): Sum of (Gaussian) q-binomial coefficients for q=-14.
  • A015181 (program): Sum of (Gaussian) q-binomial coefficients for q=-15.
  • A015183 (program): Sum of (Gaussian) q-binomial coefficients for q=-16.
  • A015184 (program): Sum of (Gaussian) q-binomial coefficients for q=-17.
  • A015185 (program): Sum of (Gaussian) q-binomial coefficients for q=-18.
  • A015186 (program): Inverse of 1177th cyclotomic polynomial.
  • A015188 (program): Sum of (Gaussian) q-binomial coefficients for q=-19.
  • A015189 (program): Sum of (Gaussian) q-binomial coefficients for q=-20.
  • A015190 (program): Sum of (Gaussian) q-binomial coefficients for q=-21.
  • A015191 (program): Sum of (Gaussian) q-binomial coefficients for q=-22.
  • A015192 (program): Sum of (Gaussian) q-binomial coefficients for q=-23.
  • A015193 (program): Sum of (Gaussian) q-binomial coefficients for q=-24.
  • A015195 (program): Sum of Gaussian binomial coefficients for q=9.
  • A015196 (program): Sum of Gaussian binomial coefficients for q=10.
  • A015197 (program): Sum of Gaussian binomial coefficients for q=11.
  • A015200 (program): Sum of Gaussian binomial coefficients for q=12.
  • A015201 (program): Sum of Gaussian binomial coefficients for q=13.
  • A015202 (program): Sum of Gaussian binomial coefficients for q=14.
  • A015203 (program): Sum of Gaussian binomial coefficients for q=15.
  • A015204 (program): Sum of Gaussian binomial coefficients for q=16.
  • A015207 (program): Sum of Gaussian binomial coefficients for q=17.
  • A015208 (program): Inverse of 1199th cyclotomic polynomial.
  • A015209 (program): Sum of Gaussian binomial coefficients for q=18.
  • A015210 (program): Sum of Gaussian binomial coefficients for q=19.
  • A015211 (program): Sum of Gaussian binomial coefficients for q=20.
  • A015212 (program): Sum of Gaussian binomial coefficients for q=21.
  • A015213 (program): Inverse of 1204th cyclotomic polynomial.
  • A015214 (program): Sum of Gaussian binomial coefficients for q=22.
  • A015215 (program): Sum of Gaussian binomial coefficients for q=23.
  • A015217 (program): Sum of Gaussian binomial coefficients for q=24.
  • A015219 (program): Odd tetrahedral numbers: a(n) = (4*n+1)*(4*n+2)*(4*n+3)/6.
  • A015220 (program): Even tetrahedral numbers.
  • A015221 (program): Odd square pyramidal numbers.
  • A015222 (program): Even square pyramidal numbers.
  • A015223 (program): Odd pentagonal pyramidal numbers.
  • A015224 (program): Even pentagonal pyramidal numbers.
  • A015225 (program): Odd hexagonal pyramidal numbers.
  • A015226 (program): Even hexagonal pyramidal numbers.
  • A015234 (program): a(n) = (17 - 2*n)*n^2.
  • A015237 (program): a(n) = (2*n - 1)*n^2.
  • A015238 (program): a(n) = (2*n - 3)n^2.
  • A015240 (program): a(n) = (2*n - 5)n^2.
  • A015241 (program): Inverse of 1232nd cyclotomic polynomial.
  • A015242 (program): a(n) = (2*n - 7)*n^2.
  • A015243 (program): a(n) = (2*n - 9)*n^2.
  • A015245 (program): a(n) = (2*n - 11)*n^2.
  • A015246 (program): a(n) = (2*n - 13)*n^2.
  • A015247 (program): a(n) = (2*n - 15)*n^2.
  • A015249 (program): Gaussian binomial coefficient [ n,2 ] for q = -2.
  • A015251 (program): Gaussian binomial coefficient [ n,2 ] for q = -3.
  • A015252 (program): Inverse of 1243rd cyclotomic polynomial.
  • A015253 (program): Gaussian binomial coefficient [ n,2 ] for q = -4.
  • A015255 (program): Gaussian binomial coefficient [ n,2 ] for q = -5.
  • A015257 (program): Gaussian binomial coefficient [ n,2 ] for q = -6.
  • A015258 (program): Gaussian binomial coefficient [ n,2 ] for q = -7.
  • A015259 (program): Gaussian binomial coefficient [ n,2 ] for q = -8.
  • A015260 (program): Gaussian binomial coefficient [ n,2 ] for q = -9.
  • A015261 (program): Gaussian binomial coefficient [ n,2 ] for q = -10.
  • A015262 (program): Gaussian binomial coefficient [ n,2 ] for q = -11.
  • A015264 (program): Gaussian binomial coefficient [ n,2 ] for q = -12.
  • A015265 (program): Gaussian binomial coefficient [ n,2 ] for q = -13.
  • A015266 (program): Gaussian binomial coefficient [ n,3 ] for q = -2.
  • A015268 (program): Gaussian binomial coefficient [ n,3 ] for q = -3.
  • A015271 (program): Gaussian binomial coefficient [ n,3 ] for q = -4.
  • A015272 (program): Gaussian binomial coefficient [ n,3 ] for q = -5.
  • A015273 (program): Gaussian binomial coefficient [ n,3 ] for q=-6.
  • A015275 (program): Gaussian binomial coefficient [ n,3 ] for q = -7.
  • A015276 (program): Gaussian binomial coefficient [ n,3 ] for q = -8.
  • A015277 (program): Gaussian binomial coefficient [ n,3 ] for q = -9.
  • A015278 (program): Gaussian binomial coefficient [ n,3 ] for q = -10.
  • A015279 (program): Gaussian binomial coefficient [ n,3 ] for q = -11.
  • A015281 (program): Gaussian binomial coefficient [ n,3 ] for q = -12.
  • A015286 (program): Gaussian binomial coefficient [ n,3 ] for q = -13.
  • A015287 (program): Gaussian binomial coefficient [ n,4 ] for q = -2.
  • A015288 (program): Gaussian binomial coefficient [ n,4 ] for q = -3.
  • A015289 (program): Gaussian binomial coefficient [ n,4 ] for q = -4.
  • A015291 (program): Gaussian binomial coefficient [ n,4 ] for q = -5.
  • A015292 (program): Gaussian binomial coefficient [ n,4 ] for q = -6.
  • A015293 (program): Gaussian binomial coefficient [ n,4 ] for q = -7.
  • A015294 (program): Gaussian binomial coefficient [ n,4 ] for q = -8.
  • A015295 (program): Gaussian binomial coefficient [ n,4 ] for q = -9.
  • A015297 (program): Inverse of 1288th cyclotomic polynomial.
  • A015305 (program): Gaussian binomial coefficient [ n,5 ] for q = -2.
  • A015306 (program): Gaussian binomial coefficient [ n,5 ] for q = -3.
  • A015308 (program): Gaussian binomial coefficient [ n,5 ] for q = -4.
  • A015309 (program): Gaussian binomial coefficient [ n,5 ] for q = -5.
  • A015310 (program): Gaussian binomial coefficient [ n,5 ] for q = -6.
  • A015322 (program): Inverse of 1313th cyclotomic polynomial.
  • A015323 (program): Gaussian binomial coefficient [ n,6 ] for q = -2.
  • A015324 (program): Gaussian binomial coefficient [ n,6 ] for q = -3.
  • A015325 (program): Inverse of 1316th cyclotomic polynomial.
  • A015326 (program): Gaussian binomial coefficient [ n,6 ] for q = -4.
  • A015338 (program): Gaussian binomial coefficient [ n,7 ] for q = -2.
  • A015340 (program): Gaussian binomial coefficient [ n,7 ] for q = -3.
  • A015348 (program): Inverse of 1339th cyclotomic polynomial.
  • A015356 (program): Gaussian binomial coefficient [ n,8 ] for q=-2.
  • A015357 (program): Gaussian binomial coefficient [ n,8 ] for q=-3.
  • A015371 (program): Gaussian binomial coefficient [ n,9 ] for q=-2.
  • A015375 (program): Gaussian binomial coefficient [ n,9 ] for q=-3.
  • A015400 (program): Inverse of 1391st cyclotomic polynomial.
  • A015406 (program): Inverse of 1397th cyclotomic polynomial.
  • A015426 (program): Inverse of 1417th cyclotomic polynomial.
  • A015440 (program): Generalized Fibonacci numbers.
  • A015441 (program): Generalized Fibonacci numbers.
  • A015442 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1.
  • A015443 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).
  • A015445 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).
  • A015446 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2).
  • A015447 (program): Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).
  • A015448 (program): a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.
  • A015449 (program): Expansion of (1-4*x)/(1-5*x-x^2).
  • A015450 (program): Inverse of 1441st cyclotomic polynomial.
  • A015451 (program): a(n) = 6*a(n-1) + a(n-2) for n > 1, with a(0) = a(1) = 1.
  • A015453 (program): Generalized Fibonacci numbers.
  • A015454 (program): Generalized Fibonacci numbers.
  • A015455 (program): a(n) = 9*a(n-1) + a(n-2) for n>1; a(0) = a(1) = 1.
  • A015456 (program): Generalized Fibonacci numbers.
  • A015457 (program): Generalized Fibonacci numbers.
  • A015459 (program): q-Fibonacci numbers for q=2.
  • A015460 (program): q-Fibonacci numbers for q=3.
  • A015461 (program): q-Fibonacci numbers for q=4.
  • A015462 (program): q-Fibonacci numbers for q=5.
  • A015463 (program): q-Fibonacci numbers for q=6.
  • A015464 (program): q-Fibonacci numbers for q=7.
  • A015465 (program): q-Fibonacci numbers for q=8.
  • A015467 (program): q-Fibonacci numbers for q=9.
  • A015468 (program): q-Fibonacci numbers for q=10.
  • A015469 (program): q-Fibonacci numbers for q=11.
  • A015470 (program): q-Fibonacci numbers for q=12.
  • A015473 (program): q-Fibonacci numbers for q=2.
  • A015474 (program): q-Fibonacci numbers for q=3.
  • A015475 (program): q-Fibonacci numbers for q=4.
  • A015476 (program): q-Fibonacci numbers for q=5.
  • A015477 (program): q-Fibonacci numbers for q=6.
  • A015478 (program): Inverse of 1469th cyclotomic polynomial.
  • A015479 (program): q-Fibonacci numbers for q=7.
  • A015480 (program): q-Fibonacci numbers for q=8.
  • A015481 (program): q-Fibonacci numbers for q=9.
  • A015482 (program): q-Fibonacci numbers for q=10.
  • A015484 (program): q-Fibonacci numbers for q=11.
  • A015485 (program): q-Fibonacci numbers for q=12.
  • A015486 (program): a(0)=1, a(1)=2, a(n) = sum_{k=0}^{k=n-1} 2^k a(k).
  • A015487 (program): a(0)=1, a(1)=3, a(n) = sum_{k=0}^{k=n-1} 3^k a(k).
  • A015489 (program): a(0)=1, a(1)=4, a(n) = sum_{k=0}^{k=n-1} 4^k a(k).
  • A015490 (program): a(0)=1, a(1)=5, a(n) = sum_{k=0}^{k=n-1} 5^k a(k).
  • A015492 (program): a(0)=1, a(1)=6, a(n) = sum_{k=0}^{k=n-1} 6^k a(k).
  • A015493 (program): Inverse of 1484th cyclotomic polynomial.
  • A015495 (program): a(0)=1, a(1)=7, a(n) = sum_{k=0}^{k=n-1} 7^k a(k).
  • A015496 (program): a(0)=1, a(1)=8, a(n) = sum_{k=0}^{k=n-1} 8^k a(k).
  • A015497 (program): a(0)=1, a(1)=9, a(n) = sum_{k=0}^{k=n-1} 9^k a(k).
  • A015498 (program): a(0)=1, a(1)=10, a(n) = sum_{k=0}^{k=n-1} 10^k a(k).
  • A015499 (program): a(0)=1, a(1)=11, a(n) = sum_{k=0}^{k=n-1} 11^k a(k).
  • A015501 (program): a(0)=1, a(1)=12, a(n) = sum_{k=0}^{k=n-1} 12^k a(k).
  • A015502 (program): a(1)=1, a(n) = Sum_{k=1..n-1} (3^k-1)/2 * a(k).
  • A015503 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (4^k-1)/3 a(k).
  • A015506 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (5^k-1)/4 a(k).
  • A015507 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (6^k-1)/5 a(k).
  • A015508 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (7^k-1)/6 a(k).
  • A015509 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (8^k-1)/7 a(k).
  • A015511 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (9^k-1)/8 a(k).
  • A015512 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (10^k-1)/9 a(k).
  • A015513 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (11^k-1)/10 a(k).
  • A015515 (program): a(1)=1, a(n) = sum_{k=1}^{k=n-1} (12^k-1)/11 a(k).
  • A015516 (program): Inverse of 1507th cyclotomic polynomial.
  • A015518 (program): a(n) = 2*a(n-1) + 3*a(n-2), with a(0)=0, a(1)=1.
  • A015519 (program): a(n) = 2*a(n-1) + 7*a(n-2).
  • A015520 (program): a(n) = 2*a(n-1) + 11*a(n-2), a(0) = 0, a(1) = 1.
  • A015521 (program): a(n) = 3*a(n-1) + 4*a(n-2), a(0) = 0, a(1) = 1.
  • A015523 (program): a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.
  • A015524 (program): a(n) = 3*a(n-1) + 7*a(n-2).
  • A015525 (program): Expansion of x/(1-3*x-8*x^2).
  • A015528 (program): a(n) = 3*a(n-1) + 10*a(n-2).
  • A015529 (program): Expansion of x/(1 - 3*x - 11*x^2).
  • A015530 (program): Expansion of x/(1 - 4*x - 3*x^2).
  • A015531 (program): Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).
  • A015532 (program): a(n) = 4*a(n-1) + 7*a(n-2).
  • A015533 (program): a(n) = 4*a(n-1) + 9*a(n-2).
  • A015534 (program): Expansion of x/(1 - 4*x - 11*x^2).
  • A015535 (program): Expansion of x/(1 - 5*x - 2*x^2).
  • A015536 (program): Expansion of x/(1-5*x-3*x^2).
  • A015537 (program): Expansion of x/(1 - 5*x - 4*x^2).
  • A015538 (program): Inverse of 1529th cyclotomic polynomial.
  • A015540 (program): a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
  • A015541 (program): Expansion of x/(1 - 5*x - 7*x^2).
  • A015544 (program): Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
  • A015545 (program): Expansion of x/(1 - 5*x - 9*x^2).
  • A015547 (program): Expansion of x/(1 - 5*x - 11*x^2).
  • A015548 (program): Expansion of x/(1 - 5*x - 12*x^2).
  • A015551 (program): Expansion of x/(1 - 6*x - 5*x^2).
  • A015552 (program): a(n) = 6*a(n-1) + 7*a(n-2), a(0) = 0, a(1) = 1.
  • A015553 (program): Expansion of x/(1 - 6*x - 11*x^2).
  • A015554 (program): a(n) = floor( (n/e)^n ).
  • A015555 (program): Expansion of x/(1 - 7*x - 2*x^2).
  • A015557 (program): a(n) = ceiling((n/e)^n).
  • A015559 (program): Expansion of x/(1 - 7*x - 3*x^2).
  • A015561 (program): Expansion of x/(1 - 7*x - 4*x^2).
  • A015562 (program): Expansion of x/(1 - 7*x - 5*x^2).
  • A015564 (program): Expansion of x/(1 - 7*x - 6*x^2).
  • A015565 (program): a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.
  • A015566 (program): Expansion of x/(1 - 7*x - 9*x^2).
  • A015568 (program): Expansion of x/(1 - 7*x - 10*x^2).
  • A015570 (program): Expansion of x/(1 - 7*x - 11*x^2).
  • A015572 (program): Expansion of x/(1 - 7*x - 12*x^2).
  • A015574 (program): Expansion of x/(1 - 8*x - 3*x^2).
  • A015575 (program): Expansion of x/(1 - 8*x - 5*x^2).
  • A015576 (program): Expansion of x/(1 - 8*x - 7*x^2).
  • A015577 (program): a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.
  • A015578 (program): Expansion of x/(1 - 8*x - 11*x^2).
  • A015579 (program): Expansion of x/(1-9*x-2*x^2).
  • A015580 (program): Expansion of x/(1 - 9*x - 4*x^2).
  • A015581 (program): a(n) = 9*a(n-1) + 5*a(n-2).
  • A015582 (program): Inverse of 1573rd cyclotomic polynomial.
  • A015583 (program): a(0) = 0, a(1) = 1; for n >= 2, a(n) = 9*a(n-1) + 7*a(n-2).
  • A015584 (program): Expansion of x/(1 - 9*x - 8*x^2).
  • A015585 (program): a(n) = 9*a(n-1) + 10*a(n-2).
  • A015587 (program): Expansion of x/(1 - 9*x - 11*x^2).
  • A015588 (program): Expansion of x/(1 - 10*x - 3*x^2).
  • A015589 (program): Expansion of x/(1 - 10*x - 7*x^2).
  • A015591 (program): Expansion of x/(1 - 10*x - 9*x^2).
  • A015592 (program): a(n) = 10*a(n-1) + 11*a(n-2).
  • A015593 (program): a(n) = 11*a(n-1) + 2*a(n-2).
  • A015594 (program): a(n) = 11*a(n-1) + 3*a(n-2).
  • A015596 (program): a(n) = 11 a(n-1) + 4 a(n-2).
  • A015597 (program): a(n) = 11 a(n-1) + 5 a(n-2).
  • A015598 (program): a(n) = 11*a(n-1) + 6*a(n-2).
  • A015601 (program): a(n) = 11*a(n-1) + 7*a(n-2).
  • A015602 (program): a(n) = 11 a(n-1) + 8 a(n-2).
  • A015603 (program): a(n) = 11*a(n-1) + 9*a(n-2).
  • A015606 (program): a(n) = 11*a(n-1) + 10*a(n-2).
  • A015609 (program): a(n) = 11*a(n-1) + 12*a(n-2).
  • A015610 (program): a(n) = 12*a(n-1) + 5*a(n-2) for n >= 2, a(0) = 0, a(1) = 1.
  • A015611 (program): a(n) = 12*a(n-1) + 7*a(n-2).
  • A015612 (program): a(n) = 12*a(n-1) + 11*a(n-2).
  • A015613 (program): a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).
  • A015614 (program): a(n) = -1 + Sum_{i=1..n} phi(i).
  • A015616 (program): Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1.
  • A015618 (program): Number of triples of different integers from [ 2,n ] with no global factor.
  • A015631 (program): Number of ordered triples of integers from [ 1..n ] with no global factor.
  • A015633 (program): Number of ordered triples of integers from [ 2,n ] with no global factor.
  • A015648 (program): Inverse of 1639th cyclotomic polynomial.
  • A015660 (program): Inverse of 1651st cyclotomic polynomial.
  • A015661 (program): Inverse of 1652nd cyclotomic polynomial.
  • A015664 (program): Expansion of e.g.f. theta_3^(1/2).
  • A015665 (program): Expansion of e.g.f. theta_3^(3/2).
  • A015666 (program): Expansion of e.g.f. theta_3^(5/2).
  • A015667 (program): Expansion of e.g.f. theta_3^(7/2).
  • A015669 (program): Expansion of e.g.f. theta_3^(9/2).
  • A015670 (program): Inverse of 1661st cyclotomic polynomial.
  • A015671 (program): Expansion of e.g.f. theta_3^(11/2).
  • A015672 (program): Expansion of e.g.f. theta_3^(13/2).
  • A015673 (program): Expansion of e.g.f. theta_3^(15/2).
  • A015675 (program): Expansion of e.g.f. theta_3^(17/2).
  • A015676 (program): Expansion of e.g.f. theta_3^(19/2).
  • A015677 (program): Expansion of e.g.f. theta_3^(21/2).
  • A015678 (program): Expansion of e.g.f. theta_3^(23/2).
  • A015679 (program): Expansion of e.g.f. theta_3^(25/2).
  • A015680 (program): Expansion of e.g.f. theta_3^(-1/2).
  • A015682 (program): Expansion of e.g.f. theta_3^(-3/2).
  • A015683 (program): Expansion of e.g.f. theta_3^(-5/2).
  • A015684 (program): Expansion of e.g.f. theta_3^(-7/2).
  • A015685 (program): Expansion of e.g.f. theta_3^(-9/2).
  • A015687 (program): Expansion of e.g.f. theta_3^(-11/2).
  • A015690 (program): Expansion of e.g.f. theta_3^(-13/2).
  • A015691 (program): Expansion of e.g.f. theta_3^(-15/2).
  • A015693 (program): Expansion of e.g.f. theta_3^(-17/2).
  • A015694 (program): Expansion of e.g.f. theta_3^(-19/2).
  • A015695 (program): Expansion of e.g.f. theta_3^(-21/2).
  • A015696 (program): Expansion of e.g.f. theta_3^(-23/2).
  • A015697 (program): Expansion of e.g.f. theta_3^(-25/2).
  • A015712 (program): Inverse of 1703rd cyclotomic polynomial.
  • A015717 (program): Inverse of 1708th cyclotomic polynomial.
  • A015726 (program): Inverse of 1717th cyclotomic polynomial.
  • A015732 (program): Even numbers k such that d(k) | phi(k).
  • A015733 (program): d(n) does not divide phi(n).
  • A015734 (program): Odd n such that d(n) does not divide phi(n).
  • A015736 (program): Inverse of 1727th cyclotomic polynomial.
  • A015760 (program): Inverse of 1751st cyclotomic polynomial.
  • A015777 (program): Inverse of 1768th cyclotomic polynomial.
  • A015790 (program): Inverse of 1781st cyclotomic polynomial.
  • A015802 (program): Inverse of 1793rd cyclotomic polynomial.
  • A015816 (program): Inverse of 1807th cyclotomic polynomial.
  • A015828 (program): Inverse of 1819th cyclotomic polynomial.
  • A015846 (program): Inverse of 1837th cyclotomic polynomial.
  • A015862 (program): Inverse of 1853rd cyclotomic polynomial.
  • A015868 (program): Inverse of 1859th cyclotomic polynomial.
  • A015885 (program): Inverse of 1876th cyclotomic polynomial.
  • A015910 (program): a(n) = 2^n mod n.
  • A015911 (program): Numbers k such that 2^k mod k is odd.
  • A015912 (program): Inverse of 1903rd cyclotomic polynomial.
  • A015913 (program): Numbers k such that sigma(k) + 4 = sigma(k+4).
  • A015916 (program): Numbers k such that sigma(k) + 10 = sigma(k+10).
  • A015919 (program): Positive integers k such that 2^k == 2 (mod k).
  • A015921 (program): Positive integers n such that 2^n == 4 (mod n).
  • A015928 (program): Inverse of 1919th cyclotomic polynomial.
  • A015930 (program): Inverse of 1921st cyclotomic polynomial.
  • A015943 (program): (2^(2n)+n) mod (2n).
  • A015946 (program): Inverse of 1937th cyclotomic polynomial.
  • A015966 (program): Inverse of 1957th cyclotomic polynomial.
  • A015972 (program): Inverse of 1963rd cyclotomic polynomial.
  • A015978 (program): Inverse of 1969th cyclotomic polynomial.
  • A015993 (program): Twelve iterations of Reverse and Add are needed to reach a palindrome.
  • A015995 (program): a(n) = (tau(n^3)+2)/3.
  • A015996 (program): (tau(n^4) + 3)/4, where tau = A000005.
  • A015997 (program): Inverse of 1988th cyclotomic polynomial.
  • A015999 (program): a(n) = (tau(n^5) + 4)/5.
  • A016000 (program): Inverse of 1991st cyclotomic polynomial.
  • A016001 (program): a(n) = (tau(n^6)+5)/6.
  • A016002 (program): a(n) = (tau(n^7)+6)/7.
  • A016003 (program): a(n) = (tau(n^8)+7)/8.
  • A016005 (program): a(n) = (tau(n^9)+8)/9.
  • A016006 (program): a(n) = (tau(n^10)+9)/10.
  • A016007 (program): a(n) = (tau(n^11)+10)/11.
  • A016008 (program): a(n) = (tau(n^12)+11)/12.
  • A016009 (program): a(n) = (tau(n^13)+12)/13.
  • A016012 (program): a(n) = (tau(n^n)+n-1)/n.
  • A016014 (program): Least k such that 2*n*k + 1 is a prime.
  • A016017 (program): Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways.
  • A016028 (program): Expansion of (1 - x + x^4) / (1 - x)^3.
  • A016029 (program): a(1) = a(2) = 1, a(2n + 1) = 2*a(2n) and a(2n) = 2*a(2n - 1) + (-1)^n.
  • A016035 (program): a(n) = Sum_{j|n, 1 < j < n} phi(j). Also a(n) = n - phi(n) - 1 for n > 1.
  • A016042 (program): Inverse of 2033rd cyclotomic polynomial.
  • A016043 (program): 2^(2^n) +- 1 without repeats.
  • A016050 (program): Inverse of 2041st cyclotomic polynomial.
  • A016051 (program): Numbers of the form 9*k+3 or 9*k+6.
  • A016052 (program): a(1) = 3; for n >= 1, a(n+1) = a(n) + sum of its digits.
  • A016053 (program): Inverse of 2044th cyclotomic polynomial.
  • A016061 (program): a(n) = n*(n+1)*(4*n+5)/6.
  • A016064 (program): Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).
  • A016065 (program): a(n) = Sum_{k=0..n} k!*(k+1)!.
  • A016071 (program): Description to be supplied!.
  • A016075 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)).
  • A016080 (program): Inverse of 2071st cyclotomic polynomial.
  • A016081 (program): Add 4, then reverse digits; start with 3.
  • A016082 (program): Add 4, then reverse the decimal digits; start with 10.
  • A016084 (program): a(n+1) = a(n) + its digital root.
  • A016090 (program): a(n) = 16^(5^n) mod 10^n: Automorphic numbers ending in digit 6, with repetitions.
  • A016091 (program): Expansion of 1/((1-8x)(1-9x)(1-10x)(1-12x)).
  • A016092 (program): Expansion of 1/((1-8x)(1-9x)(1-11x)(1-12x)).
  • A016093 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)*(1-12*x)).
  • A016094 (program): Expansion of 1/((1-9x)(1-10x)(1-11x)(1-12x)).
  • A016095 (program): Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).
  • A016096 (program): a(n+1) = a(n) + sum of its digits, with a(1) = 9.
  • A016098 (program): Number of crossing set partitions of {1,2,…,n}.
  • A016101 (program): (n! - n)/2 for even n.
  • A016103 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)).
  • A016105 (program): Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
  • A016109 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-10x)).
  • A016110 (program): Inverse of 2101st cyclotomic polynomial.
  • A016111 (program): Expansion of 1/((1-11x)(1-12x)(1-13x)(1-14x)(1-15x)).
  • A016116 (program): a(n) = 2^floor(n/2).
  • A016123 (program): a(n) = (11^(n+1) - 1)/10.
  • A016125 (program): Expansion of 1/((1-x)*(1-12*x)).
  • A016127 (program): Expansion of 1/((1-2*x)*(1-5*x)).
  • A016128 (program): Inverse of 2119th cyclotomic polynomial.
  • A016129 (program): Expansion of 1/((1-2x)(1-6x)).
  • A016130 (program): Expansion of 1/((1-2x)(1-7x)).
  • A016131 (program): Expansion of 1/((1-2x)(1-8x)).
  • A016132 (program): Inverse of 2123rd cyclotomic polynomial.
  • A016133 (program): Expansion of 1/((1-2*x)*(1-9*x)).
  • A016134 (program): Expansion of 1/((1-2x)(1-10x)).
  • A016135 (program): Expansion of 1/((1-2*x)*(1-11*x)).
  • A016136 (program): Expansion of 1/((1-2*x)*(1-12*x)).
  • A016137 (program): Expansion of 1/((1-3x)(1-6x)).
  • A016138 (program): Expansion of 1/((1-3x)(1-7x)).
  • A016140 (program): Expansion of 1/((1-3x)(1-8x)).
  • A016142 (program): Expansion of 1/((1-3x)(1-9x)).
  • A016145 (program): Expansion of 1/((1-3x)(1-10x)).
  • A016146 (program): Expansion of 1/((1-3x)(1-11x)).
  • A016147 (program): Expansion of 1/((1-3x)(1-12x)).
  • A016149 (program): Expansion of 1/((1-4*x)*(1-6*x)).
  • A016150 (program): Expansion of 1/((1-4x)(1-7x)).
  • A016152 (program): a(n) = 4^(n-1)*(2^n-1).
  • A016153 (program): a(n) = (9^n-4^n)/5.
  • A016156 (program): Inverse of 2147th cyclotomic polynomial.
  • A016157 (program): Expansion of 1/((1-4x)(1-10x)).
  • A016158 (program): Expansion of 1/((1-4*x)(1-11*x)).
  • A016159 (program): Expansion of 1/((1-4x)(1-12x)).
  • A016161 (program): Expansion of 1/((1-5x)(1-7x)).
  • A016162 (program): Expansion of 1/((1-5x)(1-8x)).
  • A016163 (program): Expansion of 1/((1-5x)(1-9x)).
  • A016164 (program): Expansion of 1/((1-5x)(1-10x)).
  • A016165 (program): Expansion of 1/((1-5x)(1-11x)).
  • A016166 (program): Expansion of 1/((1-5x)(1-12x)).
  • A016168 (program): Inverse of 2159th cyclotomic polynomial.
  • A016169 (program): a(n) = 7^n - 6^n.
  • A016170 (program): Expansion of 1/((1-6x)(1-8x)).
  • A016172 (program): Expansion of 1/((1-6x)(1-9x)).
  • A016173 (program): Expansion of 1/((1-6x)(1-10x)).
  • A016174 (program): Expansion of 1/((1-6x)(1-11x)).
  • A016175 (program): Expansion of 1/((1-6x)(1-12x)).
  • A016176 (program): Inverse of 2167th cyclotomic polynomial.
  • A016177 (program): a(n) = 8^n - 7^n.
  • A016178 (program): Expansion of 1/((1-7x)(1-9x)).
  • A016180 (program): Inverse of 2171st cyclotomic polynomial.
  • A016181 (program): Expansion of 1/((1-7x)(1-10x)).
  • A016183 (program): Expansion of 1/((1-7x)(1-11x)).
  • A016184 (program): Expansion of 1/((1-7x)(1-12x)).
  • A016185 (program): a(n) = 9^n - 8^n.
  • A016186 (program): Expansion of 1/((1-8x)(1-10x)).
  • A016187 (program): Expansion of 1/((1-8x)(1-11x)).
  • A016188 (program): Expansion of 1/((1-8x)*(1-12x)).
  • A016189 (program): a(n) = 10^n - 9^n.
  • A016190 (program): Expansion of 1/((1-9x)(1-11x)).
  • A016191 (program): Expansion of 1/((1-9x)*(1-12x)).
  • A016195 (program): a(n) = 11^n - 10^n.
  • A016196 (program): Expansion of 1/((1-10x)*(1-12x)).
  • A016197 (program): a(n) = 12^n - 11^n.
  • A016198 (program): Expansion of 1/((1-x)(1-2x)(1-5x)).
  • A016200 (program): Expansion of 1/((1-x)(1-2x)(1-6x)).
  • A016201 (program): Expansion of 1/((1-x)(1-2x)(1-7x)).
  • A016203 (program): Expansion of 1/((1-x)(1-2x)(1-8x)).
  • A016204 (program): Expansion of 1/((1-x)(1-2x)(1-9x)).
  • A016205 (program): Expansion of 1/((1-x)(1-2x)(1-10x)).
  • A016206 (program): Expansion of 1/((1-x)*(1-2x)*(1-11x)).
  • A016207 (program): Expansion of 1/((1-x)(1-2x)(1-12x)).
  • A016208 (program): Expansion of 1/((1-x)*(1-3*x)*(1-4*x)).
  • A016209 (program): Expansion of 1/((1-x)(1-3x)(1-5x)).
  • A016211 (program): Expansion of 1/((1-x)(1-3x)(1-6x)).
  • A016212 (program): Expansion of 1/((1-x)*(1-3*x)*(1-7*x)).
  • A016214 (program): Expansion of 1/((1-x)(1-3x)(1-8x)).
  • A016215 (program): Expansion of 1/((1-x)(1-3x)(1-10x)).
  • A016216 (program): Expansion of 1/((1-x)(1-3x)(1-11x)).
  • A016217 (program): Expansion of 1/((1-x)(1-3x)(1-12x)).
  • A016218 (program): Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).
  • A016221 (program): Inverse of 2212th cyclotomic polynomial.
  • A016222 (program): Expansion of 1/((1-x)(1-4x)(1-6x)).
  • A016223 (program): Expansion of 1/((1-x)(1-4x)(1-7x)).
  • A016224 (program): Expansion of 1/((1-x)(1-4x)(1-8x)).
  • A016225 (program): Expansion of 1/((1-x)(1-4x)(1-10x)).
  • A016226 (program): Expansion of 1/((1-x)(1-4x)(1-11x)).
  • A016227 (program): Expansion of 1/((1-x)(1-4x)(1-12x)).
  • A016228 (program): Expansion of 1/((1-x)*(1-5*x)(1-6*x)).
  • A016230 (program): Expansion of 1/((1-x)(1-5x)(1-7x)).
  • A016231 (program): Inverse of 2222nd cyclotomic polynomial.
  • A016233 (program): Expansion of 1/((1-x)(1-5x)(1-8x)).
  • A016234 (program): Expansion of 1/((1-x)(1-5x)(1-9x)).
  • A016236 (program): Inverse of 2227th cyclotomic polynomial.
  • A016237 (program): Expansion of 1/((1-x)(1-5x)(1-10x)).
  • A016238 (program): Expansion of 1/((1-x)*(1-5*x)*(1-11*x)).
  • A016239 (program): Expansion of 1/((1-x)*(1-5*x)*(1-12*x)).
  • A016241 (program): Expansion of 1/((1-x)*(1-6*x)*(1-7*x)).
  • A016243 (program): Expansion of 1/((1-x)*(1-6*x)*(1-8*x)).
  • A016244 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)).
  • A016246 (program): Expansion of 1/((1-x)(1-6x)(1-10x)).
  • A016247 (program): Expansion of 1/((1-x)(1-6x)(1-11x)).
  • A016248 (program): Expansion of 1/((1-x)(1-6x)(1-12x)).
  • A016249 (program): Expansion of 1/((1-x)*(1-7*x)*(1-8*x)).
  • A016250 (program): Expansion of 1/((1-x)(1-7x)(1-9x)).
  • A016252 (program): Expansion of 1/((1-x)*(1-7x)*(1-10x)).
  • A016254 (program): Expansion of 1/((1-x)(1-7x)(1-11x)).
  • A016255 (program): Expansion of 1/((1-x)(1-7x)(1-12x)).
  • A016256 (program): Expansion of 1/((1-x)*(1-8*x)*(1-9*x)).
  • A016257 (program): Expansion of 1/((1-x)(1-8x)(1-10x)).
  • A016258 (program): Inverse of 2249th cyclotomic polynomial.
  • A016259 (program): Expansion of 1/((1-x)(1-8x)(1-11x)).
  • A016260 (program): Expansion of 1/((1-x)(1-8x)(1-12x)).
  • A016261 (program): Expansion of 1/((1-x)*(1-9*x)*(1-10*x)).
  • A016262 (program): Expansion of 1/((1-x)(1-9x)(1-11x)).
  • A016263 (program): Expansion of 1/((1-x)(1-9x)(1-12x)).
  • A016265 (program): Expansion of 1/((1-x)*(1-10x)*(1-11x)).
  • A016267 (program): Expansion of 1/((1-x)(1-10x)(1-12x)).
  • A016268 (program): Expansion of 1/((1-x)(1-11x)(1-12x)).
  • A016269 (program): Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
  • A016273 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)).
  • A016275 (program): Inverse of 2266th cyclotomic polynomial.
  • A016276 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)).
  • A016277 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)).
  • A016278 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)).
  • A016279 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)).
  • A016280 (program): Expansion of 1/((1-2x)(1-3x)(1-11x)).
  • A016281 (program): Expansion of 1/((1-2x)(1-3x)(1-12x)).
  • A016282 (program): Expansion of 1/((1-2*x)*(1-4*x)*(1-5*x)).
  • A016283 (program): a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).
  • A016285 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)).
  • A016290 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)).
  • A016291 (program): Expansion of 1/((1-2x)*(1-4x)*(1-9x)).
  • A016292 (program): Expansion of 1/((1-2x)*(1-4x)*(1-10x)).
  • A016293 (program): Expansion of 1/((1-2x)(1-4x)(1-11x)).
  • A016294 (program): Expansion of 1/((1-2x)(1-4x)(1-12x)).
  • A016295 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)).
  • A016296 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)).
  • A016297 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)).
  • A016298 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)).
  • A016299 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-10*x)).
  • A016301 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-11*x)).
  • A016302 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-12*x)).
  • A016304 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)).
  • A016305 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)).
  • A016306 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-9*x)).
  • A016307 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-10*x)).
  • A016308 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-11*x)).
  • A016309 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-12*x)).
  • A016311 (program): Expansion of 1/((1-2*x)*(1-7*x)*(1-8*x)).
  • A016312 (program): Expansion of 1/((1-2x)*(1-7x)*(1-9x)).
  • A016313 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)).
  • A016314 (program): Expansion of 1/((1-2x)*(1-7x)*(1-11x)).
  • A016315 (program): Expansion of 1/((1-2x)*(1-7x)*(1-12x)).
  • A016316 (program): Expansion of 1/((1-2x)*(1-8x)*(1-9x)).
  • A016317 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)).
  • A016318 (program): Expansion of 1/((1-2x)(1-8x)(1-11x)).
  • A016320 (program): Expansion of 1/((1-2x)(1-8x)(1-12x)).
  • A016321 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)).
  • A016322 (program): Expansion of 1/((1-2x)(1-9x)(1-11x)).
  • A016324 (program): Expansion of 1/((1-2x)(1-9x)(1-12x)).
  • A016325 (program): Expansion of 1/((1-2x)(1-10x)(1-11x)).
  • A016326 (program): Expansion of 1/((1-2x)(1-10x)(1-12x)).
  • A016328 (program): 120th cyclotomic polynomial.
  • A016329 (program): 126th cyclotomic polynomial.
  • A016330 (program): 130th cyclotomic polynomial.
  • A016331 (program): 132nd cyclotomic polynomial.
  • A016332 (program): 133rd cyclotomic polynomial.
  • A016333 (program): 138th cyclotomic polynomial.
  • A016334 (program): 140th cyclotomic polynomial.
  • A016335 (program): 143rd cyclotomic polynomial.
  • A016336 (program): 145th cyclotomic polynomial.
  • A016337 (program): 150th cyclotomic polynomial.
  • A016338 (program): 154th cyclotomic polynomial.
  • A016339 (program): 155th cyclotomic polynomial.
  • A016340 (program): 156th cyclotomic polynomial.
  • A016341 (program): 161st cyclotomic polynomial.
  • A016343 (program): 168th cyclotomic polynomial.
  • A016344 (program): 170th cyclotomic polynomial.
  • A016345 (program): 174th cyclotomic polynomial.
  • A016346 (program): 175th cyclotomic polynomial.
  • A016347 (program): 180th cyclotomic polynomial.
  • A016349 (program): 185th cyclotomic polynomial.
  • A016350 (program): 186th cyclotomic polynomial.
  • A016351 (program): 187th cyclotomic polynomial.
  • A016352 (program): 190th cyclotomic polynomial.
  • A016354 (program): 198th cyclotomic polynomial.
  • A016355 (program): 203rd cyclotomic polynomial.
  • A016356 (program): 209th cyclotomic polynomial.
  • A016358 (program): 217th cyclotomic polynomial.
  • A016360 (program): 221st cyclotomic polynomial.
  • A016361 (program): 230th cyclotomic polynomial.
  • A016363 (program): 238th cyclotomic polynomial.
  • A016364 (program): 247th cyclotomic polynomial.
  • A016365 (program): 253rd cyclotomic polynomial.
  • A016367 (program): 259th cyclotomic polynomial.
  • A016368 (program): 260th cyclotomic polynomial.
  • A016369 (program): 266th cyclotomic polynomial.
  • A016371 (program): 280th cyclotomic polynomial.
  • A016373 (program): 286th cyclotomic polynomial.
  • A016374 (program): 287th cyclotomic polynomial.
  • A016375 (program): 290th cyclotomic polynomial.
  • A016376 (program): 299th cyclotomic polynomial.
  • A016377 (program): 301st cyclotomic polynomial.
  • A016378 (program): 308th cyclotomic polynomial.
  • A016379 (program): 310th cyclotomic polynomial.
  • A016381 (program): 319th cyclotomic polynomial.
  • A016382 (program): 322nd cyclotomic polynomial.
  • A016383 (program): 323rd cyclotomic polynomial.
  • A016384 (program): 329th cyclotomic polynomial.
  • A016386 (program): 340th cyclotomic polynomial.
  • A016387 (program): 341st cyclotomic polynomial.
  • A016389 (program): 350th cyclotomic polynomial.
  • A016392 (program): 370th cyclotomic polynomial.
  • A016393 (program): 371st cyclotomic polynomial.
  • A016394 (program): 374th cyclotomic polynomial.
  • A016395 (program): 377th cyclotomic polynomial.
  • A016396 (program): 380th cyclotomic polynomial.
  • A016399 (program): 391st cyclotomic polynomial.
  • A016401 (program): 403rd cyclotomic polynomial.
  • A016402 (program): 406th cyclotomic polynomial.
  • A016403 (program): 407th cyclotomic polynomial.
  • A016404 (program): 413th cyclotomic polynomial.
  • A016405 (program): 418th cyclotomic polynomial.
  • A016407 (program): 427th cyclotomic polynomial.
  • A016409 (program): 434th cyclotomic polynomial.
  • A016411 (program): 437th cyclotomic polynomial.
  • A016412 (program): 442nd cyclotomic polynomial.
  • A016413 (program): 451st cyclotomic polynomial.
  • A016418 (program): 473rd cyclotomic polynomial.
  • A016419 (program): 476th cyclotomic polynomial.
  • A016420 (program): 481st cyclotomic polynomial.
  • A016422 (program): 493rd cyclotomic polynomial.
  • A016423 (program): 494th cyclotomic polynomial.
  • A016425 (program): 497th cyclotomic polynomial.
  • A016426 (program): 506th cyclotomic polynomial.
  • A016578 (program): Decimal expansion of log(3/2).
  • A016580 (program): Decimal expansion of log(7/2).
  • A016627 (program): Decimal expansion of log(4).
  • A016628 (program): Decimal expansion of log(5).
  • A016631 (program): Decimal expansion of log(8).
  • A016632 (program): Decimal expansion of log(9).
  • A016633 (program): Expansion of 1/((1-2x)(1-11x)(1-12x)).
  • A016639 (program): Decimal expansion of log(16).
  • A016648 (program): Decimal expansion of log(25).
  • A016650 (program): Decimal expansion of log(27).
  • A016655 (program): Decimal expansion of log(32) = 5*log(2).
  • A016687 (program): Decimal expansion of log(64).
  • A016704 (program): Decimal expansion of log(81).
  • A016724 (program): Expansion of (2-2*x-x^2)/((1-2*x^2)*(1-x)^2).
  • A016725 (program): Number of integer solutions to x^2+y^2+z^2 = n^2, allowing zeros and distinguishing signs and order.
  • A016729 (program): Highest minimal Hamming distance of any Type 4^H+ Hermitian additive self-dual code over GF(4) of length n.
  • A016742 (program): Even squares: a(n) = (2*n)^2.
  • A016743 (program): Even cubes: a(n) = (2*n)^3.
  • A016744 (program): a(n) = (2*n)^4.
  • A016745 (program): a(n) = (2*n)^5.
  • A016746 (program): a(n) = (2*n)^6.
  • A016747 (program): a(n) = (2*n)^7.
  • A016748 (program): a(n) = (2*n)^8.
  • A016749 (program): a(n) = (2*n)^9.
  • A016750 (program): a(n) = (2*n)^10.
  • A016751 (program): a(n) = (2*n)^11.
  • A016752 (program): a(n) = (2*n)^12.
  • A016753 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).
  • A016754 (program): Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.
  • A016755 (program): Odd cubes: a(n) = (2*n + 1)^3.
  • A016756 (program): a(n) = (2*n+1)^4.
  • A016757 (program): a(n) = (2*n+1)^5.
  • A016758 (program): a(n) = (2*n+1)^6.
  • A016759 (program): a(n) = (2*n + 1)^7.
  • A016760 (program): a(n) = (2*n+1)^8.
  • A016761 (program): a(n) = (2*n+1)^9.
  • A016762 (program): a(n) = (2*n + 1)^10.
  • A016763 (program): a(n) = (2*n+1)^11.
  • A016764 (program): a(n) = (2*n+1)^12.
  • A016765 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-6*x)).
  • A016766 (program): a(n) = (3*n)^2.
  • A016767 (program): a(n) = (3*n)^3.
  • A016768 (program): (3*n)^4.
  • A016769 (program): a(n) = (3*n)^5.
  • A016770 (program): a(n) = (3*n)^6.
  • A016771 (program): a(n) = (3*n)^7.
  • A016772 (program): a(n) = (3*n)^8.
  • A016773 (program): a(n) = (3*n)^9.
  • A016774 (program): a(n) = (3*n)^10.
  • A016775 (program): (3*n)^11.
  • A016776 (program): a(n) = (3*n)^12.
  • A016777 (program): a(n) = 3*n + 1.
  • A016778 (program): a(n) = (3*n+1)^2.
  • A016779 (program): a(n) = (3*n + 1)^3.
  • A016780 (program): a(n) = (3*n+1)^4.
  • A016781 (program): a(n) = (3*n+1)^5.
  • A016782 (program): a(n) = (3*n+1)^6.
  • A016783 (program): a(n) = (3*n+1)^7.
  • A016784 (program): a(n) = (3*n+1)^8.
  • A016785 (program): a(n) = (3*n + 1)^9.
  • A016786 (program): a(n) = (3*n+1)^10.
  • A016787 (program): a(n) = (3*n + 1)^11.
  • A016788 (program): a(n) = (3*n+1)^12.
  • A016789 (program): a(n) = 3*n + 2.
  • A016790 (program): a(n) = (3n+2)^2.
  • A016791 (program): a(n) = (3*n + 2)^3.
  • A016792 (program): a(n) = (3*n+2)^4.
  • A016793 (program): a(n) = (3*n + 2)^5.
  • A016794 (program): a(n) = (3*n + 2)^6.
  • A016795 (program): a(n) = (3n+2)^7.
  • A016796 (program): a(n) = (3*n + 2)^8.
  • A016797 (program): a(n) = (3*n + 2)^9.
  • A016798 (program): a(n) = (3*n + 2)^10.
  • A016799 (program): a(n) = (3*n + 2)^11.
  • A016800 (program): a(n) = (3*n + 2)^12.
  • A016801 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)).
  • A016802 (program): a(n) = (4*n)^2.
  • A016803 (program): (4n)^3.
  • A016804 (program): a(n) = (4*n)^4.
  • A016805 (program): (4n)^5.
  • A016806 (program): a(n) = (4n)^6.
  • A016807 (program): a(n) = (4*n)^7.
  • A016808 (program): a(n) = (4n)^8.
  • A016809 (program): (4n)^9.
  • A016810 (program): (4n)^10.
  • A016811 (program): (4n)^11.
  • A016812 (program): (4n)^12.
  • A016813 (program): a(n) = 4*n + 1.
  • A016814 (program): a(n) = (4n+1)^2.
  • A016815 (program): (4n+1)^3.
  • A016816 (program): a(n) = (4n+1)^4.
  • A016817 (program): a(n) = (4n+1)^5.
  • A016818 (program): (4n+1)^6.
  • A016819 (program): a(n) = (4n+1)^7.
  • A016820 (program): a(n) = (4*n + 1)^8.
  • A016821 (program): a(n) = (4n+1)^9.
  • A016822 (program): a(n) = (4n+1)^10.
  • A016823 (program): a(n) = (4n+1)^11.
  • A016824 (program): (4n+1)^12.
  • A016825 (program): Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.
  • A016826 (program): a(n) = (4n + 2)^2.
  • A016827 (program): a(n) = (4n+2)^3.
  • A016828 (program): a(n) = (4*n+2)^4.
  • A016829 (program): (4n+2)^5.
  • A016830 (program): a(n) = (4*n+2)^6.
  • A016831 (program): (4n+2)^7.
  • A016832 (program): a(n) = (4*n + 2)^8.
  • A016833 (program): (4n+2)^9.
  • A016834 (program): (4n+2)^10.
  • A016835 (program): (4n+2)^11.
  • A016836 (program): (4n+2)^12.
  • A016838 (program): a(n) = (4n + 3)^2.
  • A016839 (program): a(n) = (4*n+3)^3.
  • A016840 (program): (4n+3)^4.
  • A016841 (program): (4n+3)^5.
  • A016842 (program): (4n+3)^6.
  • A016843 (program): (4n+3)^7.
  • A016844 (program): (4n+3)^8.
  • A016845 (program): (4n+3)^9.
  • A016846 (program): a(n) = (4*n + 3)^10.
  • A016847 (program): (4n+3)^11.
  • A016848 (program): a(n) = (4*n+3)^12.
  • A016849 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)).
  • A016850 (program): a(n) = (5*n)^2.
  • A016851 (program): a(n) = (5*n)^3.
  • A016852 (program): (5n)^4.
  • A016853 (program): a(n) = (5*n)^5.
  • A016854 (program): a(n) = (5*n)^6.
  • A016855 (program): a(n) = (5*n)^7.
  • A016856 (program): a(n) = (5*n)^8.
  • A016857 (program): a(n) = (5n)^9.
  • A016858 (program): (5n)^10.
  • A016859 (program): (5n)^11.
  • A016860 (program): (5n)^12.
  • A016861 (program): a(n) = 5*n + 1.
  • A016862 (program): a(n) = (5*n + 1)^2.
  • A016863 (program): a(n) = (5*n + 1)^3.
  • A016864 (program): a(n) = (5*n + 1)^4.
  • A016865 (program): (5n+1)^5.
  • A016866 (program): (5n+1)^6.
  • A016867 (program): (5n+1)^7.
  • A016868 (program): (5n+1)^8.
  • A016869 (program): (5n+1)^9.
  • A016870 (program): (5n+1)^10.
  • A016871 (program): (5n+1)^11.
  • A016872 (program): (5n+1)^12.
  • A016873 (program): a(n) = 5*n + 2.
  • A016874 (program): a(n) = (5*n + 2)^2.
  • A016875 (program): (5n+2)^3.
  • A016876 (program): (5n+2)^4.
  • A016877 (program): a(n) = (5n+2)^5.
  • A016878 (program): (5n+2)^6.
  • A016879 (program): (5n+2)^7.
  • A016880 (program): a(n) = (5*n+2)^8.
  • A016881 (program): (5n+2)^9.
  • A016882 (program): (5n+2)^10.
  • A016883 (program): (5n+2)^11.
  • A016884 (program): (5n+2)^12.
  • A016885 (program): a(n) = 5*n + 3.
  • A016886 (program): a(n) = (5*n + 3)^2.
  • A016887 (program): a(n) = (5*n+3)^3.
  • A016888 (program): (5n+3)^4.
  • A016889 (program): (5n+3)^5.
  • A016890 (program): (5n+3)^6.
  • A016891 (program): (5n+3)^7.
  • A016892 (program): (5n+3)^8.
  • A016893 (program): (5n+3)^9.
  • A016894 (program): (5n+3)^10.
  • A016895 (program): (5n+3)^11.
  • A016896 (program): a(n) = (5*n + 3)^12.
  • A016897 (program): a(n) = 5n + 4.
  • A016898 (program): a(n) = (5*n + 4)^2.
  • A016899 (program): a(n) = (5n + 4)^3.
  • A016900 (program): a(n) = (5*n + 4)^4.
  • A016901 (program): a(n) = (5*n + 4)^5.
  • A016902 (program): a(n) = (5*n + 4)^6.
  • A016903 (program): a(n) = (5*n + 4)^7.
  • A016904 (program): a(n) = (5*n + 4)^8.
  • A016905 (program): a(n) = (5*n + 4)^9.
  • A016906 (program): a(n) = (5*n + 4)^10.
  • A016907 (program): (5n+4)^11.
  • A016908 (program): a(n) = (5*n + 4)^12.
  • A016909 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)).
  • A016910 (program): a(n) = (6*n)^2.
  • A016911 (program): a(n) = (6*n)^3.
  • A016912 (program): (6n)^4.
  • A016913 (program): a(n) = (6*n)^5.
  • A016914 (program): a(n) = (6*n)^6.
  • A016915 (program): a(n) = (6*n)^7.
  • A016916 (program): a(n) = (6n)^8.
  • A016917 (program): a(n) = (6*n)^9.
  • A016918 (program): a(n) = (6*n)^10.
  • A016919 (program): a(n) = (6*n)^11.
  • A016920 (program): a(n) = (6*n)^12.
  • A016921 (program): a(n) = 6*n + 1.
  • A016922 (program): a(n) = (6*n+1)^2.
  • A016923 (program): a(n) = (6*n + 1)^3.
  • A016924 (program): a(n) = (6*n + 1)^4.
  • A016925 (program): a(n) = (6*n + 1)^5.
  • A016926 (program): a(n) = (6*n + 1)^6.
  • A016927 (program): a(n) = (6*n + 1)^7.
  • A016928 (program): a(n) = (6*n + 1)^8.
  • A016929 (program): a(n) = (6*n + 1)^9.
  • A016930 (program): a(n) = (6*n + 1)^10.
  • A016931 (program): a(n) = (6*n + 1)^11.
  • A016932 (program): a(n) = (6*n + 1)^12.
  • A016933 (program): a(n) = 6n + 2.
  • A016934 (program): a(n) = (6*n + 2)^2.
  • A016935 (program): a(n) = (6*n + 2)^3.
  • A016936 (program): a(n) = (6*n + 2)^4.
  • A016937 (program): a(n) = (6*n + 2)^5.
  • A016938 (program): a(n) = (6*n + 2)^6.
  • A016939 (program): a(n) = (6n+2)^7.
  • A016940 (program): a(n) = (6*n + 2)^8.
  • A016941 (program): a(n) = (6*n + 2)^9.
  • A016942 (program): a(n) = (6*n + 2)^10.
  • A016943 (program): a(n) = (6*n + 2)^11.
  • A016944 (program): a(n) = (6*n + 2)^12.
  • A016945 (program): a(n) = 6*n+3.
  • A016946 (program): a(n) = (6*n+3)^2.
  • A016947 (program): a(n) = (6*n + 3)^3.
  • A016948 (program): a(n) = (6*n + 3)^4.
  • A016949 (program): a(n) = (6*n + 3)^5.
  • A016950 (program): a(n) = (6*n + 3)^6.
  • A016951 (program): a(n) = (6*n + 3)^7.
  • A016952 (program): a(n) = (6*n + 3)^8.
  • A016953 (program): a(n) = (6*n + 3)^9.
  • A016954 (program): a(n) = (6n+3)^10.
  • A016955 (program): a(n) = (6*n + 3)^11.
  • A016956 (program): a(n) = (6*n + 3)^12.
  • A016957 (program): a(n) = 6*n + 4.
  • A016958 (program): a(n) = (6n + 4)^2.
  • A016959 (program): a(n) = (6*n + 4)^3.
  • A016960 (program): a(n) = (6*n + 4)^4.
  • A016961 (program): a(n) = (6*n + 4)^5.
  • A016962 (program): a(n) = (6*n + 4)^6.
  • A016963 (program): a(n) = (6*n + 4)^7.
  • A016964 (program): a(n) = (6*n + 4)^8.
  • A016965 (program): a(n) = (6*n + 4)^9.
  • A016966 (program): a(n) = (6*n + 4)^10.
  • A016967 (program): a(n) = (6*n + 4)^11.
  • A016968 (program): a(n) = (6*n + 4)^12.
  • A016969 (program): a(n) = 6*n + 5.
  • A016970 (program): a(n) = (6*n + 5)^2.
  • A016971 (program): a(n) = (6*n + 5)^3.
  • A016972 (program): a(n) = (6*n + 5)^4.
  • A016973 (program): a(n) = (6*n + 5)^5.
  • A016974 (program): a(n) = (6*n + 5)^6.
  • A016975 (program): a(n) = (6*n + 5)^7.
  • A016976 (program): a(n) = (6*n + 5)^8.
  • A016977 (program): a(n) = (6*n + 5)^9.
  • A016978 (program): a(n) = (6*n + 5)^10.
  • A016979 (program): a(n) = (6*n + 5)^11.
  • A016980 (program): a(n) = (6*n + 5)^12.
  • A016981 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)).
  • A016982 (program): a(n) = (7*n)^2.
  • A016983 (program): a(n) = (7*n)^3.
  • A016984 (program): a(n) = (7*n)^4.
  • A016985 (program): a(n) = (7n)^5.
  • A016986 (program): a(n) = (7*n)^6.
  • A016987 (program): a(n) = (7*n)^7.
  • A016988 (program): a(n) = (7*n)^8.
  • A016989 (program): a(n) = (7*n)^9.
  • A016990 (program): a(n) = (7*n)^10.
  • A016991 (program): a(n) = (7*n)^11.
  • A016992 (program): a(n) = (7*n)^12.
  • A016993 (program): a(n) = 7*n + 1.
  • A016994 (program): (7*n+1)^2.
  • A016995 (program): a(n) = (7*n + 1)^3.
  • A016996 (program): a(n) = (7*n + 1)^4.
  • A016997 (program): a(n) = (7*n + 1)^5.
  • A016998 (program): a(n) = (7*n + 1)^6.
  • A016999 (program): a(n) = (7*n + 1)^7.
  • A017000 (program): a(n) = (7*n + 1)^8.
  • A017001 (program): a(n) = (7*n + 1)^9.
  • A017002 (program): a(n) = (7*n + 1)^10.
  • A017003 (program): a(n) = (7*n + 1)^11.
  • A017004 (program): a(n) = (7*n + 1)^12.
  • A017005 (program): a(n) = 7n + 2.
  • A017006 (program): a(n) = (7*n+2)^2.
  • A017007 (program): a(n) = (7*n + 2)^3.
  • A017008 (program): a(n) = (7*n + 2)^4.
  • A017009 (program): a(n) = (7*n + 2)^5.
  • A017010 (program): a(n) = (7*n+2)^6.
  • A017011 (program): a(n) = (7*n + 2)^7.
  • A017012 (program): a(n) = (7*n + 2)^8.
  • A017013 (program): a(n) = (7*n + 2)^9.
  • A017014 (program): a(n) = (7*n + 2)^10.
  • A017015 (program): a(n) = (7*n + 2)^11.
  • A017016 (program): a(n) = (7*n + 2)^12.
  • A017017 (program): a(n) = 7n+3.
  • A017018 (program): a(n) = (7*n + 3)^2.
  • A017019 (program): a(n) = (7*n + 3)^3.
  • A017020 (program): a(n) = (7*n + 3)^4.
  • A017021 (program): a(n) = (7*n + 3)^5.
  • A017022 (program): a(n) = (7*n + 3)^6.
  • A017023 (program): a(n) = (7*n + 3)^7.
  • A017024 (program): a(n) = (7*n + 3)^8.
  • A017025 (program): a(n) = (7*n + 3)^9.
  • A017026 (program): a(n) = (7*n + 3)^10.
  • A017027 (program): a(n) = (7*n + 3)^11.
  • A017028 (program): a(n) = (7*n + 3)^12.
  • A017029 (program): a(n) = 7*n + 4.
  • A017030 (program): a(n) = (7*n + 4)^2.
  • A017031 (program): a(n) = (7*n + 4)^3.
  • A017032 (program): a(n) = (7*n + 4)^4.
  • A017033 (program): a(n) = (7*n + 4)^5.
  • A017034 (program): a(n) = (7*n + 4)^6.
  • A017035 (program): a(n) = (7*n + 4)^7.
  • A017036 (program): (7*n+4)^8.
  • A017037 (program): a(n) = (7*n + 4)^9.
  • A017038 (program): a(n) = (7*n + 4)^10.
  • A017039 (program): a(n) = (7*n + 4)^11.
  • A017040 (program): a(n) = (7*n + 4)^12.
  • A017041 (program): a(n) = 7*n + 5.
  • A017042 (program): a(n) = (7*n + 5)^2.
  • A017043 (program): a(n) = (7*n + 5)^3.
  • A017044 (program): a(n) = (7*n + 5)^4.
  • A017045 (program): a(n) = (7*n + 5)^5.
  • A017046 (program): a(n) = (7*n + 5)^6.
  • A017047 (program): a(n) = (7*n + 5)^7.
  • A017048 (program): a(n) = (7*n + 5)^8.
  • A017049 (program): a(n) = (7*n + 5)^9.
  • A017050 (program): a(n) = (7*n + 5)^10.
  • A017051 (program): a(n) = (7*n + 5)^11.
  • A017052 (program): a(n) = (7*n + 5)^12.
  • A017053 (program): a(n) = 7*n + 6.
  • A017054 (program): a(n) = (7*n + 6)^2.
  • A017055 (program): a(n) = (7*n + 6)^3.
  • A017056 (program): a(n) = (7*n + 6)^4.
  • A017057 (program): a(n) = (7*n + 6)^5.
  • A017058 (program): a(n) = (7*n + 6)^6.
  • A017059 (program): a(n) = (7*n + 6)^7.
  • A017060 (program): a(n) = (7*n + 6)^8.
  • A017061 (program): a(n) = (7*n + 6)^9.
  • A017062 (program): a(n) = (7*n + 6)^10.
  • A017063 (program): a(n) = (7*n + 6)^11.
  • A017064 (program): a(n) = (7*n+6)^12.
  • A017065 (program): Expansion of 1/((1-3x)(1-4x)(1-11x)).
  • A017066 (program): a(n) = (8*n)^2.
  • A017067 (program): a(n) = (8*n)^3.
  • A017068 (program): a(n) = (8*n)^4.
  • A017069 (program): a(n) = (8*n)^5.
  • A017070 (program): a(n) = (8*n)^6.
  • A017071 (program): a(n) = (8*n)^7.
  • A017072 (program): a(n) = (8*n)^8.
  • A017073 (program): a(n) = (8*n)^9.
  • A017074 (program): a(n) = (8*n)^10.
  • A017075 (program): a(n) = (8*n)^11.
  • A017076 (program): a(n) = (8*n)^12.
  • A017077 (program): a(n) = 8*n + 1.
  • A017078 (program): a(n) = (8*n + 1)^2.
  • A017079 (program): a(n) = (8*n + 1)^3.
  • A017080 (program): a(n) = (8*n + 1)^4.
  • A017081 (program): a(n) = (8*n + 1)^5.
  • A017082 (program): a(n) = (8*n + 1)^6.
  • A017083 (program): a(n) = (8*n + 1)^7.
  • A017084 (program): a(n) = (8*n + 1)^8.
  • A017085 (program): a(n) = (8*n + 1)^9.
  • A017086 (program): a(n) = (8*n + 1)^10.
  • A017087 (program): a(n) = (8*n + 1)^11.
  • A017088 (program): a(n) = (8*n + 1)^12.
  • A017089 (program): a(n) = 8*n+2.
  • A017090 (program): a(n) = (8*n + 2)^2.
  • A017091 (program): a(n) = (8*n + 2)^3.
  • A017092 (program): a(n) = (8*n + 2)^4.
  • A017093 (program): a(n) = (8*n + 2)^5.
  • A017094 (program): a(n) = (8*n + 2)^6.
  • A017095 (program): a(n) = (8*n + 2)^7.
  • A017096 (program): a(n) = (8*n + 2)^8.
  • A017097 (program): a(n) = (8*n + 2)^9.
  • A017098 (program): a(n) = (8*n + 2)^10.
  • A017099 (program): a(n) = (8*n + 2)^11.
  • A017100 (program): a(n) = (8*n + 2)^12.
  • A017101 (program): a(n) = 8n + 3.
  • A017102 (program): a(n) = (8n + 3)^2.
  • A017103 (program): a(n) = (8*n+3)^3.
  • A017104 (program): a(n) = (8*n+3)^4.
  • A017105 (program): a(n) = (8*n+3)^5.
  • A017106 (program): a(n) = (8*n+3)^6.
  • A017107 (program): a(n) = (8*n+3)^7.
  • A017108 (program): a(n) = (8*n+3)^8.
  • A017109 (program): a(n) = (8*n+3)^9.
  • A017110 (program): a(n) = (8*n+3)^10.
  • A017111 (program): a(n) = (8*n+3)^11.
  • A017112 (program): a(n) = (8*n+3)^12.
  • A017113 (program): a(n) = 8*n + 4.
  • A017114 (program): a(n) = (8*n + 4)^2.
  • A017115 (program): a(n) = (8*n + 4)^3.
  • A017116 (program): a(n) = (8*n + 4)^4.
  • A017117 (program): a(n) = (8*n + 4)^5.
  • A017118 (program): a(n) = (8*n + 4)^6.
  • A017119 (program): a(n) = (8*n + 4)^7 = 4^7*(2*n + 1)^7.
  • A017120 (program): a(n) = (8*n + 4)^8.
  • A017121 (program): a(n) = (8*n + 4)^9.
  • A017122 (program): a(n) = (8*n + 4)^10.
  • A017123 (program): a(n) = (8*n + 4)^11.
  • A017124 (program): a(n) = (8*n + 4)^12.
  • A017125 (program): Table read by antidiagonals of Fibonacci-type sequences.
  • A017126 (program): a(n) = (8*n + 5)^2.
  • A017127 (program): a(n) = (8*n + 5)^3.
  • A017128 (program): a(n) = (8*n + 5)^4.
  • A017129 (program): a(n) = (8*n + 5)^5.
  • A017130 (program): a(n) = (8*n + 5)^6.
  • A017131 (program): a(n) = (8*n + 5)^7.
  • A017132 (program): a(n) = (8*n + 5)^8.
  • A017133 (program): a(n) = (8*n + 5)^9.
  • A017134 (program): a(n) = (8*n + 5)^10.
  • A017135 (program): a(n) = (8*n + 5)^11.
  • A017136 (program): a(n) = (8*n + 5)^12.
  • A017137 (program): a(n) = 8*n+6.
  • A017138 (program): a(n) = (8*n+6)^2.
  • A017139 (program): a(n) = (8*n + 6)^3.
  • A017140 (program): a(n) = (8*n+6)^4.
  • A017141 (program): a(n) = (8*n+6)^5.
  • A017142 (program): a(n) = (8*n+6)^6.
  • A017143 (program): a(n) = (8*n+6)^7.
  • A017144 (program): a(n) = (8*n + 6)^8.
  • A017145 (program): a(n) = (8*n+6)^9.
  • A017146 (program): a(n) = (8*n+6)^10.
  • A017147 (program): a(n) = (8*n+6)^11.
  • A017148 (program): a(n) = (8*n+6)^12.
  • A017150 (program): a(n) = (8*n + 7)^2.
  • A017151 (program): a(n) = (8*n + 7)^3.
  • A017152 (program): a(n) = (8*n + 7)^4.
  • A017153 (program): a(n) = (8*n + 7)^5.
  • A017154 (program): a(n) = (8*n + 7)^6.
  • A017155 (program): a(n) = (8*n + 7)^7.
  • A017156 (program): a(n) = (8*n + 7)^8.
  • A017157 (program): a(n) = (8*n + 7)^9.
  • A017158 (program): a(n) = (8*n + 7)^10.
  • A017159 (program): a(n) = (8*n + 7)^11.
  • A017160 (program): a(n) = (8*n + 7)^12.
  • A017161 (program): Expansion of 1/((1-3x)(1-4x)(1-12x)).
  • A017162 (program): a(n) = (9*n)^2.
  • A017163 (program): a(n) = (9*n)^3.
  • A017164 (program): a(n) = (9*n)^4.
  • A017165 (program): a(n) = (9*n)^5.
  • A017166 (program): a(n) = (9*n)^6.
  • A017167 (program): a(n) = (9*n)^7.
  • A017168 (program): a(n) = (9*n)^8.
  • A017169 (program): a(n) = (9*n)^9.
  • A017170 (program): a(n) = (9*n)^10.
  • A017171 (program): a(n) = (9*n)^11.
  • A017172 (program): (9*n)^12.
  • A017173 (program): a(n) = 9*n + 1.
  • A017174 (program): a(n) = (9*n + 1)^2.
  • A017175 (program): a(n) = (9*n + 1)^3.
  • A017176 (program): (9n+1)^4.
  • A017177 (program): (9n+1)^5.
  • A017178 (program): (9n+1)^6.
  • A017179 (program): (9n+1)^7.
  • A017180 (program): (9n+1)^8.
  • A017181 (program): (9n+1)^9.
  • A017182 (program): (9n+1)^10.
  • A017183 (program): (9n+1)^11.
  • A017184 (program): (9n+1)^12.
  • A017185 (program): 9*n+2.
  • A017186 (program): a(n) = (9*n + 2)^2.
  • A017187 (program): a(n) = (9*n + 2)^3.
  • A017188 (program): a(n) = (9*n + 2)^4.
  • A017189 (program): a(n) = (9*n + 2)^5.
  • A017190 (program): a(n) = (9*n + 2)^6.
  • A017191 (program): a(n) = (9*n + 2)^7.
  • A017192 (program): a(n) = (9*n + 2)^8.
  • A017193 (program): a(n) = (9*n + 2)^9.
  • A017194 (program): a(n) = (9*n + 2)^10.
  • A017195 (program): a(n) = (9*n + 2)^11.
  • A017196 (program): a(n) = (9*n + 2)^12.
  • A017197 (program): a(n) = 9*n + 3.
  • A017198 (program): a(n) = (9*n + 3)^2.
  • A017199 (program): a(n) = (9*n + 3)^3.
  • A017200 (program): a(n) = (9*n+3)^4.
  • A017201 (program): a(n) = (9*n + 3)^5.
  • A017202 (program): a(n) = (9*n + 3)^6.
  • A017203 (program): a(n) = (9*n + 3)^7.
  • A017204 (program): a(n) = (9*n + 3)^8.
  • A017205 (program): a(n) = (9*n + 3)^9.
  • A017206 (program): a(n) = (9*n + 3)^10.
  • A017207 (program): a(n) = (9*n + 3)^11.
  • A017208 (program): a(n) = (9*n + 3)^12.
  • A017209 (program): a(n) = 9*n+4.
  • A017210 (program): a(n) = (9*n + 4)^2.
  • A017211 (program): a(n) = (9*n + 4)^3.
  • A017212 (program): a(n) = (9*n + 4)^4.
  • A017213 (program): a(n) = (9*n + 4)^5.
  • A017214 (program): a(n) = (9*n + 4)^6.
  • A017215 (program): a(n) = (9*n + 4)^7.
  • A017216 (program): a(n) = (9*n + 4)^8.
  • A017217 (program): a(n) = (9*n + 4)^9.
  • A017218 (program): a(n) = (9*n + 4)^10.
  • A017219 (program): a(n) = (9*n + 4)^11.
  • A017220 (program): a(n) = (9*n + 4)^12.
  • A017221 (program): a(n) = 9*n + 5.
  • A017222 (program): a(n) = (9*n + 5)^2.
  • A017223 (program): a(n) = (9*n+5)^3.
  • A017224 (program): a(n) = (9*n + 5)^4.
  • A017225 (program): a(n) = (9*n + 5)^5.
  • A017226 (program): a(n) = (9*n + 5)^6.
  • A017227 (program): a(n) = (9*n + 5)^7.
  • A017228 (program): a(n) = (9*n + 5)^8.
  • A017229 (program): a(n) = (9*n + 5)^9.
  • A017230 (program): a(n) = (9*n + 5)^10.
  • A017231 (program): a(n) = (9*n + 5)^11.
  • A017232 (program): a(n) = (9*n + 5)^12.
  • A017233 (program): a(n) = 9*n + 6.
  • A017234 (program): a(n) = (9*n + 6)^2.
  • A017235 (program): a(n) = (9*n + 6)^3.
  • A017236 (program): a(n) = (9*n + 6)^4.
  • A017237 (program): a(n) = (9*n + 6)^5.
  • A017238 (program): a(n) = (9*n + 6)^6.
  • A017239 (program): a(n) = (9*n + 6)^7.
  • A017240 (program): a(n) = (9*n + 6)^8.
  • A017241 (program): a(n) = (9*n + 6)^9.
  • A017242 (program): a(n) = (9*n + 6)^10.
  • A017243 (program): a(n) = (9*n + 6)^11.
  • A017244 (program): a(n) = (9*n + 6)^12.
  • A017245 (program): a(n) = 9*n + 7.
  • A017246 (program): a(n) = (9*n + 7)^2.
  • A017247 (program): a(n) = (9*n + 7)^3.
  • A017248 (program): a(n) = (9*n + 7)^4.
  • A017249 (program): a(n) = (9*n + 7)^5.
  • A017250 (program): a(n) = (9*n + 7)^6.
  • A017251 (program): a(n) = (9*n+7)^7.
  • A017252 (program): a(n) = (9*n + 7)^8.
  • A017253 (program): a(n) = (9*n + 7)^9.
  • A017254 (program): a(n) = (9*n + 7)^10.
  • A017255 (program): a(n) = (9*n + 7)^11.
  • A017256 (program): a(n) = (9*n + 7)^12.
  • A017257 (program): a(n) = 9n+8.
  • A017258 (program): a(n) = (9*n + 8)^2.
  • A017259 (program): a(n) = (9*n + 8)^3.
  • A017260 (program): a(n) = (9*n + 8)^4.
  • A017261 (program): a(n) = (9*n + 8)^5.
  • A017262 (program): a(n) = (9*n + 8)^6.
  • A017263 (program): a(n) = (9*n + 8)^7.
  • A017264 (program): a(n) = (9*n + 8)^8.
  • A017265 (program): a(n) = (9*n + 8)^9.
  • A017266 (program): a(n) = (9*n + 8)^10.
  • A017267 (program): a(n) = (9*n + 8)^11.
  • A017268 (program): a(n) = (9*n + 8)^12.
  • A017269 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)).
  • A017270 (program): a(n) = (10*n)^2.
  • A017271 (program): a(n) = (10*n)^3.
  • A017272 (program): a(n) = (10*n)^4.
  • A017273 (program): a(n) = (10*n)^5.
  • A017274 (program): a(n) = (10*n)^6.
  • A017275 (program): a(n) = (10*n)^7.
  • A017276 (program): a(n) = (10*n)^8.
  • A017277 (program): a(n) = (10*n)^9.
  • A017278 (program): a(n) = (10*n)^10.
  • A017279 (program): a(n) = (10*n)^11.
  • A017280 (program): a(n) = (10*n)^12.
  • A017281 (program): a(n) = 10*n + 1.
  • A017282 (program): a(n) = (10*n + 1)^2.
  • A017283 (program): a(n) = (10*n + 1)^3.
  • A017284 (program): a(n) = (10*n + 1)^4.
  • A017285 (program): a(n) = (10*n + 1)^5.
  • A017286 (program): a(n) = (10*n + 1)^6.
  • A017287 (program): a(n) = (10*n + 1)^7.
  • A017288 (program): a(n) = (10*n + 1)^8.
  • A017289 (program): a(n) = (10*n + 1)^9.
  • A017290 (program): a(n) = (10*n + 1)^10.
  • A017291 (program): a(n) = (10*n + 1)^11.
  • A017292 (program): a(n) = (10*n + 1)^12.
  • A017293 (program): a(n) = 10n+2.
  • A017294 (program): a(n) = (10*n+2)^2.
  • A017295 (program): (10*n+2)^3.
  • A017296 (program): a(n) = (10*n + 2)^4.
  • A017297 (program): a(n) = (10*n + 2)^5.
  • A017298 (program): a(n) = (10*n + 2)^6.
  • A017299 (program): a(n) = (10*n + 2)^7.
  • A017300 (program): a(n) = (10*n + 2)^8.
  • A017301 (program): a(n) = (10*n + 2)^9.
  • A017302 (program): a(n) = (10*n + 2)^10.
  • A017303 (program): a(n) = (10*n + 2)^11.
  • A017304 (program): a(n) = (10*n + 2)^12.
  • A017305 (program): a(n) = 10n + 3.
  • A017306 (program): a(n) = (10*n + 3)^2.
  • A017307 (program): a(n) = (10*n + 3)^3.
  • A017308 (program): a(n) = (10*n + 3)^4.
  • A017309 (program): a(n) = (10*n + 3)^5.
  • A017310 (program): a(n) = (10*n + 3)^6.
  • A017311 (program): a(n) = (10*n + 3)^7.
  • A017312 (program): a(n) = (10*n + 3)^8.
  • A017313 (program): a(n) = (10*n + 3)^9.
  • A017314 (program): a(n) = (10*n + 3)^10.
  • A017315 (program): a(n) = (10*n + 3)^11.
  • A017316 (program): a(n) = (10*n + 3)^12.
  • A017317 (program): a(n) = 10n + 4.
  • A017318 (program): a(n) = (10*n + 4)^2.
  • A017319 (program): a(n) = (10*n + 4)^3.
  • A017320 (program): a(n) = (10*n + 4)^4.
  • A017321 (program): a(n) = (10*n + 4)^5.
  • A017322 (program): a(n) = (10*n + 4)^6.
  • A017323 (program): a(n) = (10*n + 4)^7.
  • A017324 (program): a(n) = (10*n + 4)^8.
  • A017325 (program): a(n) = (10*n + 4)^9.
  • A017326 (program): a(n) = (10*n + 4)^10.
  • A017327 (program): a(n) = (10*n + 4)^11.
  • A017328 (program): a(n) = (10*n + 4)^12.
  • A017329 (program): a(n) = 10*n + 5.
  • A017330 (program): a(n) = (10*n + 5)^2.
  • A017331 (program): a(n) = (10*n + 5)^3.
  • A017332 (program): a(n) = (10*n + 5)^4.
  • A017333 (program): a(n) = (10*n + 5)^5.
  • A017334 (program): a(n) = (10*n + 5)^6.
  • A017335 (program): a(n) = (10*n + 5)^7.
  • A017336 (program): a(n) = (10*n + 5)^8.
  • A017337 (program): a(n) = (10*n + 5)^9.
  • A017338 (program): a(n) = (10*n + 5)^10.
  • A017339 (program): a(n) = (10*n + 5)^11.
  • A017340 (program): a(n) = (10*n + 5)^12.
  • A017341 (program): a(n) = 10*n + 6.
  • A017342 (program): a(n) = (10*n + 6)^2.
  • A017343 (program): a(n) = (10*n + 6)^3.
  • A017344 (program): a(n) = (10*n + 6)^4.
  • A017345 (program): a(n) = (10*n + 6)^5.
  • A017346 (program): a(n) = (10*n + 6)^6.
  • A017347 (program): a(n) = (10*n + 6)^7.
  • A017348 (program): a(n) = (10*n + 6)^8.
  • A017349 (program): a(n) = (10*n + 6)^9.
  • A017350 (program): a(n) = (10*n + 6)^10.
  • A017351 (program): a(n) = (10*n + 6)^11.
  • A017352 (program): (10*n+6)^12.
  • A017353 (program): a(n) = 10n + 7.
  • A017354 (program): a(n) = (10*n + 7)^2.
  • A017355 (program): a(n) = (10*n + 7)^3.
  • A017356 (program): a(n) = (10*n+7)^4.
  • A017357 (program): a(n) = (10*n + 7)^5.
  • A017358 (program): a(n) = (10*n + 7)^6.
  • A017359 (program): a(n) = (10*n + 7)^7.
  • A017360 (program): a(n) = (10*n + 7)^8.
  • A017361 (program): a(n) = (10*n + 7)^9.
  • A017362 (program): a(n) = (10*n + 7)^10.
  • A017363 (program): a(n) = (10*n + 7)^11.
  • A017364 (program): a(n) = (10*n + 7)^12.
  • A017365 (program): a(n) = 10n + 8.
  • A017366 (program): a(n) = (10*n+8)^2.
  • A017367 (program): a(n) = (10*n + 8)^3.
  • A017368 (program): a(n) = (10*n + 8)^4.
  • A017369 (program): a(n) = (10*n + 8)^5.
  • A017370 (program): a(n) = (10*n + 8)^6.
  • A017371 (program): a(n) = (10*n + 8)^7.
  • A017372 (program): (10*n+8)^8.
  • A017373 (program): a(n) = (10*n + 8)^9.
  • A017374 (program): a(n) = (10*n + 8)^10.
  • A017375 (program): a(n) = (10*n + 8)^11.
  • A017376 (program): a(n) = (10*n + 8)^12.
  • A017377 (program): a(n) = 10*n + 9.
  • A017378 (program): a(n) = (10*n + 9)^2.
  • A017379 (program): a(n) = (10*n + 9)^3.
  • A017380 (program): a(n) = (10*n + 9)^4.
  • A017381 (program): a(n) = (10*n + 9)^5.
  • A017382 (program): a(n) = (10*n + 9)^6.
  • A017383 (program): (10*n+9)^7.
  • A017384 (program): a(n) = (10*n + 9)^8.
  • A017385 (program): a(n) = (10*n + 9)^9.
  • A017386 (program): a(n) = (10*n + 9)^10.
  • A017387 (program): a(n) = (10*n + 9)^11.
  • A017388 (program): a(n) = (10*n + 9)^12.
  • A017389 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)).
  • A017390 (program): a(n) = (11*n)^2.
  • A017391 (program): a(n) = (11*n)^3.
  • A017392 (program): a(n) = (11*n)^4.
  • A017393 (program): a(n) = (11*n)^5.
  • A017394 (program): a(n) = (11*n)^6.
  • A017395 (program): a(n) = (11*n)^7.
  • A017396 (program): a(n) = (11*n)^8.
  • A017397 (program): a(n) = (11*n)^9.
  • A017398 (program): a(n) = (11*n)^10.
  • A017399 (program): a(n) = (11*n)^11.
  • A017400 (program): a(n) = (11*n)^12.
  • A017401 (program): a(n) = 11n + 1.
  • A017402 (program): (11n+1)^2.
  • A017403 (program): (11n+1)^3.
  • A017404 (program): (11n+1)^4.
  • A017405 (program): (11n+1)^5.
  • A017406 (program): a(n) = (11n+1)^6.
  • A017407 (program): (11n+1)^7.
  • A017408 (program): (11n+1)^8.
  • A017409 (program): a(n) = (11n+1)^9.
  • A017410 (program): (11n+1)^10.
  • A017411 (program): (11n+1)^11.
  • A017412 (program): (11n+1)^12.
  • A017413 (program): a(n) = 11*n + 2.
  • A017414 (program): (11n+2)^2.
  • A017415 (program): a(n) = (11*n+2)^3.
  • A017416 (program): (11n+2)^4.
  • A017417 (program): a(n) = (11*n+2)^5.
  • A017418 (program): (11n+2)^6.
  • A017419 (program): a(n) = (11*n+2)^7.
  • A017420 (program): (11n+2)^8.
  • A017421 (program): (11n+2)^9.
  • A017422 (program): (11n+2)^10.
  • A017423 (program): (11n+2)^11.
  • A017424 (program): (11n+2)^12.
  • A017425 (program): a(n) = 11*n + 3.
  • A017426 (program): (11n+3)^2.
  • A017427 (program): (11n+3)^3.
  • A017428 (program): (11n+3)^4.
  • A017429 (program): a(n) = (11*n+3)^5.
  • A017430 (program): (11n+3)^6.
  • A017431 (program): (11n+3)^7.
  • A017432 (program): a(n) = (11*n + 3)^8.
  • A017433 (program): (11n+3)^9.
  • A017434 (program): (11n+3)^10.
  • A017435 (program): (11n+3)^11.
  • A017436 (program): (11n+3)^12.
  • A017437 (program): a(n) = 11*n + 4.
  • A017438 (program): a(n) = (11*n + 4)^2.
  • A017439 (program): a(n) = (11*n + 4)^3.
  • A017440 (program): a(n) = (11*n + 4)^4.
  • A017441 (program): a(n) = (11*n + 4)^5.
  • A017442 (program): a(n) = (11*n + 4)^6.
  • A017443 (program): a(n) = (11*n + 4)^7.
  • A017444 (program): a(n) = (11*n + 4)^8.
  • A017445 (program): a(n) = (11*n + 4)^9.
  • A017446 (program): a(n) = (11*n + 4)^10.
  • A017447 (program): a(n) = (11*n + 4)^11.
  • A017448 (program): a(n) = (11*n + 4)^12.
  • A017449 (program): a(n) = 11*n + 5.
  • A017450 (program): a(n) = (11*n + 5)^2.
  • A017451 (program): a(n) = (11*n + 5)^3.
  • A017452 (program): a(n) = (11*n + 5)^4.
  • A017453 (program): a(n) = (11*n + 5)^5.
  • A017454 (program): a(n) = (11*n + 5)^6.
  • A017455 (program): a(n) = (11*n + 5)^7.
  • A017456 (program): a(n) = (11*n + 5)^8.
  • A017457 (program): a(n) = (11*n + 5)^9.
  • A017458 (program): a(n) = (11*n + 5)^10.
  • A017459 (program): a(n) = (11*n + 5)^11.
  • A017460 (program): a(n) = (11*n + 5)^12.
  • A017461 (program): a(n) = 11*n + 6.
  • A017462 (program): a(n) = (11*n + 6)^2.
  • A017463 (program): a(n) = (11*n + 6)^3.
  • A017464 (program): a(n) = (11*n + 6)^4.
  • A017465 (program): a(n) = (11*n + 6)^5.
  • A017466 (program): a(n) = (11*n + 6)^6.
  • A017467 (program): a(n) = (11*n + 6)^7.
  • A017468 (program): a(n) = (11*n + 6)^8.
  • A017469 (program): a(n) = (11*n + 6)^9.
  • A017470 (program): a(n) = (11*n + 6)^10.
  • A017471 (program): a(n) = (11*n + 6)^11.
  • A017472 (program): a(n) = (11*n + 6)^12.
  • A017473 (program): a(n) = 11*n + 7.
  • A017474 (program): a(n) = (11*n + 7)^2.
  • A017475 (program): a(n) = (11*n + 7)^3.
  • A017476 (program): a(n) = (11*n + 7)^4.
  • A017477 (program): a(n) = (11*n + 7)^5.
  • A017478 (program): a(n) = (11*n + 7)^6.
  • A017479 (program): a(n) = (11*n + 7)^7.
  • A017480 (program): a(n) = (11*n + 7)^8.
  • A017481 (program): a(n) = (11*n + 7)^9.
  • A017482 (program): a(n) = (11*n + 7)^10.
  • A017483 (program): a(n) = (11*n + 7)^11.
  • A017484 (program): a(n) = (11*n + 7)^12.
  • A017485 (program): a(n) = 11*n + 8.
  • A017486 (program): a(n) = (11*n + 8)^2.
  • A017487 (program): a(n) = (11*n + 8)^3.
  • A017488 (program): a(n) = (11*n + 8)^4.
  • A017489 (program): a(n) = (11*n + 8)^5.
  • A017490 (program): a(n) = (11*n + 8)^6.
  • A017491 (program): a(n) = (11*n + 8)^7.
  • A017492 (program): a(n) = (11*n + 8)^8.
  • A017493 (program): a(n) = (11*n + 8)^9.
  • A017494 (program): a(n) = (11*n + 8)^10.
  • A017495 (program): a(n) = (11*n + 8)^11.
  • A017496 (program): a(n) = (11*n + 8)^12.
  • A017497 (program): a(n) = 11*n + 9.
  • A017498 (program): a(n) = (11*n + 9)^2.
  • A017499 (program): a(n) = (11*n + 9)^3.
  • A017500 (program): a(n) = (11*n + 9)^4.
  • A017501 (program): a(n) = (11*n + 9)^5.
  • A017502 (program): a(n) = (11*n + 9)^6.
  • A017503 (program): a(n) = (11*n + 9)^7.
  • A017504 (program): a(n) = (11*n + 9)^8.
  • A017505 (program): a(n) = (11*n + 9)^9.
  • A017506 (program): a(n) = (11*n + 9)^10.
  • A017507 (program): a(n) = (11*n + 9)^11.
  • A017508 (program): a(n) = (11*n + 9)^12.
  • A017509 (program): a(n) = 11*n + 10.
  • A017510 (program): a(n) = (11*n + 10)^2.
  • A017511 (program): a(n) = (11*n + 10)^3.
  • A017512 (program): a(n) = (11*n + 10)^4.
  • A017513 (program): a(n) = (11*n + 10)^5.
  • A017514 (program): a(n) = (11*n + 10)^6.
  • A017515 (program): a(n) = (11*n + 10)^7.
  • A017516 (program): a(n) = (11*n + 10)^8.
  • A017517 (program): a(n) = (11*n + 10)^9.
  • A017518 (program): a(n) = (11*n + 10)^10.
  • A017519 (program): a(n) = (11*n + 10)^11.
  • A017520 (program): a(n) = (11*n + 10)^12.
  • A017521 (program): Expansion of 1/((1-3*x)*(1-5*x)*(1-8*x)).
  • A017522 (program): a(n) = (12*n)^2.
  • A017523 (program): a(n) = (12*n)^3.
  • A017524 (program): (12n)^4.
  • A017525 (program): (12n)^5.
  • A017526 (program): a(n) = (12*n)^6.
  • A017527 (program): a(n) = (12n)^7.
  • A017528 (program): (12n)^8.
  • A017529 (program): (12n)^9.
  • A017530 (program): (12n)^10.
  • A017531 (program): (12n)^11.
  • A017532 (program): a(n) = (12*n)^12.
  • A017533 (program): a(n) = 12*n + 1.
  • A017534 (program): (12n+1)^2.
  • A017535 (program): a(n) = (12*n+1)^3.
  • A017536 (program): (12n+1)^4.
  • A017537 (program): (12n+1)^5.
  • A017538 (program): (12n+1)^6.
  • A017539 (program): (12n+1)^7.
  • A017540 (program): a(n) = (12*n + 1)^8.
  • A017541 (program): (12n+1)^9.
  • A017542 (program): (12n+1)^10.
  • A017543 (program): a(n) = (12*n + 1)^11.
  • A017544 (program): (12n+1)^12.
  • A017545 (program): a(n) = 12*n + 2.
  • A017546 (program): (12n+2)^2.
  • A017547 (program): a(n) = (12n + 2)^3.
  • A017548 (program): (12n+2)^4.
  • A017549 (program): (12n+2)^5.
  • A017550 (program): (12n+2)^6.
  • A017551 (program): a(n) = (12*n + 2)^7.
  • A017552 (program): (12n+2)^8.
  • A017553 (program): (12n+2)^9.
  • A017554 (program): (12n+2)^10.
  • A017555 (program): (12n+2)^11.
  • A017556 (program): (12n+2)^12.
  • A017557 (program): a(n) = 12*n + 3.
  • A017558 (program): a(n) = (12*n + 3)^2.
  • A017559 (program): (12n+3)^3.
  • A017560 (program): a(n) = (12*n + 3)^4.
  • A017561 (program): (12n+3)^5.
  • A017562 (program): (12n+3)^6.
  • A017563 (program): (12n+3)^7.
  • A017564 (program): (12n+3)^8.
  • A017565 (program): (12n+3)^9.
  • A017566 (program): a(n) = (12*n+3)^10.
  • A017567 (program): (12n+3)^11.
  • A017568 (program): (12n+3)^12.
  • A017569 (program): a(n) = 12*n + 4.
  • A017570 (program): a(n) = (12*n + 4)^2.
  • A017571 (program): (12n+4)^3.
  • A017572 (program): (12n+4)^4.
  • A017573 (program): (12n+4)^5.
  • A017574 (program): (12n+4)^6.
  • A017575 (program): (12n+4)^7.
  • A017576 (program): (12n+4)^8.
  • A017577 (program): (12n+4)^9.
  • A017578 (program): (12n+4)^10.
  • A017579 (program): (12n+4)^11.
  • A017580 (program): (12n+4)^12.
  • A017581 (program): a(n) = 12*n + 5.
  • A017582 (program): a(n) = (12n + 5)^2.
  • A017583 (program): (12n+5)^3.
  • A017584 (program): (12n+5)^4.
  • A017585 (program): (12n+5)^5.
  • A017586 (program): (12n+5)^6.
  • A017587 (program): (12n+5)^7.
  • A017588 (program): (12n+5)^8.
  • A017589 (program): (12n+5)^9.
  • A017590 (program): a(n) = (12*n+5)^10.
  • A017591 (program): (12n+5)^11.
  • A017592 (program): (12n+5)^12.
  • A017593 (program): a(n) = 12*n + 6.
  • A017594 (program): a(n) = (12*n + 6)^2.
  • A017595 (program): a(n) = (12n+6)^3.
  • A017596 (program): a(n) = (12*n+6)^4.
  • A017597 (program): (12n+6)^5.
  • A017598 (program): (12n+6)^6.
  • A017599 (program): (12n+6)^7.
  • A017600 (program): (12n+6)^8.
  • A017601 (program): (12n+6)^9.
  • A017602 (program): (12n+6)^10.
  • A017603 (program): (12n+6)^11.
  • A017604 (program): a(n) = (12n+6)^12.
  • A017605 (program): a(n) = 12*n + 7.
  • A017606 (program): a(n) = (12*n + 7)^2.
  • A017607 (program): (12n+7)^3.
  • A017608 (program): (12n+7)^4.
  • A017609 (program): (12n+7)^5.
  • A017610 (program): (12n+7)^6.
  • A017611 (program): (12n+7)^7.
  • A017612 (program): (12n+7)^8.
  • A017613 (program): (12n+7)^9.
  • A017614 (program): (12n+7)^10.
  • A017615 (program): a(n) = (12*n+7)^11.
  • A017616 (program): (12n+7)^12.
  • A017617 (program): a(n) = 12*n + 8.
  • A017618 (program): (12n+8)^2.
  • A017619 (program): a(n) = (12*n + 8)^3.
  • A017620 (program): (12n+8)^4.
  • A017621 (program): (12n+8)^5.
  • A017622 (program): a(n) = (12*n+8)^6.
  • A017623 (program): a(n) = (12*n + 8)^7.
  • A017624 (program): (12n+8)^8.
  • A017625 (program): (12n+8)^9.
  • A017626 (program): (12n+8)^10.
  • A017627 (program): a(n) = (12*n+8)^11.
  • A017628 (program): (12n+8)^12.
  • A017629 (program): a(n) = 12*n + 9.
  • A017630 (program): (12n+9)^2.
  • A017631 (program): a(n) = (12*n+9)^3.
  • A017632 (program): a(n) = (12*n+9)^4.
  • A017633 (program): (12n+9)^5.
  • A017634 (program): (12n+9)^6.
  • A017635 (program): a(n) = (12*n+9)^7.
  • A017636 (program): (12n+9)^8.
  • A017637 (program): (12n+9)^9.
  • A017638 (program): a(n) = (12n+9)^10.
  • A017639 (program): (12n+9)^11.
  • A017640 (program): (12n+9)^12.
  • A017641 (program): a(n) = 12n + 10.
  • A017642 (program): a(n) = (12*n+10)^2.
  • A017643 (program): a(n) = (12n+10)^3.
  • A017644 (program): (12n+10)^4.
  • A017645 (program): (12n+10)^5.
  • A017646 (program): (12n+10)^6.
  • A017647 (program): (12n+10)^7.
  • A017648 (program): (12n+10)^8.
  • A017649 (program): (12n+10)^9.
  • A017650 (program): a(n) = (12n+10)^10.
  • A017651 (program): (12n+10)^11.
  • A017652 (program): (12n+10)^12.
  • A017653 (program): a(n) = 12*n + 11.
  • A017654 (program): (12n+11)^2.
  • A017655 (program): (12n+11)^3.
  • A017656 (program): (12n+11)^4.
  • A017657 (program): a(n) = (12*n + 11)^5.
  • A017658 (program): (12n+11)^6.
  • A017659 (program): a(n) = (12n+11)^7.
  • A017660 (program): (12n+11)^8.
  • A017661 (program): (12n+11)^9.
  • A017662 (program): (12n+11)^10.
  • A017663 (program): a(n) = (12*n + 11)^11.
  • A017664 (program): (12n+11)^12.
  • A017665 (program): Numerator of sum of reciprocals of divisors of n.
  • A017666 (program): Denominator of sum of reciprocals of divisors of n.
  • A017667 (program): Numerator of sum of -2nd powers of divisors of n.
  • A017668 (program): Denominator of sum of -2nd powers of divisors of n.
  • A017669 (program): Numerator of sum of -3rd powers of divisors of n.
  • A017670 (program): Denominator of sum of -3rd powers of divisors of n.
  • A017671 (program): Numerator of sum of -4th powers of divisors of n.
  • A017672 (program): Denominator of sum of -4th powers of divisors of n.
  • A017674 (program): Denominator of sum of -5th powers of divisors of n.
  • A017675 (program): Numerator of sum of -6th powers of divisors of n.
  • A017676 (program): Denominator of sum of -6th powers of divisors of n.
  • A017677 (program): Numerator of sum of -7th powers of divisors of n.
  • A017678 (program): Denominator of sum of -7th powers of divisors of n.
  • A017679 (program): Numerator of sum of -8th powers of divisors of n.
  • A017680 (program): Denominator of sum of -8th powers of divisors of n.
  • A017681 (program): Numerator of sum of -9th powers of divisors of n.
  • A017682 (program): Denominator of sum of -9th powers of divisors of n.
  • A017683 (program): Numerator of sum of -10th powers of divisors of n.
  • A017684 (program): Denominator of sum of -10th powers of divisors of n.
  • A017685 (program): Numerator of sum of -11th powers of divisors of n.
  • A017686 (program): Denominator of sum of -11th powers of divisors of n.
  • A017687 (program): Numerator of sum of -12th powers of divisors of n.
  • A017688 (program): Denominator of sum of -12th powers of divisors of n.
  • A017689 (program): Numerator of sum of -13th powers of divisors of n.
  • A017690 (program): Denominator of sum of -13th powers of divisors of n.
  • A017691 (program): Numerator of sum of -14th powers of divisors of n.
  • A017692 (program): Denominator of sum of -14th powers of divisors of n.
  • A017693 (program): Numerator of sum of -15th powers of divisors of n.
  • A017694 (program): Denominator of sum of -15th powers of divisors of n.
  • A017695 (program): Numerator of sum of -16th powers of divisors of n.
  • A017696 (program): Denominator of sum of -16th powers of divisors of n.
  • A017697 (program): Numerator of sum of -17th powers of divisors of n.
  • A017698 (program): Denominator of sum of -17th powers of divisors of n.
  • A017699 (program): Numerator of sum of -18th powers of divisors of n.
  • A017700 (program): Denominator of sum of -18th powers of divisors of n.
  • A017701 (program): Numerator of sum of -19th powers of divisors of n.
  • A017702 (program): Denominator of sum of -19th powers of divisors of n.
  • A017703 (program): Numerator of sum of -20th powers of divisors of n.
  • A017704 (program): Denominator of sum of -20th powers of divisors of n.
  • A017705 (program): Numerator of sum of -21st powers of divisors of n.
  • A017706 (program): Denominator of sum of -21st powers of divisors of n.
  • A017707 (program): Numerator of sum of -22nd powers of divisors of n.
  • A017708 (program): Denominator of sum of -22nd powers of divisors of n.
  • A017709 (program): Numerator of sum of -23rd powers of divisors of n.
  • A017710 (program): Denominator of sum of -23rd powers of divisors of n.
  • A017711 (program): Numerator of sum of -24th powers of divisors of n.
  • A017712 (program): Denominator of sum of -24th powers of divisors of n.
  • A017713 (program): Binomial coefficients C(n,49).
  • A017714 (program): Binomial coefficients C(n,50).
  • A017715 (program): Binomial coefficients C(n,51).
  • A017716 (program): Binomial coefficients C(n,52).
  • A017717 (program): Binomial coefficients C(n,53).
  • A017718 (program): Binomial coefficients C(n,54).
  • A017719 (program): Binomial coefficients C(n,55).
  • A017720 (program): Binomial coefficients C(n,56).
  • A017721 (program): Binomial coefficients C(n,57).
  • A017722 (program): Binomial coefficients C(n,58).
  • A017723 (program): Binomial coefficients C(n,59).
  • A017724 (program): Binomial coefficients C(n,60).
  • A017725 (program): Binomial coefficients C(n,61).
  • A017726 (program): Binomial coefficients C(n,62).
  • A017727 (program): Binomial coefficients C(n,63).
  • A017728 (program): Binomial coefficients C(n,64).
  • A017729 (program): Binomial coefficients C(n,65).
  • A017730 (program): Binomial coefficients C(n,66).
  • A017731 (program): Binomial coefficients C(n,67).
  • A017732 (program): Binomial coefficients C(n,68).
  • A017733 (program): Binomial coefficients C(n,69).
  • A017734 (program): Binomial coefficients C(n,70).
  • A017735 (program): Binomial coefficients C(n,71).
  • A017736 (program): Binomial coefficients C(n,72).
  • A017737 (program): Binomial coefficients C(n,73).
  • A017738 (program): Binomial coefficients C(n,74).
  • A017739 (program): Binomial coefficients C(n,75).
  • A017740 (program): Binomial coefficients C(n,76).
  • A017741 (program): Binomial coefficients C(n,77).
  • A017742 (program): Binomial coefficients C(n,78).
  • A017743 (program): Binomial coefficients C(n,79).
  • A017744 (program): Binomial coefficients C(n,80).
  • A017745 (program): Binomial coefficients C(n,81).
  • A017746 (program): Binomial coefficients C(n,82).
  • A017747 (program): Binomial coefficients C(n,83).
  • A017748 (program): Binomial coefficients C(n,84).
  • A017749 (program): Binomial coefficients C(n,85).
  • A017750 (program): Binomial coefficients C(n,86).
  • A017751 (program): Binomial coefficients C(n,87).
  • A017752 (program): Binomial coefficients C(n,88).
  • A017753 (program): Binomial coefficients C(n,89).
  • A017754 (program): Binomial coefficients C(n,90).
  • A017755 (program): Binomial coefficients C(n,91).
  • A017756 (program): Binomial coefficients C(n,92).
  • A017757 (program): Binomial coefficients C(n,93).
  • A017758 (program): Binomial coefficients C(n,94).
  • A017759 (program): Binomial coefficients C(n,95).
  • A017760 (program): Binomial coefficients C(n,96).
  • A017761 (program): Binomial coefficients C(n,97).
  • A017762 (program): Binomial coefficients C(n,98).
  • A017763 (program): a(n) = binomial coefficient C(n,99).
  • A017764 (program): a(n) = binomial coefficient C(n,100).
  • A017765 (program): Binomial coefficients C(49,n).
  • A017766 (program): Binomial coefficients C(50,n).
  • A017767 (program): Binomial coefficients C(51,n).
  • A017768 (program): Binomial coefficients C(52,n).
  • A017769 (program): Binomial coefficients C(53,n).
  • A017770 (program): Binomial coefficients C(54,n).
  • A017771 (program): Binomial coefficients C(55,n).
  • A017772 (program): Binomial coefficients C(56,n).
  • A017773 (program): Binomial coefficients C(57,n).
  • A017774 (program): Binomial coefficients C(58,n).
  • A017775 (program): Binomial coefficients C(59,n).
  • A017776 (program): Binomial coefficients C(60,n).
  • A017777 (program): Binomial coefficients C(61,n).
  • A017778 (program): Binomial coefficients C(62,n).
  • A017779 (program): Binomial coefficients C(63,n).
  • A017780 (program): Binomial coefficients C(64,n).
  • A017781 (program): Binomial coefficients C(65,n).
  • A017782 (program): Binomial coefficients C(66,n).
  • A017783 (program): Binomial coefficients C(67,n).
  • A017784 (program): Binomial coefficients C(68,n).
  • A017785 (program): Binomial coefficients C(69,n).
  • A017786 (program): Binomial coefficients C(70,n).
  • A017787 (program): Binomial coefficients C(71,n).
  • A017788 (program): Binomial coefficients C(72,n).
  • A017789 (program): Binomial coefficients C(73,n).
  • A017790 (program): Binomial coefficients C(74,n).
  • A017791 (program): Binomial coefficients C(75,n).
  • A017792 (program): Binomial coefficients C(76,n).
  • A017793 (program): Binomial coefficients C(77, n).
  • A017794 (program): Binomial coefficients C(78,n).
  • A017795 (program): Binomial coefficients C(79,n).
  • A017796 (program): Binomial coefficients C(80,n).
  • A017797 (program): Binomial coefficients C(81,n).
  • A017798 (program): Binomial coefficients C(82,n).
  • A017799 (program): Binomial coefficients C(83,n).
  • A017800 (program): Binomial coefficients C(84,n).
  • A017801 (program): Binomial coefficients C(85,n).
  • A017802 (program): Binomial coefficients C(86,n).
  • A017803 (program): Binomial coefficients C(87,n).
  • A017804 (program): Binomial coefficients C(88,n).
  • A017805 (program): Binomial coefficients C(89,n).
  • A017806 (program): Binomial coefficients C(90,n).
  • A017807 (program): Binomial coefficients C(91,n).
  • A017808 (program): Binomial coefficients C(92,n).
  • A017809 (program): Binomial coefficients C(93,n).
  • A017810 (program): Binomial coefficients C(94,n).
  • A017811 (program): Binomial coefficients C(95,n).
  • A017812 (program): Binomial coefficients C(96,n).
  • A017813 (program): Binomial coefficients C(97,n).
  • A017814 (program): Binomial coefficients C(98,n).
  • A017815 (program): Binomial coefficients C(99,n).
  • A017816 (program): Binomial coefficients C(100,n).
  • A017817 (program): a(n) = a(n-3) + a(n-4), with a(0)=1, a(1)=a(2)=0, a(3)=1.
  • A017818 (program): Expansion of 1/(1-x^3-x^4-x^5).
  • A017819 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6).
  • A017820 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7).
  • A017821 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8).
  • A017822 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
  • A017823 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
  • A017824 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
  • A017825 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
  • A017826 (program): Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017827 (program): a(n) = a(n-4) + a(n-5), with a(0)=1, a(1)=a(2)=a(3)=0, a(4)=1.
  • A017828 (program): Expansion of 1/(1-x^4-x^5-x^6).
  • A017829 (program): Expansion of 1/(1 - x^4 - x^5 - x^6 - x^7).
  • A017830 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8).
  • A017831 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9).
  • A017832 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10).
  • A017833 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
  • A017834 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
  • A017835 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017836 (program): Expansion of 1/(1-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
  • A017837 (program): Expansion of 1/(1-x^5-x^6).
  • A017838 (program): Expansion of 1/(1-x^5-x^6-x^7).
  • A017839 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8).
  • A017840 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9).
  • A017841 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10).
  • A017842 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11).
  • A017843 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
  • A017844 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017845 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
  • A017846 (program): Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017847 (program): Expansion of 1/(1-x^6-x^7).
  • A017848 (program): Expansion of 1/(1-x^6-x^7-x^8).
  • A017849 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9).
  • A017850 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10).
  • A017851 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11).
  • A017852 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
  • A017853 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017854 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
  • A017855 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017856 (program): Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
  • A017857 (program): Expansion of 1/(1 - x^7 - x^8).
  • A017858 (program): Expansion of 1/(1-x^7-x^8-x^9).
  • A017859 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10).
  • A017860 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11).
  • A017861 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12).
  • A017862 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017863 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
  • A017864 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017865 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
  • A017866 (program): Expansion of 1/(1-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
  • A017867 (program): Expansion of 1/(1-x^8-x^9).
  • A017868 (program): Expansion of 1/(1-x^8-x^9-x^10).
  • A017869 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11).
  • A017870 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12).
  • A017871 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13).
  • A017872 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
  • A017873 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017874 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
  • A017875 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
  • A017876 (program): Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
  • A017877 (program): Expansion of 1/(1 - x^9 - x^10).
  • A017878 (program): Expansion of 1/(1-x^9-x^10-x^11).
  • A017879 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12).
  • A017880 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13).
  • A017881 (program): Expansion of 1/(1 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14).
  • A017882 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017883 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
  • A017884 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
  • A017885 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
  • A017886 (program): Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19).
  • A017887 (program): Expansion of 1/(1 - x^10 - x^11).
  • A017888 (program): Expansion of 1/(1 - x^10 - x^11 - x^12).
  • A017889 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13).
  • A017890 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14).
  • A017891 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15).
  • A017893 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
  • A017894 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).
  • A017896 (program): Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18-x^19-x^20).
  • A017897 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)).
  • A017898 (program): Expansion of (1-x)/(1-x-x^4).
  • A017899 (program): Expansion of 1/(1 -x^5 -x^6 -x^7 - …).
  • A017900 (program): Expansion of 1/(1 -x^6 -x^7 -x^8 - …).
  • A017901 (program): Expansion of 1/(1 - x^7 - x^8 - …).
  • A017902 (program): Expansion of 1/(1 - x^8 - x^9 - …).
  • A017903 (program): Expansion of 1/(1 - x^9 - x^10 - …).
  • A017904 (program): Expansion of 1/(1 - x^10 - x^11 - …).
  • A017905 (program): Expansion of 1/(1 - x^11 - x^12 - …).
  • A017906 (program): Expansion of 1/(1 - x^12 - x^13 - …).
  • A017907 (program): Expansion of 1/(1 - x^13 - x^14 - …).
  • A017908 (program): Expansion of 1/(1 - x^14 - x^15 - …).
  • A017909 (program): Expansion of 1/(1 - x^15 - x^16 - …).
  • A017910 (program): Powers of sqrt(2) rounded down.
  • A017911 (program): Powers of sqrt(2) rounded to nearest integer.
  • A017912 (program): Powers of sqrt(2) rounded up.
  • A017913 (program): Powers of sqrt(3) rounded down.
  • A017914 (program): Powers of sqrt(3) rounded to nearest integer.
  • A017915 (program): Powers of sqrt(3) rounded up.
  • A017916 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)).
  • A017917 (program): Expansion of 1/((1-3x)(1-5x)(1-11x)).
  • A017918 (program): Expansion of 1/((1-3x)(1-5x)(1-12x)).
  • A017919 (program): Powers of sqrt(5) rounded down.
  • A017920 (program): Powers of sqrt(5) rounded to nearest integer.
  • A017921 (program): Powers of sqrt(5) rounded up.
  • A017922 (program): Powers of sqrt(6) rounded down.
  • A017923 (program): Powers of sqrt(6) rounded to nearest integer.
  • A017924 (program): Powers of sqrt(6) rounded up.
  • A017925 (program): Powers of sqrt(7) rounded down.
  • A017926 (program): Powers of sqrt(7) rounded to nearest integer.
  • A017927 (program): Powers of sqrt(7) rounded up.
  • A017928 (program): Powers of sqrt(8) rounded down.
  • A017929 (program): Powers of sqrt(8) rounded to nearest integer.
  • A017930 (program): Powers of sqrt(8) rounded up.
  • A017931 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)).
  • A017932 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)).
  • A017933 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)).
  • A017934 (program): Powers of sqrt(10) rounded down.
  • A017935 (program): Powers of sqrt(10) rounded to nearest integer.
  • A017936 (program): Smallest number whose square has n digits.
  • A017937 (program): Powers of sqrt(11) rounded down.
  • A017938 (program): Powers of sqrt(11) rounded to nearest integer.
  • A017939 (program): Powers of sqrt(11) rounded up.
  • A017940 (program): Powers of sqrt(12) rounded down.
  • A017941 (program): Powers of sqrt(12) rounded to nearest integer.
  • A017942 (program): Powers of sqrt(12) rounded up.
  • A017943 (program): Powers of sqrt(13) rounded down.
  • A017944 (program): Powers of sqrt(13) rounded to nearest integer.
  • A017945 (program): Powers of sqrt(13) rounded up.
  • A017946 (program): Powers of sqrt(14) rounded down.
  • A017947 (program): Powers of sqrt(14) rounded to nearest integer.
  • A017948 (program): Powers of sqrt(14) rounded up.
  • A017949 (program): Powers of sqrt(15) rounded down.
  • A017950 (program): Powers of sqrt(15) rounded to nearest integer.
  • A017951 (program): Powers of sqrt(15) rounded up.
  • A017952 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)).
  • A017953 (program): Expansion of 1/((1-3x)(1-6x)(1-11x)).
  • A017954 (program): Expansion of 1/((1-3x)(1-6x)(1-12x)).
  • A017955 (program): Powers of sqrt(17) rounded down.
  • A017956 (program): Powers of sqrt(17) rounded to nearest integer.
  • A017957 (program): Powers of sqrt(17) rounded up.
  • A017958 (program): Powers of sqrt(18) rounded down.
  • A017959 (program): Powers of sqrt(18) rounded to nearest integer.
  • A017960 (program): Powers of sqrt(18) rounded up.
  • A017961 (program): Powers of sqrt(19) rounded down.
  • A017962 (program): Powers of sqrt(19) rounded to nearest integer.
  • A017963 (program): Powers of sqrt(19) rounded up.
  • A017964 (program): Powers of sqrt(20) rounded down.
  • A017965 (program): Powers of sqrt(20) rounded to nearest integer.
  • A017966 (program): Powers of sqrt(20) rounded up.
  • A017967 (program): Powers of sqrt(21) rounded down.
  • A017968 (program): Powers of sqrt(21) rounded to nearest integer.
  • A017969 (program): Powers of sqrt(21) rounded up.
  • A017970 (program): Powers of sqrt(22) rounded down.
  • A017971 (program): Powers of sqrt(22) rounded to nearest integer.
  • A017972 (program): Powers of sqrt(22) rounded up.
  • A017973 (program): Powers of sqrt(23) rounded down.
  • A017974 (program): Powers of sqrt(23) rounded to nearest integer.
  • A017975 (program): Powers of sqrt(23) rounded up.
  • A017976 (program): Powers of sqrt(24) rounded down.
  • A017977 (program): Powers of sqrt(24) rounded to nearest integer.
  • A017978 (program): Powers of sqrt(24) rounded up.
  • A017979 (program): Powers of cube root of 2 rounded down.
  • A017980 (program): Powers of cube root of 2 rounded to nearest integer.
  • A017981 (program): Powers of cube root of 2 rounded up.
  • A017982 (program): Powers of cube root of 3 rounded down.
  • A017983 (program): Powers of cube root of 3 rounded to nearest integer.
  • A017984 (program): Powers of cube root of 3 rounded up.
  • A017985 (program): Powers of cube root of 4 rounded down.
  • A017986 (program): Powers of cube root of 4 rounded to nearest integer.
  • A017987 (program): Powers of cube root of 4 rounded up.
  • A017988 (program): Powers of cube root of 5 rounded down.
  • A017989 (program): Powers of cube root of 5 rounded to nearest integer.
  • A017990 (program): Powers of cube root of 5 rounded up.
  • A017991 (program): Powers of cube root of 6 rounded down.
  • A017992 (program): Powers of cube root of 6 rounded to nearest integer.
  • A017993 (program): Powers of cube root of 6 rounded up.
  • A017994 (program): Powers of cube root of 7 rounded down.
  • A017995 (program): Powers of cube root of 7 rounded to nearest integer.
  • A017996 (program): Powers of cube root of 7 rounded up.
  • A017997 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)).
  • A017998 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)).
  • A017999 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)).
  • A018000 (program): Powers of cube root of 9 rounded down.
  • A018001 (program): Powers of cube root of 9 rounded to nearest integer.
  • A018002 (program): Powers of cube root of 9 rounded up.
  • A018003 (program): Powers of cube root of 10 rounded down.
  • A018004 (program): Powers of cube root of 10 rounded to nearest integer.
  • A018005 (program): Smallest number whose cube has n digits.
  • A018006 (program): Powers of cube root of 11 rounded down.
  • A018007 (program): Powers of cube root of 11 rounded to nearest integer.
  • A018008 (program): Powers of cube root of 11 rounded up.
  • A018009 (program): Powers of cube root of 12 rounded down.
  • A018010 (program): Powers of cube root of 12 rounded to nearest integer.
  • A018011 (program): Powers of cube root of 12 rounded up.
  • A018012 (program): Powers of cube root of 13 rounded down.
  • A018013 (program): Powers of cube root of 13 rounded to nearest integer.
  • A018014 (program): Powers of cube root of 13 rounded up.
  • A018015 (program): Powers of cube root of 14 rounded down.
  • A018016 (program): Powers of cube root of 14 rounded to nearest integer.
  • A018017 (program): Powers of cube root of 14 rounded up.
  • A018018 (program): Powers of cube root of 15 rounded down.
  • A018020 (program): Powers of cube root of 15 rounded up.
  • A018021 (program): Powers of cube root of 16 rounded down.
  • A018022 (program): Powers of cube root of 16 rounded to nearest integer.
  • A018023 (program): Powers of cube root of 16 rounded up.
  • A018024 (program): Powers of cube root of 17 rounded down.
  • A018025 (program): Powers of cube root of 17 rounded to nearest integer.
  • A018026 (program): Powers of cube root of 17 rounded up.
  • A018027 (program): Powers of cube root of 18 rounded down.
  • A018028 (program): Powers of cube root of 18 rounded to nearest integer.
  • A018029 (program): Powers of cube root of 18 rounded up.
  • A018030 (program): Powers of cube root of 19 rounded down.
  • A018031 (program): Powers of cube root of 19 rounded to nearest integer.
  • A018032 (program): Powers of cube root of 19 rounded up.
  • A018033 (program): Powers of cube root of 20 rounded down.
  • A018034 (program): Powers of cube root of 20 rounded to nearest integer.
  • A018035 (program): Powers of cube root of 20 rounded up.
  • A018036 (program): Powers of cube root of 21 rounded down.
  • A018037 (program): Powers of cube root of 21 rounded to nearest integer.
  • A018038 (program): Powers of cube root of 21 rounded up.
  • A018039 (program): Powers of cube root of 22 rounded down.
  • A018040 (program): Powers of cube root of 22 rounded to nearest integer.
  • A018041 (program): Powers of cube root of 22 rounded up.
  • A018042 (program): Powers of cube root of 23 rounded down.
  • A018043 (program): Powers of cube root of 23 rounded to nearest integer.
  • A018044 (program): Powers of cube root of 23 rounded up.
  • A018045 (program): Powers of cube root of 24 rounded down.
  • A018046 (program): Powers of cube root of 24 rounded to nearest integer.
  • A018047 (program): Powers of cube root of 24 rounded up.
  • A018048 (program): Powers of fourth root of 2 rounded down.
  • A018049 (program): Powers of fourth root of 2 rounded to nearest integer.
  • A018050 (program): Powers of fourth root of 2 rounded up.
  • A018051 (program): Powers of fourth root of 3 rounded down.
  • A018052 (program): Powers of fourth root of 3 rounded to nearest integer.
  • A018053 (program): Powers of fourth root of 3 rounded up.
  • A018054 (program): Expansion of 1/((1-3*x)*(1-7*x)*(1-11*x)).
  • A018055 (program): Expansion of 1/((1-3*x)*(1-7*x)*(1-12*x)).
  • A018056 (program): Expansion of 1/((1-3*x)*(1-8*x)*(1-9*x)).
  • A018057 (program): Powers of fourth root of 5 rounded down.
  • A018058 (program): Powers of fourth root of 5 rounded to nearest integer.
  • A018059 (program): Powers of fourth root of 5 rounded up.
  • A018060 (program): Powers of fourth root of 6 rounded down.
  • A018061 (program): Powers of fourth root of 6 rounded to nearest integer.
  • A018062 (program): Powers of fourth root of 6 rounded up.
  • A018063 (program): Powers of fourth root of 7 rounded down.
  • A018064 (program): Powers of fourth root of 7 rounded to nearest integer.
  • A018065 (program): Powers of fourth root of 7 rounded up.
  • A018066 (program): Powers of fourth root of 8 rounded down.
  • A018067 (program): Powers of fourth root of 8 rounded to nearest integer.
  • A018068 (program): Powers of fourth root of 8 rounded up.
  • A018069 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)).
  • A018070 (program): Expansion of 1/((1-3x)(1-8x)(1-11x)).
  • A018071 (program): Expansion of 1/((1-3x)(1-8x)(1-12x)).
  • A018072 (program): Powers of fourth root of 10 rounded down.
  • A018073 (program): Powers of fourth root of 10 rounded to nearest integer.
  • A018074 (program): Powers of fourth root of 10 rounded up.
  • A018075 (program): Powers of fourth root of 11 rounded down.
  • A018076 (program): Powers of fourth root of 11 rounded to nearest integer.
  • A018077 (program): Powers of fourth root of 11 rounded up.
  • A018078 (program): Powers of fourth root of 12 rounded down.
  • A018079 (program): Powers of fourth root of 12 rounded to nearest integer.
  • A018080 (program): Powers of fourth root of 12 rounded up.
  • A018081 (program): Powers of fourth root of 13 rounded down.
  • A018082 (program): Powers of fourth root of 13 rounded to nearest integer.
  • A018083 (program): Powers of fourth root of 13 rounded up.
  • A018084 (program): Powers of fourth root of 14 rounded down.
  • A018085 (program): Powers of fourth root of 14 rounded to nearest integer.
  • A018086 (program): Powers of fourth root of 14 rounded up.
  • A018087 (program): Powers of fourth root of 15 rounded down.
  • A018088 (program): Powers of fourth root of 15 rounded to nearest integer.
  • A018089 (program): Powers of fourth root of 15 rounded up.
  • A018090 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)).
  • A018091 (program): Expansion of 1/((1-3x)(1-9x)(1-11x)).
  • A018092 (program): Expansion of 1/((1-3*x)*(1-9*x)*(1-12*x)).
  • A018093 (program): Powers of fourth root of 17 rounded down.
  • A018094 (program): Powers of fourth root of 17 rounded to nearest integer.
  • A018095 (program): Powers of fourth root of 17 rounded up.
  • A018096 (program): Powers of fourth root of 18 rounded down.
  • A018097 (program): Powers of fourth root of 18 rounded to nearest integer.
  • A018098 (program): Powers of fourth root of 18 rounded up.
  • A018099 (program): Powers of fourth root of 19 rounded down.
  • A018100 (program): Powers of fourth root of 19 rounded to nearest integer.
  • A018101 (program): Powers of fourth root of 19 rounded up.
  • A018102 (program): Powers of fourth root of 20 rounded down.
  • A018103 (program): Powers of fourth root of 20 rounded to nearest integer.
  • A018104 (program): Powers of fourth root of 20 rounded up.
  • A018105 (program): Powers of fourth root of 21 rounded down.
  • A018106 (program): Powers of fourth root of 21 rounded to nearest integer.
  • A018107 (program): Powers of fourth root of 21 rounded up.
  • A018108 (program): Powers of fourth root of 22 rounded down.
  • A018109 (program): Powers of fourth root of 22 rounded to nearest integer.
  • A018110 (program): Powers of fourth root of 22 rounded up.
  • A018111 (program): Powers of fourth root of 23 rounded down.
  • A018112 (program): Powers of fourth root of 23 rounded to nearest integer.
  • A018113 (program): Powers of fourth root of 23 rounded up.
  • A018114 (program): Powers of fourth root of 24 rounded down.
  • A018115 (program): Powers of fourth root of 24 rounded to nearest integer.
  • A018116 (program): Powers of fourth root of 24 rounded up.
  • A018186 (program): a(n+2) = 3*a(n) - a(n-2) with a(0) = 1, a(1) = 3, a(2) = 6.
  • A018191 (program): a(n) = Sum_{k=0..n} binomial(n, k) * k! / floor(k/2)!.
  • A018194 (program): Number of steps for S(S(..S(n)..)) to converge, where S is the Kempner function A002034.
  • A018206 (program): Expansion of 1/((1-3x)(1-10x)(1-11x)).
  • A018207 (program): Expansion of 1/((1-3x)(1-10x)(1-12x)).
  • A018208 (program): Expansion of 1/((1-3x)(1-11x)(1-12x)).
  • A018209 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)).
  • A018210 (program): Alkane (or paraffin) numbers l(9,n).
  • A018211 (program): Alkane (or paraffin) numbers l(10,n).
  • A018212 (program): Alkane (or paraffin) numbers l(11,n).
  • A018213 (program): Alkane (or paraffin) numbers l(12,n).
  • A018214 (program): Alkane (or paraffin) numbers l(13,n).
  • A018215 (program): a(n) = n*4^n.
  • A018217 (program): Sum(C(j)*(n-j)*4^(n-j),j=0..n-1), C = Catalan numbers.
  • A018218 (program): Sum(C(j)*(n-j)*4^(n-j-1),j=0..n-1), C = Catalan numbers.
  • A018224 (program): a(n) = binomial(n, floor(n/2))^2 = A001405(n)^2.
  • A018227 (program): Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable.
  • A018240 (program): Number of rational knots (or two-bridge knots) with n crossings (up to mirroring).
  • A018244 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=3.
  • A018245 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=4.
  • A018246 (program): A self-generating sequence: there are a(n) (k+1)’s between successive k’s, where k=5.
  • A018247 (program): The 10-adic integer x = …8212890625 satisfying x^2 = x.
  • A018248 (program): The 10-adic integer x = …1787109376 satisfies x^2 = x.
  • A018250 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)).
  • A018252 (program): The nonprime numbers: 1 together with the composite numbers, A002808.
  • A018261 (program): Divisors of 48.
  • A018266 (program): Divisors of 60.
  • A018271 (program): Divisors of 72.
  • A018275 (program): Divisors of 80.
  • A018276 (program): Divisors of 84.
  • A018278 (program): Divisors of 90.
  • A018280 (program): Divisors of 96.
  • A018287 (program): Divisors of 108.
  • A018289 (program): Divisors of 112.
  • A018293 (program): Divisors of 120.
  • A018295 (program): Divisors of 126.
  • A018297 (program): Divisors of 132.
  • A018301 (program): Divisors of 140.
  • A018302 (program): Divisors of 144.
  • A018305 (program): Divisors of 150.
  • A018309 (program): Divisors of 156.
  • A018310 (program): Divisors of 160.
  • A018311 (program): Divisors of 162.
  • A018314 (program): Divisors of 168.
  • A018320 (program): Divisors of 176.
  • A018321 (program): Divisors of 180.
  • A018328 (program): Divisors of 192.
  • A018331 (program): Divisors of 198.
  • A018332 (program): Divisors of 200.
  • A018333 (program): Divisors of 204.
  • A018335 (program): Divisors of 208.
  • A018336 (program): Divisors of 210.
  • A018338 (program): Divisors of 216.
  • A018339 (program): Divisors of 220.
  • A018341 (program): Divisors of 224.
  • A018343 (program): Divisors of 228.
  • A018347 (program): Divisors of 234.
  • A018350 (program): Divisors of 240.
  • A018357 (program): Divisors of 252.
  • A018360 (program): Divisors of 260.
  • A018362 (program): Divisors of 264.
  • A018365 (program): Divisors of 270.
  • A018366 (program): Divisors of 272.
  • A018369 (program): Divisors of 276.
  • A018371 (program): Divisors of 280.
  • A018376 (program): Divisors of 288.
  • A018379 (program): Divisors of 294.
  • A018382 (program): Divisors of 300.
  • A018383 (program): Divisors of 304.
  • A018384 (program): Divisors of 306.
  • A018385 (program): Divisors of 308.
  • A018387 (program): Divisors of 312.
  • A018388 (program): Divisors of 315.
  • A018391 (program): Divisors of 320.
  • A018393 (program): Divisors of 324.
  • A018396 (program): Divisors of 330.
  • A018399 (program): Divisors of 336.
  • A018401 (program): Divisors of 340.
  • A018402 (program): Divisors of 342.
  • A018405 (program): Divisors of 348.
  • A018406 (program): Divisors of 350.
  • A018408 (program): Divisors of 352.
  • A018412 (program): Divisors of 360.
  • A018414 (program): Divisors of 364.
  • A018416 (program): Divisors of 368.
  • A018419 (program): Divisors of 372.
  • A018423 (program): Divisors of 378.
  • A018424 (program): Divisors of 380.
  • A018425 (program): Divisors of 384.
  • A018429 (program): Divisors of 390.
  • A018430 (program): Divisors of 392.
  • A018431 (program): Divisors of 396.
  • A018433 (program): Divisors of 400.
  • A018436 (program): Divisors of 405.
  • A018438 (program): Divisors of 408.
  • A018441 (program): Divisors of 414.
  • A018442 (program): Divisors of 416.
  • A018444 (program): Divisors of 420.
  • A018452 (program): Divisors of 432.
  • A018457 (program): Divisors of 440.
  • A018460 (program): Divisors of 444.
  • A018461 (program): Divisors of 448.
  • A018462 (program): Divisors of 450.
  • A018465 (program): Divisors of 456.
  • A018467 (program): Divisors of 460.
  • A018468 (program): Divisors of 462.
  • A018469 (program): Divisors of 464.
  • A018471 (program): Divisors of 468.
  • A018476 (program): Divisors of 476.
  • A018478 (program): Divisors of 480.
  • A018481 (program): Divisors of 486.
  • A018483 (program): Divisors of 490.
  • A018484 (program): Divisors of 492.
  • A018486 (program): Divisors of 495.
  • A018487 (program): Divisors of 496.
  • A018489 (program): Divisors of 500.
  • A018490 (program): Divisors of 504.
  • A018494 (program): Divisors of 510.
  • A018496 (program): Divisors of 516.
  • A018498 (program): Divisors of 520.
  • A018499 (program): Divisors of 522.
  • A018501 (program): Divisors of 525.
  • A018502 (program): Divisors of 528.
  • A018505 (program): Divisors of 532.
  • A018509 (program): Divisors of 540.
  • A018510 (program): Divisors of 544.
  • A018511 (program): Divisors of 546.
  • A018514 (program): Divisors of 550.
  • A018515 (program): Divisors of 552.
  • A018518 (program): Divisors of 558.
  • A018519 (program): Divisors of 560.
  • A018521 (program): Divisors of 564.
  • A018522 (program): Divisors of 567.
  • A018524 (program): Divisors of 570.
  • A018525 (program): Divisors of 572.
  • A018528 (program): Divisors of 576.
  • A018530 (program): Divisors of 580.
  • A018533 (program): Divisors of 585.
  • A018534 (program): Divisors of 588.
  • A018536 (program): Divisors of 592.
  • A018537 (program): Divisors of 594.
  • A018541 (program): Divisors of 600.
  • A018547 (program): Divisors of 608.
  • A018550 (program): Divisors of 612.
  • A018552 (program): Divisors of 616.
  • A018554 (program): Divisors of 620.
  • A018556 (program): Divisors of 624.
  • A018559 (program): Divisors of 630.
  • A018561 (program): Divisors of 636.
  • A018565 (program): Divisors of 640.
  • A018567 (program): Divisors of 644.
  • A018570 (program): Divisors of 648.
  • A018571 (program): Divisors of 650.
  • A018575 (program): Divisors of 656.
  • A018578 (program): Divisors of 660.
  • A018582 (program): Divisors of 666.
  • A018585 (program): Divisors of 672.
  • A018586 (program): Divisors of 675.
  • A018589 (program): Divisors of 680.
  • A018591 (program): Divisors of 684.
  • A018593 (program): Divisors of 688.
  • A018594 (program): Divisors of 690.
  • A018596 (program): Divisors of 693.
  • A018597 (program): Divisors of 696.
  • A018598 (program): Divisors of 700.
  • A018599 (program): Divisors of 702.
  • A018600 (program): Divisors of 704.
  • A018602 (program): Divisors of 708.
  • A018606 (program): Divisors of 714.
  • A018609 (program): Divisors of 720.
  • A018613 (program): Divisors of 726.
  • A018614 (program): Divisors of 728.
  • A018616 (program): Divisors of 732.
  • A018617 (program): Divisors of 735.
  • A018618 (program): Divisors of 736.
  • A018619 (program): Divisors of 738.
  • A018620 (program): Divisors of 740.
  • A018623 (program): Divisors of 744.
  • A018625 (program): Divisors of 748.
  • A018626 (program): Divisors of 750.
  • A018627 (program): Divisors of 752.
  • A018629 (program): Divisors of 756.
  • A018631 (program): Divisors of 760.
  • A018634 (program): Divisors of 765.
  • A018635 (program): Divisors of 768.
  • A018636 (program): Divisors of 770.
  • A018638 (program): Divisors of 774.
  • A018642 (program): Divisors of 780.
  • A018645 (program): Divisors of 784.
  • A018649 (program): Divisors of 792.
  • A018652 (program): Divisors of 798.
  • A018653 (program): Divisors of 800.
  • A018655 (program): Divisors of 804.
  • A018659 (program): Divisors of 810.
  • A018660 (program): Divisors of 812.
  • A018662 (program): Divisors of 816.
  • A018663 (program): Divisors of 819.
  • A018664 (program): Divisors of 820.
  • A018667 (program): Divisors of 825.
  • A018669 (program): Divisors of 828.
  • A018671 (program): Divisors of 832.
  • A018674 (program): Divisors of 836.
  • A018676 (program): Divisors of 840.
  • A018679 (program): Divisors of 846.
  • A018681 (program): Divisors of 848.
  • A018682 (program): Divisors of 850.
  • A018683 (program): Divisors of 852.
  • A018685 (program): Divisors of 855.
  • A018687 (program): Divisors of 858.
  • A018688 (program): Divisors of 860.
  • A018690 (program): Divisors of 864.
  • A018692 (program): Divisors of 868.
  • A018693 (program): Divisors of 870.
  • A018698 (program): Divisors of 876.
  • A018699 (program): Divisors of 880.
  • A018700 (program): Divisors of 882.
  • A018701 (program): Divisors of 884.
  • A018703 (program): Divisors of 888.
  • A018705 (program): Divisors of 891.
  • A018708 (program): Divisors of 896.
  • A018710 (program): Divisors of 900.
  • A018717 (program): Divisors of 910.
  • A018718 (program): Divisors of 912.
  • A018721 (program): Divisors of 918.
  • A018722 (program): Divisors of 920.
  • A018723 (program): Divisors of 924.
  • A018726 (program): Divisors of 928.
  • A018727 (program): Divisors of 930.
  • A018731 (program): Divisors of 936.
  • A018733 (program): Divisors of 940.
  • A018735 (program): Divisors of 944.
  • A018736 (program): Divisors of 945.
  • A018738 (program): Divisors of 948.
  • A018739 (program): Divisors of 950.
  • A018740 (program): Divisors of 952.
  • A018741 (program): Divisors of 954.
  • A018744 (program): Divisors of 960.
  • A018748 (program): Divisors of 966.
  • A018749 (program): Divisors of 968.
  • A018752 (program): Divisors of 972.
  • A018753 (program): Divisors of 975.
  • A018754 (program): Divisors of 976.
  • A018756 (program): Divisors of 980.
  • A018758 (program): Divisors of 984.
  • A018761 (program): Divisors of 988.
  • A018762 (program): Divisors of 990.
  • A018763 (program): Divisors of 992.
  • A018765 (program): Divisors of 996.
  • A018767 (program): Divisors of 1000.
  • A018772 (program): Divisors of 1008.
  • A018774 (program): Divisors of 1012.
  • A018775 (program): Divisors of 1014.
  • A018779 (program): Divisors of 1020.
  • A018804 (program): Pillai’s arithmetical function: Sum_{k=1..n} gcd(k, n).
  • A018805 (program): Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y)=1}.
  • A018806 (program): Sum of gcd(x, y) for 1 <= x, y <= n.
  • A018819 (program): Binary partition function: number of partitions of n into powers of 2.
  • A018824 (program): n is the sum of k nonzero squares for all 5 <= k <= n-14 (contains all integers >= 19 except 33).
  • A018825 (program): Numbers that are not the sum of 2 nonzero squares.
  • A018836 (program): Number of squares on infinite chessboard at <= n knight’s moves from a fixed square.
  • A018837 (program): Number of steps for knight to reach (n,0) on infinite chessboard.
  • A018838 (program): Minimum number of steps for a knight to reach (n,n) on an infinite chessboard.
  • A018842 (program): Number of squares on infinite chessboard at n knight’s moves from center.
  • A018886 (program): Waring’s problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers.
  • A018892 (program): Number of ways to write 1/n as a sum of exactly 2 unit fractions.
  • A018900 (program): Sums of two distinct powers of 2.
  • A018902 (program): a(n+2) = 5*a(n+1) - 3*a(n).
  • A018903 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,5).
  • A018904 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,6).
  • A018906 (program): Define the Shallit sequence S(a_0,a_1) by a_{n+2} is the least integer > a_{n+1}^2/a_n for n >= 0. This is S(2,6).
  • A018907 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1} > a_{n+1}/a_n for n >= 0. This is S(2,7).
  • A018908 (program): Define sequence S(a_0,a_1) by a_{n+2} is least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,4).
  • A018909 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,6).
  • A018910 (program): Pisot sequence L(4,5).
  • A018911 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)).
  • A018912 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)).
  • A018913 (program): a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.
  • A018914 (program): Pisot sequence T(2,5), a(n) = floor(a(n-1)^2/a(n-2)).
  • A018915 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(2,6).
  • A018916 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,8).
  • A018917 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,5).
  • A018918 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,6).
  • A018919 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,9).
  • A018920 (program): Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)).
  • A018921 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).
  • A018922 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,16).
  • A018923 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(16,32).
  • A018927 (program): For each permutation p of {1,2,…,n} define maxjump(p) = max(p(i) - i); a(n) is sum of maxjumps of all p.
  • A018932 (program): The number of permutations of n cards in which 4 will be the next hit after 2.
  • A018934 (program): From the game of Mousetrap.
  • A019040 (program): Expansion of 1/((1-4x)(1-5x)(1-11x)).
  • A019041 (program): Expansion of 1/((1-4x)(1-5x)(1-12x)).
  • A019274 (program): Number of recursive calls needed to compute the n-th Fibonacci number F(n), starting with F(1) = F(2) = 1.
  • A019298 (program): Number of balls in pyramid with base either a regular hexagon or a hexagon with alternate sides differing by 1 (balls in hexagonal pyramid of height n taken from hexagonal close-packing).
  • A019299 (program): First n elements of Thue-Morse sequence A010059 read as a binary number.
  • A019300 (program): First n elements of Thue-Morse sequence A010060 read as a binary number.
  • A019301 (program): Binomial transform of Thue-Morse sequence A010059.
  • A019302 (program): Binomial transform of Thue-Morse sequence A010060.
  • A019303 (program): “Pascal sweep” for k=2: draw a horizontal line through the 1 at C(k,0) in Pascal’s triangle; rotate this line and record the sum of the numbers on it (excluding the initial 1).
  • A019308 (program): Number of “bifix-free” words of length n over a three-letter alphabet.
  • A019309 (program): Number of “bifix-free” words of length n over a four-letter alphabet.
  • A019310 (program): Number of words of length n (n >= 1) over a two-letter alphabet having a minimal period of size n-1.
  • A019316 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)).
  • A019320 (program): Cyclotomic polynomials at x=2.
  • A019332 (program): Lengths of quantum cellular automata that cycle through all possible values of the QCA vector.
  • A019333 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)).
  • A019338 (program): Primes with primitive root 8.
  • A019425 (program): Continued fraction for tan(1/2).
  • A019426 (program): Continued fraction for tan(1/3).
  • A019427 (program): Continued fraction for tan(1/4).
  • A019428 (program): Continued fraction for tan(1/5).
  • A019429 (program): Continued fraction for tan(1/6).
  • A019430 (program): Continued fraction for tan(1/7).
  • A019431 (program): Continued fraction for tan(1/8).
  • A019432 (program): Continued fraction for tan(1/9).
  • A019433 (program): Continued fraction for tan(1/10).
  • A019438 (program): Squarefree orders of elements of Mathieu group M_23.
  • A019439 (program): Number of ways of tiling a 2 X n rectangle with dominoes and trominoes.
  • A019442 (program): Numbers n such that a Hadamard matrix of order n exists.
  • A019443 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)).
  • A019444 (program): a_1, a_2, …, is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.
  • A019445 (program): Form a permutation of the positive integers, p_1, p_2, …, such that the average of each initial segment is an integer, using the greedy algorithm to define p_n; sequence gives p_1+..+p_n.
  • A019446 (program): a(n) = ceiling(n/tau), where tau = (1+sqrt(5))/2.
  • A019450 (program): Conjectured formula for irreducible 5-fold Euler sums of weight 2n+13.
  • A019460 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.
  • A019461 (program): Add 1, multiply by 1, add 2, multiply by 2, etc.; start with 0.
  • A019462 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 3.
  • A019463 (program): Add 1, multiply by 1, add 2, multiply by 2, etc., start with 1.
  • A019464 (program): Multiply by 1, add 1, multiply by 2, add 2, etc., start with 1.
  • A019465 (program): Multiply by 1, add 1, multiply by 2, add 2, etc., start with 2.
  • A019466 (program): Multiply by 1, add 1, multiply by 2, add 2, etc.; start with 3.
  • A019467 (program): (n-2)nd Catalan number is congruent to n/3 mod n.
  • A019468 (program): (n-2)-th Catalan number is congruent to 2n/3 mod n.
  • A019469 (program): Numbers k such that k does not divide binomial(2*k-4, k-2).
  • A019470 (program): Numbers k that divide binomial(2*k-4, k-2).
  • A019472 (program): Weak preference orderings of n alternatives, i.e., orderings that have indifference between at least two alternatives.
  • A019475 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(2,10).
  • A019476 (program): a(n) = 5*a(n-1) + a(n-2) - 2*a(n-3).
  • A019477 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(3,15) (agrees with A019478 only for n <= 23).
  • A019478 (program): a(n) = 5*a(n-1) + a(n-2) - 3*a(n-3).
  • A019479 (program): Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(4,8).
  • A019480 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,12) (agrees with A019481 for n <= 19 only).
  • A019481 (program): a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3) (agrees with A019480 for n <= 19 only).
  • A019482 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(4,28).
  • A019483 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)).
  • A019484 (program): Expansion of (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4).
  • A019485 (program): a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3).
  • A019487 (program): a(n) = 3*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4).
  • A019488 (program): Expansion of 1/((1-4*x)*(1-6*x)*(1-11*x)).
  • A019489 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(3,7).
  • A019490 (program): Expansion of 1/((1-4*x)*(1-6*x)*(1-12*x)).
  • A019492 (program): Pisot sequence T(4,9), a(n) = floor(a(n-1)^2/a(n-2)).
  • A019494 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,10).
  • A019495 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,11).
  • A019496 (program): a(n) = 3*a(n-1) - 3*a(n-3) + 2*a(n-4), with a(0)=4, a(1)=11.
  • A019497 (program): Number of ternary search trees on n keys.
  • A019510 (program): a(n) = gcd( binomial(n+3, n) + binomial(n+4, n+1), binomial(n+5, n+2) ).
  • A019512 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)).
  • A019514 (program): a(n) = (n!)^3 + 1.
  • A019515 (program): a(n) = 1 + 0!*1!*2!*…*n!.
  • A019519 (program): Concatenate odd numbers.
  • A019520 (program): a(n) is the concatenation of the first n positive even numbers.
  • A019521 (program): Concatenate squares.
  • A019522 (program): Concatenate cubes.
  • A019523 (program): Concatenation of Fibonacci(1) through Fibonacci(n).
  • A019524 (program): Duplicate terms of A007908.
  • A019525 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
  • A019526 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
  • A019527 (program): Poincaré series [or Poincare series] for depths of roots in a certain root system.
  • A019530 (program): Smallest number m such that m^m is divisible by n.
  • A019536 (program): Number of length n necklaces with integer entries that cover an initial interval of positive integers.
  • A019538 (program): Triangle of numbers T(n,k) = k!*Stirling2(n,k) read by rows (n >= 1, 1 <= k <= n).
  • A019545 (program): Cubes whose digits are cubes.
  • A019546 (program): Primes whose digits are primes.
  • A019550 (program): a(n) is the concatenation of n and 2n.
  • A019551 (program): a(n) is the concatenation of n and 3n.
  • A019552 (program): a(n) is the concatenation of n and 4n.
  • A019553 (program): a(n) is the concatenation of n and 5n.
  • A019554 (program): Smallest number whose square is divisible by n.
  • A019555 (program): Smallest number whose cube is divisible by n.
  • A019557 (program): Coordination sequence for G_2 lattice.
  • A019558 (program): Coordination sequence for F_4 lattice.
  • A019559 (program): Distance between vowels when alphabet is written around a daisy wheel.
  • A019560 (program): Coordination sequence for C_4 lattice.
  • A019561 (program): Coordination sequence for C_5 lattice.
  • A019562 (program): Coordination sequence for C_6 lattice.
  • A019563 (program): Coordination sequence for C_7 lattice.
  • A019564 (program): Coordination sequence for C_8 lattice.
  • A019565 (program): The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.
  • A019566 (program): The differences 1-1, 21-12, 321-123, …, 10987654321-12345678910, 1110987654321-1234567891011, etc.
  • A019567 (program): Order of the Mongean shuffle permutation of 2n cards: a(n) is least number m for which either 2^m + 1 or 2^m - 1 is divisible by 4n + 1.
  • A019577 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1<=k<=n; sequence gives f(n,2)/n.
  • A019579 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1 <= k <= n; sequence gives f(n,n-2)/n.
  • A019581 (program): Place n distinguishable balls in n boxes (in n^n ways); let f(n,k) = number of ways that max in any box is k, for 1<=k<=n; sequence gives f(n,2).
  • A019582 (program): a(n) = n*(n-1)^3/2.
  • A019583 (program): a(n) = n*(n-1)^4/2.
  • A019584 (program): a(n) = n^2*(n-1)^3/4.
  • A019586 (program): Vertical para-Fibonacci sequence: takes value i on later (i.e., b_j, j >= 2) terms of i-th Fibonacci sequence defined by b_0 = i, b_1 = [ tau(i+1) ].
  • A019587 (program): The left budding sequence: # of i such that 0<i<=n and 0 < {tau*i} <= {tau*n}, where {} is fractional part.
  • A019588 (program): The right budding sequence: # of i such that 0<i<=n and {tau*n} <= {tau*i} < 1, where {} is fractional part.
  • A019590 (program): Fermat’s Last Theorem: a(n) = 1 if x^n + y^n = z^n has a nontrivial solution in integers, otherwise a(n) = 0.
  • A019613 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-9*x)).
  • A019618 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-10*x)).
  • A019623 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-11*x)).
  • A019628 (program): Expansion of 1/((1-4*x)*(1-7*x)*(1-12*x)).
  • A019664 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)).
  • A019669 (program): Decimal expansion of Pi/2.
  • A019670 (program): Decimal expansion of Pi/3.
  • A019671 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)).
  • A019672 (program): Expansion of 1/((1-4x)(1-8x)(1-11x)).
  • A019673 (program): Decimal expansion of Pi/6.
  • A019674 (program): Decimal expansion of Pi/7.
  • A019675 (program): Decimal expansion of Pi/8.
  • A019676 (program): Decimal expansion of Pi/9.
  • A019677 (program): Expansion of 1/((1-4x)(1-8x)(1-12x)).
  • A019678 (program): Decimal expansion of Pi/11.
  • A019679 (program): Decimal expansion of Pi/12.
  • A019680 (program): Decimal expansion of Pi/13.
  • A019681 (program): Decimal expansion of Pi/14.
  • A019682 (program): Expansion of 1/((1-4x)(1-9x)(1-10x)).
  • A019683 (program): Decimal expansion of Pi/16.
  • A019684 (program): Decimal expansion of Pi/17.
  • A019685 (program): Decimal expansion of Pi/180.
  • A019686 (program): Decimal expansion of Pi/19.
  • A019687 (program): Expansion of 1/((1-4x)(1-9x)(1-11x)).
  • A019688 (program): Decimal expansion of Pi/21.
  • A019689 (program): Decimal expansion of Pi/22.
  • A019690 (program): Decimal expansion of Pi/23.
  • A019691 (program): Decimal expansion of Pi/24.
  • A019692 (program): Decimal expansion of 2*Pi.
  • A019693 (program): Decimal expansion of 2*Pi/3.
  • A019694 (program): Decimal expansion of 2*Pi/5.
  • A019695 (program): Decimal expansion of 2*Pi/7.
  • A019696 (program): Decimal expansion of 2*Pi/9.
  • A019697 (program): Decimal expansion of 2*Pi/11.
  • A019698 (program): Decimal expansion of 2*Pi/13.
  • A019699 (program): Decimal expansion of 2*Pi/15 = (4*Pi/3)/10.
  • A019700 (program): Decimal expansion of 2*Pi/17.
  • A019701 (program): Decimal expansion of 2*Pi/19.
  • A019702 (program): Decimal expansion of 2*Pi/21.
  • A019703 (program): Decimal expansion of 2*Pi/23.
  • A019704 (program): Decimal expansion of sqrt(Pi)/2.
  • A019705 (program): Decimal expansion of sqrt(Pi)/3.
  • A019706 (program): Decimal expansion of sqrt(Pi)/4.
  • A019707 (program): Decimal expansion of sqrt(Pi)/5.
  • A019708 (program): Decimal expansion of sqrt(Pi)/6.
  • A019709 (program): Decimal expansion of sqrt(Pi)/7.
  • A019710 (program): Decimal expansion of sqrt(Pi)/8.
  • A019711 (program): Decimal expansion of sqrt(Pi)/9.
  • A019713 (program): Decimal expansion of sqrt(Pi)/11.
  • A019714 (program): Decimal expansion of sqrt(Pi)/12.
  • A019715 (program): Decimal expansion of sqrt(Pi)/13.
  • A019716 (program): Decimal expansion of sqrt(Pi)/14.
  • A019717 (program): Decimal expansion of sqrt(Pi)/15.
  • A019718 (program): Decimal expansion of sqrt(Pi)/16.
  • A019719 (program): Decimal expansion of sqrt(Pi)/17.
  • A019720 (program): Decimal expansion of sqrt(Pi)/18.
  • A019721 (program): Decimal expansion of sqrt(Pi)/19.
  • A019722 (program): Expansion of 1/((1-4x)(1-9x)(1-12x)).
  • A019723 (program): Decimal expansion of sqrt(Pi)/21.
  • A019724 (program): Decimal expansion of sqrt(Pi)/22.
  • A019725 (program): Decimal expansion of sqrt(Pi)/23.
  • A019726 (program): Decimal expansion of sqrt(Pi)/24.
  • A019727 (program): Decimal expansion of sqrt(2*Pi).
  • A019728 (program): Decimal expansion of sqrt(2*Pi)/3.
  • A019729 (program): Decimal expansion of sqrt(2*Pi)/5.
  • A019730 (program): Decimal expansion of sqrt(2*Pi)/7.
  • A019731 (program): Decimal expansion of sqrt(2*Pi)/9.
  • A019732 (program): Decimal expansion of sqrt(2*Pi)/11.
  • A019733 (program): Decimal expansion of sqrt(2*Pi)/13.
  • A019734 (program): Decimal expansion of sqrt(2*Pi)/15.
  • A019735 (program): Decimal expansion of sqrt(2*Pi)/17.
  • A019736 (program): Decimal expansion of sqrt(2*Pi)/19.
  • A019737 (program): Decimal expansion of sqrt(2*Pi)/21.
  • A019738 (program): Decimal expansion of sqrt(2*Pi)/23.
  • A019739 (program): Decimal expansion of e/2.
  • A019740 (program): Decimal expansion of e/3.
  • A019741 (program): Decimal expansion of e/4.
  • A019742 (program): Expansion of 1/((1-4x)(1-10x)(1-11x)).
  • A019743 (program): Decimal expansion of e/6.
  • A019744 (program): Decimal expansion of e/7.
  • A019745 (program): Decimal expansion of e/8.
  • A019746 (program): Decimal expansion of e/9.
  • A019747 (program): Expansion of 1/((1-4x)(1-10x)(1-12x)).
  • A019748 (program): Decimal expansion of e/11.
  • A019749 (program): Decimal expansion of e/12.
  • A019750 (program): Decimal expansion of e/13.
  • A019751 (program): Decimal expansion of e/14.
  • A019752 (program): G.f.: 1/((1-4x)(1-11x)(1-12x)).
  • A019753 (program): Decimal expansion of e/16.
  • A019754 (program): Decimal expansion of e/17.
  • A019755 (program): Decimal expansion of e/18.
  • A019756 (program): Decimal expansion of e/19.
  • A019757 (program): Expansion of 1/((1-5*x)(1-6*x)(1-7*x)).
  • A019758 (program): Decimal expansion of e/21.
  • A019759 (program): Decimal expansion of e/22.
  • A019760 (program): Decimal expansion of e/23.
  • A019761 (program): Decimal expansion of e/24.
  • A019762 (program): Decimal expansion of 2*e.
  • A019763 (program): Decimal expansion of 2*e/3.
  • A019764 (program): Decimal expansion of 2*e/5 (or 4*e).
  • A019765 (program): Decimal expansion of 2*e/7.
  • A019766 (program): Decimal expansion of 2*e/9.
  • A019767 (program): Decimal expansion of 2*e/11.
  • A019768 (program): Decimal expansion of 2*e/13.
  • A019769 (program): Decimal expansion of 2*e/15.
  • A019770 (program): Decimal expansion of 2*e/17.
  • A019771 (program): Decimal expansion of 2*e/19.
  • A019772 (program): Decimal expansion of 2*e/21.
  • A019773 (program): Decimal expansion of 2*e/23.
  • A019774 (program): Decimal expansion of sqrt(e).
  • A019775 (program): Decimal expansion of sqrt(e)/2.
  • A019776 (program): Decimal expansion of sqrt(e)/3.
  • A019777 (program): Decimal expansion of sqrt(e)/4.
  • A019778 (program): Decimal expansion of sqrt(e)/5.
  • A019779 (program): Decimal expansion of sqrt(e)/6.
  • A019780 (program): Decimal expansion of sqrt(e)/7.
  • A019781 (program): Decimal expansion of sqrt(e)/8.
  • A019782 (program): Decimal expansion of sqrt(e)/9.
  • A019783 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)).
  • A019784 (program): Decimal expansion of sqrt(e)/11.
  • A019785 (program): Decimal expansion of sqrt(e)/12.
  • A019786 (program): Decimal expansion of sqrt(e)/13.
  • A019787 (program): Decimal expansion of sqrt(e)/14.
  • A019788 (program): Decimal expansion of sqrt(e)/15.
  • A019789 (program): Decimal expansion of sqrt(e)/16.
  • A019790 (program): Decimal expansion of sqrt(e)/17.
  • A019791 (program): Decimal expansion of sqrt(e)/18.
  • A019792 (program): Decimal expansion of sqrt(e)/19.
  • A019793 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)).
  • A019794 (program): Decimal expansion of sqrt(e)/21.
  • A019795 (program): Decimal expansion of sqrt(e)/22.
  • A019796 (program): Decimal expansion of sqrt(e)/23.
  • A019797 (program): Decimal expansion of sqrt(e)/24.
  • A019798 (program): Decimal expansion of sqrt(2*e).
  • A019799 (program): Decimal expansion of sqrt(2*e)/3.
  • A019800 (program): Decimal expansion of sqrt(2*e)/5.
  • A019801 (program): Decimal expansion of sqrt(2*e)/7.
  • A019802 (program): Decimal expansion of sqrt(2*e)/9.
  • A019803 (program): Decimal expansion of sqrt(2*e)/11.
  • A019804 (program): Decimal expansion of sqrt(2*e)/13.
  • A019805 (program): Decimal expansion of sqrt(2*e)/15.
  • A019806 (program): Decimal expansion of sqrt(2*e)/17.
  • A019807 (program): Decimal expansion of sqrt(2*e)/19.
  • A019808 (program): Decimal expansion of sqrt(2*e)/21.
  • A019809 (program): Decimal expansion of sqrt(2*e)/23.
  • A019815 (program): Decimal expansion of sine of 6 degrees.
  • A019819 (program): Decimal expansion of sine of 10 degrees.
  • A019824 (program): Decimal expansion of sine of 15 degrees.
  • A019827 (program): Decimal expansion of sin(Pi/10) (angle of 18 degrees).
  • A019839 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)).
  • A019845 (program): Decimal expansion of sine of 36 degrees.
  • A019851 (program): Decimal expansion of sine of 42 degrees.
  • A019854 (program): Expansion of 1/((1-5x)(1-6x)(1-11x)).
  • A019859 (program): Decimal expansion of sine of 50 degrees.
  • A019863 (program): Decimal expansion of sin(3*Pi/10) (sine of 54 degrees).
  • A019869 (program): Expansion of 1/((1-5*x)*(1-6*x)*(1-12*x)).
  • A019875 (program): Decimal expansion of sine of 66 degrees.
  • A019879 (program): Decimal expansion of sine of 70 degrees.
  • A019881 (program): Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).
  • A019884 (program): Decimal expansion of sine of 75 degrees.
  • A019887 (program): Decimal expansion of sine of 78 degrees.
  • A019907 (program): Decimal expansion of tangent of 9 degrees.
  • A019913 (program): Decimal expansion of tangent of 15 degrees.
  • A019916 (program): Decimal expansion of tan(Pi/10) (angle of 18 degrees).
  • A019925 (program): Decimal expansion of tangent of 27 degrees.
  • A019928 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)).
  • A019934 (program): Decimal expansion of tangent of 36 degrees.
  • A019943 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-9*x)).
  • A019952 (program): Decimal expansion of tangent of 54 degrees.
  • A019958 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-10*x)).
  • A019961 (program): Decimal expansion of tangent of 63 degrees.
  • A019970 (program): Decimal expansion of tangent of 72 degrees.
  • A019973 (program): Decimal expansion of tangent of 75 degrees.
  • A019979 (program): Decimal expansion of tangent of 81 degrees.
  • A019989 (program): Indices n such that A307672(2*n) = 0.
  • A019990 (program): Indices n such that A307672(2*n) = 2.
  • A019991 (program): Indices n such that A307672(2*n) = 4.
  • A019992 (program): a(n) = 4*a(n-1) + a(n-2) - a(n-3) - a(n-5).
  • A019999 (program): Number of similarity classes of descendants created by bisection refinement from an initial n-simplex.
  • A020000 (program): Expansion of 1/((1-5x)(1-7x)(1-11x)).
  • A020001 (program): Nearest integer to Gamma(n + 11/12)/Gamma(11/12).
  • A020002 (program): Nearest integer to Gamma(n + 7/12)/Gamma(7/12).
  • A020003 (program): Nearest integer to Gamma(n + 5/12)/Gamma(5/12).
  • A020004 (program): Nearest integer to Gamma(n + 1/12)/Gamma(1/12).
  • A020005 (program): Nearest integer to Gamma(n + 10/11)/Gamma(10/11).
  • A020006 (program): Nearest integer to Gamma(n + 9/11)/Gamma(9/11).
  • A020007 (program): Nearest integer to Gamma(n + 8/11)/Gamma(8/11).
  • A020008 (program): Nearest integer to Gamma(n + 7/11)/Gamma(7/11).
  • A020009 (program): Nearest integer to Gamma(n + 6/11)/Gamma(6/11).
  • A020010 (program): Nearest integer to Gamma(n + 5/11)/Gamma(5/11).
  • A020011 (program): Nearest integer to Gamma(n + 4/11)/Gamma(4/11).
  • A020012 (program): Nearest integer to Gamma(n + 3/11)/Gamma(3/11).
  • A020013 (program): Nearest integer to Gamma(n + 2/11)/Gamma(2/11).
  • A020014 (program): Nearest integer to Gamma(n + 1/11)/Gamma(1/11).
  • A020015 (program): Nearest integer to Gamma(n + 9/10)/Gamma(9/10).
  • A020016 (program): Nearest integer to Gamma(n + 7/10)/Gamma(7/10).
  • A020017 (program): Nearest integer to Gamma(n + 3/10)/Gamma(3/10).
  • A020018 (program): Nearest integer to Gamma(n + 1/10)/Gamma(1/10).
  • A020019 (program): Nearest integer to Gamma(n + 8/9)/Gamma(8/9).
  • A020020 (program): Nearest integer to Gamma(n + 7/9)/Gamma(7/9).
  • A020021 (program): Nearest integer to Gamma(n + 5/9)/Gamma(5/9).
  • A020022 (program): Nearest integer to Gamma(n + 4/9)/Gamma(4/9).
  • A020023 (program): Nearest integer to Gamma(n + 2/9)/Gamma(2/9).
  • A020024 (program): Nearest integer to Gamma(n + 1/9)/Gamma(1/9).
  • A020025 (program): Nearest integer to Gamma(n + 7/8)/Gamma(7/8).
  • A020026 (program): Nearest integer to Gamma(n + 5/8)/Gamma(5/8).
  • A020027 (program): Nearest integer to Gamma(n + 3/8)/Gamma(3/8).
  • A020028 (program): Nearest integer to Gamma(n + 1/8)/Gamma(1/8).
  • A020029 (program): Nearest integer to Gamma(n + 6/7)/Gamma(6/7).
  • A020030 (program): Nearest integer to Gamma(n + 5/7)/Gamma(5/7).
  • A020031 (program): Nearest integer to Gamma(n + 4/7)/Gamma(4/7).
  • A020032 (program): Nearest integer to Gamma(n + 3/7)/Gamma(3/7).
  • A020033 (program): Nearest integer to Gamma(n + 2/7)/Gamma(2/7).
  • A020034 (program): Nearest integer to Gamma(n + 1/7)/Gamma(1/7).
  • A020035 (program): Nearest integer to Gamma(n + 5/6)/Gamma(5/6).
  • A020036 (program): Nearest integer to Gamma(n + 1/6)/Gamma(1/6).
  • A020037 (program): Nearest integer to Gamma(n + 4/5)/Gamma(4/5).
  • A020038 (program): Nearest integer to Gamma(n + 3/5)/Gamma(3/5).
  • A020039 (program): Nearest integer to Gamma(n + 2/5)/Gamma(2/5).
  • A020040 (program): a(n) = round( Gamma(n+1/5)/Gamma(1/5) ).
  • A020041 (program): a(n) = round( Gamma(n+3/4)/Gamma(3/4) ).
  • A020042 (program): a(n) = round( Gamma(n+1/4)/Gamma(1/4) ).
  • A020043 (program): a(n) = round(Gamma(n+2/3)/Gamma(2/3)).
  • A020044 (program): a(n) = round(Gamma(n+1/3)/Gamma(1/3)).
  • A020045 (program): Nearest integer to Gamma(n + 1/2)/Gamma(1/2).
  • A020046 (program): a(n) = floor(Gamma(n+11/12)/Gamma(11/12)).
  • A020047 (program): a(n) = floor(Gamma(n+7/12)/Gamma(7/12)).
  • A020048 (program): a(n) = floor(Gamma(n+5/12)/Gamma(5/12)).
  • A020049 (program): a(n) = floor(Gamma(n+1/12)/Gamma(1/12)).
  • A020050 (program): a(n) = floor(Gamma(n+10/11)/Gamma(10/11)).
  • A020051 (program): a(n) = floor(Gamma(n+9/11)/Gamma(9/11)).
  • A020052 (program): a(n) = floor(Gamma(n + 8/11)/Gamma(8/11)).
  • A020053 (program): a(n) = floor(Gamma(n + 7/11)/Gamma(7/11)).
  • A020054 (program): a(n) = floor(Gamma(n+6/11)/Gamma(6/11)).
  • A020055 (program): a(n) = floor(Gamma(n+5/11)/Gamma(5/11)).
  • A020056 (program): a(n) = floor(Gamma(n+4/11)/Gamma(4/11)).
  • A020057 (program): a(n) = floor(Gamma(n+3/11)/Gamma(3/11)).
  • A020058 (program): a(n) = floor(Gamma(n+2/11)/Gamma(2/11)).
  • A020059 (program): a(n) = floor(Gamma(n+1/11) / Gamma(1/11)).
  • A020060 (program): a(n) = floor( Gamma(n+9/10)/Gamma(9/10) ).
  • A020061 (program): Integer part of GAMMA(n+7/10)/GAMMA(7/10).
  • A020062 (program): Integer part of Gamma(n+3/10)/Gamma(3/10).
  • A020063 (program): Integer part of Gamma(n+1/10)/Gamma(1/10).
  • A020064 (program): Integer part of Gamma(n+8/9)/Gamma(8/9).
  • A020065 (program): Integer part of Gamma(n+7/9)/Gamma(7/9).
  • A020066 (program): Integer part of Gamma(n+5/9)/Gamma(5/9).
  • A020067 (program): Integer part of Gamma(n+4/9)/Gamma(4/9).
  • A020068 (program): a(n) = floor( Gamma(n+2/9) / Gamma(2/9) ).
  • A020069 (program): Integer part of Gamma(n+1/9)/Gamma(1/9).
  • A020070 (program): a(n) = floor( Gamma(n+7/8)/Gamma(7/8) ).
  • A020071 (program): a(n) = floor( Gamma(n+5/8)/Gamma(5/8) ).
  • A020072 (program): a(n) = floor( Gamma(n+3/8)/Gamma(3/8) ).
  • A020073 (program): a(n) = floor( Gamma(n+1/8)/Gamma(1/8) ).
  • A020074 (program): a(n) = floor( Gamma(n+6/7)/Gamma(6/7) ).
  • A020075 (program): a(n) = floor( Gamma(n+5/7)/Gamma(5/7) ).
  • A020076 (program): a(n) = floor( Gamma(n+4/7)/Gamma(4/7) ).
  • A020077 (program): a(n) = floor( Gamma(n+3/7)/Gamma(3/7) ).
  • A020078 (program): a(n) = floor( Gamma(n+2/7)/Gamma(2/7) ).
  • A020079 (program): a(n) = floor( Gamma(n+1/7)/Gamma(1/7) ).
  • A020080 (program): a(n) = floor( Gamma(n + 5/6)/Gamma(5/6) ).
  • A020081 (program): a(n) = floor( Gamma(n + 1/6)/Gamma(1/6) ).
  • A020082 (program): a(n) = floor( Gamma(n + 4/5)/Gamma(4/5) ).
  • A020083 (program): a(n) = floor( Gamma(n + 3/5)/Gamma(3/5) ).
  • A020084 (program): a(n) = floor( Gamma(n + 2/5)/Gamma(2/5) ).
  • A020085 (program): a(n) = floor( Gamma(n + 1/5)/Gamma(1/5) ).
  • A020086 (program): a(n) = floor( Gamma(n + 3/4)/Gamma(3/4) ).
  • A020087 (program): a(n) = floor( Gamma(n + 1/4)/Gamma(1/4) ).
  • A020088 (program): a(n) = floor(Gamma(n + 2/3)/Gamma(2/3)).
  • A020089 (program): Integer part of Gamma(n + 1/3)/Gamma(1/3).
  • A020090 (program): Integer part of Gamma(n+1/2)/Gamma(1/2).
  • A020091 (program): Ceiling of Gamma(n + 11/12)/Gamma(11/12).
  • A020092 (program): Ceiling of GAMMA(n+7/12)/GAMMA(7/12).
  • A020093 (program): Ceiling of GAMMA(n+5/12)/GAMMA(5/12).
  • A020094 (program): Ceiling of GAMMA(n+1/12)/GAMMA(1/12).
  • A020095 (program): Ceiling of GAMMA(n+10/11)/GAMMA(10/11).
  • A020096 (program): Ceiling of Gamma(n + 9/11)/Gamma(9/11).
  • A020097 (program): Ceiling of GAMMA(n+8/11)/GAMMA(8/11).
  • A020098 (program): Ceiling of GAMMA(n+7/11)/GAMMA(7/11).
  • A020099 (program): Ceiling of GAMMA(n+6/11)/GAMMA(6/11).
  • A020100 (program): Ceiling of Gamma(n + 5/11)/Gamma(5/11).
  • A020101 (program): Ceiling of GAMMA(n+4/11)/GAMMA(4/11).
  • A020102 (program): Ceiling of GAMMA(n+3/11)/GAMMA(3/11).
  • A020103 (program): Ceiling of GAMMA(n+2/11)/GAMMA(2/11).
  • A020104 (program): Ceiling of GAMMA(n+1/11)/GAMMA(1/11).
  • A020105 (program): Ceiling of GAMMA(n+9/10)/GAMMA(9/10).
  • A020106 (program): Ceiling of GAMMA(n+7/10)/GAMMA(7/10).
  • A020107 (program): Ceiling of GAMMA(n+3/10)/GAMMA(3/10).
  • A020108 (program): Ceiling of GAMMA(n+1/10)/GAMMA(1/10).
  • A020109 (program): Ceiling of GAMMA(n+8/9)/GAMMA(8/9).
  • A020110 (program): Ceiling of Gamma(n + 7/9)/Gamma(7/9).
  • A020111 (program): Ceiling of GAMMA(n+5/9)/GAMMA(5/9).
  • A020112 (program): Ceiling of GAMMA(n+4/9)/GAMMA(4/9).
  • A020113 (program): a(n) = ceiling of Gamma(n + 2/9)/Gamma(2/9).
  • A020114 (program): Ceiling of GAMMA(n+1/9)/GAMMA(1/9).
  • A020115 (program): Ceiling of GAMMA(n+7/8)/GAMMA(7/8).
  • A020116 (program): Ceiling of GAMMA(n+5/8)/GAMMA(5/8).
  • A020117 (program): Ceiling of GAMMA(n+3/8)/GAMMA(3/8).
  • A020118 (program): Ceiling of GAMMA(n+1/8)/GAMMA(1/8).
  • A020119 (program): Ceiling of GAMMA(n+6/7)/GAMMA(6/7).
  • A020120 (program): Ceiling of GAMMA(n+5/7)/GAMMA(5/7).
  • A020121 (program): Ceiling of GAMMA(n+4/7)/GAMMA(4/7).
  • A020122 (program): Ceiling of GAMMA(n+3/7)/GAMMA(3/7).
  • A020123 (program): Ceiling of Gamma(n+2/7)/Gamma(2/7).
  • A020124 (program): Ceiling of GAMMA(n+1/7)/GAMMA(1/7).
  • A020125 (program): Ceiling of GAMMA(n+5/6)/GAMMA(5/6).
  • A020126 (program): Ceiling of GAMMA(n+1/6)/GAMMA(1/6).
  • A020127 (program): Ceiling of GAMMA(n+4/5)/GAMMA(4/5).
  • A020128 (program): Ceiling of GAMMA(n+3/5)/GAMMA(3/5).
  • A020129 (program): Ceiling of GAMMA(n+2/5)/GAMMA(2/5).
  • A020130 (program): Ceiling of GAMMA(n+1/5)/GAMMA(1/5).
  • A020131 (program): Ceiling of GAMMA(n+3/4)/GAMMA(3/4).
  • A020132 (program): Ceiling of GAMMA(n+1/4)/GAMMA(1/4).
  • A020133 (program): Ceiling of GAMMA(n+2/3)/GAMMA(2/3).
  • A020134 (program): Ceiling of Gamma(n + 1/3)/Gamma(1/3).
  • A020135 (program): Ceiling of Gamma(n+1/2)/Gamma(1/2).
  • A020330 (program): Numbers whose base-2 representation is the juxtaposition of two identical strings.
  • A020331 (program): Numbers whose base-3 representation is the juxtaposition of two identical strings.
  • A020332 (program): Numbers whose base-4 representation is the juxtaposition of two identical strings.
  • A020333 (program): Numbers whose base-5 representation is the juxtaposition of two identical strings.
  • A020334 (program): Numbers whose base-6 representation is the juxtaposition of two identical strings.
  • A020335 (program): Numbers whose base-7 representation is the juxtaposition of two identical strings.
  • A020336 (program): Numbers whose base-8 representation is the juxtaposition of two identical strings.
  • A020337 (program): Numbers whose base-9 representation is the juxtaposition of two identical strings.
  • A020338 (program): Doublets: base-10 representation is the juxtaposition of two identical strings.
  • A020341 (program): Expansion of 1/((1-5x)(1-7x)(1-12x)).
  • A020343 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)).
  • A020346 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)).
  • A020447 (program): Expansion of 1/((1-5x)(1-8x)(1-11x)).
  • A020448 (program): Expansion of 1/((1-5x)(1-8x)(1-12x)).
  • A020449 (program): Primes whose greatest digit is 1.
  • A020451 (program): Primes that contain digits 1 and 3 only.
  • A020452 (program): Primes that contain digits 1 and 4 only.
  • A020453 (program): Primes that contain digits 1 and 5 only.
  • A020454 (program): Primes that contain digits 1 and 6 only.
  • A020455 (program): Primes that contain digits 1 and 7 only.
  • A020456 (program): Primes that contain digits 1 and 8 only.
  • A020457 (program): Primes that contain digits 1 and 9 only.
  • A020458 (program): Primes that contain digits 2 and 3 only.
  • A020459 (program): Primes that contain digits 2 and 7 only.
  • A020461 (program): Primes that contain digits 3 and 4 only.
  • A020462 (program): Primes that contain digits 3 and 5 only.
  • A020463 (program): Primes that contain digits 3 and 7 only.
  • A020467 (program): Primes that contain digits 5 and 7 only.
  • A020471 (program): Primes that contain digits 7 and 9 only.
  • A020478 (program): Number of singular 2 X 2 matrices over Z(n) (i.e., with determinant = 0).
  • A020479 (program): Number of noninvertible 2 X 2 matrices over Z/nZ (determinant is a divisor of 0).
  • A020481 (program): Least p with p, q both prime, p+q = 2n.
  • A020482 (program): Greatest p with p, q both prime, p+q = 2n.
  • A020486 (program): Average of squares of divisors is an integer: sigma_0(n) divides sigma_2(n).
  • A020490 (program): Numbers k such that phi(k) <= sigma_0(k).
  • A020491 (program): Numbers k such that sigma_0(k) divides phi(k).
  • A020494 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)).
  • A020499 (program): Expansion of 1/((1-5x)(1-9x)(1-11x)).
  • A020500 (program): Cyclotomic polynomials at x=1.
  • A020514 (program): a(n) = 1^n + 2^n + 4^n + 8^n + 16^n.
  • A020515 (program): a(n) = 4^n - 2^n + 1.
  • A020516 (program): Sum of n-th powers of divisors of 64.
  • A020517 (program): 9th cyclotomic polynomial evaluated at powers of 2.
  • A020518 (program): 10th cyclotomic polynomial evaluated at powers of 2.
  • A020519 (program): 11th cyclotomic polynomial evaluated at powers of 2.
  • A020520 (program): 12th cyclotomic polynomial evaluated at powers of 2.
  • A020521 (program): 13th cyclotomic polynomial evaluated at powers of 2.
  • A020522 (program): a(n) = 4^n - 2^n.
  • A020523 (program): a(n) = 3rd Euler polynomial evaluated at 2^n and multiplied by 4.
  • A020524 (program): a(n) = 4th Euler polynomial evaluated at 2^n.
  • A020525 (program): a(n) = 5th Euler polynomial evaluated at 2^n and multiplied by 2.
  • A020526 (program): a(n) = 6th Euler polynomial evaluated at 2^n.
  • A020527 (program): 2nd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
  • A020528 (program): 3rd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
  • A020529 (program): 4th Bernoulli polynomial evaluated at powers of 2 (multiplied by 30).
  • A020530 (program): a(n) = 8^n + 2^(n+1).
  • A020531 (program): a(n) = 5th Fibonacci polynomial evaluated at 2^n.
  • A020532 (program): a(n) = 6th Fibonacci polynomial evaluated at 2^n.
  • A020533 (program): a(n) = 7th Fibonacci polynomial evaluated at 2^n.
  • A020534 (program): a(n) = 8th Fibonacci polynomial evaluated at 2^n.
  • A020535 (program): a(n) = 9th Fibonacci polynomial evaluated at 2^n.
  • A020536 (program): a(n) = 10th Fibonacci polynomial evaluated at 2^n.
  • A020537 (program): a(n) = 4*8^n - 3*2^n.
  • A020538 (program): a(n) = 4th Chebyshev polynomial (first kind) evaluated at 2^n.
  • A020539 (program): a(n) = 5th Chebyshev polynomial (first kind) evaluated at 2^n.
  • A020540 (program): a(n) = 8^(n+1) - 2^(n+2).
  • A020541 (program): a(n) = 4th Chebyshev polynomial (second kind) evaluated at 2^n.
  • A020542 (program): a(n) = 5th Chebyshev polynomial (second kind) evaluated at 2^n.
  • A020543 (program): a(0) = 1, a(1) = 1, a(n+1) = (n+1)*a(n) + n.
  • A020544 (program): Second Bernoulli polynomial evaluated at x=n! (multiplied by 6).
  • A020545 (program): 3rd Bernoulli polynomial evaluated at x=n!.
  • A020547 (program): 2nd Euler polynomial evaluated at x=n!.
  • A020548 (program): 3rd Euler polynomial evaluated at x=n! (multiplied by 4).
  • A020549 (program): a(n) = (n!)^2 + 1.
  • A020550 (program): 4th Fibonacci polynomial evaluated at x=n!.
  • A020551 (program): 5th Fibonacci polynomial evaluated at x = n!.
  • A020552 (program): 6th Fibonacci polynomial evaluated at x=n!.
  • A020553 (program): 7th Fibonacci polynomial evaluated at x=n!.
  • A020556 (program): Number of oriented multigraphs on n labeled arcs (without loops).
  • A020557 (program): Number of oriented multigraphs on n labeled arcs (with loops).
  • A020566 (program): Expansion of 1/((1-5x)(1-9x)(1-12x)).
  • A020567 (program): Expansion of 1/((1-5x)(1-10x)(1-11x)).
  • A020568 (program): G.f.: 1/((1-5x)(1-10x)(1-12x)).
  • A020569 (program): Expansion of 1/((1-5x)(1-11x)(1-12x)).
  • A020570 (program): Expansion of 1/((1-6*x)*(1-7*x)*(1-8*x)).
  • A020571 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)).
  • A020572 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)).
  • A020573 (program): Expansion of 1/((1-6x)(1-7x)(1-11x)).
  • A020577 (program): Expansion of 1/((1-6x)(1-7x)(1-12x)).
  • A020579 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)).
  • A020584 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)).
  • A020593 (program): Expansion of 1/((1-6x)(1-8x)(1-11x)).
  • A020594 (program): Expansion of 1/((1-6x)(1-8x)(1-12x)).
  • A020595 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)).
  • A020606 (program): Expansion of 1/((1-6x)(1-9x)(1-11x)).
  • A020616 (program): Smallest nonempty set S containing prime divisors of 8k+2 for each k in S.
  • A020639 (program): Lpf(n): least prime dividing n (when n > 1); a(1) = 1. Or, smallest prime factor of n, or smallest prime divisor of n.
  • A020642 (program): n-th composite is sum of first k composites for some k.
  • A020645 (program): Least positive integer k for which 4^n divides k!.
  • A020646 (program): Least positive integer k for which 7^n divides k!.
  • A020647 (program): Least positive integer k for which 8^n divides k!.
  • A020648 (program): Least positive integer k for which 9^n divides k!.
  • A020650 (program): Numerators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)).
  • A020651 (program): Denominators in recursive bijection from positive integers to positive rationals (the bijection is f(1) = 1, f(2n) = f(n)+1, f(2n+1) = 1/(f(n)+1)).
  • A020652 (program): Numerators in canonical bijection from positive integers to positive rationals.
  • A020653 (program): Denominators in a certain bijection from positive integers to positive rationals.
  • A020654 (program): Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.
  • A020655 (program): Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 5.
  • A020657 (program): Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.
  • A020658 (program): Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.
  • A020668 (program): Numbers of the form x^2 + 4*y^2.
  • A020669 (program): Numbers of form x^2 + 5 y^2.
  • A020670 (program): Numbers of form x^2 + 7y^2.
  • A020671 (program): Numbers of form x^2 + 8 y^2.
  • A020672 (program): Numbers of form x^2 + 9 y^2.
  • A020673 (program): Numbers of form x^2 + 10 y^2.
  • A020674 (program): Numbers of the form 2*x^2 + 5*y^2.
  • A020675 (program): Numbers of form 2 x^2 + 7 y^2.
  • A020677 (program): Numbers of form 3*x^2 + 4*y^2.
  • A020678 (program): Numbers of form 3 x^2 + 5 y^2.
  • A020695 (program): Pisot sequence E(2,3).
  • A020696 (program): Let a,b,c,…k be all divisors of n; a(n) = (a+1)*(b+1)*…*(k+1).
  • A020698 (program): a(n) = 5*a(n-1) - 2*a(n-2), with a(0)=2, a(1)=9.
  • A020699 (program): Expansion of (1-3*x)/(1-5*x).
  • A020701 (program): Pisot sequences E(3,5), P(3,5).
  • A020702 (program): Expansion of (1+x^10)/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).
  • A020703 (program): Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,3,5,7,…
  • A020704 (program): Pisot sequences E(3,10), P(3,10).
  • A020705 (program): n+4
  • A020706 (program): Pisot sequences L(4,6), E(4,6).
  • A020707 (program): Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).
  • A020708 (program): Pisot sequences E(4,9), P(4,9).
  • A020709 (program): Pisot sequence E(4,10).
  • A020710 (program): n+5.
  • A020711 (program): Pisot sequences E(5,7), P(5,7).
  • A020712 (program): Pisot sequences E(5,8), P(5,8).
  • A020713 (program): Pisot sequences E(5,9), P(5,9).
  • A020714 (program): a(n) = 5 * 2^n.
  • A020715 (program): n+6.
  • A020716 (program): Pisot sequences E(6,8), P(6,8).
  • A020717 (program): Pisot sequences L(6,9), E(6,9).
  • A020718 (program): Pisot sequences E(6,10), P(6,10).
  • A020719 (program): a(n) = n+7.
  • A020720 (program): Pisot sequences E(7,9), P(7,9).
  • A020721 (program): Pisot sequences E(7,10), P(7,10).
  • A020722 (program): a(n) = n + 8.
  • A020723 (program): n+9.
  • A020724 (program): G.f.: 1/((1-6*x)*(1-9*x)*(1-12*x)).
  • A020725 (program): Integers >= 2. a(n) = n+1.
  • A020726 (program): Expansion of 1/((1-6*x)*(1-10*x)*(1-11*x)).
  • A020727 (program): Pisot sequence P(2,7): a(0)=2, a(1)=7, thereafter a(n+1) is the nearest integer to a(n)^2/a(n-1).
  • A020728 (program): Pisot sequence T(2,9), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020729 (program): Pisot sequences E(2,10), L(2,10), P(2,10), T(2,10).
  • A020730 (program): Pisot sequences L(3,7) or S(3,7).
  • A020732 (program): Pisot sequence T(4,7).
  • A020734 (program): Pisot sequence L(4,10).
  • A020735 (program): Odd numbers >= 5.
  • A020736 (program): Pisot sequence L(5,8).
  • A020737 (program): Pisot sequence L(5,9).
  • A020739 (program): 2n + 6.
  • A020741 (program): Pisot sequence T(6,10), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020742 (program): Pisot sequence T(7,9).
  • A020743 (program): Pisot sequence L(7,10).
  • A020744 (program): Pisot sequences P(8,10), T(8,10).
  • A020745 (program): Pisot sequence T(3,5).
  • A020746 (program): Pisot sequence T(3,7), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020747 (program): Pisot sequence T(4,6), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020748 (program): Pisot sequence T(4,10), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020749 (program): Pisot sequence T(5,8), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020750 (program): Pisot sequence T(5,9), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020751 (program): Pisot sequence T(6,9), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020752 (program): Pisot sequence T(7,10), a(n) = floor(a(n-1)^2/a(n-2)).
  • A020753 (program): Sizes of successive increasing gaps between squarefree numbers.
  • A020756 (program): Numbers that are the sum of two triangular numbers.
  • A020757 (program): Numbers that are not the sum of two triangular numbers.
  • A020758 (program): Expansion of 1/((1-6x)(1-10x)(1-12x)).
  • A020760 (program): Decimal expansion of 1/sqrt(3).
  • A020761 (program): Decimal expansion of 1/2.
  • A020762 (program): Decimal expansion of 1/sqrt(5).
  • A020763 (program): Decimal expansion of 1/sqrt(6).
  • A020764 (program): Decimal expansion of 1/sqrt(7).
  • A020765 (program): Decimal expansion of 1/sqrt(8).
  • A020766 (program): Expansion of 1/((1-6x)(1-11x)(1-12x)).
  • A020767 (program): Product_{k=1..n} b(k), where b(k) = binary expansion of k (A007088) but read as if it were a decimal number.
  • A020768 (program): Decimal expansion of 1/sqrt(11).
  • A020769 (program): Decimal expansion of 1/sqrt(12) = 1/(2*sqrt(3)).
  • A020770 (program): Decimal expansion of 1/sqrt(13).
  • A020771 (program): Decimal expansion of 1/sqrt(14).
  • A020772 (program): Decimal expansion of 1/sqrt(15).
  • A020773 (program): Decimal expansion of 1/4.
  • A020774 (program): Decimal expansion of 1/sqrt(17).
  • A020775 (program): Decimal expansion of 1/sqrt(18).
  • A020776 (program): Decimal expansion of 1/sqrt(19).
  • A020778 (program): Decimal expansion of 1/sqrt(21).
  • A020779 (program): Decimal expansion of 1/sqrt(22).
  • A020780 (program): Decimal expansion of 1/sqrt(23).
  • A020781 (program): Decimal expansion of 1/sqrt(24).
  • A020782 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)).
  • A020783 (program): Decimal expansion of 1/sqrt(26).
  • A020784 (program): Decimal expansion of 1/sqrt(27).
  • A020785 (program): Decimal expansion of 1/sqrt(28).
  • A020786 (program): Decimal expansion of 1/sqrt(29).
  • A020787 (program): Decimal expansion of 1/sqrt(30).
  • A020788 (program): Decimal expansion of 1/sqrt(31).
  • A020789 (program): Decimal expansion of 1/sqrt(32).
  • A020790 (program): Decimal expansion of 1/sqrt(33).
  • A020791 (program): Decimal expansion of 1/sqrt(34).
  • A020792 (program): Decimal expansion of 1/sqrt(35).
  • A020793 (program): Decimal expansion of 1/6.
  • A020794 (program): Decimal expansion of 1/sqrt(37).
  • A020795 (program): Decimal expansion of 1/sqrt(38).
  • A020796 (program): Decimal expansion of 1/sqrt(39).
  • A020797 (program): Decimal expansion of 1/sqrt(40).
  • A020798 (program): Decimal expansion of 1/sqrt(41).
  • A020799 (program): Decimal expansion of 1/sqrt(42).
  • A020800 (program): Decimal expansion of 1/sqrt(43).
  • A020801 (program): Decimal expansion of 1/sqrt(44).
  • A020802 (program): Decimal expansion of 1/sqrt(45).
  • A020803 (program): Decimal expansion of 1/sqrt(46).
  • A020804 (program): Decimal expansion of 1/sqrt(47).
  • A020805 (program): Decimal expansion of 1/sqrt(48).
  • A020806 (program): Decimal expansion of 1/7.
  • A020807 (program): Decimal expansion of 1/sqrt(50).
  • A020808 (program): Decimal expansion of 1/sqrt(51).
  • A020809 (program): Decimal expansion of 1/sqrt(52).
  • A020810 (program): Decimal expansion of 1/sqrt(53).
  • A020811 (program): Decimal expansion of 1/sqrt(54).
  • A020812 (program): Decimal expansion of 1/sqrt(55).
  • A020813 (program): Decimal expansion of 1/sqrt(56).
  • A020814 (program): Decimal expansion of 1/sqrt(57).
  • A020815 (program): Decimal expansion of 1/sqrt(58).
  • A020816 (program): Decimal expansion of 1/sqrt(59).
  • A020817 (program): Decimal expansion of 1/sqrt(60).
  • A020818 (program): Decimal expansion of 1/sqrt(61).
  • A020819 (program): Decimal expansion of 1/sqrt(62).
  • A020820 (program): Decimal expansion of 1/sqrt(63).
  • A020821 (program): Decimal expansion of 1/8.
  • A020822 (program): Decimal expansion of 1/sqrt(65).
  • A020823 (program): Decimal expansion of 1/sqrt(66).
  • A020824 (program): Decimal expansion of 1/sqrt(67).
  • A020825 (program): Decimal expansion of 1/sqrt(68).
  • A020826 (program): Decimal expansion of 1/sqrt(69).
  • A020827 (program): Decimal expansion of 1/sqrt(70).
  • A020828 (program): Decimal expansion of 1/sqrt(71).
  • A020829 (program): Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.
  • A020830 (program): Decimal expansion of 1/sqrt(73).
  • A020831 (program): Decimal expansion of 1/sqrt(74).
  • A020832 (program): Decimal expansion of 1/sqrt(75).
  • A020833 (program): Decimal expansion of 1/sqrt(76).
  • A020834 (program): Decimal expansion of 1/sqrt(77).
  • A020835 (program): Decimal expansion of 1/sqrt(78).
  • A020836 (program): Decimal expansion of 1/sqrt(79).
  • A020837 (program): Decimal expansion of 1/sqrt(80) = sqrt(5)/20.
  • A020838 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)).
  • A020839 (program): Decimal expansion of 1/sqrt(82).
  • A020840 (program): Decimal expansion of 1/sqrt(83).
  • A020841 (program): Decimal expansion of 1/sqrt(84).
  • A020842 (program): Decimal expansion of 1/sqrt(85).
  • A020843 (program): Decimal expansion of 1/sqrt(86).
  • A020844 (program): Decimal expansion of 1/sqrt(87).
  • A020845 (program): Decimal expansion of 1/sqrt(88).
  • A020846 (program): Decimal expansion of 1/sqrt(89).
  • A020847 (program): Decimal expansion of 1/sqrt(90) = sqrt(10)/30.
  • A020848 (program): Decimal expansion of 1/sqrt(91).
  • A020849 (program): Decimal expansion of 1/sqrt(92).
  • A020850 (program): Decimal expansion of 1/sqrt(93).
  • A020851 (program): Decimal expansion of 1/sqrt(94).
  • A020852 (program): Decimal expansion of 1/sqrt(95).
  • A020853 (program): Decimal expansion of 1/sqrt(96).
  • A020854 (program): Decimal expansion of 1/sqrt(97).
  • A020855 (program): Decimal expansion of 1/sqrt(98).
  • A020856 (program): Decimal expansion of 1/sqrt(99).
  • A020866 (program): Number of strong edge-subgraphs in Moebius ladder M_n.
  • A020870 (program): Number of strong single-component edge-subgraphs in Moebius ladder M_n.
  • A020871 (program): Number of spanning trees in a Moebius ladder M_n with 2n vertices.
  • A020873 (program): a(n) is number of cycles in Moebius ladder M_n.
  • A020874 (program): Number of paths in Moebius ladder M_n.
  • A020875 (program): Number of (undirected) Hamiltonian paths in n-Moebius ladder.
  • A020876 (program): a(n) = ((5+sqrt(5))/2)^n + ((5-sqrt(5))/2)^n.
  • A020877 (program): Number of matchings in Moebius ladder M_n.
  • A020878 (program): Number of maximum matchings in the n-Moebius ladder M_n.
  • A020881 (program): Number of strong restricted edge-subgraphs in Moebius ladder M_n.
  • A020882 (program): Ordered hypotenuses (with multiplicity) of primitive Pythagorean triangles.
  • A020887 (program): Ordered set of a + b - c as (a,b,c) runs through all primitive Pythagorean triples with a<b<c.
  • A020888 (program): Ordered set of (a + b - c)/2 as (a,b,c) runs through all primitive Pythagorean triples with a<b<c.
  • A020893 (program): Squarefree sums of two squares; or squarefree numbers with no prime factors of the form 4k+3.
  • A020899 (program): Odd number of terms in Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
  • A020900 (program): Greatest k such that k-th prime < twice n-th prime.
  • A020901 (program): Greatest k such that k-th prime < 3 times n-th prime.
  • A020903 (program): Lim f(f(…f(n))) where f is the fractal sequence given by f(n)=A002260(n+1).
  • A020904 (program): Positions of 2 in A020903; complement of A191777.
  • A020906 (program): Triangle where n-th row is the first n terms of the sequence in reverse order, starting with a(1) = 1 and a(2) = 2.
  • A020907 (program): Position of n-th 2 in A020906.
  • A020908 (program): Number of terms in Zeckendorf representation of 2^n.
  • A020909 (program): Number of bits in the base-2 representation of the n-th Fibonacci number.
  • A020910 (program): Number of terms in Zeckendorf representation of 3^n.
  • A020911 (program): Number of digits in the base 3 representation of n-th Fibonacci number.
  • A020912 (program): Number of terms in base 4 representation of n-th Fibonacci number.
  • A020913 (program): Number of terms in base 5 representation of Fibonacci(n).
  • A020914 (program): Number of digits in the base-2 representation of 3^n.
  • A020915 (program): Number of terms in base-3 representation of 2^n.
  • A020917 (program): Maximum number of K4’s (complete 4 graphs) a graph can contain if it contains at most n distinct K3’s (triangles).
  • A020918 (program): Expansion of 1/(1-4*x)^(7/2).
  • A020919 (program): Partition numbers mod 11.
  • A020920 (program): Expansion of 1/(1-4*x)^(9/2).
  • A020922 (program): Expansion of 1/(1-4*x)^(11/2).
  • A020923 (program): Expansion of (1-4*x)^(11/2).
  • A020924 (program): Expansion of 1/(1-4*x)^(13/2).
  • A020925 (program): Expansion of (1-4*x)^(13/2).
  • A020926 (program): Expansion of 1/(1-4*x)^(15/2).
  • A020927 (program): Expansion of (1-4*x)^(15/2).
  • A020928 (program): Expansion of 1/(1-4*x)^(17/2).
  • A020929 (program): Expansion of (1-4*x)^(17/2).
  • A020930 (program): Expansion of 1/(1-4*x)^(19/2).
  • A020931 (program): Expansion of (1-4*x)^(19/2).
  • A020932 (program): Expansion of 1/(1-4*x)^(21/2).
  • A020933 (program): Expansion of (1-4*x)^(21/2).
  • A020934 (program): Greatest k such that (k-th prime) < (4 times n-th prime).
  • A020935 (program): Greatest k such that (k-th prime) < (5 times n-th prime).
  • A020936 (program): Greatest k such that (k-th prime) < (6 times n-th prime).
  • A020937 (program): Greatest k such that (k-th prime) < (7 times n-th prime).
  • A020938 (program): Greatest k such that (k-th prime) < (8 times n-th prime).
  • A020939 (program): Greatest k such that (k-th prime) < (9 times n-th prime).
  • A020940 (program): Greatest k such that (k-th prime) < (10 times n-th prime).
  • A020941 (program): Main diagonal of Wythoff array: w(n,n)=[ n*tau ]F(n+1)+(n-1)F(n), where tau=(1+sqrt(5))/2, F(n) = Fibonacci numbers.
  • A020942 (program): First column of 3rd-order Zeckendorf array.
  • A020944 (program): a(2n+1) = |a(2n) - a(2n-1)|, a(2n) = a(n) + a(n-1), a(0) = -1.
  • A020951 (program): a(2n+1)=a(n), a(2n)=a(n)+a(n-1).
  • A020952 (program): a(2n+1)=a(n), a(2n)=a(n)+a(n-1).
  • A020956 (program): Sum of [tau^(n-k)] for k from 1 to infinity.
  • A020957 (program): a(n) = Sum_{k >= 1} floor(2*tau^(n-k)).
  • A020958 (program): a(n) = Sum_{k >= 1} floor(3*tau^(n-k)).
  • A020962 (program): a(n) = Sum_{k >= 1} floor((1+sqrt(2))^(n-k)).
  • A020963 (program): Sum of Floor[ 2*(1+sqrt(2))^(n-k) ] for k from 1 to infinity.
  • A020964 (program): Sum of Floor[ 3*(1+sqrt(2))^(n-k) ] for k from 1 to infinity.
  • A020965 (program): a(n) = Sum_{k >= 1} floor(n*sqrt(2)^(1-k)).
  • A020966 (program): a(n) = Sum_{k>=1} floor(n*sqrt(2)^(2-k)).
  • A020967 (program): a(n) = Sum_{k >=1} floor(n*sqrt(2)^(3-k)).
  • A020968 (program): Expansion of 1/((1-7*x)*(1-8*x)*(1-11*x)).
  • A020969 (program): Expansion of 1/((1-7*x)*(1-8*x)*(1-12*x)).
  • A020970 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-10*x)).
  • A020971 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-11*x)).
  • A020972 (program): Expansion of 1/((1-7*x)*(1-9*x)*(1-12*x)).
  • A020973 (program): Expansion of 1/((1-7*x)*(1-10*x)*(1-11*x)).
  • A020974 (program): Expansion of 1/((1-7*x)*(1-10*x)*(1-12*x)).
  • A020975 (program): Expansion of 1/((1-7*x)*(1-11*x)*(1-12*x)).
  • A020976 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)).
  • A020977 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-11*x)).
  • A020978 (program): Expansion of 1/((1-8*x)*(1-9*x)*(1-12*x)).
  • A020979 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)).
  • A020980 (program): Expansion of 1/((1-8*x)*(1-10*x)*(1-12*x)).
  • A020981 (program): Expansion of 1/((1-8*x)*(1-11*x)*(1-12*x)).
  • A020982 (program): Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)).
  • A020983 (program): Expansion of 1/((1-9*x)*(1-10*x)*(1-12*x)).
  • A020984 (program): Expansion of 1/((1-9*x)*(1-11*x)*(1-12*x)).
  • A020985 (program): The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials).
  • A020986 (program): a(n) = n-th partial sum of Golay-Rudin-Shapiro sequence A020985.
  • A020987 (program): Zero-one version of Golay-Rudin-Shapiro sequence (or word).
  • A020988 (program): a(n) = (2/3)*(4^n-1).
  • A020989 (program): a(n) = (5*4^n - 2)/3.
  • A020990 (program): a(n) = Sum_{k=0..n} (-1)^k*A020985(k).
  • A020991 (program): Largest value of k for which Golay-Rudin-Shapiro sequence A020986(k) = n.
  • A020992 (program): a(n) = a(n-1) + a(n-2) + a(n-3).
  • A020995 (program): Numbers k such that the sum of the digits of Fibonacci(k) is k.
  • A021001 (program): Pisot sequence P(2,9).
  • A021003 (program): a(n) = (n/2)*(n^4+1).
  • A021004 (program): Pisot sequence P(4,10).
  • A021006 (program): Pisot sequence P(4,11), a(0)=4, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). Evidently satisfies a(n) = 2*a(n-1)+2*a(n-2).
  • A021008 (program): Pisot sequence P(5,11), a(0)=5, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1).
  • A021009 (program): Triangle of coefficients of Laguerre polynomials n!*L_n(x) (rising powers of x).
  • A021010 (program): Triangle of coefficients of Laguerre polynomials L_n(x) (powers of x in decreasing order).
  • A021011 (program): Pisot sequence P(6,11), a(0)=6, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1).
  • A021012 (program): Triangle of coefficients in expansion of x^n in terms of Laguerre polynomials L_n(x).
  • A021013 (program): Pisot sequence P(7,11), a(0)=7, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). Agrees with A021014 only for n <= 20.
  • A021014 (program): a(n)=a(n-1)+a(n-2)-a(n-4)+a(n-5).
  • A021016 (program): Decimal expansion of 1/12.
  • A021017 (program): Decimal expansion of 1/13.
  • A021018 (program): Decimal expansion of 1/14.
  • A021019 (program): Decimal expansion of 1/15.
  • A021020 (program): Decimal expansion of 1/16.
  • A021021 (program): Expansion of 1/((1-10x)(1-11x)(1-12x)).
  • A021022 (program): Decimal expansion of 1/18.
  • A021023 (program): Decimal expansion of 1/19.
  • A021024 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-5x)).
  • A021025 (program): Decimal expansion of 1/21.
  • A021026 (program): Decimal expansion of 1/22.
  • A021027 (program): Decimal expansion of 1/23.
  • A021028 (program): Decimal expansion of 1/24.
  • A021029 (program): Expansion of 1/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
  • A021030 (program): Decimal expansion of 1/26.
  • A021031 (program): Decimal expansion of 1/27.
  • A021032 (program): Decimal expansion of 1/28.
  • A021033 (program): Decimal expansion of 1/29.
  • A021034 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-7x)).
  • A021035 (program): Decimal expansion of 1/31.
  • A021036 (program): Decimal expansion of 1/32.
  • A021038 (program): Decimal expansion of 1/34.
  • A021039 (program): Decimal expansion of 1/35.
  • A021040 (program): Decimal expansion of 1/36.
  • A021041 (program): Decimal expansion of 1/37.
  • A021042 (program): Decimal expansion of 1/38.
  • A021043 (program): Decimal expansion of 1/39.
  • A021044 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-8x)).
  • A021045 (program): Decimal expansion of 1/41.
  • A021046 (program): Decimal expansion of 1/42.
  • A021047 (program): Decimal expansion of 1/43.
  • A021048 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-9x)).
  • A021049 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-10x)).
  • A021050 (program): Decimal expansion of 1/46.
  • A021051 (program): Decimal expansion of 1/47.
  • A021052 (program): Decimal expansion of 1/48.
  • A021053 (program): Decimal expansion of 1/49.
  • A021054 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-11x)).
  • A021055 (program): Decimal expansion of 1/51.
  • A021056 (program): Decimal expansion of 1/52.
  • A021057 (program): Decimal expansion of 1/53.
  • A021058 (program): Decimal expansion of 1/54.
  • A021059 (program): Decimal expansion of 1/55.
  • A021060 (program): Decimal expansion of 1/56.
  • A021061 (program): Decimal expansion of 1/57.
  • A021062 (program): Decimal expansion of 1/58.
  • A021063 (program): Decimal expansion of 1/59.
  • A021064 (program): Expansion of 1/((1-x)(1-2x)(1-3x)(1-12x)).
  • A021065 (program): Decimal expansion of 1/61.
  • A021066 (program): Decimal expansion of 1/62.
  • A021067 (program): Decimal expansion of 1/63.
  • A021068 (program): Decimal expansion of 1/64.
  • A021069 (program): Decimal expansion of 1/65.
  • A021070 (program): Decimal expansion of 1/66.
  • A021071 (program): Decimal expansion of 1/67.
  • A021072 (program): Decimal expansion of 1/68.
  • A021073 (program): Decimal expansion of 1/69.
  • A021074 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-5x)).
  • A021075 (program): Decimal expansion of 1/71.
  • A021076 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-6x)).
  • A021077 (program): Decimal expansion of 1/73.
  • A021078 (program): Decimal expansion of 1/74.
  • A021079 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-7x)).
  • A021080 (program): Decimal expansion of 1/76.
  • A021081 (program): Decimal expansion of 1/77.
  • A021082 (program): Decimal expansion of 1/78.
  • A021083 (program): Decimal expansion of 1/79.
  • A021084 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-9x)).
  • A021085 (program): Decimal expansion of 1/81.
  • A021086 (program): Decimal expansion of 1/82.
  • A021087 (program): Decimal expansion of 1/83.
  • A021088 (program): Decimal expansion of 1/84.
  • A021089 (program): Decimal expansion of 1/85.
  • A021090 (program): Decimal expansion of 1/86.
  • A021091 (program): Decimal expansion of 1/87.
  • A021092 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-10x)).
  • A021093 (program): Decimal expansion of 1/89.
  • A021094 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-11x)).
  • A021095 (program): Decimal expansion of 1/91.
  • A021096 (program): Decimal expansion of 1/92.
  • A021097 (program): Decimal expansion of 1/93.
  • A021098 (program): Decimal expansion of 1/94.
  • A021099 (program): Decimal expansion of 1/95.
  • A021100 (program): Decimal expansion of 1/96.
  • A021101 (program): Decimal expansion of 1/97.
  • A021102 (program): Decimal expansion of 1/98.
  • A021104 (program): Expansion of 1/((1-x)(1-2x)(1-4x)(1-12x)).
  • A021105 (program): Decimal expansion of 1/101.
  • A021106 (program): Decimal expansion of 1/102.
  • A021107 (program): Decimal expansion of 1/103.
  • A021108 (program): Decimal expansion of 1/104.
  • A021109 (program): Decimal expansion of 1/105.
  • A021110 (program): Decimal expansion of 1/106.
  • A021111 (program): Decimal expansion of 1/107.
  • A021112 (program): Decimal expansion of 1/108.
  • A021113 (program): Decimal expansion of 1/109.
  • A021114 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-6x)).
  • A021115 (program): Decimal expansion of 1/111.
  • A021116 (program): Decimal expansion of 1/112.
  • A021117 (program): Decimal expansion of 1/113.
  • A021118 (program): Decimal expansion of 1/114.
  • A021119 (program): Decimal expansion of 1/115.
  • A021120 (program): Decimal expansion of 1/116.
  • A021121 (program): Decimal expansion of 1/117.
  • A021122 (program): Decimal expansion of 1/118.
  • A021123 (program): Decimal expansion of 1/119.
  • A021124 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-7x)).
  • A021125 (program): Decimal expansion of 1/121.
  • A021126 (program): Decimal expansion of 1/122.
  • A021127 (program): Decimal expansion of 1/123.
  • A021128 (program): Decimal expansion of 1/124.
  • A021129 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-8x)).
  • A021130 (program): Decimal expansion of 1/126.
  • A021131 (program): Decimal expansion of 1/127.
  • A021132 (program): Decimal expansion of 1/128.
  • A021133 (program): Decimal expansion of 1/129.
  • A021134 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-9x)).
  • A021135 (program): Decimal expansion of 1/131.
  • A021136 (program): Decimal expansion of 1/132.
  • A021137 (program): Decimal expansion of 1/133.
  • A021138 (program): Decimal expansion of 1/134.
  • A021139 (program): Decimal expansion of 1/135.
  • A021140 (program): Decimal expansion of 1/136.
  • A021141 (program): Decimal expansion of 1/137.
  • A021142 (program): Decimal expansion of 1/138.
  • A021143 (program): Decimal expansion of 1/139.
  • A021144 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-10x)).
  • A021145 (program): Decimal expansion of 1/141.
  • A021146 (program): Decimal expansion of 1/142.
  • A021147 (program): Decimal expansion of 1/143.
  • A021148 (program): Decimal expansion of 1/144.
  • A021149 (program): Decimal expansion of 1/145.
  • A021150 (program): Decimal expansion of 1/146.
  • A021151 (program): Decimal expansion of 1/147.
  • A021152 (program): Decimal expansion of 1/148.
  • A021153 (program): Decimal expansion of 1/149.
  • A021154 (program): Expansion of 1/((1-x)(1-2x)(1-5x)(1-11x)).
  • A021155 (program): Decimal expansion of 1/151.
  • A021156 (program): Decimal expansion of 1/152.
  • A021157 (program): Decimal expansion of 1/153.
  • A021158 (program): Decimal expansion of 1/154.
  • A021159 (program): Decimal expansion of 1/155.
  • A021160 (program): Decimal expansion of 1/156.
  • A021161 (program): Decimal expansion of 1/157.
  • A021162 (program): Decimal expansion of 1/158.
  • A021163 (program): Decimal expansion of 1/159.
  • A021164 (program): Expansion of 1/((1-x)*(1-2*x)*(1-5*x)*(1-12*x)).
  • A021165 (program): Decimal expansion of 1/161.
  • A021166 (program): Decimal expansion of 1/162.
  • A021167 (program): Decimal expansion of 1/163.
  • A021168 (program): Decimal expansion of 1/164.
  • A021169 (program): Decimal expansion of 1/165.
  • A021170 (program): Decimal expansion of 1/166.
  • A021171 (program): Decimal expansion of 1/167.
  • A021172 (program): Decimal expansion of 1/168.
  • A021173 (program): Decimal expansion of 1/169.
  • A021174 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-7x)).
  • A021175 (program): Decimal expansion of 1/171.
  • A021176 (program): Decimal expansion of 1/172.
  • A021177 (program): Decimal expansion of 1/173.
  • A021178 (program): Decimal expansion of 1/174.
  • A021179 (program): Decimal expansion of 1/175.
  • A021180 (program): Decimal expansion of 1/176.
  • A021181 (program): Decimal expansion of 1/177.
  • A021182 (program): Decimal expansion of 1/178.
  • A021183 (program): Decimal expansion of 1/179.
  • A021184 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-8x)).
  • A021185 (program): Decimal expansion of 1/181.
  • A021186 (program): Decimal expansion of 1/182.
  • A021187 (program): Decimal expansion of 1/183.
  • A021188 (program): Decimal expansion of 1/184.
  • A021189 (program): Decimal expansion of 1/185.
  • A021190 (program): Decimal expansion of 1/186.
  • A021191 (program): Decimal expansion of 1/187.
  • A021192 (program): Decimal expansion of 1/188.
  • A021193 (program): Decimal expansion of 1/189.
  • A021194 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-9x)).
  • A021195 (program): Decimal expansion of 1/191.
  • A021196 (program): Decimal expansion of 1/192.
  • A021197 (program): Decimal expansion of 1/193.
  • A021198 (program): Decimal expansion of 1/194.
  • A021199 (program): Decimal expansion of 1/195.
  • A021200 (program): Decimal expansion of 1/196.
  • A021201 (program): Decimal expansion of 1/197.
  • A021202 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-10x)).
  • A021203 (program): Decimal expansion of 1/199.
  • A021204 (program): Expansion of 1/((1-x)(1-2x)(1-6x)(1-11x)).
  • A021205 (program): Decimal expansion of 1/201.
  • A021206 (program): Decimal expansion of 1/202.
  • A021207 (program): Decimal expansion of 1/203.
  • A021208 (program): Decimal expansion of 1/204.
  • A021209 (program): Decimal expansion of 1/205.
  • A021210 (program): Decimal expansion of 1/206.
  • A021211 (program): Decimal expansion of 1/207.
  • A021212 (program): Decimal expansion of 1/208.
  • A021213 (program): Decimal expansion of 1/209.
  • A021214 (program): Expansion of 1/((1-x)*(1-2x)*(1-6x)*(1-12x)).
  • A021215 (program): Decimal expansion of 1/211.
  • A021216 (program): Decimal expansion of 1/212.
  • A021217 (program): Decimal expansion of 1/213.
  • A021218 (program): Decimal expansion of 1/214.
  • A021219 (program): Decimal expansion of 1/215.
  • A021220 (program): Decimal expansion of 1/216.
  • A021221 (program): Decimal expansion of 1/217.
  • A021222 (program): Decimal expansion of 1/218.
  • A021223 (program): Decimal expansion of 1/219.
  • A021224 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-8x)).
  • A021225 (program): Decimal expansion of 1/221.
  • A021226 (program): Decimal expansion of 1/222.
  • A021227 (program): Decimal expansion of 1/223.
  • A021228 (program): Decimal expansion of 1/224.
  • A021229 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-9x)).
  • A021230 (program): Decimal expansion of 1/226.
  • A021231 (program): Decimal expansion of 1/227.
  • A021232 (program): Decimal expansion of 1/228.
  • A021233 (program): Decimal expansion of 1/229.
  • A021234 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-10x)).
  • A021235 (program): Decimal expansion of 1/231.
  • A021236 (program): Decimal expansion of 1/232.
  • A021237 (program): Decimal expansion of 1/233.
  • A021238 (program): Decimal expansion of 1/234.
  • A021239 (program): Decimal expansion of 1/235.
  • A021240 (program): Decimal expansion of 1/236.
  • A021241 (program): Decimal expansion of 1/237.
  • A021242 (program): Decimal expansion of 1/238.
  • A021243 (program): Decimal expansion of 1/239.
  • A021244 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-11x)).
  • A021245 (program): Decimal expansion of 1/241.
  • A021246 (program): Decimal expansion of 1/242.
  • A021247 (program): Decimal expansion of 1/243.
  • A021248 (program): Decimal expansion of 1/244.
  • A021249 (program): Decimal expansion of 1/245.
  • A021250 (program): Decimal expansion of 1/246.
  • A021251 (program): Decimal expansion of 1/247.
  • A021252 (program): Decimal expansion of 1/248.
  • A021253 (program): Decimal expansion of 1/249.
  • A021254 (program): Expansion of 1/((1-x)(1-2x)(1-7x)(1-12x)).
  • A021255 (program): Decimal expansion of 1/251.
  • A021256 (program): Decimal expansion of 1/252.
  • A021257 (program): Decimal expansion of 1/253.
  • A021258 (program): Decimal expansion of 1/254.
  • A021259 (program): Decimal expansion of 1/255.
  • A021260 (program): Decimal expansion of 1/256.
  • A021261 (program): Decimal expansion of 1/257.
  • A021262 (program): Decimal expansion of 1/258.
  • A021263 (program): Decimal expansion of 1/259.
  • A021264 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-9x)).
  • A021265 (program): Decimal expansion of 1/261.
  • A021266 (program): Decimal expansion of 1/262.
  • A021267 (program): Decimal expansion of 1/263.
  • A021268 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-10x)).
  • A021269 (program): Decimal expansion of 1/265.
  • A021270 (program): Decimal expansion of 1/266.
  • A021271 (program): Decimal expansion of 1/267.
  • A021272 (program): Decimal expansion of 1/268.
  • A021273 (program): Decimal expansion of 1/269.
  • A021274 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-11x)).
  • A021275 (program): Decimal expansion of 1/271.
  • A021276 (program): Decimal expansion of 1/272.
  • A021277 (program): Decimal expansion of 1/273.
  • A021278 (program): Decimal expansion of 1/274.
  • A021279 (program): Expansion of 1/((1-x)(1-2x)(1-8x)(1-12x)).
  • A021280 (program): Decimal expansion of 1/276.
  • A021281 (program): Decimal expansion of 1/277.
  • A021282 (program): Decimal expansion of 1/278.
  • A021283 (program): Decimal expansion of 1/279.
  • A021284 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-10x)).
  • A021285 (program): Decimal expansion of 1/281.
  • A021286 (program): Decimal expansion of 1/282.
  • A021287 (program): Decimal expansion of 1/283.
  • A021288 (program): Decimal expansion of 1/284.
  • A021289 (program): Decimal expansion of 1/285.
  • A021290 (program): Decimal expansion of 1/286.
  • A021291 (program): Decimal expansion of 1/287.
  • A021292 (program): Decimal expansion of 1/288.
  • A021293 (program): Decimal expansion of 1/289.
  • A021294 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-11x)).
  • A021295 (program): Decimal expansion of 1/291.
  • A021296 (program): Decimal expansion of 1/292.
  • A021297 (program): Decimal expansion of 1/293.
  • A021298 (program): Decimal expansion of 1/294.
  • A021299 (program): Decimal expansion of 1/295.
  • A021300 (program): Decimal expansion of 1/296.
  • A021301 (program): Decimal expansion of 1/297.
  • A021302 (program): Decimal expansion of 1/298.
  • A021303 (program): Decimal expansion of 1/299.
  • A021304 (program): Expansion of 1/((1-x)(1-2x)(1-9x)(1-12x)).
  • A021305 (program): Decimal expansion of 1/301.
  • A021306 (program): Decimal expansion of 1/302.
  • A021307 (program): Decimal expansion of 1/303.
  • A021308 (program): Decimal expansion of 1/304.
  • A021309 (program): Decimal expansion of 1/305.
  • A021310 (program): Decimal expansion of 1/306.
  • A021311 (program): Decimal expansion of 1/307.
  • A021312 (program): Decimal expansion of 1/308.
  • A021313 (program): Decimal expansion of 1/309.
  • A021314 (program): Expansion of 1/((1-x)(1-2x)(1-10x)(1-11x)).
  • A021315 (program): Decimal expansion of 1/311.
  • A021316 (program): Decimal expansion of 1/312.
  • A021317 (program): Decimal expansion of 1/313.
  • A021318 (program): Decimal expansion of 1/314.
  • A021319 (program): Decimal expansion of 1/315.
  • A021320 (program): Decimal expansion of 1/316.
  • A021321 (program): Decimal expansion of 1/317.
  • A021322 (program): Decimal expansion of 1/318.
  • A021323 (program): Decimal expansion of 1/319.
  • A021324 (program): Expansion of 1/((1-x)(1-2x)(1-10x)(1-12x)).
  • A021325 (program): Decimal expansion of 1/321.
  • A021326 (program): Decimal expansion of 1/322.
  • A021327 (program): Decimal expansion of 1/323.
  • A021328 (program): Decimal expansion of 1/324.
  • A021329 (program): Decimal expansion of 1/325.
  • A021330 (program): Decimal expansion of 1/326.
  • A021331 (program): Decimal expansion of 1/327.
  • A021332 (program): Decimal expansion of 1/328.
  • A021333 (program): Decimal expansion of 1/329.
  • A021334 (program): Expansion of 1/((1-x)(1-2x)(1-11x)(1-12x)).
  • A021335 (program): Decimal expansion of 1/331.
  • A021336 (program): Decimal expansion of 1/332.
  • A021337 (program): Decimal expansion of 1/333.
  • A021338 (program): Decimal expansion of 1/334.
  • A021339 (program): Decimal expansion of 1/335.
  • A021340 (program): Decimal expansion of 1/336.
  • A021341 (program): Decimal expansion of 1/337.
  • A021342 (program): Decimal expansion of 1/338.
  • A021343 (program): Decimal expansion of 1/339.
  • A021344 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-5x)).
  • A021345 (program): Decimal expansion of 1/341.
  • A021346 (program): Decimal expansion of 1/342.
  • A021347 (program): Decimal expansion of 1/343.
  • A021348 (program): Decimal expansion of 1/344.
  • A021349 (program): Decimal expansion of 1/345.
  • A021350 (program): Decimal expansion of 1/346.
  • A021351 (program): Decimal expansion of 1/347.
  • A021352 (program): Decimal expansion of 1/348.
  • A021353 (program): Decimal expansion of 1/349.
  • A021354 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-6x)).
  • A021355 (program): Decimal expansion of 1/351.
  • A021356 (program): Decimal expansion of 1/352.
  • A021357 (program): Decimal expansion of 1/353.
  • A021358 (program): Decimal expansion of 1/354.
  • A021359 (program): Decimal expansion of 1/355.
  • A021360 (program): Decimal expansion of 1/356.
  • A021361 (program): Decimal expansion of 1/357.
  • A021362 (program): Decimal expansion of 1/358.
  • A021363 (program): Decimal expansion of 1/359.
  • A021364 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-7x)).
  • A021365 (program): Decimal expansion of 1/361.
  • A021366 (program): Decimal expansion of 1/362.
  • A021367 (program): Decimal expansion of 1/363.
  • A021368 (program): Decimal expansion of 1/364.
  • A021369 (program): Decimal expansion of 1/365.
  • A021370 (program): Decimal expansion of 1/366.
  • A021371 (program): Decimal expansion of 1/367.
  • A021372 (program): Decimal expansion of 1/368.
  • A021373 (program): Decimal expansion of 1/369.
  • A021374 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-8x)).
  • A021375 (program): Decimal expansion of 1/371.
  • A021376 (program): Decimal expansion of 1/372.
  • A021377 (program): Decimal expansion of 1/373.
  • A021378 (program): Decimal expansion of 1/374.
  • A021379 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-9x)).
  • A021380 (program): Decimal expansion of 1/376.
  • A021381 (program): Decimal expansion of 1/377.
  • A021382 (program): Decimal expansion of 1/378.
  • A021383 (program): Decimal expansion of 1/379.
  • A021384 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-10x)).
  • A021385 (program): Decimal expansion of 1/381.
  • A021386 (program): Decimal expansion of 1/382.
  • A021387 (program): Decimal expansion of 1/383.
  • A021388 (program): Decimal expansion of 1/384.
  • A021389 (program): Decimal expansion of 1/385.
  • A021390 (program): Decimal expansion of 1/386.
  • A021391 (program): Decimal expansion of 1/387.
  • A021392 (program): Decimal expansion of 1/388.
  • A021393 (program): Decimal expansion of 1/389.
  • A021394 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-11x)).
  • A021395 (program): Decimal expansion of 1/391.
  • A021396 (program): Decimal expansion of 1/392.
  • A021397 (program): Decimal expansion of 1/393.
  • A021398 (program): Decimal expansion of 1/394.
  • A021399 (program): Decimal expansion of 1/395.
  • A021400 (program): Decimal expansion of 1/396.
  • A021401 (program): Decimal expansion of 1/397.
  • A021402 (program): Decimal expansion of 1/398.
  • A021403 (program): Decimal expansion of 1/399.
  • A021404 (program): Expansion of 1/((1-x)(1-3x)(1-4x)(1-12x)).
  • A021405 (program): Decimal expansion of 1/401.
  • A021406 (program): Decimal expansion of 1/402.
  • A021407 (program): Decimal expansion of 1/403.
  • A021408 (program): Decimal expansion of 1/404.
  • A021409 (program): Decimal expansion of 1/405.
  • A021410 (program): Decimal expansion of 1/406.
  • A021411 (program): Decimal expansion of 1/407.
  • A021412 (program): Decimal expansion of 1/408.
  • A021413 (program): Decimal expansion of 1/409.
  • A021414 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-6x)).
  • A021415 (program): Decimal expansion of 1/411.
  • A021416 (program): Decimal expansion of 1/412.
  • A021417 (program): Decimal expansion of 1/413.
  • A021418 (program): Decimal expansion of 1/414.
  • A021419 (program): Decimal expansion of 1/415.
  • A021420 (program): Decimal expansion of 1/416.
  • A021421 (program): Decimal expansion of 1/417.
  • A021422 (program): Decimal expansion of 1/418.
  • A021423 (program): Decimal expansion of 1/419.
  • A021424 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-7x)).
  • A021425 (program): Decimal expansion of 1/421.
  • A021426 (program): Decimal expansion of 1/422.
  • A021427 (program): Decimal expansion of 1/423.
  • A021428 (program): Decimal expansion of 1/424.
  • A021429 (program): Decimal expansion of 1/425.
  • A021430 (program): Decimal expansion of 1/426.
  • A021431 (program): Decimal expansion of 1/427.
  • A021432 (program): Decimal expansion of 1/428.
  • A021433 (program): Decimal expansion of 1/429.
  • A021434 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-8x)).
  • A021435 (program): Decimal expansion of 1/431.
  • A021436 (program): Decimal expansion of 1/432.
  • A021437 (program): Decimal expansion of 1/433.
  • A021438 (program): Decimal expansion of 1/434.
  • A021439 (program): Decimal expansion of 1/435.
  • A021440 (program): Decimal expansion of 1/436.
  • A021441 (program): Decimal expansion of 1/437.
  • A021442 (program): Decimal expansion of 1/438.
  • A021443 (program): Decimal expansion of 1/439.
  • A021444 (program): Decimal expansion of 1/440.
  • A021445 (program): Decimal expansion of 1/441.
  • A021446 (program): Decimal expansion of 1/442.
  • A021447 (program): Decimal expansion of 1/443.
  • A021448 (program): Decimal expansion of 1/444.
  • A021449 (program): Decimal expansion of 1/445.
  • A021450 (program): Decimal expansion of 1/446.
  • A021451 (program): Decimal expansion of 1/447.
  • A021452 (program): Decimal expansion of 1/448.
  • A021453 (program): Decimal expansion of 1/449.
  • A021454 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-9x)).
  • A021455 (program): Decimal expansion of 1/451.
  • A021456 (program): Decimal expansion of 1/452.
  • A021457 (program): Decimal expansion of 1/453.
  • A021458 (program): Decimal expansion of 1/454.
  • A021459 (program): Decimal expansion of 1/455.
  • A021460 (program): Decimal expansion of 1/456.
  • A021461 (program): Decimal expansion of 1/457.
  • A021462 (program): Decimal expansion of 1/458.
  • A021463 (program): Decimal expansion of 1/459.
  • A021464 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-10x)).
  • A021465 (program): Decimal expansion of 1/461.
  • A021466 (program): Decimal expansion of 1/462.
  • A021467 (program): Decimal expansion of 1/463.
  • A021468 (program): Decimal expansion of 1/464.
  • A021469 (program): Decimal expansion of 1/465.
  • A021470 (program): Decimal expansion of 1/466.
  • A021471 (program): Decimal expansion of 1/467.
  • A021472 (program): Decimal expansion of 1/468.
  • A021473 (program): Decimal expansion of 1/469.
  • A021474 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-11x)).
  • A021475 (program): Decimal expansion of 1/471.
  • A021476 (program): Decimal expansion of 1/472.
  • A021477 (program): Decimal expansion of 1/473.
  • A021478 (program): Decimal expansion of 1/474.
  • A021479 (program): Decimal expansion of 1/475.
  • A021480 (program): Decimal expansion of 1/476.
  • A021481 (program): Decimal expansion of 1/477.
  • A021482 (program): Decimal expansion of 1/478.
  • A021483 (program): Decimal expansion of 1/479.
  • A021484 (program): Expansion of 1/((1-x)(1-3x)(1-5x)(1-12x)).
  • A021485 (program): Decimal expansion of 1/481.
  • A021486 (program): Decimal expansion of 1/482.
  • A021487 (program): Decimal expansion of 1/483.
  • A021488 (program): Decimal expansion of 1/484.
  • A021489 (program): Decimal expansion of 1/485.
  • A021490 (program): Decimal expansion of 1/486.
  • A021491 (program): Decimal expansion of 1/487.
  • A021492 (program): Decimal expansion of 1/488.
  • A021493 (program): Decimal expansion of 1/489.
  • A021494 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-7x)).
  • A021495 (program): Decimal expansion of 1/491.
  • A021496 (program): Decimal expansion of 1/492.
  • A021497 (program): Decimal expansion of 1/493.
  • A021498 (program): Decimal expansion of 1/494.
  • A021499 (program): Decimal expansion of 1/495.
  • A021500 (program): Decimal expansion of 1/496.
  • A021501 (program): Decimal expansion of 1/497.
  • A021502 (program): Decimal expansion of 1/498.
  • A021503 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-8x)).
  • A021504 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-9x)).
  • A021505 (program): Decimal expansion of 1/501.
  • A021506 (program): Decimal expansion of 1/502.
  • A021507 (program): Decimal expansion of 1/503.
  • A021508 (program): Decimal expansion of 1/504.
  • A021509 (program): Decimal expansion of 1/505.
  • A021510 (program): Decimal expansion of 1/506.
  • A021511 (program): Decimal expansion of 1/507.
  • A021512 (program): Decimal expansion of 1/508.
  • A021513 (program): Decimal expansion of 1/509.
  • A021514 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-10x)).
  • A021515 (program): Decimal expansion of 1/511.
  • A021516 (program): Decimal expansion of 1/512.
  • A021517 (program): Decimal expansion of 1/513.
  • A021518 (program): Decimal expansion of 1/514.
  • A021519 (program): Decimal expansion of 1/515.
  • A021520 (program): Decimal expansion of 1/516.
  • A021521 (program): Decimal expansion of 1/517.
  • A021522 (program): Decimal expansion of 1/518.
  • A021523 (program): Decimal expansion of 1/519.
  • A021524 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-11x)).
  • A021525 (program): Decimal expansion of 1/521.
  • A021526 (program): Decimal expansion of 1/522.
  • A021527 (program): Decimal expansion of 1/523.
  • A021528 (program): Decimal expansion of 1/524.
  • A021529 (program): Decimal expansion of 1/525.
  • A021530 (program): Decimal expansion of 1/526.
  • A021531 (program): Decimal expansion of 1/527.
  • A021532 (program): Decimal expansion of 1/528.
  • A021533 (program): Decimal expansion of 1/529.
  • A021534 (program): Expansion of 1/((1-x)(1-3x)(1-6x)(1-12x)).
  • A021535 (program): Decimal expansion of 1/531.
  • A021536 (program): Decimal expansion of 1/532.
  • A021537 (program): Decimal expansion of 1/533.
  • A021538 (program): Decimal expansion of 1/534.
  • A021539 (program): Decimal expansion of 1/535.
  • A021540 (program): Decimal expansion of 1/536.
  • A021541 (program): Decimal expansion of 1/537.
  • A021542 (program): Decimal expansion of 1/538.
  • A021543 (program): Decimal expansion of 1/539.
  • A021544 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-8x)).
  • A021545 (program): Decimal expansion of 1/541.
  • A021546 (program): Decimal expansion of 1/542.
  • A021547 (program): Decimal expansion of 1/543.
  • A021548 (program): Decimal expansion of 1/544.
  • A021549 (program): Decimal expansion of 1/545.
  • A021550 (program): Decimal expansion of 1/546.
  • A021551 (program): Decimal expansion of 1/547.
  • A021552 (program): Decimal expansion of 1/548.
  • A021553 (program): Decimal expansion of 1/549.
  • A021554 (program): Decimal expansion of 1/550.
  • A021555 (program): Decimal expansion of 1/551.
  • A021556 (program): Decimal expansion of 1/552.
  • A021557 (program): Decimal expansion of 1/553.
  • A021558 (program): Decimal expansion of 1/554.
  • A021559 (program): Decimal expansion of 1/555.
  • A021560 (program): Decimal expansion of 1/556.
  • A021561 (program): Decimal expansion of 1/557.
  • A021562 (program): Decimal expansion of 1/558.
  • A021563 (program): Decimal expansion of 1/559.
  • A021564 (program): Decimal expansion of 1/560.
  • A021565 (program): Decimal expansion of 1/561.
  • A021566 (program): Decimal expansion of 1/562.
  • A021567 (program): Decimal expansion of 1/563.
  • A021568 (program): Decimal expansion of 1/564.
  • A021569 (program): Decimal expansion of 1/565.
  • A021570 (program): Decimal expansion of 1/566.
  • A021571 (program): Decimal expansion of 1/567.
  • A021572 (program): Decimal expansion of 1/568.
  • A021573 (program): Decimal expansion of 1/569.
  • A021574 (program): Decimal expansion of 1/570.
  • A021575 (program): Decimal expansion of 1/571.
  • A021576 (program): Decimal expansion of 1/572.
  • A021577 (program): Decimal expansion of 1/573.
  • A021578 (program): Decimal expansion of 1/574.
  • A021579 (program): Decimal expansion of 1/575.
  • A021580 (program): Decimal expansion of 1/576.
  • A021581 (program): Decimal expansion of 1/577.
  • A021582 (program): Decimal expansion of 1/578.
  • A021583 (program): Decimal expansion of 1/579.
  • A021584 (program): Decimal expansion of 1/580.
  • A021585 (program): Decimal expansion of 1/581.
  • A021586 (program): Decimal expansion of 1/582.
  • A021587 (program): Decimal expansion of 1/583.
  • A021588 (program): Decimal expansion of 1/584.
  • A021589 (program): Decimal expansion of 1/585.
  • A021590 (program): Decimal expansion of 1/586.
  • A021591 (program): Decimal expansion of 1/587.
  • A021592 (program): Decimal expansion of 1/588.
  • A021593 (program): Decimal expansion of 1/589.
  • A021594 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-9x)).
  • A021595 (program): Decimal expansion of 1/591.
  • A021596 (program): Decimal expansion of 1/592.
  • A021597 (program): Decimal expansion of 1/593.
  • A021598 (program): Decimal expansion of 1/594.
  • A021599 (program): Decimal expansion of 1/595.
  • A021600 (program): Decimal expansion of 1/596.
  • A021601 (program): Decimal expansion of 1/597.
  • A021602 (program): Decimal expansion of 1/598.
  • A021603 (program): Decimal expansion of 1/599.
  • A021604 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-10x)).
  • A021605 (program): Decimal expansion of 1/601.
  • A021606 (program): Decimal expansion of 1/602.
  • A021607 (program): Decimal expansion of 1/603.
  • A021608 (program): Decimal expansion of 1/604.
  • A021609 (program): Decimal expansion of 1/605.
  • A021610 (program): Decimal expansion of 1/606.
  • A021611 (program): Decimal expansion of 1/607.
  • A021612 (program): Decimal expansion of 1/608.
  • A021613 (program): Decimal expansion of 1/609.
  • A021614 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-11x)).
  • A021615 (program): Decimal expansion of 1/611.
  • A021616 (program): Decimal expansion of 1/612.
  • A021617 (program): Decimal expansion of 1/613.
  • A021618 (program): Decimal expansion of 1/614.
  • A021619 (program): Decimal expansion of 1/615.
  • A021620 (program): Decimal expansion of 1/616.
  • A021621 (program): Decimal expansion of 1/617.
  • A021622 (program): Decimal expansion of 1/618.
  • A021623 (program): Decimal expansion of 1/619.
  • A021624 (program): Decimal expansion of 1/620.
  • A021625 (program): Decimal expansion of 1/621.
  • A021626 (program): Decimal expansion of 1/622.
  • A021627 (program): Decimal expansion of 1/623.
  • A021628 (program): Decimal expansion of 1/624.
  • A021629 (program): Expansion of 1/((1-x)(1-3x)(1-7x)(1-12x)).
  • A021630 (program): Decimal expansion of 1/626.
  • A021631 (program): Decimal expansion of 1/627.
  • A021632 (program): Decimal expansion of 1/628.
  • A021633 (program): Decimal expansion of 1/629.
  • A021634 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-9x)).
  • A021635 (program): Decimal expansion of 1/631.
  • A021636 (program): Decimal expansion of 1/632.
  • A021637 (program): Decimal expansion of 1/633.
  • A021638 (program): Decimal expansion of 1/634.
  • A021639 (program): Decimal expansion of 1/635.
  • A021640 (program): Decimal expansion of 1/636.
  • A021641 (program): Decimal expansion of 1/637.
  • A021642 (program): Decimal expansion of 1/638.
  • A021643 (program): Decimal expansion of 1/639.
  • A021644 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-10x)).
  • A021645 (program): Decimal expansion of 1/641.
  • A021646 (program): Decimal expansion of 1/642.
  • A021647 (program): Decimal expansion of 1/643.
  • A021648 (program): Decimal expansion of 1/644.
  • A021649 (program): Decimal expansion of 1/645.
  • A021650 (program): Decimal expansion of 1/646.
  • A021651 (program): Decimal expansion of 1/647.
  • A021652 (program): Decimal expansion of 1/648.
  • A021653 (program): Decimal expansion of 1/649.
  • A021654 (program): Decimal expansion of 1/650.
  • A021655 (program): Decimal expansion of 1/651.
  • A021656 (program): Decimal expansion of 1/652.
  • A021657 (program): Decimal expansion of 1/653.
  • A021658 (program): Decimal expansion of 1/654.
  • A021659 (program): Decimal expansion of 1/655.
  • A021660 (program): Decimal expansion of 1/656.
  • A021661 (program): Decimal expansion of 1/657.
  • A021662 (program): Decimal expansion of 1/658.
  • A021663 (program): Decimal expansion of 1/659.
  • A021664 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-11x)).
  • A021665 (program): Decimal expansion of 1/661.
  • A021666 (program): Decimal expansion of 1/662.
  • A021667 (program): Decimal expansion of 1/663.
  • A021668 (program): Decimal expansion of 1/664.
  • A021669 (program): Decimal expansion of 1/665.
  • A021670 (program): Decimal expansion of 1/666.
  • A021671 (program): Decimal expansion of 1/667.
  • A021672 (program): Decimal expansion of 1/668.
  • A021673 (program): Decimal expansion of 1/669.
  • A021674 (program): Expansion of 1/((1-x)(1-3x)(1-8x)(1-12x)).
  • A021675 (program): Decimal expansion of 1/671.
  • A021676 (program): Decimal expansion of 1/672.
  • A021677 (program): Decimal expansion of 1/673.
  • A021678 (program): Decimal expansion of 1/674.
  • A021679 (program): Decimal expansion of 1/675.
  • A021680 (program): Decimal expansion of 1/676.
  • A021681 (program): Decimal expansion of 1/677.
  • A021682 (program): Decimal expansion of 1/678.
  • A021683 (program): Decimal expansion of 1/679.
  • A021684 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-10x)).
  • A021685 (program): Decimal expansion of 1/681.
  • A021686 (program): Decimal expansion of 1/682.
  • A021687 (program): Decimal expansion of 1/683.
  • A021688 (program): Decimal expansion of 1/684.
  • A021689 (program): Decimal expansion of 1/685.
  • A021690 (program): Decimal expansion of 1/686.
  • A021691 (program): Decimal expansion of 1/687.
  • A021692 (program): Decimal expansion of 1/688.
  • A021693 (program): Decimal expansion of 1/689.
  • A021694 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-11x)).
  • A021695 (program): Decimal expansion of 1/691.
  • A021696 (program): Decimal expansion of 1/692.
  • A021697 (program): Decimal expansion of 1/693.
  • A021698 (program): Decimal expansion of 1/694.
  • A021699 (program): Decimal expansion of 1/695.
  • A021700 (program): Decimal expansion of 1/696.
  • A021701 (program): Decimal expansion of 1/697.
  • A021702 (program): Decimal expansion of 1/698.
  • A021703 (program): Decimal expansion of 1/699.
  • A021704 (program): Expansion of 1/((1-x)(1-3x)(1-9x)(1-12x)).
  • A021705 (program): Decimal expansion of 1/701.
  • A021706 (program): Decimal expansion of 1/702.
  • A021707 (program): Decimal expansion of 1/703.
  • A021708 (program): Decimal expansion of 1/704.
  • A021709 (program): Decimal expansion of 1/705.
  • A021710 (program): Decimal expansion of 1/706.
  • A021711 (program): Decimal expansion of 1/707.
  • A021712 (program): Decimal expansion of 1/708.
  • A021713 (program): Decimal expansion of 1/709.
  • A021714 (program): Expansion of 1/((1-x)(1-3x)(1-10x)(1-11x)).
  • A021715 (program): Decimal expansion of 1/711.
  • A021716 (program): Decimal expansion of 1/712.
  • A021717 (program): Decimal expansion of 1/713.
  • A021718 (program): Decimal expansion of 1/714.
  • A021719 (program): Decimal expansion of 1/715.
  • A021720 (program): Decimal expansion of 1/716.
  • A021721 (program): Decimal expansion of 1/717.
  • A021722 (program): Decimal expansion of 1/718.
  • A021723 (program): Decimal expansion of 1/719.
  • A021724 (program): Expansion of 1/((1-x)(1-3x)(1-10x)(1-12x)).
  • A021725 (program): Decimal expansion of 1/721.
  • A021726 (program): Decimal expansion of 1/722.
  • A021727 (program): Decimal expansion of 1/723.
  • A021728 (program): Decimal expansion of 1/724.
  • A021729 (program): Decimal expansion of 1/725.
  • A021730 (program): Decimal expansion of 1/726.
  • A021731 (program): Decimal expansion of 1/727.
  • A021732 (program): Decimal expansion of 1/728.
  • A021733 (program): Decimal expansion of 1/729.
  • A021734 (program): G.f.: 1/((1-x)(1-3x)(1-11x)(1-12x)).
  • A021735 (program): Decimal expansion of 1/731.
  • A021736 (program): Decimal expansion of 1/732.
  • A021737 (program): Decimal expansion of 1/733.
  • A021738 (program): Decimal expansion of 1/734.
  • A021739 (program): Decimal expansion of 1/735.
  • A021740 (program): Decimal expansion of 1/736.
  • A021741 (program): Decimal expansion of 1/737.
  • A021742 (program): Decimal expansion of 1/738.
  • A021743 (program): Decimal expansion of 1/739.
  • A021744 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-6x)).
  • A021745 (program): Decimal expansion of 1/741.
  • A021746 (program): Decimal expansion of 1/742.
  • A021747 (program): Decimal expansion of 1/743.
  • A021748 (program): Decimal expansion of 1/744.
  • A021749 (program): Decimal expansion of 1/745.
  • A021750 (program): Decimal expansion of 1/746.
  • A021751 (program): Decimal expansion of 1/747.
  • A021752 (program): Decimal expansion of 1/748.
  • A021753 (program): Decimal expansion of 1/749.
  • A021754 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-7x)).
  • A021755 (program): Decimal expansion of 1/751.
  • A021756 (program): Decimal expansion of 1/752.
  • A021757 (program): Decimal expansion of 1/753.
  • A021758 (program): Decimal expansion of 1/754.
  • A021759 (program): Decimal expansion of 1/755.
  • A021760 (program): Decimal expansion of 1/756.
  • A021761 (program): Decimal expansion of 1/757.
  • A021762 (program): Decimal expansion of 1/758.
  • A021763 (program): Decimal expansion of 1/759.
  • A021764 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-8x)).
  • A021765 (program): Decimal expansion of 1/761.
  • A021766 (program): Decimal expansion of 1/762.
  • A021767 (program): Decimal expansion of 1/763.
  • A021768 (program): Decimal expansion of 1/764.
  • A021769 (program): Decimal expansion of 1/765.
  • A021770 (program): Decimal expansion of 1/766.
  • A021771 (program): Decimal expansion of 1/767.
  • A021772 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-9x)).
  • A021773 (program): Decimal expansion of 1/769.
  • A021774 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-10x)).
  • A021775 (program): Decimal expansion of 1/771.
  • A021776 (program): Decimal expansion of 1/772.
  • A021777 (program): Decimal expansion of 1/773.
  • A021778 (program): Decimal expansion of 1/774.
  • A021779 (program): Decimal expansion of 1/775.
  • A021780 (program): Decimal expansion of 1/776.
  • A021781 (program): Decimal expansion of 1/777.
  • A021782 (program): Decimal expansion of 1/778.
  • A021783 (program): Decimal expansion of 1/779.
  • A021784 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-11x)).
  • A021785 (program): Decimal expansion of 1/781.
  • A021786 (program): Decimal expansion of 1/782.
  • A021787 (program): Decimal expansion of 1/783.
  • A021788 (program): Decimal expansion of 1/784.
  • A021789 (program): Decimal expansion of 1/785.
  • A021790 (program): Decimal expansion of 1/786.
  • A021791 (program): Decimal expansion of 1/787.
  • A021792 (program): Decimal expansion of 1/788.
  • A021793 (program): Decimal expansion of 1/789.
  • A021794 (program): Expansion of 1/((1-x)(1-4x)(1-5x)(1-12x)).
  • A021795 (program): Decimal expansion of 1/791.
  • A021796 (program): Decimal expansion of 1/792.
  • A021797 (program): Decimal expansion of 1/793.
  • A021798 (program): Decimal expansion of 1/794.
  • A021799 (program): Decimal expansion of 1/795.
  • A021800 (program): Decimal expansion of 1/796.
  • A021801 (program): Decimal expansion of 1/797.
  • A021802 (program): Decimal expansion of 1/798.
  • A021803 (program): Decimal expansion of 1/799.
  • A021804 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-7x)).
  • A021805 (program): Decimal expansion of 1/801.
  • A021806 (program): Decimal expansion of 1/802.
  • A021807 (program): Decimal expansion of 1/803.
  • A021808 (program): Decimal expansion of 1/804.
  • A021809 (program): Decimal expansion of 1/805.
  • A021810 (program): Decimal expansion of 1/806.
  • A021811 (program): Decimal expansion of 1/807.
  • A021812 (program): Decimal expansion of 1/808.
  • A021813 (program): Decimal expansion of 1/809.
  • A021814 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-8x)).
  • A021815 (program): Decimal expansion of 1/811.
  • A021816 (program): Decimal expansion of 1/812.
  • A021817 (program): Decimal expansion of 1/813.
  • A021818 (program): Decimal expansion of 1/814.
  • A021819 (program): Decimal expansion of 1/815.
  • A021820 (program): Decimal expansion of 1/816.
  • A021821 (program): Decimal expansion of 1/817.
  • A021822 (program): Decimal expansion of 1/818.
  • A021823 (program): Decimal expansion of 1/819.
  • A021824 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-9x)).
  • A021825 (program): Decimal expansion of 1/821.
  • A021826 (program): Decimal expansion of 1/822.
  • A021827 (program): Decimal expansion of 1/823.
  • A021828 (program): Decimal expansion of 1/824.
  • A021829 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-10x)).
  • A021830 (program): Decimal expansion of 1/826.
  • A021831 (program): Decimal expansion of 1/827.
  • A021832 (program): Decimal expansion of 1/828.
  • A021833 (program): Decimal expansion of 1/829.
  • A021834 (program): Expansion of 1/((1-x)*(1-4*x)*(1-6*x)*(1-11*x)).
  • A021835 (program): Decimal expansion of 1/831.
  • A021836 (program): Decimal expansion of 1/832.
  • A021837 (program): Decimal expansion of 1/833.
  • A021838 (program): Decimal expansion of 1/834.
  • A021839 (program): Decimal expansion of 1/835.
  • A021840 (program): Decimal expansion of 1/836.
  • A021841 (program): Decimal expansion of 1/837.
  • A021842 (program): Decimal expansion of 1/838.
  • A021843 (program): Decimal expansion of 1/839.
  • A021844 (program): Expansion of 1/((1-x)(1-4x)(1-6x)(1-12x)).
  • A021845 (program): Decimal expansion of 1/841.
  • A021846 (program): Decimal expansion of 1/842.
  • A021847 (program): Decimal expansion of 1/843.
  • A021848 (program): Decimal expansion of 1/844.
  • A021849 (program): Decimal expansion of 1/845.
  • A021850 (program): Decimal expansion of 1/846.
  • A021851 (program): Decimal expansion of 1/847.
  • A021852 (program): Decimal expansion of 1/848.
  • A021853 (program): Decimal expansion of 1/849.
  • A021854 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-8x)).
  • A021855 (program): Decimal expansion of 1/851.
  • A021856 (program): Decimal expansion of 1/852.
  • A021857 (program): Decimal expansion of 1/853.
  • A021858 (program): Decimal expansion of 1/854.
  • A021859 (program): Decimal expansion of 1/855.
  • A021860 (program): Decimal expansion of 1/856.
  • A021861 (program): Decimal expansion of 1/857.
  • A021862 (program): Decimal expansion of 1/858.
  • A021863 (program): Decimal expansion of 1/859.
  • A021864 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-9x)).
  • A021865 (program): Decimal expansion of 1/861.
  • A021866 (program): Decimal expansion of 1/862.
  • A021867 (program): Decimal expansion of 1/863.
  • A021868 (program): Decimal expansion of 1/864.
  • A021869 (program): Decimal expansion of 1/865.
  • A021870 (program): Decimal expansion of 1/866.
  • A021871 (program): Decimal expansion of 1/867.
  • A021872 (program): Decimal expansion of 1/868.
  • A021873 (program): Decimal expansion of 1/869.
  • A021874 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-10x)).
  • A021875 (program): Decimal expansion of 1/871.
  • A021876 (program): Decimal expansion of 1/872.
  • A021877 (program): Decimal expansion of 1/873.
  • A021878 (program): Decimal expansion of 1/874.
  • A021879 (program): Decimal expansion of 1/875.
  • A021880 (program): Decimal expansion of 1/876.
  • A021881 (program): Decimal expansion of 1/877.
  • A021882 (program): Decimal expansion of 1/878.
  • A021883 (program): Decimal expansion of 1/879.
  • A021884 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-11x)).
  • A021885 (program): Decimal expansion of 1/881.
  • A021886 (program): Decimal expansion of 1/882.
  • A021887 (program): Decimal expansion of 1/883.
  • A021888 (program): Decimal expansion of 1/884.
  • A021889 (program): Decimal expansion of 1/885.
  • A021890 (program): Decimal expansion of 1/886.
  • A021891 (program): Decimal expansion of 1/887.
  • A021892 (program): Decimal expansion of 1/888.
  • A021893 (program): Decimal expansion of 1/889.
  • A021894 (program): Expansion of 1/((1-x)(1-4x)(1-7x)(1-12x)).
  • A021895 (program): Decimal expansion of 1/891.
  • A021896 (program): Decimal expansion of 1/892.
  • A021897 (program): Decimal expansion of 1/893.
  • A021898 (program): Decimal expansion of 1/894.
  • A021899 (program): Decimal expansion of 1/895.
  • A021900 (program): Decimal expansion of 1/896.
  • A021901 (program): Decimal expansion of 1/897.
  • A021902 (program): Decimal expansion of 1/898.
  • A021903 (program): Decimal expansion of 1/899.
  • A021904 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-9x)).
  • A021905 (program): Decimal expansion of 1/901.
  • A021906 (program): Decimal expansion of 1/902.
  • A021907 (program): Decimal expansion of 1/903.
  • A021908 (program): Decimal expansion of 1/904.
  • A021909 (program): Decimal expansion of 1/905.
  • A021910 (program): Decimal expansion of 1/906.
  • A021911 (program): Decimal expansion of 1/907.
  • A021912 (program): Decimal expansion of 1/908.
  • A021913 (program): Period 4: repeat [0, 0, 1, 1].
  • A021914 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-10x)).
  • A021915 (program): Decimal expansion of 1/911.
  • A021916 (program): Decimal expansion of 1/912.
  • A021917 (program): Decimal expansion of 1/913.
  • A021918 (program): Decimal expansion of 1/914.
  • A021919 (program): Decimal expansion of 1/915.
  • A021920 (program): Decimal expansion of 1/916.
  • A021921 (program): Decimal expansion of 1/917.
  • A021922 (program): Decimal expansion of 1/918.
  • A021923 (program): Decimal expansion of 1/919.
  • A021924 (program): Expansion of 1/((1-x)(1-4x)(1-8x)(1-11x)).
  • A021925 (program): Decimal expansion of 1/921.
  • A021926 (program): Decimal expansion of 1/922.
  • A021927 (program): Decimal expansion of 1/923.
  • A021928 (program): Decimal expansion of 1/924.
  • A021929 (program): Decimal expansion of 1/925.
  • A021930 (program): Decimal expansion of 1/926.
  • A021931 (program): Decimal expansion of 1/927.
  • A021932 (program): Decimal expansion of 1/928.
  • A021933 (program): Decimal expansion of 1/929.
  • A021934 (program): Decimal expansion of 1/930.
  • A021935 (program): Decimal expansion of 1/931.
  • A021936 (program): Decimal expansion of 1/932.
  • A021937 (program): Decimal expansion of 1/933.
  • A021938 (program): Decimal expansion of 1/934.
  • A021939 (program): Decimal expansion of 1/935.
  • A021940 (program): Decimal expansion of 1/936.
  • A021941 (program): Decimal expansion of 1/937.
  • A021942 (program): Decimal expansion of 1/938.
  • A021943 (program): Decimal expansion of 1/939.
  • A021944 (program): Expansion of 1/((1-x)*(1-4*x)*(1-8*x)*(1-12*x)).
  • A021945 (program): Decimal expansion of 1/941.
  • A021946 (program): Decimal expansion of 1/942.
  • A021947 (program): Decimal expansion of 1/943.
  • A021948 (program): Decimal expansion of 1/944.
  • A021949 (program): Decimal expansion of 1/945.
  • A021950 (program): Decimal expansion of 1/946.
  • A021951 (program): Decimal expansion of 1/947.
  • A021952 (program): Decimal expansion of 1/948.
  • A021953 (program): Decimal expansion of 1/949.
  • A021954 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-10x)).
  • A021955 (program): Decimal expansion of 1/951.
  • A021956 (program): Decimal expansion of 1/952.
  • A021957 (program): Decimal expansion of 1/953.
  • A021958 (program): Decimal expansion of 1/954.
  • A021959 (program): Decimal expansion of 1/955.
  • A021960 (program): Decimal expansion of 1/956.
  • A021961 (program): Decimal expansion of 1/957.
  • A021962 (program): Decimal expansion of 1/958.
  • A021963 (program): Decimal expansion of 1/959.
  • A021964 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-11x)).
  • A021965 (program): Decimal expansion of 1/961.
  • A021966 (program): Decimal expansion of 1/962.
  • A021967 (program): Decimal expansion of 1/963.
  • A021968 (program): Decimal expansion of 1/964.
  • A021969 (program): Decimal expansion of 1/965.
  • A021970 (program): Decimal expansion of 1/966.
  • A021971 (program): Decimal expansion of 1/967.
  • A021972 (program): Decimal expansion of 1/968.
  • A021973 (program): Decimal expansion of 1/969.
  • A021974 (program): Expansion of 1/((1-x)(1-4x)(1-9x)(1-12x)).
  • A021975 (program): Decimal expansion of 1/971.
  • A021976 (program): Decimal expansion of 1/972.
  • A021977 (program): Decimal expansion of 1/973.
  • A021978 (program): Decimal expansion of 1/974.
  • A021979 (program): Decimal expansion of 1/975.
  • A021980 (program): Decimal expansion of 1/976.
  • A021981 (program): Decimal expansion of 1/977.
  • A021982 (program): Decimal expansion of 1/978.
  • A021983 (program): Decimal expansion of 1/979.
  • A021984 (program): Expansion of 1/((1-x)(1-4x)(1-10x)(1-11x)).
  • A021985 (program): Decimal expansion of 1/981.
  • A021986 (program): Decimal expansion of 1/982.
  • A021987 (program): Decimal expansion of 1/983.
  • A021988 (program): Decimal expansion of 1/984.
  • A021989 (program): Decimal expansion of 1/985.
  • A021990 (program): Decimal expansion of 1/986.
  • A021991 (program): Decimal expansion of 1/987.
  • A021992 (program): Decimal expansion of 1/988.
  • A021993 (program): Decimal expansion of 1/989.
  • A021994 (program): G.f.: 1/((1-x)(1-4x)(1-10x)(1-12x)).
  • A021995 (program): Decimal expansion of 1/991.
  • A021996 (program): Decimal expansion of 1/992.
  • A021997 (program): Decimal expansion of 1/993.
  • A021998 (program): Decimal expansion of 1/994.
  • A021999 (program): Decimal expansion of 1/995.
  • A022000 (program): Expansion of 1/((1-x)(1-4x)(1-11x)(1-12x)).
  • A022001 (program): Decimal expansion of 1/997.
  • A022002 (program): Decimal expansion of 1/998.
  • A022003 (program): Decimal expansion of 1/999.
  • A022005 (program): Initial members of prime triples (p, p+4, p+6).
  • A022015 (program): a(n)=2a(n-1)+3a(n-2)+2a(n-3)+3a(n-4).
  • A022018 (program): Define the sequence UD(a(0),a(1)) by a(n) is the least integer such that a(n)/a(n-1) > a(n-1)/a(n-2)+1 for even n >= 2 and such that a(n)/a(n-1) > a(n-1)/a(n-2) for odd n>=2. This is UD(2,16).
  • A022019 (program): Define the sequence S(a(0), a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0 . This is S(2,32).
  • A022020 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(3,9).
  • A022021 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,20).
  • A022022 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,45).
  • A022023 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,30).
  • A022024 (program): Define the sequence S(a(0)a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,66).
  • A022025 (program): Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,102).
  • A022026 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,15).
  • A022027 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,16).
  • A022028 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,32).
  • A022029 (program): a(n) = 3*a(n-1) + a(n-2) - a(n-3) - a(n-5).
  • A022030 (program): For even n, a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n); for odd n, the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n); a(0) = 4, a(1) = 16.
  • A022031 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,17).
  • A022032 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(5,26).
  • A022033 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-7x)).
  • A022034 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(6,31).
  • A022035 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(6,37).
  • A022036 (program): Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is T(7,43).
  • A022037 (program): Define the sequence T(a(0), a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(7,50).
  • A022038 (program): Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is T(8,57).
  • A022039 (program): Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,65).
  • A022040 (program): Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(16,36).
  • A022042 (program): Theta series of D_11 lattice.
  • A022043 (program): Theta series of D_12 lattice.
  • A022044 (program): Theta series of D_13 lattice.
  • A022045 (program): Theta series of D_14 lattice.
  • A022046 (program): Theta series of D_15 lattice.
  • A022047 (program): Theta series of D_16 lattice.
  • A022048 (program): Theta series of D_17 lattice.
  • A022049 (program): Theta series of D_18 lattice.
  • A022050 (program): Theta series of D_19 lattice.
  • A022051 (program): Theta series of D_20 lattice.
  • A022052 (program): Theta series of D_21 lattice.
  • A022053 (program): Theta series of D_22 lattice.
  • A022055 (program): Theta series of D_24 lattice.
  • A022059 (program): Theta series of D_28 lattice.
  • A022063 (program): Theta series of D_32 lattice.
  • A022086 (program): Fibonacci sequence beginning 0, 3.
  • A022087 (program): Fibonacci sequence beginning 0, 4.
  • A022088 (program): Fibonacci sequence beginning 0, 5.
  • A022089 (program): Fibonacci sequence beginning 0, 6.
  • A022090 (program): Fibonacci sequence beginning 0, 7.
  • A022091 (program): Fibonacci sequence beginning 0, 8.
  • A022092 (program): Fibonacci sequence beginning 0, 9.
  • A022093 (program): Fibonacci sequence beginning 0, 10.
  • A022094 (program): Sum of first prime(n) primes.
  • A022095 (program): Fibonacci sequence beginning 1, 5.
  • A022096 (program): Fibonacci sequence beginning 1, 6.
  • A022097 (program): Fibonacci sequence beginning 1, 7.
  • A022098 (program): Fibonacci sequence beginning 1, 8.
  • A022099 (program): Fibonacci sequence beginning 1, 9.
  • A022100 (program): Fibonacci sequence beginning 1, 10.
  • A022101 (program): Fibonacci sequence beginning 1, 11.
  • A022102 (program): Fibonacci sequence beginning 1, 12.
  • A022103 (program): Fibonacci sequence beginning 1, 13.
  • A022104 (program): Fibonacci sequence beginning 1, 14.
  • A022105 (program): Fibonacci sequence beginning 1, 15.
  • A022106 (program): Fibonacci sequence beginning 1, 16.
  • A022107 (program): Fibonacci sequence beginning 1, 17.
  • A022108 (program): Fibonacci sequence beginning 1, 18.
  • A022109 (program): Fibonacci sequence beginning 1, 19.
  • A022110 (program): Fibonacci sequence beginning 1, 20.
  • A022111 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-8x)).
  • A022112 (program): Fibonacci sequence beginning 2, 6.
  • A022113 (program): Fibonacci sequence beginning 2, 7.
  • A022114 (program): Fibonacci sequence beginning 2 9.
  • A022115 (program): Fibonacci sequence beginning 2, 11.
  • A022116 (program): Fibonacci sequence beginning 2, 13.
  • A022117 (program): Fibonacci sequence beginning 2, 15.
  • A022118 (program): Fibonacci sequence beginning 2, 17.
  • A022119 (program): Fibonacci sequence beginning 2, 19.
  • A022120 (program): Fibonacci sequence beginning 3, 7.
  • A022121 (program): Fibonacci sequence beginning 3, 8.
  • A022122 (program): Fibonacci sequence beginning 3, 10.
  • A022123 (program): Fibonacci sequence beginning 3, 11.
  • A022124 (program): Fibonacci sequence beginning 3, 13.
  • A022125 (program): Fibonacci sequence beginning 3, 14.
  • A022126 (program): Fibonacci sequence beginning 3, 16.
  • A022127 (program): Fibonacci sequence beginning 3, 17.
  • A022128 (program): Fibonacci sequence beginning 3, 19.
  • A022129 (program): Fibonacci sequence beginning 3, 20.
  • A022130 (program): Fibonacci sequence beginning 4,9.
  • A022131 (program): Fibonacci sequence beginning 4, 11.
  • A022132 (program): Fibonacci sequence beginning 4, 13.
  • A022133 (program): Fibonacci sequence beginning 4, 15.
  • A022134 (program): Fibonacci sequence beginning 4, 17.
  • A022135 (program): Fibonacci sequence beginning 4, 19.
  • A022136 (program): Fibonacci sequence beginning 5, 11.
  • A022137 (program): Fibonacci sequence beginning 5, 12.
  • A022138 (program): Fibonacci sequence beginning 5, 13.
  • A022139 (program): Fibonacci sequence beginning 5, 14.
  • A022140 (program): Fibonacci sequence beginning 5, 16.
  • A022141 (program): Fibonacci sequence beginning 5, 17.
  • A022142 (program): Fibonacci sequence beginning 5, 18.
  • A022143 (program): Fibonacci sequence beginning 5, 19.
  • A022144 (program): Coordination sequence for root lattice B_2.
  • A022145 (program): Coordination sequence for root lattice B_3.
  • A022146 (program): Coordination sequence for root lattice B_4.
  • A022155 (program): Values of n at which Golay-Rudin-Shapiro sequence A020985 is negative.
  • A022156 (program): Difference sequence of A020991.
  • A022157 (program): a(n) = n^2 - phi(n)*tau(n)^2.
  • A022158 (program): First column of spectral array W(sqrt(3)).
  • A022160 (program): First column of spectral array W(e-1).
  • A022162 (program): First column of spectral array W(sqrt(3/2)).
  • A022163 (program): First row of spectral array W(sqrt(3/2)).
  • A022164 (program): First column of spectral array W(sqrt(5)-1).
  • A022165 (program): First row of spectral array W(sqrt(5)-1).
  • A022189 (program): Gaussian binomial coefficients [ n,6 ] for q = 2.
  • A022190 (program): Gaussian binomial coefficients [n,7] for q = 2.
  • A022191 (program): Gaussian binomial coefficients [ n,8 ] for q = 2.
  • A022192 (program): Gaussian binomial coefficients [ n,9 ] for q = 2.
  • A022193 (program): Gaussian binomial coefficients [ n,10 ] for q = 2.
  • A022194 (program): Gaussian binomial coefficients [ n,11 ] for q = 2.
  • A022195 (program): Gaussian binomial coefficients [ n,12 ] for q = 2.
  • A022196 (program): Gaussian binomial coefficients [ n,5 ] for q = 3.
  • A022197 (program): Gaussian binomial coefficients [ n,6 ] for q = 3.
  • A022198 (program): Gaussian binomial coefficients [ n,7 ] for q = 3.
  • A022199 (program): Gaussian binomial coefficients [ n,8 ] for q = 3.
  • A022200 (program): Gaussian binomial coefficients [ n,9 ] for q = 3.
  • A022204 (program): Gaussian binomial coefficients [ n,5 ] for q = 4.
  • A022205 (program): Gaussian binomial coefficients [ n,6 ] for q = 4.
  • A022206 (program): Gaussian binomial coefficients [ n,7 ] for q = 4.
  • A022212 (program): Gaussian binomial coefficients [ n,5 ] for q = 5.
  • A022213 (program): Gaussian binomial coefficients [ n,6 ] for q = 5.
  • A022220 (program): Gaussian binomial coefficients [ n,2 ] for q = 6.
  • A022221 (program): Gaussian binomial coefficients [ n,3 ] for q = 6.
  • A022222 (program): Gaussian binomial coefficients [ n,4 ] for q = 6.
  • A022223 (program): Gaussian binomial coefficients [ n,5 ] for q = 6.
  • A022231 (program): Gaussian binomial coefficients [ n,2 ] for q = 7.
  • A022232 (program): Gaussian binomial coefficients [ n,3 ] for q = 7.
  • A022233 (program): Gaussian binomial coefficients [ n,4 ] for q = 7.
  • A022234 (program): Gaussian binomial coefficients [ n,5 ] for q = 7.
  • A022242 (program): Gaussian binomial coefficients [ n,2 ] for q = 8.
  • A022243 (program): Gaussian binomial coefficients [ n,3 ] for q = 8.
  • A022244 (program): Gaussian binomial coefficients [ n,4 ] for q = 8.
  • A022245 (program): Gaussian binomial coefficients [ n,5 ] for q = 8.
  • A022253 (program): Gaussian binomial coefficients [ n,2 ] for q = 9.
  • A022254 (program): Gaussian binomial coefficients [ n,3 ] for q = 9.
  • A022255 (program): Gaussian binomial coefficients [ n,4 ] for q = 9.
  • A022264 (program): a(n) = n*(7*n - 1)/2.
  • A022265 (program): a(n) = n*(7*n + 1)/2.
  • A022266 (program): a(n) = n*(9*n - 1)/2.
  • A022267 (program): a(n) = n*(9*n + 1)/2.
  • A022268 (program): a(n) = n*(11*n - 1)/2.
  • A022269 (program): a(n) = n*(11*n+1)/2.
  • A022270 (program): a(n) = n*(13*n - 1)/2.
  • A022271 (program): a(n) = n*(13*n + 1)/2.
  • A022272 (program): a(n) = n*(15*n - 1)/2.
  • A022273 (program): a(n) = n*(15*n + 1)/2.
  • A022274 (program): a(n) = n*(17*n - 1)/2.
  • A022275 (program): a(n) = n*(17*n + 1)/2.
  • A022276 (program): a(n) = n*(19*n - 1)/2.
  • A022277 (program): a(n) = n*(19*n + 1)/2.
  • A022278 (program): a(n) = n*(21*n-1)/2.
  • A022279 (program): a(n) = n*(21*n + 1)/2.
  • A022280 (program): a(n) = n*(23*n - 1)/2.
  • A022281 (program): a(n) = n*(23*n + 1)/2.
  • A022282 (program): a(n) = n*(25*n - 1)/2.
  • A022283 (program): a(n) = n*(25*n + 1)/2.
  • A022284 (program): a(n) = n*(27*n - 1)/2.
  • A022285 (program): a(n) = n*(27*n + 1)/2.
  • A022286 (program): a(n) = n*(29*n - 1)/2.
  • A022287 (program): a(n) = n*(29*n + 1)/2.
  • A022288 (program): a(n) = n*(31*n-1)/2.
  • A022289 (program): a(n) = n*(31*n + 1)/2.
  • A022290 (program): Replace 2^k in binary expansion of n with Fibonacci(k+2).
  • A022291 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-9x)).
  • A022292 (program): Exactly half of first a(n) terms of Kolakoski sequence A000002 are 1’s (not known to be infinite).
  • A022293 (program): Sequence A022292 divided by 2.
  • A022297 (program): Index of n-th 1 in A006928.
  • A022298 (program): Exactly half of first n terms of A006928 are 1’s (not known to be infinite).
  • A022299 (program): Sequence A022298 divided by 2.
  • A022300 (program): The sequence a of 1’s and 2’s starting with (1,1,2,1) such that a(n) is the length of the (n+2)nd run of a.
  • A022301 (program): Index of n-th 1 in A022300.
  • A022303 (program): The sequence a of 1’s and 2’s starting with (1,2,1) such that a(n) is the length of the (n+2)nd run of a.
  • A022304 (program): Index of n-th 1 in A022303.
  • A022305 (program): Exactly half the first a(n) terms of A022303 are 1’s.
  • A022306 (program): Sequence A022305 divided by 2.
  • A022308 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=3.
  • A022309 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=4.
  • A022310 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=5.
  • A022311 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=1.
  • A022312 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=7.
  • A022313 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 8.
  • A022314 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0, a(1) = 9.
  • A022315 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 10.
  • A022316 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 11.
  • A022317 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 12.
  • A022318 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 4.
  • A022319 (program): a(n) = a(n-1) + a(n-2) + 1 for n > 1, a(0)=1, a(1)=5.
  • A022320 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 6.
  • A022321 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 7.
  • A022322 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 8.
  • A022323 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 9.
  • A022324 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 10.
  • A022325 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 11.
  • A022326 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 12.
  • A022328 (program): Exponent of 2 (value of i) in n-th number of form 2^i*3^j (see A003586).
  • A022329 (program): Exponent of 3 (value of j) in n-th number of form 2^i*3^j (see A003586).
  • A022330 (program): Index of 3^n within sequence of numbers of form 2^i*3^j (A003586).
  • A022331 (program): Index of 2^n within sequence of numbers of form 2^i*3^j (A003586).
  • A022332 (program): Exponent of 2 (value of i) in n-th number of form 2^i*5^j.
  • A022333 (program): Exponent of 5 (value of j) in n-th number of form 2^i*5^j.
  • A022334 (program): Index of 5^n within sequence of numbers of form 2^i * 5^j.
  • A022335 (program): Index of 2^n within sequence of numbers of form 2^i * 5^j.
  • A022338 (program): Index of 5^n within sequence of numbers of form 3^i*5^j.
  • A022339 (program): Index of 3^n within sequence of numbers of form 3^i*5^j.
  • A022340 (program): Even Fibbinary numbers (A003714); also 2*Fibbinary(n).
  • A022341 (program): a(n) = 4*A003714(n) + 1; the odd Fibbinary numbers.
  • A022342 (program): Integers with “even” Zeckendorf expansions (do not end with …+F_2 = …+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.
  • A022343 (program): Expansion of 1/((1-x)*(1-5*x)*(1-6*x)*(1-10*x)).
  • A022344 (program): Allan Wechsler’s “J determinant” sequence.
  • A022345 (program): Fibonacci sequence beginning 0, 11.
  • A022346 (program): Fibonacci sequence beginning 0, 12.
  • A022347 (program): Fibonacci sequence beginning 0, 13.
  • A022348 (program): Fibonacci sequence beginning 0, 14.
  • A022349 (program): Fibonacci sequence beginning 0, 15.
  • A022350 (program): Fibonacci sequence beginning 0, 16.
  • A022351 (program): Fibonacci sequence beginning 0, 17.
  • A022352 (program): Fibonacci sequence beginning 0, 18.
  • A022353 (program): Fibonacci sequence beginning 0, 19.
  • A022354 (program): Fibonacci sequence beginning 0, 20.
  • A022355 (program): Fibonacci sequence beginning 0, 21.
  • A022356 (program): Fibonacci sequence beginning 0, 22.
  • A022357 (program): Fibonacci sequence beginning 0, 23.
  • A022358 (program): Fibonacci sequence beginning 0, 24.
  • A022359 (program): Fibonacci sequence beginning 0, 25.
  • A022360 (program): Fibonacci sequence beginning 0, 26.
  • A022361 (program): Fibonacci sequence beginning 0, 27.
  • A022362 (program): Fibonacci sequence beginning 0, 28.
  • A022363 (program): Fibonacci sequence beginning 0, 29.
  • A022364 (program): Fibonacci sequence beginning 0, 30.
  • A022365 (program): Fibonacci sequence beginning 0, 31.
  • A022366 (program): Fibonacci sequence beginning 0, 32.
  • A022367 (program): Fibonacci sequence beginning 2, 10.
  • A022368 (program): Fibonacci sequence beginning 2, 12.
  • A022369 (program): Fibonacci sequence beginning 2, 14.
  • A022370 (program): Fibonacci sequence beginning 2, 16.
  • A022371 (program): Fibonacci sequence beginning 2, 18.
  • A022372 (program): Fibonacci sequence beginning 2, 20.
  • A022373 (program): Fibonacci sequence beginning 2, 22.
  • A022374 (program): Fibonacci sequence beginning 2, 24.
  • A022375 (program): Fibonacci sequence beginning 2, 26.
  • A022376 (program): Fibonacci sequence beginning 2, 28.
  • A022377 (program): Fibonacci sequence beginning 2, 30.
  • A022378 (program): Fibonacci sequence beginning 2, 32.
  • A022379 (program): Fibonacci sequence beginning 3, 9.
  • A022380 (program): Fibonacci sequence beginning 3, 12.
  • A022381 (program): Fibonacci sequence beginning 3, 15.
  • A022382 (program): Fibonacci sequence beginning 4, 10.
  • A022383 (program): Fibonacci sequence beginning 4, 14.
  • A022384 (program): Fibonacci sequence beginning 4, 18.
  • A022385 (program): Fibonacci sequence beginning 4, 22.
  • A022386 (program): Fibonacci sequence beginning 4, 26.
  • A022387 (program): Fibonacci sequence beginning 4, 30.
  • A022388 (program): Fibonacci sequence beginning 6, 13.
  • A022389 (program): Fibonacci sequence beginning 7, 15.
  • A022390 (program): Fibonacci sequence beginning 8, 17.
  • A022391 (program): Fibonacci sequence beginning 1, 21.
  • A022392 (program): Fibonacci sequence beginning 1, 22.
  • A022393 (program): Fibonacci sequence beginning 1, 23.
  • A022394 (program): Fibonacci sequence beginning 1, 24.
  • A022395 (program): Fibonacci sequence beginning 1, 25.
  • A022396 (program): Fibonacci sequence beginning 1, 26.
  • A022397 (program): Fibonacci sequence beginning 1, 27.
  • A022398 (program): Fibonacci sequence beginning 1, 28.
  • A022399 (program): Fibonacci sequence beginning 1, 29.
  • A022400 (program): Fibonacci sequence beginning 1, 30.
  • A022401 (program): Fibonacci sequence beginning 1, 31.
  • A022402 (program): Fibonacci sequence beginning 1, 32.
  • A022403 (program): a(0)=a(1)=3; thereafter a(n) = a(n-1) + a(n-2) + 1.
  • A022405 (program): a(n) = a(n-1)*a(n-2) - a(n-3), with a(1) = 0, a(2) = 1, a(3) = 2.
  • A022406 (program): a(0)=3, a(1)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
  • A022407 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=8.
  • A022408 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=9.
  • A022409 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=10.
  • A022410 (program): a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=3, a(1)=11.
  • A022411 (program): a(n) = a(n-1) + a(n-2) + 1, with a(0)=3, a(1)=12.
  • A022412 (program): Expansion of 1/((1-x)(1-5x)(1-6x)(1-11x)).
  • A022413 (program): Kim-sums: “Kimberling sums” K_n + K_2.
  • A022415 (program): Kim-sums: “Kimberling sums” K_n + K_4.
  • A022416 (program): Kim-sums: “Kimberling sums” K_n + K_5.
  • A022418 (program): Kim-sums: “Kimberling sums” K_n + K_7.
  • A022420 (program): Kim-sums: “Kimberling sums” K_n + K_9.
  • A022421 (program): Kim-sums: “Kimberling sums” K_n + K_10.
  • A022423 (program): Kim-sums: “Kimberling sums” K_n + K_12.
  • A022424 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 2; see Comments.
  • A022425 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 1, a(1) = 4; see Comments.
  • A022426 (program): Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2), where a(0) = 2, a(1) = 3; see Comments.
  • A022429 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
  • A022430 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
  • A022433 (program): a(n) = c(n-1) + c(n-3) where c is the sequence of numbers not in a.
  • A022441 (program): a(n) = c(n) + c(n-1) where c (A055562) is the sequence of numbers not in a.
  • A022442 (program): a(n) = c(n) + c(n-1) where c is the sequence of numbers not in a.
  • A022446 (program): Fractal sequence of the dispersion of the composite numbers.
  • A022447 (program): Fractal sequence of the dispersion of the primes.
  • A022448 (program): Expansion of 1/((1-x)*(1-5*x)*(1-6*x)*(1-12*x)).
  • A022449 (program): c(p(n)) where p(k) is k-th prime including p(1)=1 and c(k) is k-th composite number.
  • A022452 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-8*x)).
  • A022453 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-9*x)).
  • A022454 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-10*x)).
  • A022455 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-11*x)).
  • A022456 (program): Expansion of 1/((1-x)*(1-5*x)*(1-7*x)*(1-12*x)).
  • A022457 (program): a(n) = prime(2n) mod prime(n).
  • A022458 (program): a(n) = prime(2n-1) mod prime(n).
  • A022459 (program): a(n) = prime(2n+1) mod prime(n).
  • A022460 (program): a(n) = prime(3*n) mod prime(n).
  • A022461 (program): a(n) = prime(n+1)*prime(n+2) mod prime(n).
  • A022462 (program): a(n) = prime(n)*prime(n+2) mod prime(n+1).
  • A022463 (program): a(n) = prime(n^2) mod prime(n).
  • A022469 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-9*x)).
  • A022521 (program): a(n) = (n+1)^5 - n^5.
  • A022522 (program): Nexus numbers (n+1)^6 - n^6.
  • A022523 (program): Nexus numbers (n+1)^7-n^7.
  • A022524 (program): Nexus numbers (n+1)^8 - n^8.
  • A022525 (program): Nexus numbers (n+1)^9-n^9.
  • A022526 (program): Nexus numbers (n+1)^10-n^10.
  • A022527 (program): Nexus numbers: a(n) = (n+1)^11 - n^11.
  • A022528 (program): Nexus numbers (n+1)^12-n^12.
  • A022529 (program): Nexus numbers (n+1)^13-n^13.
  • A022530 (program): Nexus numbers (n+1)^14 - n^14.
  • A022531 (program): Nexus numbers (n+1)^15 - n^15.
  • A022532 (program): Nexus numbers (n+1)^16-n^16.
  • A022533 (program): Nexus numbers (n+1)^17 - n^17.
  • A022534 (program): Nexus numbers (n+1)^18 - n^18.
  • A022535 (program): Nexus numbers (n+1)^19 - n^19.
  • A022536 (program): Nexus numbers (n+1)^20 - n^20.
  • A022537 (program): Nexus numbers (n+1)^21 - n^21.
  • A022538 (program): Nexus numbers (n+1)^22 - n^22.
  • A022539 (program): Nexus numbers (n+1)^23 - n^23.
  • A022540 (program): Nexus numbers (n+1)^24 - n^24.
  • A022544 (program): Numbers that are not the sum of 2 squares.
  • A022549 (program): Sum of a square and a nonnegative cube.
  • A022550 (program): Numbers that are not the sum of a square and a nonnegative cube.
  • A022551 (program): Numbers that are the sum of 2 squares and a nonnegative cube.
  • A022554 (program): a(n) = Sum_{k=0..n} floor(sqrt(k)).
  • A022555 (program): Positive integers that are not the sum of two nonnegative cubes.
  • A022556 (program): Numbers that are a sum of a square and 2 nonnegative cubes.
  • A022558 (program): Number of permutations of length n avoiding the pattern 1342.
  • A022559 (program): Sum of exponents in prime-power factorization of n!.
  • A022560 (program): a(0)=0, a(2*n) = 2*a(n) + 2*a(n-1) + n^2 + n, a(2*n+1) = 4*a(n) + (n+1)^2.
  • A022561 (program): Numbers that are not the sum of 3 nonnegative cubes.
  • A022564 (program): Number of 2-connected non-Hamiltonian claw-free graphs on n nodes.
  • A022565 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-10*x)).
  • A022566 (program): Numbers that are not the sum of 4 nonnegative cubes.
  • A022567 (program): Expansion of Product_{m>=1} (1+x^m)^2.
  • A022568 (program): Expansion of Product_{m>=1} (1+x^m)^3.
  • A022569 (program): Expansion of Product_{m>=1} (1+x^m)^4.
  • A022570 (program): Expansion of Product_{m>=1} (1+x^m)^5.
  • A022571 (program): Expansion of Product_{m>=1} (1+x^m)^6.
  • A022572 (program): Expansion of Product_{m>=1} (1+x^m)^7.
  • A022573 (program): Expansion of Product_{m>=1} (1+x^m)^8.
  • A022574 (program): Expansion of Product_{m>=1} (1+x^m)^9.
  • A022575 (program): Expansion of Product_{m>=1} (1+x^m)^10.
  • A022576 (program): Expansion of Product_{m>=1} (1+x^m)^11.
  • A022577 (program): Expansion of Product_{m>=1} (1+x^m)^12.
  • A022578 (program): Expansion of Product_{m>=1} (1+x^m)^13.
  • A022579 (program): Expansion of Product_{m>=1} (1+x^m)^14.
  • A022580 (program): Expansion of Product_{m>=1} (1+x^m)^15.
  • A022581 (program): Expansion of Product_{m>=1} (1+x^m)^16.
  • A022582 (program): Expansion of Product_{m>=1} (1+x^m)^17.
  • A022583 (program): Expansion of Product_{m>=1} (1+x^m)^18.
  • A022584 (program): Expansion of Product_{m>=1} (1+x^m)^19.
  • A022585 (program): Expansion of Product_{m>=1} (1+x^m)^20.
  • A022586 (program): Expansion of Product_{m>=1} (1+x^m)^21.
  • A022587 (program): Expansion of Product_{m>=1} (1 + x^m)^22.
  • A022588 (program): Expansion of Product_{m>=1} (1 + x^m)^23.
  • A022589 (program): Expansion of Product_{m>=1} (1 + q^m)^25.
  • A022590 (program): Expansion of Product_{m>=1} (1+q^m)^26.
  • A022591 (program): Expansion of Product_{m>=1} (1+q^m)^27.
  • A022592 (program): Expansion of Product_{m>=1} (1+q^m)^28.
  • A022593 (program): Expansion of Product_{m>=1} (1+q^m)^29.
  • A022594 (program): Expansion of Product_{m>=1} (1+q^m)^30.
  • A022595 (program): Expansion of Product_{m >=1} (1+q^m)^31.
  • A022596 (program): Expansion of Product_{m>=1} (1+q^m)^32.
  • A022597 (program): Expansion of Product_{m >= 1} (1 + q^m)^(-2).
  • A022598 (program): Expansion of Product_{m>=1} (1+q^m)^(-3).
  • A022599 (program): Expansion of Product_{m>=1} (1+q^m)^(-4).
  • A022600 (program): Expansion of Product_{m>=1} (1+q^m)^(-5).
  • A022601 (program): Expansion of Product_{m>=1} (1+q^m)^(-6).
  • A022602 (program): Expansion of Product_{m>=1} (1+q^m)^(-7).
  • A022604 (program): Expansion of Product_{m>=1} (1+q^m)^(-9).
  • A022605 (program): Expansion of Product_{m>=1} (1+q^m)^(-10).
  • A022606 (program): Expansion of Product_{m>=1} (1+q^m)^(-11).
  • A022608 (program): Expansion of Product_{m>=1} (1+q^m)^(-13).
  • A022609 (program): Expansion of Product_{m>=1} (1+q^m)^(-14).
  • A022610 (program): Expansion of Product_{m>=1} (1+q^m)^(-15).
  • A022611 (program): Expansion of Product_{m>=1} (1+q^m)^(-16).
  • A022612 (program): Expansion of Product_{m>=1} (1+q^m)^(-17).
  • A022613 (program): Expansion of Product_{m>=1} (1+q^m)^(-18).
  • A022614 (program): Expansion of Product_{m>=1} (1+q^m)^(-19).
  • A022615 (program): Expansion of Product_{m>=1} (1+q^m)^(-20).
  • A022616 (program): Expansion of Product_{m>=1} (1+q^m)^(-21).
  • A022617 (program): Expansion of Product_{m>=1} (1+q^m)^(-22).
  • A022618 (program): Expansion of Product_{m>=1} (1+q^m)^(-23).
  • A022620 (program): Expansion of Product_{m>=1} (1+q^m)^(-25).
  • A022621 (program): Expansion of Product_{m>=1} (1+q^m)^(-26).
  • A022622 (program): Expansion of Product_{m>=1} (1+q^m)^(-27).
  • A022623 (program): Expansion of Product_{m>=1} (1+q^m)^(-28).
  • A022624 (program): Expansion of Product_{m>=1} (1+q^m)^(-29).
  • A022625 (program): Expansion of Product_{m>=1} (1+q^m)^(-30).
  • A022626 (program): Expansion of Product_{m>=1} (1+q^m)^(-31).
  • A022627 (program): Expansion of Product_{m>=1} (1+q^m)^(-32).
  • A022628 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-11*x)).
  • A022629 (program): Expansion of Product_{m>=1} (1 + m*q^m).
  • A022630 (program): Expansion of Product_{m>=1} (1 + m*q^m)^2.
  • A022631 (program): Expansion of Product_{m>=1} (1 + m*q^m)^3.
  • A022632 (program): Expansion of Product_{m>=1} (1 + m*q^m)^4.
  • A022633 (program): Expansion of Product_{m>=1} (1 + m*q^m)^5.
  • A022634 (program): Expansion of Product_{m>=1} (1 + m*q^m)^6.
  • A022635 (program): Expansion of Product_{m>=1} (1 + m*q^m)^7.
  • A022636 (program): Expansion of Product_{m>=1} (1 + m*q^m)^8.
  • A022637 (program): Expansion of Product_{m>=1} (1 + m*q^m)^9.
  • A022638 (program): Expansion of Product_{m>=1} (1 + m*q^m)^10.
  • A022639 (program): Expansion of Product_{m>=1} (1 + m*q^m)^11.
  • A022640 (program): Expansion of Product_{m>=1} (1 + m*q^m)^12.
  • A022641 (program): Expansion of Product_{m>=1} (1 + m*q^m)^13.
  • A022642 (program): Expansion of Product_{m>=1} (1 + m*q^m)^14.
  • A022643 (program): Expansion of Product_{m>=1} (1 + m*q^m)^15.
  • A022644 (program): Expansion of Product_{m>=1} (1 + m*q^m)^16.
  • A022645 (program): Expansion of Product_{m>=1} (1 + m*q^m)^17.
  • A022646 (program): Expansion of Product_{m>=1} (1 + m*q^m)^18.
  • A022647 (program): Expansion of Product_{m>=1} (1 + m*q^m)^19.
  • A022648 (program): Expansion of Product_{m>=1} (1 + m*q^m)^20.
  • A022649 (program): Expansion of Product_{m >=1} (1+m*q^m)^21.
  • A022650 (program): Expansion of Product_{m>=1} (1+m*q^m)^22.
  • A022651 (program): Expansion of Product_{m>=1} (1+m*q^m)^23.
  • A022652 (program): Expansion of Product_{m>=1} (1+m*q^m)^24.
  • A022653 (program): Expansion of Product_{m>=1} (1+m*q^m)^25.
  • A022654 (program): Expansion of Product_{m>=1} (1+m*q^m)^26.
  • A022655 (program): Expansion of Product_{m>=1} (1+m*q^m)^27.
  • A022656 (program): Expansion of Product_{m>=1} (1+m*q^m)^28.
  • A022657 (program): Expansion of Product_{m>=1} (1+m*q^m)^29.
  • A022658 (program): Expansion of Product_{m>=1} (1+m*q^m)^30.
  • A022659 (program): Expansion of Product_{m>=1} (1+m*q^m)^31.
  • A022660 (program): Expansion of Product_{m>=1} (1+m*q^m)^32.
  • A022661 (program): Expansion of Product_{m>=1} (1-m*q^m).
  • A022662 (program): Expansion of Product_{m>=1} (1 - m*q^m)^2.
  • A022663 (program): Expansion of Product_{m>=1} (1 - m*q^m)^3.
  • A022664 (program): Expansion of Product_{m>=1} (1 - m*q^m)^4.
  • A022665 (program): Expansion of Product_{m>=1} (1 - m*q^m)^5.
  • A022666 (program): Expansion of Product_{m>=1} (1 - m*q^m)^6.
  • A022667 (program): Expansion of Product_{m>=1} (1 - m*q^m)^7.
  • A022668 (program): Expansion of Product_{m>=1} (1 - m*q^m)^8.
  • A022669 (program): Expansion of Product_{m>=1} (1 - m*q^m)^9.
  • A022670 (program): Expansion of Product_{m >= 1} (1-m*q^m)^10.
  • A022671 (program): Expansion of Product_{m >= 1} (1-m*q^m)^11.
  • A022672 (program): Expansion of Product_{m >= 1} (1-m*q^m)^12.
  • A022673 (program): Expansion of Product_{m >= 1} (1-m*q^m)^13.
  • A022674 (program): Expansion of Product_{m >= 1} (1-m*q^m)^14.
  • A022675 (program): Expansion of Product_{m >= 1} (1-m*q^m)^15.
  • A022676 (program): Expansion of Product_{m >= 1} (1-m*q^m)^16.
  • A022678 (program): Expansion of Product_{m>=1} (1-m*q^m)^18.
  • A022679 (program): Expansion of Product_{m>=1} (1-m*q^m)^19.
  • A022680 (program): Expansion of Product_{m>=1} (1-m*q^m)^20.
  • A022681 (program): Expansion of Product_{m>=1} (1-m*q^m)^21.
  • A022682 (program): Expansion of Product_{m>=1} (1-m*q^m)^22.
  • A022683 (program): Expansion of Product_{m>=1} (1-m*q^m)^23.
  • A022684 (program): Expansion of Product_{m>=1} (1-m*q^m)^24.
  • A022685 (program): Expansion of Product_{m>=1} (1-m*q^m)^25.
  • A022686 (program): Expansion of Product_{m>=1} (1-m*q^m)^26.
  • A022687 (program): Expansion of Product_{m>=1} (1-m*q^m)^27.
  • A022688 (program): Expansion of Product_{m>=1} (1-m*q^m)^28.
  • A022689 (program): Expansion of Product_{m>=1} (1-m*q^m)^29.
  • A022690 (program): Expansion of Product_{m>=1} (1-m*q^m)^30.
  • A022691 (program): Expansion of Product_{m>=1} (1-m*q^m)^31.
  • A022692 (program): Expansion of Product_{m>=1} (1-m*q^m)^32.
  • A022693 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m).
  • A022694 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-2.
  • A022695 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-3.
  • A022696 (program): Expansion of Product_{m>=1} (1 + m*q^m)^-4.
  • A022697 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^5.
  • A022698 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^6.
  • A022699 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^7.
  • A022700 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^8.
  • A022701 (program): Expansion of Product_{m>=1} 1/(1 + m*q^m)^9.
  • A022702 (program): Expansion of Product_{m>=1} (1+m*q^m)^(-10).
  • A022703 (program): Expansion of Product_{m>=1} (1+m*q^m)^-11.
  • A022704 (program): Expansion of Product_{m>=1} (1+m*q^m)^-12.
  • A022705 (program): Expansion of Product_{m>=1} (1+m*q^m)^-13.
  • A022706 (program): Expansion of Product_{m>=1} (1+m*q^m)^-14.
  • A022707 (program): Expansion of Product_{m>=1} (1+m*q^m)^-15.
  • A022708 (program): Expansion of Product_{m>=1} (1+m*q^m)^-16.
  • A022710 (program): Expansion of Product_{m>=1} (1+m*q^m)^-18.
  • A022711 (program): Expansion of Product_{m>=1} (1+m*q^m)^-19.
  • A022712 (program): Expansion of Product_{m>=1} (1+m*q^m)^-20.
  • A022713 (program): Expansion of Product_{m>=1} (1+m*q^m)^-21.
  • A022714 (program): Expansion of Product_{m>=1} (1+m*q^m)^-22.
  • A022716 (program): Expansion of Product_{m>=1} (1+m*q^m)^-24.
  • A022717 (program): Expansion of Product_{m>=1} (1+m*q^m)^-25.
  • A022718 (program): Expansion of Product_{m>=1} (1+m*q^m)^-26.
  • A022719 (program): Expansion of Product_{m>=1} (1+m*q^m)^-27.
  • A022720 (program): Expansion of Product_{m>=1} (1+m*q^m)^-28.
  • A022721 (program): Expansion of Product_{m>=1} (1+m*q^m)^-29.
  • A022722 (program): Expansion of Product_{m>=1} (1+m*q^m)^(-30).
  • A022723 (program): Expansion of Product_{m>=1} (1+m*q^m)^-31.
  • A022724 (program): Expansion of Product_{m>=1} (1+m*q^m)^-32.
  • A022725 (program): Expansion of 1/((1-x)*(1-5*x)*(1-8*x)*(1-12*x)).
  • A022726 (program): Expansion of 1/Product_{m>=1} (1 - m*q^m)^2.
  • A022727 (program): Expansion of Product_{m>=1} (1-m*q^m)^-3.
  • A022728 (program): Expansion of Product_{m>=1} (1-m*q^m)^-4.
  • A022729 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^5.
  • A022730 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^6.
  • A022731 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^7.
  • A022732 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^8.
  • A022733 (program): Expansion of Product_{m>=1} 1/(1 - m*q^m)^9.
  • A022734 (program): Expansion of Product_{m>=1} (1-m*q^m)^-10.
  • A022735 (program): Expansion of Product_{m>=1} (1-m*q^m)^-11.
  • A022736 (program): Expansion of Product_{m>=1} (1-m*q^m)^-12.
  • A022737 (program): Expansion of Product_{m>=1} (1-m*q^m)^-13.
  • A022738 (program): Expansion of Product_{m>=1} (1-m*q^m)^-14.
  • A022739 (program): Expansion of Product (1-m*q^m)^-15; m=1..inf.
  • A022740 (program): Expansion of Product (1-m*q^m)^-16; m=1..inf.
  • A022742 (program): Expansion of Product (1-m*q^m)^-18; m=1..inf.
  • A022743 (program): Expansion of Product (1-m*q^m)^-19; m=1..inf.
  • A022744 (program): Expansion of Product (1-m*q^m)^-20; m=1..inf.
  • A022745 (program): Expansion of Product (1-m*q^m)^-21; m=1..inf.
  • A022746 (program): Expansion of Product (1-m*q^m)^-22; m=1..inf.
  • A022747 (program): Expansion of Product_{m>=1} (1-m*q^m)^-23.
  • A022748 (program): Expansion of Product_{m>=1} (1-m*q^m)^-24.
  • A022749 (program): Expansion of Product (1-m*q^m)^-25; m=1..inf.
  • A022750 (program): Expansion of Product (1-m*q^m)^-26; m=1..inf.
  • A022751 (program): Expansion of Product (1-m*q^m)^-27; m=1..inf.
  • A022752 (program): Expansion of Product (1-m*q^m)^-28; m=1..inf.
  • A022753 (program): Expansion of Product (1-m*q^m)^-29; m=1..inf.
  • A022754 (program): Expansion of Product (1-m*q^m)^-30; m=1..inf.
  • A022755 (program): Expansion of Product (1-m*q^m)^-31; m=1..inf.
  • A022756 (program): Expansion of Product (1-m*q^m)^-32; m=1..inf.
  • A022757 (program): n-th 4k+1 prime plus n-th 4k+3 prime.
  • A022758 (program): (n-th 4k+1 prime plus n-th 4k+3 prime)/4.
  • A022761 (program): n-th 8k+1 prime plus n-th 8k+7 prime.
  • A022762 (program): (n-th 8k+1 prime plus n-th 8k+7 prime)/8.
  • A022775 (program): Place where n-th 1 occurs in A007336.
  • A022776 (program): Place where n-th 1 occurs in A023115.
  • A022777 (program): Place where n-th 1 occurs in A007337.
  • A022778 (program): Place where n-th 1 occurs in A023116.
  • A022779 (program): Place where n-th 1 occurs in A023117.
  • A022780 (program): Place where n-th 1 occurs in A023118.
  • A022781 (program): Place where n-th 1 occurs in A023119.
  • A022782 (program): Place where n-th 1 occurs in A023120.
  • A022783 (program): Place where n-th 1 occurs in A023121.
  • A022784 (program): Place where n-th 1 occurs in A023122.
  • A022785 (program): Place where n-th 1 occurs in A023123.
  • A022786 (program): Place where n-th 1 occurs in A023124.
  • A022787 (program): Place where n-th 1 occurs in A023125.
  • A022788 (program): Place where n-th 1 occurs in A023126.
  • A022789 (program): Place where n-th 1 occurs in A023127.
  • A022790 (program): Place where n-th 1 occurs in A023128.
  • A022791 (program): Place where n-th 1 occurs in A023129.
  • A022792 (program): Place where n-th 1 occurs in A023130.
  • A022793 (program): Place where n-th 1 occurs in A023131.
  • A022794 (program): Place where n-th 1 occurs in A023132.
  • A022795 (program): Place where n-th 1 occurs in A023133.
  • A022796 (program): Place where n-th 1 occurs in A023134.
  • A022797 (program): n-th prime + n-th nonprime.
  • A022798 (program): a(n) = P(n) + c(n), where P(1) = 1, P(n) = (n-1)-st prime for n >= 2, c(n) = n-th number not in sequence P.
  • A022799 (program): a(n) = F(n+1) + c(n) where F(k) is k-th Fibonacci number and c(n) is n-th non-Fibonacci number.
  • A022800 (program): a(n) = F(n+2) + c(n) where F(k) is k-th Fibonacci number and c(n) is n-th number that is 1 or is a non-Fibonacci number.
  • A022801 (program): n-th Lucas number (A000204(n)) + n-th non-Lucas number (A090946(n+1)).
  • A022802 (program): a(n) = L(n+1) + c(n) where L(k) = k-th Lucas number and c(n) is n-th number that is 1 or not a Lucas number.
  • A022803 (program): Numbers that reach …,7,8,4,2,1 under the mapping: if n is even divide by 2 else add 1.
  • A022804 (program): a(n) = B(n) + c(n) where B(n) is Beatty sequence [ n*sqrt(2) ] and c is the complement of B.
  • A022805 (program): a(n) = B(n) + C(n) where B(n) is Beatty sequence [ n*sqrt(3) ] and C is complement of B.
  • A022810 (program): a(n) = L(n+2) + c(n) where L(k) is the k-th Lucas number and c(n) is the n-th number that is 1 or 3 or is not a Lucas number.
  • A022815 (program): Number of terms in 5th derivative of a function composed with itself n times.
  • A022816 (program): Number of terms in 6th derivative of a function composed with itself n times.
  • A022817 (program): Number of terms in 7th derivative of a function composed with itself n times.
  • A022819 (program): a(n) = floor(1/(n-1) + 2/(n-2) + 3/(n-3) + … + (n-1)/1).
  • A022820 (program): [ n/1 ] - [ (n-1)/2 ] + [ (n-2)/3 ] - … + ((-1)^n)[ 2/(n-1) ].
  • A022821 (program): [ (n+1)/(n-1) ] + [ (n+2)/(n-2) ] + … + [ (2n-1)/1 ].
  • A022822 (program): a(n) = [ (n+2)/(n-1) ] + [ (n+4)/(n-2) ] + … + [ (3n-2)/1 ].
  • A022823 (program): a(n) = [ (2n+1)/(n-1) ] + [ (2n+2)/(n-2) ] + … + [ (3n-1)/1 ].
  • A022824 (program): a(n) = [ (2n+2)/(n-1) ] + [ (2n+4)/(n-2) ] + … + [ (4n-2)/1 ].
  • A022825 (program): a(n) = a([ n/2 ]) + a([ n/3 ]) + . . . + a([ n/n ]) for n > 1, a(1) = 1.
  • A022826 (program): a(n) = a([ (n+1)/2 ]) + a([ (n+1)/3 ]) + . . . + a([ (n+1)/n ]).
  • A022831 (program): a(n) = c(1)p(1) + … + c(n)p(n), where c(i) = 1 if a(i-1) <= p(i) and c(i) = -1 if a(i-1) > p(i), for i = 1,…,n (p(i) = primes).
  • A022833 (program): a(0)=2; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n). Cf. A008348.
  • A022834 (program): a(n) = c(1)p(3) + … + c(n)p(n+2), where c(i) = 1 if a(i-1) <= p(i+2) and c(i) = -1 if a(i-1) > p(i+2) (p(i) = primes).
  • A022835 (program): a(n) = c(1)p(3) + … + c(n)p(n+2), where c(i) = 1 if a(i-1) < p(i+2) and c(i) = -1 if a(i-1) >= p(i+2) (p(i) = primes).
  • A022836 (program): a(n) = c(1)*p(0) + … + c(n)*p(n-1), where c(i) = 1 if a(i-1) <= p(i-1) and c(i) = -1 if a(i-1) > p(i-1) (with p(0) = 1 and p(i) a prime for i >= 1).
  • A022837 (program): a(n) = c(0)*p(0) + … + c(n)*p(n), where c(i) = 1 if a(i-1) < p(i) and c(i) = -1 if a(i-1) >= p(i) (p(0) = 1, p(i) = prime(i)).
  • A022838 (program): Beatty sequence for sqrt(3); complement of A054406.
  • A022839 (program): Beatty sequence for sqrt(5).
  • A022840 (program): Beatty sequence for sqrt(6).
  • A022841 (program): Beatty sequence for sqrt(7).
  • A022842 (program): Beatty sequence for sqrt(8).
  • A022843 (program): Beatty sequence for e: a(n) = floor(n*e).
  • A022844 (program): a(n) = floor(n*Pi).
  • A022845 (program): Expansion of 1/((1-x)*(1-5*x)*(1-9*x)*(1-10*x)).
  • A022846 (program): Nearest integer to n*sqrt(2).
  • A022847 (program): Integer nearest n*sqrt(3).
  • A022848 (program): Integer nearest nx, where x = sqrt(5).
  • A022849 (program): Integer nearest nx, where x = sqrt(6).
  • A022850 (program): Integer nearest n*x, where x = sqrt(7).
  • A022851 (program): a(n) = integer nearest n*x, where x = sqrt(8).
  • A022852 (program): Integer nearest n * e, where e is the natural log base.
  • A022853 (program): a(n) = integer nearest n*Pi.
  • A022854 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
  • A022856 (program): a(n) = n-2 + Sum_{i = 1..n-2} (a(i+1) mod a(i)) for n >= 3 with a(1) = a(2) = 1.
  • A022867 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
  • A022873 (program): a(n) = [ a(n-1)/a(1) + a(n-1)/a(2) + … + a(n-1)/a(n-1) ] for n >= 3.
  • A022905 (program): a(n) = M(n) + m(n) for n >= 2, where M(n) = max{ a(i) + a(n-i): i = 1..n-1 }, m(n) = min{ a(i) + a(n-i): i = 1..n-1 }.
  • A022907 (program): The sequence m(n) in A022905.
  • A022908 (program): The sequence M(n) in A022905.
  • A022915 (program): Multinomial coefficients (0, 1, …, n)! = C(n+1,2)!/(0!*1!*2!*…*n!).
  • A022916 (program): Multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).
  • A022917 (program): Multinomial coefficient n!/ ([n/4]!, [(n+1)/4]!, [(n+2)/4]!, [(n+3)/4]!).
  • A022919 (program): Multinomial coefficients(TOP, BOTTOM), where TOP = n^2, BOTTOM = ( 1 3 5 … 2n-1 ).
  • A022921 (program): Number of 2^m between 3^n and 3^(n+1).
  • A022922 (program): Number of integers m such that 5^n < 2^m < 5^(n+1).
  • A022924 (program): Number of 3^m between 2^n and 2^(n+1).
  • A022925 (program): Number of 5^m between 2^n and 2^(n+1).
  • A022926 (program): Number of powers of 7 between 2^n and 2^(n+1).
  • A022927 (program): Number of 3^m between 5^n and 5^(n+1).
  • A022928 (program): Number of 5^m between 3^n and 3^(n+1).
  • A022929 (program): Number of 3^m between 4^n and 4^(n+1).
  • A022930 (program): Number of 4^m between 3^n and 3^(n+1).
  • A022931 (program): Number of e^m between Pi^n and Pi^(n+1).
  • A022932 (program): a(n) is the number of powers Pi^m between e^n and e^(n+1).
  • A022933 (program): Number of e^m between 2^n and 2^(n+1).
  • A022934 (program): Number of 2^m between e^n and e^(n+1).
  • A022953 (program): a(n) = a(n-1) + c(n+1) for n >= 3, a( ) increasing, given a(1)=1, a(2)=7; where c( ) is complement of a( ).
  • A022958 (program): a(n) = 2 - n.
  • A022959 (program): 3-n.
  • A022960 (program): 4-n.
  • A022961 (program): 5-n.
  • A022962 (program): 6-n.
  • A022963 (program): 7-n.
  • A022964 (program): a(n) = 8-n.
  • A022965 (program): 9-n.
  • A022966 (program): 10-n.
  • A022967 (program): 11-n.
  • A022968 (program): a(n) = 12-n.
  • A022969 (program): 13-n.
  • A022970 (program): 14-n.
  • A022971 (program): 15-n.
  • A022972 (program): 16-n.
  • A022973 (program): 17-n.
  • A022974 (program): 18-n.
  • A022975 (program): a(n) = 19 - n.
  • A022976 (program): 20-n.
  • A022977 (program): 21-n.
  • A022978 (program): 22-n.
  • A022979 (program): 23-n.
  • A022980 (program): 24-n.
  • A022981 (program): 25-n.
  • A022982 (program): 26-n.
  • A022983 (program): 27-n.
  • A022984 (program): a(n) = 28-n.
  • A022985 (program): 29-n.
  • A022986 (program): 30-n.
  • A022987 (program): 31-n.
  • A022988 (program): 32-n.
  • A022989 (program): 33-n.
  • A022990 (program): 34-n.
  • A022991 (program): 35-n.
  • A022992 (program): 36-n.
  • A022993 (program): a(n) = 37 - n.
  • A022994 (program): 38-n.
  • A022995 (program): 39-n.
  • A022996 (program): 40-n.
  • A022997 (program): Numerator of n*(n-2)*(2*n-1)/(2*(n-1)).
  • A022998 (program): If n is odd then n, otherwise 2n.
  • A023000 (program): a(n) = (7^n - 1)/6.
  • A023001 (program): a(n) = (8^n - 1)/7.
  • A023002 (program): Sum of 10th powers.
  • A023003 (program): Number of partitions of n into parts of 4 kinds.
  • A023004 (program): Number of partitions of n into parts of 5 kinds.
  • A023005 (program): Number of partitions of n into parts of 6 kinds.
  • A023006 (program): Number of partitions of n into parts of 7 kinds.
  • A023007 (program): Number of partitions of n into parts of 8 kinds.
  • A023008 (program): Number of partitions of n into parts of 9 kinds.
  • A023009 (program): Number of partitions of n into parts of 10 kinds.
  • A023010 (program): Number of partitions of n into parts of 11 kinds.
  • A023011 (program): Number of partitions of n into parts of 13 kinds.
  • A023012 (program): Number of partitions of n into parts of 14 kinds.
  • A023013 (program): Number of partitions of n into parts of 15 kinds.
  • A023014 (program): Number of partitions of n into parts of 16 kinds.
  • A023015 (program): Number of partitions of n into parts of 17 kinds.
  • A023016 (program): Number of partitions of n into parts of 18 kinds.
  • A023017 (program): Number of partitions of n into parts of 19 kinds.
  • A023018 (program): Number of partitions of n into parts of 20 kinds.
  • A023019 (program): Number of partitions of n into parts of 21 kinds.
  • A023020 (program): Number of partitions of n into parts of 22 kinds.
  • A023021 (program): Number of partitions of n into parts of 23 kinds.
  • A023022 (program): Number of partitions of n into two relatively prime parts. After initial term, this is the “half-totient” function phi(n)/2 (A000010(n)/2).
  • A023023 (program): Number of partitions of n into 3 unordered relatively prime parts.
  • A023037 (program): a(n) = n^0+n^1+…+n^(n-1), or a(n) = (n^n-1)/(n-1) with a(0)=0; a(1)=1.
  • A023038 (program): a(n) = 12*a(n-1) - a(n-2).
  • A023039 (program): a(n) = 18*a(n-1) - a(n-2).
  • A023043 (program): 6th differences of factorial numbers.
  • A023044 (program): 7th differences of factorial numbers.
  • A023045 (program): 8th differences of factorial numbers.
  • A023046 (program): 9th differences of factorial numbers.
  • A023047 (program): 10th differences of factorial numbers.
  • A023053 (program): Number of noncrossing rooted trees with n nodes on a circle that do not have leaves at level 1.
  • A023054 (program): Simon Plouffe’s conjectured extension of sequence A008368.
  • A023105 (program): Number of distinct quadratic residues mod 2^n.
  • A023111 (program): Squares that remain square when the digit 1 is appended.
  • A023112 (program): Squares that remain square when the digit 4 is appended.
  • A023113 (program): Squares that remain square when the digit 6 is appended.
  • A023114 (program): Squares that remain square when the digit 9 is appended.
  • A023134 (program): Signature sequence of 1/Pi (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i’s is the signature of x).
  • A023136 (program): Number of cycles of function f(x) = 4x mod n.
  • A023140 (program): Number of cycles of function f(x) = 8x mod n.
  • A023162 (program): Numbers k such that F(k) == -1 (mod k), where F(n) = A000045(n) is the n-th Fibonacci number.
  • A023165 (program): Numbers k such that Fibonacci(k) == -5 (mod k).
  • A023173 (program): Numbers k such that Fibonacci(k) == 1 (mod k).
  • A023196 (program): Nondeficient numbers: numbers k such that sigma(k) >= 2k; union of A000396 and A005101.
  • A023200 (program): Primes p such that p + 4 is also prime.
  • A023201 (program): Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)
  • A023202 (program): Primes p such that p + 8 is also prime.
  • A023203 (program): Primes p such that p + 10 is also prime.
  • A023204 (program): Primes p such that 2*p + 3 is also prime.
  • A023205 (program): Numbers m such that m and 2*m + 5 are both prime.
  • A023206 (program): Numbers m such that m and 2*m + 7 both prime.
  • A023207 (program): Numbers m such that m and 2*m + 9 both prime.
  • A023208 (program): Primes p such that 3*p + 2 is also prime.
  • A023209 (program): Primes p such that 3p + 4 is also prime.
  • A023210 (program): Primes p such that 3*p + 8 is also prime.
  • A023211 (program): Primes p such that 3*p + 10 is also prime.
  • A023212 (program): Primes p such that 4*p+1 is also prime.
  • A023213 (program): Primes p such that 4p + 3 is prime.
  • A023214 (program): Primes p such that 4*p + 5 is also prime.
  • A023215 (program): Primes p such that 4*p + 7 is also prime.
  • A023216 (program): Primes p such that 4*p + 9 is also prime.
  • A023217 (program): Primes p such that 5*p + 2 is also prime.
  • A023218 (program): Primes p such that 5*p + 4 is also prime.
  • A023219 (program): Primes p such that 5p+6 is a prime.
  • A023220 (program): Primes p such that 5*p + 8 is also prime.
  • A023221 (program): Primes p such that 6*p + 5 is also prime.
  • A023222 (program): Primes p such that 6*p + 7 is also prime.
  • A023223 (program): Primes p such that 7*p + 2 is also prime.
  • A023224 (program): Primes p such that 7*p + 4 is also prime.
  • A023225 (program): Primes p such that 7*p + 6 is also prime.
  • A023226 (program): Primes p such that 7*p + 8 is also prime.
  • A023227 (program): Primes p such that 7*p + 10 is also prime.
  • A023228 (program): Numbers k such that k and 8*k + 1 are both prime.
  • A023229 (program): Primes p such that 8*p + 3 is also prime.
  • A023230 (program): Numbers k such that k and 8*k + 5 are both prime.
  • A023231 (program): Primes p such that 8*p + 7 is also prime.
  • A023232 (program): Primes p such that 8*p + 9 is also prime.
  • A023233 (program): Primes p such that 9*p + 2 is also prime.
  • A023234 (program): Primes p such that 9*p + 4 is also prime.
  • A023235 (program): Primes p such that 9*p + 8 is also prime.
  • A023236 (program): Primes p such that 9*p + 10 is also prime.
  • A023237 (program): Numbers k such that k and 10*k + 1 are both prime.
  • A023238 (program): Primes p such that 10*p + 3 is also prime.
  • A023239 (program): Primes p such that 10*p + 7 is also prime.
  • A023240 (program): Primes p such that 10*p + 9 is also prime.
  • A023358 (program): Number of compositions into sums of cubes.
  • A023359 (program): Number of compositions (ordered partitions) of n into powers of 2.
  • A023360 (program): Number of compositions of n into prime parts.
  • A023361 (program): Number of compositions of n into positive triangular numbers.
  • A023367 (program): a(n+1) = a(n) converted to base 4 from base 3 (written in base 10).
  • A023369 (program): a(n+1) = a(n) converted to base 6 from base 3 (written in base 10).
  • A023370 (program): a(n+1) = a(n) converted to base 7 from base 3 (written in base 10).
  • A023371 (program): a(n+1) = a(n) converted to base 8 from base 3 (written in base 10).
  • A023373 (program): a(n+1) = a(n) converted to base 5 from base 4 (written in base 10).
  • A023374 (program): a(n+1) = a(n) converted to base 6 from base 4 (written in base 10).
  • A023375 (program): a(n+1) = a(n) converted to base 7 from base 4 (written in base 10).
  • A023376 (program): a(n+1) = a(n) converted to base 8 from base 4 (written in base 10).
  • A023377 (program): a(n+1) = a(n) converted to base 9 from base 4 (written in base 10).
  • A023378 (program): a(n+1) = a(n) converted to base 10 from base 4 (written in base 10).
  • A023379 (program): a(n+1) = a(n) converted to base 6 from base 5 (written in base 10).
  • A023380 (program): a(n+1) = a(n) converted to base 7 from base 5 (written in base 10).
  • A023381 (program): a(n+1) = a(n) converted to base 8 from base 5 (written in base 10).
  • A023382 (program): a(n+1) = a(n) converted to base 9 from base 5 (written in base 10).
  • A023383 (program): a(n+1) = a(n) converted to base 10 from base 5 (written in base 10).
  • A023384 (program): a(n+1) = a(n) converted to base 7 from base 6 (written in base 10).
  • A023385 (program): a(n+1) = a(n) converted to base 8 from base 6 (written in base 10).
  • A023386 (program): a(n+1) = a(n) converted to base 9 from base 6 (written in base 10).
  • A023387 (program): a(n+1) = a(n) converted to base 10 from base 6 (written in base 10).
  • A023390 (program): a(n+1) = a(n) written in base 7 (read in base 10); a(1) = 7.
  • A023393 (program): Maximal number of circles of radius 1 that can be packed in a circle of radius n.
  • A023396 (program): If any odd power of 2 ends with k 1’s and 2’s, they must be the first k terms of this sequence in reverse order.
  • A023397 (program): In base 10, if any power of 2 ends with k 2’s and 3’s, they must be the first k terms of this sequence in reverse order.
  • A023398 (program): If any power of 2 ends with k 2’s and 5’s, they must be the first k terms of this sequence in reverse order.
  • A023399 (program): If any power of 2 ends with k 2’s and 7’s, they must be the first k terms of this sequence in reverse order.
  • A023400 (program): If any power of 2 ends with k 2’s and 9’s, they must be the first k terms of this sequence in reverse order.
  • A023401 (program): If any even power of 2 ends with k 1’s and 4’s, they must be the first k terms of this sequence in reverse order.
  • A023402 (program): If any power of 2 ends with k 3’s and 4’s, they must be the first k terms of this sequence in reverse order.
  • A023403 (program): If any power of 2 ends with k 4’s and 5’s, they must be the first k terms of this sequence in reverse order.
  • A023404 (program): If any power of 2 ends with k 4’s and 7’s, they must be the first k terms of this sequence in reverse order.
  • A023405 (program): If any power of 2 ends with k 4’s and 9’s, they must be the first k terms of this sequence in reverse order.
  • A023406 (program): If any even power of 2 ends with k 1’s and 6’s, they must be the first k terms of this sequence in reverse order.
  • A023407 (program): If any power of 2 ends with k 3’s and 6’s, they must be the first k terms of this sequence in reverse order.
  • A023408 (program): If any power of 2 ends with k 5’s and 6’s, they must be the first k terms of this sequence in reverse order.
  • A023409 (program): If any power of 2 ends with k 6’s and 7’s, they must be the first k terms of this sequence in reverse order.
  • A023410 (program): In base 10, if any power of 2 ends with k 6’s and 9’s, they must be the first k terms of this sequence in reverse order.
  • A023411 (program): If any even power of 2 ends with k 1’s and 8’s, they must be the first k terms of this sequence in reverse order.
  • A023412 (program): If any power of 2 ends with k 3’s and 8’s, they must be the first k terms of this sequence in reverse order.
  • A023413 (program): If any power of 2 ends with k 5’s and 8’s, they must be the first k terms of this sequence in reverse order.
  • A023414 (program): If any power of 2 ends with k 7’s and 8’s, they must be the first k terms of this sequence in reverse order.
  • A023415 (program): If any power of 2 ends with k 8’s and 9’s, they must be the first k terms of this sequence in reverse order.
  • A023416 (program): Number of 0’s in binary expansion of n.
  • A023418 (program): Denominator of n*(n-3)*(3*n^2 - 6*n + 2)/(3*(n-1)*(n-2)).
  • A023424 (program): Expansion of (1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5).
  • A023426 (program): Generalized Catalan Numbers.
  • A023427 (program): Number of Dyck n-paths with ascents and descents of length equal to 1 (mod 4).
  • A023431 (program): Generalized Catalan Numbers.
  • A023432 (program): Number of Dyck n-paths with ascents and descents of length equal to 1 (mod 3).
  • A023434 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-4).
  • A023435 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-5).
  • A023436 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6).
  • A023437 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-7).
  • A023438 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-8).
  • A023439 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-9).
  • A023440 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-10).
  • A023441 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-11).
  • A023442 (program): Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-12).
  • A023443 (program): a(n) = n - 1.
  • A023444 (program): a(n) = n-2.
  • A023445 (program): n-3.
  • A023446 (program): n-4.
  • A023447 (program): a(n) = n-5.
  • A023448 (program): n-6.
  • A023449 (program): n-7.
  • A023450 (program): n-8.
  • A023451 (program): a(n) = n-9.
  • A023452 (program): n-10.
  • A023453 (program): n-11.
  • A023454 (program): n-12.
  • A023455 (program): n-13.
  • A023456 (program): n-14.
  • A023457 (program): n-15.
  • A023458 (program): n-16.
  • A023459 (program): n-17.
  • A023460 (program): n-18.
  • A023461 (program): n-19.
  • A023462 (program): n-20.
  • A023463 (program): n-21.
  • A023464 (program): n-22.
  • A023465 (program): n-23.
  • A023466 (program): a(n) = n - 24.
  • A023467 (program): n-25.
  • A023468 (program): n-26.
  • A023469 (program): n-27.
  • A023470 (program): n-28.
  • A023471 (program): n-29.
  • A023472 (program): a(n) = n - 30.
  • A023473 (program): n-31.
  • A023474 (program): a(n) = n-32.
  • A023475 (program): n-33.
  • A023476 (program): n-34.
  • A023477 (program): n-35.
  • A023478 (program): n-36.
  • A023479 (program): n-37.
  • A023480 (program): n-38.
  • A023481 (program): n-39.
  • A023482 (program): n-40.
  • A023483 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th non-Fibonacci number).
  • A023484 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number) and d(n) = (n-th non-Fibonacci number).
  • A023485 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number A000204 > 1) and d(n) = (n-th non-Fibonacci number).
  • A023486 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th non-Fibonacci number).
  • A023487 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th non-Fibonacci number).
  • A023488 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th number that is 1 or is not a Fibonacci number).
  • A023489 (program): Sum of n-th Lucas number greater than 3 and n-th number that is 1 or is not a Fibonacci number.
  • A023490 (program): n-th non-Lucas number plus Fibonacci(n + 1).
  • A023491 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th non-Lucas number).
  • A023493 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 1) and d(n) = (n-th non-Lucas number).
  • A023494 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th non-Lucas number).
  • A023495 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th non-Lucas number).
  • A023496 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2) and d(n) = (n-th number that is 1 or is not a Lucas number).
  • A023497 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 3) and d(n) = (n-th number that is 1 or is not a Lucas number).
  • A023499 (program): a(n) = b(n) + d(n), where b(n) = ( (n+1)st Fibonacci number) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
  • A023500 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 1) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
  • A023501 (program): a(n) = b(n) + d(n), where b(n) = (n-th Lucas number > 1) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
  • A023502 (program): a(n) = b(n) + d(n), where b(n) = (n-th Fibonacci number > 2 ) and d(n) = (n-th number that is 1, 2, or 3, or is not a Lucas number).
  • A023503 (program): Greatest prime divisor of prime(n) - 1.
  • A023504 (program): Greatest exponent in prime-power factorization of prime(n) - 1.
  • A023505 (program): Least odd prime divisor of prime(n) - 1, or 1 if prime(n) - 1 is a power of 2.
  • A023506 (program): Exponent of 2 in prime factorization of prime(n) - 1.
  • A023507 (program): a(n) = sum of distinct prime divisors of prime(n) - 1.
  • A023508 (program): Sum of exponents in prime-power factorization of n-th prime - 1.
  • A023509 (program): Greatest prime divisor of prime(n) + 1.
  • A023510 (program): Greatest exponent in prime-power factorization of prime(n) + 1.
  • A023511 (program): Least odd prime divisor of prime(n) + 1, or 1 if prime(n) + 1 is a power of 2.
  • A023512 (program): Exponent of 2 in prime factorization of prime(n) + 1.
  • A023513 (program): a(n) = sum of distinct prime divisors of prime(n) + 1.
  • A023514 (program): a(n) = sum of exponents in prime-power factorization of prime(n) + 1.
  • A023515 (program): a(n) = prime(n)*prime(n-1) - 1.
  • A023516 (program): Number of distinct prime divisors of prime(n)*prime(n-1) - 1.
  • A023517 (program): Greatest prime divisor of prime(n)*prime(n-1) - 1.
  • A023518 (program): Greatest exponent in prime-power factorization of prime(n)*prime(n-1) - 1.
  • A023519 (program): Least odd prime divisor of prime(n)*prime(n-1) - 1, or 1 if prime(n)*prime(n-1) - 1 is a power of 2.
  • A023520 (program): Exponent of 2 in prime factorization of prime(n)*prime(n-1) - 1.
  • A023521 (program): Sum of distinct prime divisors of prime(n)*prime(n-1) - 1.
  • A023522 (program): Sum of exponents in prime-power factorization of p(n)*p(n-1) - 1.
  • A023523 (program): a(n) = prime(n)*prime(n-1) + 1.
  • A023524 (program): Number of distinct prime divisors of prime(n)*prime(n-1) + 1.
  • A023525 (program): Greatest prime divisor of prime(n)*prime(n-1) + 1.
  • A023526 (program): Greatest exponent in prime-power factorization of p(n)*p(n-1) + 1.
  • A023527 (program): Least odd prime divisor of p(n)*p(n-1) + 1, or 1 if p(n)*p(n-1) + 1 is a power of 2.
  • A023528 (program): Exponent of 2 in prime factorization of prime(n)*prime(n-1) + 1.
  • A023529 (program): Sum of distinct prime divisors of p(n)*p(n-1) + 1.
  • A023530 (program): Sum of exponents in prime-power factorization of p(n)*p(n-1) + 1.
  • A023531 (program): a(n) = 1 if n is of the form m(m+3)/2, otherwise 0.
  • A023532 (program): a(n) = 0 if n of form m(m+3)/2, otherwise 1.
  • A023533 (program): a(n) = 1 if n is of the form m(m+1)(m+2)/6, and 0 otherwise.
  • A023535 (program): Convolution of natural numbers with A023531.
  • A023536 (program): Convolution of natural numbers with A023532.
  • A023537 (program): a(n) = Lucas(n+4) - (3*n+7).
  • A023538 (program): Convolution of natural numbers with (1, p(1), p(2), … ), where p(k) is the k-th prime.
  • A023539 (program): Convolution of natural numbers with composite numbers.
  • A023540 (program): Expansion of 1/((1-x)(1-5x)(1-9x)(1-11x)).
  • A023541 (program): Convolution of natural numbers with Beatty sequence for the golden mean A000201.
  • A023542 (program): Convolution of natural numbers with Beatty sequence for tau^2 A001950.
  • A023543 (program): Convolution of natural numbers with A023533.
  • A023544 (program): Convolution of natural numbers with A014306.
  • A023545 (program): Convolution of natural numbers >= 2 and natural numbers >= 3.
  • A023546 (program): Convolution of natural numbers >= 2 and A023531.
  • A023547 (program): Convolution of natural numbers >= 2 and A023532.
  • A023548 (program): Convolution of natural numbers >= 2 and Fibonacci numbers.
  • A023549 (program): Convolution of natural numbers >= 2 and Lucas numbers.
  • A023550 (program): Convolution of natural numbers >= 2 and (F(2), F(3), F(4), …).
  • A023551 (program): Self-convolution of natural numbers >= 3.
  • A023552 (program): Convolution of natural numbers >= 3 and Fibonacci numbers.
  • A023553 (program): Convolution of natural numbers >= 3 and Lucas numbers.
  • A023554 (program): Convolution of natural numbers >= 3 and (Fib(2), Fib(3), Fib(4), …).
  • A023555 (program): Self-convolution of A023531.
  • A023556 (program): Convolution of A023531 and A023532.
  • A023557 (program): Convolution of A023531 and Fibonacci numbers.
  • A023558 (program): Convolution of A023531 and Lucas numbers.
  • A023559 (program): Convolution of A023531 and (1, p(1), p(2), …).
  • A023560 (program): Convolution of A023531 and composite numbers (A002808).
  • A023561 (program): Convolution of A023531 and (F(2), F(3), F(4), …).
  • A023562 (program): Convolution of A023531 and odd numbers.
  • A023563 (program): Convolution of A023531 and A000201.
  • A023564 (program): Convolution of A023531 and A001950.
  • A023565 (program): Convolution of A023531 and A023533.
  • A023566 (program): Convolution of A023531 and A014306.
  • A023567 (program): Convolution of A023531 and primes.
  • A023568 (program): Number of distinct prime divisors of prime(n)-3.
  • A023569 (program): Greatest prime divisor of prime(n) - 3.
  • A023570 (program): Greatest exponent in prime-power factorization of p(n)-3.
  • A023571 (program): Least odd prime divisor of p(n)-3, or 1 if p(n)-3 is a power of 2.
  • A023572 (program): Exponent of 2 in prime factorization of prime(n) - 3.
  • A023573 (program): Sum of distinct prime divisors of prime(n)-3.
  • A023574 (program): Sum of exponents in prime-power factorization of p(n)-3.
  • A023575 (program): Number of distinct prime divisors of prime(n)+3.
  • A023576 (program): Greatest prime divisor of prime(n)+3.
  • A023577 (program): Greatest exponent in prime-power factorization of prime(n)+3.
  • A023578 (program): Least odd prime divisor of prime(n)+3, or 1 if prime(n)+3 is a power of 2.
  • A023579 (program): Exponent of 2 in prime factorization of prime(n)+3.
  • A023580 (program): Sum of distinct prime divisors of prime(n)+3.
  • A023581 (program): Sum of exponents in prime-power factorization of p(n)+3.
  • A023582 (program): Number of distinct prime divisors of 2*prime(n)-1.
  • A023583 (program): Greatest prime divisor of 2*prime(n)-1.
  • A023584 (program): Greatest exponent in prime-power factorization of 2*p(n)-1.
  • A023585 (program): Least prime divisor of 2*prime(n)-1.
  • A023587 (program): a(n) = sum of distinct prime divisors of 2*prime(n)-1.
  • A023588 (program): a(n) = sum of exponents in prime-power factorization of 2*prime(n)-1.
  • A023589 (program): a(n) is the number of distinct prime divisors of 2*prime(n)+1.
  • A023590 (program): Greatest prime divisor of 2*prime(n)+1.
  • A023591 (program): Greatest exponent in prime-power factorization of 2*prime(n)+1.
  • A023592 (program): Least odd prime divisor of 2*prime(n)+1.
  • A023594 (program): a(n) = sum of distinct prime divisors of 2*prime(n)+1.
  • A023595 (program): a(n) = sum of exponents in prime-power factorization of 2*prime(n)+1.
  • A023596 (program): Convolution of A023532 and Fibonacci numbers.
  • A023597 (program): Convolution of A023532 and Lucas numbers.
  • A023600 (program): Convolution of A023532 and (F(2), F(3), F(4), …).
  • A023601 (program): Convolution of A023532 and odd numbers.
  • A023607 (program): a(n) = n * Fibonacci(n+1).
  • A023608 (program): Convolution of Fibonacci numbers and (1, prime(1), prime(2), …).
  • A023609 (program): Convolution of Fibonacci numbers and composite numbers.
  • A023610 (program): Convolution of Fibonacci numbers and {F(2), F(3), F(4), …}.
  • A023611 (program): Convolution of Fibonacci numbers and A000201.
  • A023612 (program): Convolution of Fibonacci numbers and A001950.
  • A023613 (program): Convolution of Fibonacci numbers and A023533.
  • A023614 (program): Convolution of Fibonacci numbers and A014306.
  • A023615 (program): Convolution of Fibonacci numbers and primes.
  • A023617 (program): Convolution of Lucas numbers and (1, p(1), p(2), …).
  • A023618 (program): Convolution of Lucas numbers and composite numbers.
  • A023619 (program): Convolution of Lucas numbers and (F(2), F(3), F(4), …).
  • A023620 (program): Convolution of Lucas numbers and odd numbers.
  • A023621 (program): Convolution of Lucas numbers and A000201.
  • A023622 (program): Convolution of Lucas numbers and A001950.
  • A023623 (program): Convolution of Lucas numbers and A023533.
  • A023624 (program): Convolution of Lucas numbers and A014306.
  • A023625 (program): Convolution of Lucas numbers and primes.
  • A023628 (program): Convolution of (1, p(1), p(2), …) and (F(2), F(3), F(4), …).
  • A023629 (program): a(n) = c([ n/2 ]) + n, with a(1) = 1, c = complement to a.
  • A023630 (program): a(n) = s(2n) - s(2n-1), where s( ) is sequence A023629.
  • A023631 (program): a(n) = c([ (n+1)/2 ]) + n, with a(1) = 1 and a(2) = 4, c = complement to a.
  • A023632 (program): a(n) = s(2n+1) - s(2n), where s( ) is sequence A023631.
  • A023633 (program): a(n) = c([ n/3 ]) + n, with a(1) = 1, a(2) = 2, c = complement to a.
  • A023634 (program): s(3n)-s(3n-1), where s( ) is sequence A023633.
  • A023645 (program): a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even.
  • A023649 (program): Convolution of composite numbers and (F(2), F(3), F(4), …).
  • A023650 (program): Convolution of composite numbers and odd numbers.
  • A023652 (program): Convolution of (F(2), F(3), F(4), …) and odd numbers.
  • A023653 (program): Convolution of (F(2), F(3), F(4), …) and A000201.
  • A023654 (program): Convolution of (F(2), F(3), F(4), …) and A001950.
  • A023655 (program): Convolution of (F(2), F(3), F(4), …) and A023533.
  • A023656 (program): Convolution of (F(2), F(3), F(4), …) and A014306.
  • A023657 (program): Convolution of (F(2), F(3), F(4), …) and primes.
  • A023658 (program): Convolution of odd numbers and A000201.
  • A023659 (program): Convolution of odd numbers and A001950.
  • A023660 (program): Convolution of odd numbers and A023533.
  • A023661 (program): Convolution of odd numbers and A014306.
  • A023662 (program): Convolution of odd numbers and primes.
  • A023670 (program): Convolution of A023533 with itself.
  • A023688 (program): Numbers with exactly 6 ones in binary expansion.
  • A023689 (program): Numbers with exactly 7 ones in binary expansion.
  • A023690 (program): Numbers with exactly 8 ones in binary expansion.
  • A023691 (program): Numbers with exactly 9 ones in binary expansion.
  • A023692 (program): Numbers with a single 1 in their ternary expansion.
  • A023693 (program): Numbers with exactly 2 1’s in ternary expansion.
  • A023694 (program): Numbers with exactly 3 1’s in ternary expansion.
  • A023695 (program): Numbers with exactly 4 1’s in ternary expansion.
  • A023696 (program): Numbers with exactly 5 1’s in ternary expansion.
  • A023697 (program): Numbers with exactly 6 1’s in ternary expansion.
  • A023698 (program): Numbers with exactly 7 1’s in ternary expansion.
  • A023699 (program): Numbers with a single 2 in their ternary expansion.
  • A023700 (program): Numbers with exactly 2 2’s in ternary expansion.
  • A023701 (program): Numbers with exactly 3 2’s in their ternary expansion.
  • A023702 (program): Numbers with exactly 4 2’s in ternary expansion of n.
  • A023703 (program): Numbers with exactly 5 2’s in ternary expansion.
  • A023704 (program): Numbers with exactly 6 2’s in ternary expansion.
  • A023705 (program): Numbers with no 0’s in base-4 expansion.
  • A023706 (program): Numbers with a single 0 in their base 4 expansion.
  • A023707 (program): Numbers with exactly 2 0’s in base 4 expansion.
  • A023708 (program): Numbers with exactly 3 0’s in base 4 expansion.
  • A023709 (program): Numbers with no 1’s in base 4 expansion.
  • A023710 (program): Numbers with a single 1 in their base 4 expansion.
  • A023711 (program): Numbers with exactly 2 1’s in base 4 expansion.
  • A023712 (program): Numbers with exactly 3 1’s in base 4 expansion.
  • A023713 (program): Numbers with no 2’s in base 4 expansion.
  • A023714 (program): Numbers with a single 2 in their base 4 expansion.
  • A023715 (program): Numbers with exactly 2 2’s in base 4 expansion.
  • A023716 (program): Numbers with exactly 3 2’s in base 4 expansion.
  • A023717 (program): Numbers with no 3’s in base-4 expansion.
  • A023718 (program): Numbers with a single 3 in their base 4 expansion.
  • A023719 (program): Numbers with exactly two 3’s in base 4 expansion.
  • A023720 (program): Numbers with exactly 3 3’s in base 4 expansion.
  • A023721 (program): Numbers with no 0’s in their base-5 expansion.
  • A023722 (program): Numbers with a single 0 in their base 5 expansion.
  • A023723 (program): Numbers with exactly 2 0’s in base 5 expansion.
  • A023724 (program): Numbers with exactly 3 0’s in base 5 expansion.
  • A023725 (program): Numbers with no 1’s in their base-5 expansion.
  • A023726 (program): Numbers with a single 1 in their base 5 expansion.
  • A023727 (program): Numbers with exactly 2 1’s in their base 5 expansion.
  • A023728 (program): Numbers with exactly 3 1’s in base 5 expansion.
  • A023729 (program): Numbers with no 2’s in their base-5 expansion.
  • A023730 (program): Numbers with a single 2 in their base 5 expansion.
  • A023731 (program): Numbers with exactly two 2’s in base 5 expansion.
  • A023732 (program): Numbers with exactly 3 2’s in base 5 expansion.
  • A023733 (program): Numbers with no 3’s in base-5 expansion.
  • A023734 (program): Numbers with a single 3 in their base-5 expansion.
  • A023735 (program): Numbers with exactly 2 3’s in their base-5 expansion.
  • A023736 (program): Numbers with exactly 3 3’s in their base-5 expansion.
  • A023738 (program): Numbers with a single 4 in their base 5 expansion.
  • A023739 (program): Numbers with exactly 2 4’s in base 5 expansion.
  • A023740 (program): Numbers with exactly 3 4’s in base 5 expansion.
  • A023741 (program): Ternary expansion uses each positive digit just once.
  • A023743 (program): Base 5 expansion uses each positive digit just once.
  • A023744 (program): Base 6 expansion uses each positive digit just once.
  • A023745 (program): Plaindromes: numbers whose digits in base 3 are in nondecreasing order.
  • A023746 (program): Plaindromes: numbers whose digits in base 4 are in nondecreasing order.
  • A023747 (program): Plaindromes: numbers whose digits in base 5 are in nondecreasing order.
  • A023748 (program): Plaindromes: numbers whose digits in base 6 are in nondecreasing order.
  • A023749 (program): Plaindromes: numbers whose digits in base 7 are in nondecreasing order.
  • A023750 (program): Plaindromes: numbers whose digits in base 8 are in nondecreasing order.
  • A023751 (program): Plaindromes: numbers whose digits in base 9 are in nondecreasing order.
  • A023758 (program): Numbers of the form 2^i - 2^j with i >= j.
  • A023759 (program): Nialpdromes: digits in base 3 are in nonincreasing order.
  • A023760 (program): Nialpdromes: digits in base 4 are in nonincreasing order.
  • A023761 (program): Nialpdromes: digits in base 5 are in nonincreasing order.
  • A023762 (program): Nialpdromes: digits in base 6 are in nonincreasing order.
  • A023763 (program): Nialpdromes: digits in base 7 are in nonincreasing order.
  • A023764 (program): Nialpdromes: digits in base 8 are in nonincreasing order.
  • A023765 (program): Nialpdromes: digits in base 9 are in nonincreasing order.
  • A023772 (program): Expansion of 1/((1-x)(1-5x)(1-9x)(1-12x)).
  • A023774 (program): Metadromes: numbers whose digits in base 5 are in strict ascending order.
  • A023786 (program): Katadromes: digits in base 4 are in strict descending order.
  • A023787 (program): Katadromes: digits in base 5 are in strict descending order.
  • A023788 (program): Katadromes: digits in base 6 are in strict descending order.
  • A023789 (program): Katadromes: digits in base 7 are in strict descending order.
  • A023790 (program): Katadromes: digits in base 8 are in strict descending order.
  • A023791 (program): Katadromes: digits in base 9 are in strict descending order.
  • A023796 (program): Katadromes: digits in base 15 are in strict descending order.
  • A023797 (program): Katadromes: digits in base 16 are in strict descending order.
  • A023798 (program): Xenodromes: all digits in base 3 are different.
  • A023805 (program): Xenodromes: all digits in base 11 are different.
  • A023806 (program): Xenodromes: all digits in base 12 are different.
  • A023807 (program): Xenodromes: all digits in base 13 are different.
  • A023808 (program): Xenodromes: all digits in base 14 are different.
  • A023809 (program): Xenodromes: all digits in base 15 are different.
  • A023810 (program): Xenodromes: all digits in base 16 are different.
  • A023811 (program): Largest metadrome (number with digits in strict ascending order) in base n.
  • A023813 (program): a(n) = n^(n*(n+1)/2).
  • A023816 (program): Sum of exponents in prime-power factorization of C(2n,n).
  • A023817 (program): Sum of exponents in prime-power factorization of C(2n,n-1).
  • A023818 (program): Sum of exponents in prime-power factorization of C(2n,n-2).
  • A023819 (program): Sum of exponents in prime-power factorization of C(3n,n).
  • A023820 (program): Sum of exponents in prime-power factorization of C(3n,n-1).
  • A023821 (program): Sum of exponents in prime-power factorization of C(3n,n-2).
  • A023822 (program): Sum of exponents in prime-power factorization of C(3n,n-3).
  • A023823 (program): Sum of exponents in prime-power factorization of C(3n,n+1).
  • A023824 (program): Sum of exponents in prime-power factorization of C(3n,n+2).
  • A023825 (program): Sum of exponents in prime-power factorization of C(3n,n+3).
  • A023826 (program): Sum of exponents in prime-power factorization of C(4n,n).
  • A023827 (program): Sum of exponents in prime-power factorization of C(4n,n-1).
  • A023828 (program): Sum of exponents in prime-power factorization of C(4n,n-2).
  • A023829 (program): Sum of exponents in prime-power factorization of C(4n,n-3).
  • A023830 (program): Sum of exponents in prime-power factorization of C(4n,n-4).
  • A023831 (program): Sum of exponents in prime-power factorization of C(4n,n+1).
  • A023832 (program): Sum of exponents in prime-power factorization of C(4n,n+2).
  • A023833 (program): Sum of exponents in prime-power factorization of C(4n,n+3).
  • A023834 (program): Sum of exponents in prime-power factorization of C(4n,2n).
  • A023835 (program): Sum of exponents in prime-power factorization of C(4n,2n-1).
  • A023836 (program): Sum of exponents in prime-power factorization of C(4n,2n-2).
  • A023837 (program): Sum of exponents in prime-power factorization of C(5n,n).
  • A023838 (program): Sum of exponents in prime-power factorization of C(5n,n-1).
  • A023839 (program): Sum of exponents in prime-power factorization of C(5n,n-2).
  • A023840 (program): Sum of exponents in prime-power factorization of C(5n,n-3).
  • A023841 (program): Sum of exponents in prime-power factorization of C(5n,n-4).
  • A023842 (program): Sum of exponents in prime-power factorization of C(5n,n-5).
  • A023843 (program): Sum of exponents in prime-power factorization of C(5n,n+1).
  • A023844 (program): Sum of exponents in prime-power factorization of C(5n,n+2).
  • A023845 (program): Sum of exponents in prime-power factorization of binomial(5n, n+3).
  • A023846 (program): Sum of exponents in prime-power factorization of binomial(5n, n+4).
  • A023847 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n).
  • A023848 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n-1).
  • A023849 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n-2).
  • A023850 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n+1).
  • A023851 (program): Sum of exponents in prime-power factorization of binomial(5n, 2n+2).
  • A023852 (program): Sum of exponents in prime-power factorization of binomial(6n, n).
  • A023853 (program): Sum of exponents in prime-power factorization of binomial(6n, 2n).
  • A023854 (program): Sum of exponents in prime-power factorization of binomial(6n, 3n).
  • A023855 (program): a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + … + (n+1-k)*k, where k = floor((n+1)/2).
  • A023856 (program): a(n) = 1*(n+1-1) + 2*(n+1-2) + … + k*(n+1-k), where k = floor((n+1)/2).
  • A023857 (program): a(n) = 1*(n+3-1) + 2*(n+3-2) + …. + k*(n+3-k), where k=floor((n+1)/2).
  • A023858 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k = floor((n+1)/2), t = A023531.
  • A023859 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2), and t = A023532.
  • A023860 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2), t = A000045 (Fibonacci numbers).
  • A023861 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A000032 (Lucas numbers).
  • A023862 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A008578 ({1} U primes).
  • A023863 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = A002808 (composite numbers).
  • A023864 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t = (F(2), F(3), F(4), …), F(n) = Fibonacci(n).
  • A023865 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t(n)=2*n+1 (odd numbers).
  • A023866 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A000201 (lower Wythoff sequence).
  • A023867 (program): a(n) = 1*t(n) + 2*t(n-1) + …+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).
  • A023868 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A023533.
  • A023869 (program): a(n) = 1*t(n) + 2*t(n-1) + … + k*t(n+1-k), where k=floor((n+1)/2) and t is A014306.
  • A023870 (program): a(n) = 1*prime(n) + 2*prime(n-1) + … + k*prime(n+1-k), where k=floor((n+1)/2) and prime(n) is the n-th prime.
  • A023871 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^2).
  • A023872 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^3).
  • A023873 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^4).
  • A023874 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^5).
  • A023875 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^6).
  • A023876 (program): G.f.: Product_{k>=1} (1 - x^k)^(-k^7).
  • A023877 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^8).
  • A023878 (program): Expansion of Product_{k>=1} (1 - x^k)^(-k^9).
  • A023879 (program): Number of partitions in expanding space.
  • A023880 (program): Number of partitions in expanding space.
  • A023881 (program): Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n.
  • A023882 (program): Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n).
  • A023883 (program): Nonprimes whose average of divisors is an integer.
  • A023884 (program): Average of divisors except itself is an integer.
  • A023887 (program): a(n) = sigma_n(n): sum of n-th powers of divisors of n.
  • A023888 (program): Sum of prime power divisors of n (1 included).
  • A023889 (program): Sum of the prime power divisors of n (not including 1).
  • A023890 (program): Sum of the nonprime divisors of n.
  • A023891 (program): Sum of composite divisors of n.
  • A023893 (program): Number of partitions of n into prime power parts (1 included); number of nonisomorphic Abelian subgroups of symmetric group S_n.
  • A023894 (program): Number of partitions of n into prime power parts (1 excluded).
  • A023895 (program): Number of partitions of n into composite parts.
  • A023896 (program): Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
  • A023900 (program): Dirichlet inverse of Euler totient function (A000010).
  • A023901 (program): Derivative of log of A002126.
  • A023946 (program): Expansion of 1/((1-x)(1-5x)(1-10x)(1-11x)).
  • A023947 (program): Expansion of 1/((1-x)(1-5x)(1-10x)(1-12x)).
  • A023948 (program): Expansion of 1/((1-x)(1-5x)(1-11x)(1-12x)).
  • A023949 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-8x)).
  • A023950 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-9x)).
  • A023951 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-10x)).
  • A023952 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-11x)).
  • A023953 (program): Expansion of 1/((1-x)(1-6x)(1-7x)(1-12x)).
  • A023954 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-9x)).
  • A023955 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-10x)).
  • A023956 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-11x)).
  • A023961 (program): First digit after decimal point of square root of n.
  • A023962 (program): First digit after decimal point of cube root of n.
  • A023963 (program): First digit after decimal point of 4th root of n.
  • A023969 (program): a(n) = round(sqrt(n)) - floor(sqrt(n)).
  • A023970 (program): First bit in fractional part of binary expansion of cube root of n.
  • A023971 (program): First bit in fractional part of binary expansion of 4th root of n.
  • A023972 (program): First bit in fractional part of binary expansion of 5th root of n.
  • A023974 (program): First bit in fractional part of binary expansion of 7th root of n.
  • A023975 (program): First bit in fractional part of binary expansion of 8th root of n.
  • A023976 (program): First bit in fractional part of binary expansion of 9th root of n.
  • A023978 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(3n; n,n,n).
  • A023979 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(4n; n,n,n,n).
  • A023980 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(4n;2n,n,n).
  • A023981 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n; n,n,n,n,n).
  • A023982 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n;3n,n,n).
  • A023983 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(5n;2n,2n,n).
  • A023985 (program): Sum of exponents in prime-power factorization of multinomial coefficient M(6n,2n,2n,2n).
  • A023991 (program): Sum of exponents of primes in multinomial coefficient M(3n; n+1,n,n-1).
  • A023999 (program): Absolute value of determinant of n X n matrix whose entries are the integers from 1 to n^2 spiraling inward, starting in a corner.
  • A024000 (program): a(n) = 1 - n.
  • A024001 (program): a(n) = 1-n^3.
  • A024002 (program): a(n) = 1 - n^4.
  • A024003 (program): a(n) = 1 - n^5.
  • A024004 (program): a(n) = 1 - n^6.
  • A024005 (program): a(n) = 1 - n^7.
  • A024006 (program): a(n) = 1 - n^8.
  • A024007 (program): a(n) = 1 - n^9.
  • A024008 (program): a(n) = 1 - n^10.
  • A024009 (program): a(n) = 1 - n^11.
  • A024010 (program): a(n) = 1 - n^12.
  • A024012 (program): a(n) = 2^n - n^2.
  • A024013 (program): 2^n-n^3.
  • A024014 (program): 2^n-n^4.
  • A024015 (program): 2^n-n^5.
  • A024016 (program): 2^n-n^6.
  • A024017 (program): 2^n-n^7.
  • A024018 (program): 2^n-n^8.
  • A024019 (program): 2^n-n^9.
  • A024020 (program): a(n) = 2^n - n^10.
  • A024021 (program): 2^n-n^11.
  • A024022 (program): a(n) = 2^n - n^12.
  • A024023 (program): a(n) = 3^n - 1.
  • A024024 (program): a(n) = 3^n - n.
  • A024025 (program): a(n) = 3^n-n^2.
  • A024026 (program): a(n) = 3^n - n^3.
  • A024027 (program): a(n) = 3^n - n^4.
  • A024028 (program): a(n) = 3^n - n^5.
  • A024029 (program): a(n) = 3^n-n^6.
  • A024030 (program): a(n) = 3^n - n^7.
  • A024031 (program): a(n) = 3^n - n^8.
  • A024032 (program): a(n) = 3^n - n^9.
  • A024033 (program): a(n) = 3^n - n^10.
  • A024034 (program): a(n) = 3^n - n^11.
  • A024035 (program): a(n) = 3^n - n^12.
  • A024036 (program): a(n) = 4^n - 1.
  • A024037 (program): a(n) = 4^n - n.
  • A024038 (program): a(n) = 4^n - n^2.
  • A024039 (program): a(n) = 4^n - n^3.
  • A024040 (program): a(n) = 4^n - n^4.
  • A024041 (program): a(n) = 4^n - n^5.
  • A024042 (program): a(n) = 4^n - n^6.
  • A024043 (program): a(n) = 4^n - n^7.
  • A024044 (program): a(n) = 4^n - n^8.
  • A024045 (program): a(n) = 4^n-n^9.
  • A024046 (program): a(n) = 4^n - n^10.
  • A024047 (program): a(n) = 4^n - n^11.
  • A024048 (program): a(n) = 4^n - n^12.
  • A024049 (program): a(n) = 5^n - 1.
  • A024050 (program): a(n) = 5^n - n.
  • A024051 (program): a(n) = 5^n - n^2.
  • A024052 (program): a(n) = 5^n - n^3.
  • A024053 (program): a(n) = 5^n - n^4.
  • A024054 (program): a(n) = 5^n - n^5.
  • A024055 (program): a(n) = 5^n - n^6.
  • A024056 (program): a(n) = 5^n - n^7.
  • A024057 (program): a(n) = 5^n - n^8.
  • A024058 (program): a(n) = 5^n - n^9.
  • A024059 (program): a(n) = 5^n - n^10.
  • A024060 (program): a(n) = 5^n - n^11.
  • A024061 (program): a(n) = 5^n - n^12.
  • A024062 (program): a(n) = 6^n - 1.
  • A024063 (program): 6^n-n.
  • A024064 (program): a(n) = 6^n - n^2.
  • A024065 (program): a(n) = 6^n - n^3.
  • A024066 (program): a(n) = 6^n - n^4.
  • A024067 (program): a(n) = 6^n - n^5.
  • A024068 (program): a(n) = 6^n - n^6.
  • A024069 (program): a(n) = 6^n - n^7.
  • A024070 (program): a(n) = 6^n-n^8.
  • A024071 (program): a(n) = 6^n - n^9.
  • A024072 (program): a(n) = 6^n - n^10.
  • A024073 (program): a(n) = 6^n - n^11.
  • A024074 (program): a(n) = 6^n - n^12.
  • A024075 (program): a(n) = 7^n-1.
  • A024076 (program): 7^n-n.
  • A024077 (program): a(n) = 7^n - n^2.
  • A024078 (program): a(n) = 7^n - n^3.
  • A024079 (program): a(n) = 7^n - n^4.
  • A024080 (program): a(n) = 7^n - n^5.
  • A024081 (program): a(n) = 7^n - n^6.
  • A024082 (program): 7^n-n^7.
  • A024083 (program): a(n) = 7^n - n^8.
  • A024084 (program): a(n) = 7^n - n^9.
  • A024085 (program): a(n) = 7^n - n^10.
  • A024086 (program): a(n) = 7^n - n^11.
  • A024087 (program): a(n) = 7^n - n^12.
  • A024088 (program): a(n) = 8^n - 1.
  • A024089 (program): 8^n-n.
  • A024090 (program): 8^n-n^2.
  • A024091 (program): a(n) = 8^n - n^3.
  • A024092 (program): a(n) = 8^n - n^4.
  • A024093 (program): a(n) = 8^n - n^5.
  • A024094 (program): 8^n-n^6.
  • A024095 (program): a(n) = 8^n - n^7.
  • A024096 (program): a(n) = 8^n - n^8.
  • A024097 (program): a(n) = 8^n - n^9.
  • A024098 (program): a(n) = 8^n - n^10.
  • A024099 (program): a(n) = 8^n - n^11.
  • A024100 (program): a(n) = 8^n - n^12.
  • A024101 (program): a(n) = 9^n-1.
  • A024102 (program): a(n) = 9^n - n.
  • A024103 (program): a(n) = 9^n - n^2.
  • A024104 (program): a(n) = 9^n - n^3.
  • A024105 (program): a(n) = 9^n - n^4.
  • A024106 (program): a(n) = 9^n-n^5.
  • A024107 (program): a(n) = 9^n - n^6.
  • A024108 (program): a(n) = 9^n-n^7.
  • A024109 (program): a(n) = 9^n - n^8.
  • A024110 (program): a(n) = 9^n - n^9.
  • A024111 (program): a(n) = 9^n - n^10.
  • A024112 (program): a(n) = 9^n - n^11.
  • A024113 (program): 9^n-n^12.
  • A024114 (program): Expansion of 1/((1-x)(1-6x)(1-8x)(1-12x)).
  • A024115 (program): 10^n-n.
  • A024116 (program): a(n) = 10^n - n^2.
  • A024117 (program): a(n) = 10^n - n^3.
  • A024118 (program): a(n) = 10^n - n^4.
  • A024119 (program): a(n) = 10^n - n^5.
  • A024120 (program): a(n) = 10^n - n^6.
  • A024121 (program): a(n) = 10^n - n^7.
  • A024122 (program): a(n) = 10^n - n^8.
  • A024123 (program): a(n) = 10^n - n^9.
  • A024124 (program): a(n) = 10^n - n^10.
  • A024125 (program): a(n) = 10^n - n^11.
  • A024126 (program): a(n) = 10^n - n^12.
  • A024127 (program): a(n) = 11^n-1.
  • A024128 (program): a(n) = 11^n - n.
  • A024129 (program): 11^n-n^2.
  • A024130 (program): a(n) = 11^n - n^3.
  • A024131 (program): a(n) = 11^n - n^4.
  • A024132 (program): a(n) = 11^n - n^5.
  • A024133 (program): a(n) = 11^n - n^6.
  • A024134 (program): a(n) = 11^n - n^7.
  • A024135 (program): a(n) = 11^n - n^8.
  • A024136 (program): a(n) = 11^n - n^9.
  • A024137 (program): a(n) = 11^n - n^10.
  • A024138 (program): a(n) = 11^n - n^11.
  • A024139 (program): a(n) = 11^n - n^12.
  • A024140 (program): a(n) = 12^n-1.
  • A024141 (program): a(n) = 12^n - n.
  • A024142 (program): 12^n-n^2.
  • A024143 (program): a(n) = 12^n - n^3.
  • A024144 (program): a(n) = 12^n - n^4.
  • A024145 (program): a(n) = 12^n - n^5.
  • A024146 (program): a(n) = 12^n - n^6.
  • A024147 (program): a(n) = 12^n - n^7.
  • A024148 (program): a(n) = 12^n - n^8.
  • A024149 (program): a(n) = 12^n - n^9.
  • A024150 (program): a(n) = 12^n - n^10.
  • A024151 (program): a(n) = 12^n - n^11.
  • A024152 (program): a(n) = 12^n - n^12.
  • A024163 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b < b - a.
  • A024164 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b = b - a.
  • A024165 (program): Number of integer-sided triangles with sides a,b,c, a<b<c, a+b+c=n such that c - b > b - a.
  • A024166 (program): a(n) = Sum_{1 <= i < j <= n} (j-i)^3.
  • A024167 (program): a(n) = n!*(1 - 1/2 + 1/3 - … + c/n), where c = (-1)^(n+1).
  • A024168 (program): a(n) = n!*(1/2 - 1/3 + … + c/n), where c = (-1)^n.
  • A024169 (program): Integer part of ((2nd elementary symmetric function of 1,2,…,n)/(1+2+…+n)).
  • A024170 (program): Expansion of 1/((1-x)(1-6x)(1-9x)(1-10x)).
  • A024172 (program): Integer part of ((3rd elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,…,n)).
  • A024174 (program): a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,…,n)).
  • A024175 (program): Expansion of (x^3 - 6*x^2 + 5*x - 1)/((2*x - 1)*(2*x^2 - 4*x + 1))
  • A024176 (program): a(n) = (n+2)!(1/3 - 1/4 + … + c/(n+2)), where c=(-1)^(n+1).
  • A024177 (program): a(n) = floor ( (2nd elementary symmetric function of 2,3,…,n+2)/(2+3+…+n+2) ).
  • A024178 (program): a(n) = floor(3rd elementary symmetric function of 2,3,…,n+3)/(2+3+…+n+3)).
  • A024180 (program): a(n) = floor(3rd elementary symmetric function of 2,3,…,n+3)/ 2nd elementary symmetric function of (2,3,…,n+3) ).
  • A024182 (program): Integer part of ((4th elementary symmetric function of 2,3,…,n+4)/(3rd elementary symmetric function of 2,3,…,n+4)).
  • A024183 (program): Second elementary symmetric function of 3,4,…,n+3.
  • A024184 (program): Third elementary symmetric function of 3,4,…,n+4.
  • A024187 (program): n-th elementary symmetric function of 3,4,…,n+3.
  • A024188 (program): a(n) = ((n+2)!/2)(1/3 - 1/4 + … + c/(n+2)), where c = (-1)^(n+1).
  • A024189 (program): a(n) = ((n+3)!/2)*Sum_{k=1..n} (-1)^(k+1)/(k+3).
  • A024190 (program): [ (2nd elementary symmetric function of 3,4,…,n+3)/(3+4+…+n+3) ].
  • A024191 (program): [ (3rd elementary symmetric function of 3,4,…,n+4)/(3+4+…+n+4) ].
  • A024195 (program): Integer part of (4th elementary symmetric function of S(n))/(3rd elementary symmetric of S(n)), where S(n) = {3,4, …, n+5}.
  • A024196 (program): a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.
  • A024197 (program): a(n) = 3rd elementary symmetric function of the first n+2 odd positive integers.
  • A024199 (program): a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1).
  • A024200 (program): a(0) = 1, a(1) = 0, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1).
  • A024201 (program): [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 odd positive integers}.
  • A024202 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.
  • A024204 (program): [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.
  • A024206 (program): Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2).
  • A024212 (program): 2nd elementary symmetric function of first n+1 positive integers congruent to 1 mod 3.
  • A024215 (program): Sum of squares of first n positive integers congruent to 1 mod 3.
  • A024216 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 3.
  • A024217 (program): a(n) = ( Product {k = 1..n} 3*k - 2 ) * ( Sum {k = 1..n} (-1)^(k+1)/(3*k - 2) ).
  • A024218 (program): a(n) = s(1)*s(2)*…*s(n+1)(1/s(2) - 1/s(3) + … + c/s(n+1)), where c=(-1)^n+1 and s(k) = 3k-2 for k = 1,2,3,…
  • A024219 (program): a(n) = floor( (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ), where S(n) = {first n+1 positive integers congruent to 1 mod 3}.
  • A024220 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 3}.
  • A024222 (program): Number of shuffles (perfect faro shuffles with cut) required to return a deck of size n to original order.
  • A024224 (program): a(n) = floor((4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n))), where S(n) = {first n+3 positive integers congruent to 1 mod 3}.
  • A024235 (program): E.g.f. tan(x)*sin(x)/2 (even powers only).
  • A024253 (program): Expansion of sin(sin(x))*x/2.
  • A024255 (program): a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers.
  • A024270 (program): Expansion of sin(x)*sin(sin(x))/2.
  • A024272 (program): E.g.f. tan(x)*sinh(x)/2 (even powers only).
  • A024283 (program): E.g.f. (1/2) * tan(x)^2 (even powers only).
  • A024305 (program): a(n) = 2*(n+1) + 3*n + … + (k+1)*(n+2-k), where k = floor((n+1)/2).
  • A024306 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k=[ (n+1)/2) ], s = (natural numbers >= 2), t = (natural numbers >= 3).
  • A024307 (program): a(n) = 2*t(n) + 3*t(n-1) + … + (k+1)*t(n+1-k), where k=floor((n+1)/2) and t = A023531.
  • A024308 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k=[ (n+1)/2) ], s = (natural numbers >= 2), t = A023532.
  • A024309 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Fibonacci numbers).
  • A024310 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 2), t = (Lucas numbers).
  • A024312 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3).
  • A024313 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3), t = A023531.
  • A024314 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2)), s = (natural numbers >= 3), t = A023532.
  • A024315 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor(n/2), s = (natural numbers >= 3), t = (Fibonacci numbers).
  • A024316 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2)), s = A023531.
  • A024323 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (odd natural numbers).
  • A024330 (program): Expansion of tanh(log(1+x))*log(1+x)/2.
  • A024332 (program): E.g.f.: sin(log(1+x))*log(1+x)/2.
  • A024337 (program): Expansion of sinh(log(1+x))*log(1+x)/2.
  • A024343 (program): Expansion of e.g.f. sin(x^2) in powers of x^(4*n + 2).
  • A024346 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)(1-11*x)).
  • A024347 (program): Expansion of 1/((1-x)*(1-6*x)*(1-9*x)*(1-12*x)).
  • A024348 (program): Expansion of tan(x^2).
  • A024352 (program): Numbers which are the difference of two positive squares, c^2 - b^2 with 1 <= b < c.
  • A024355 (program): Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives values of AUB, sorted.
  • A024358 (program): Sum of the sizes of binary subtrees of the perfect binary tree of height n.
  • A024361 (program): Number of primitive Pythagorean triangles with leg n.
  • A024362 (program): Number of primitive Pythagorean triangles with hypotenuse n.
  • A024378 (program): a(n) = 2nd elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
  • A024381 (program): a(n) = sum of squares of first n positive integers congruent to 1 mod 4.
  • A024382 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
  • A024383 (program): a(n) = s(1)*s(2)*…*s(n)*(1/s(1) - 1/s(2) + … + c/s(n)), where c = (-1)^(n+1) and s(k) = 4k-3 for k = 1,2,3,…
  • A024384 (program): a(n) = s(1)*s(2)*…*s(n+1)*(1/s(2) - 1/s(3) + … + c/s(n+1)), where c = (-1)^(n+1) and s(k) = 4k-3 for k = 1,2,3,…
  • A024385 (program): a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 1 mod 4}.
  • A024386 (program): [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 4}.
  • A024388 (program): [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 4}.
  • A024390 (program): [ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 1 mod 4}.
  • A024391 (program): 2nd elementary symmetric function of the first n+1 positive integers congruent to 2 mod 3.
  • A024392 (program): a(n) = 3rd elementary symmetric function of the first n+2 positive integers congruent to 2 mod 3.
  • A024394 (program): a(n) is the sum of squares of the first n positive integers congruent to 2 mod 3.
  • A024395 (program): a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 2 mod 3.
  • A024396 (program): a(n) = ( Product {k = 1..n} 3*k - 1 ) * ( Sum {k = 1..n} (-1)^(k+1)/(3*k - 1) ).
  • A024397 (program): a(n) = s(1)*s(2)*…*s(n+1)*(1/s(2) - 1/s(3) + … + c/s(n+1)), where c = (-1)^(n+1) and s(k) = 3k-1 for k = 1,2,3,…
  • A024398 (program): a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 2 mod 3}.
  • A024399 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.
  • A024401 (program): a(n) = [ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 2 mod 3}.
  • A024403 (program): [ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.
  • A024409 (program): Hypotenuses of more than one primitive Pythagorean triangle.
  • A024418 (program): a(n) = t mod s(n,n-1), where t = max{s(n,k): k=1,2,…,n}, s(n,k) = Stirling numbers of the second kind, n >= 2.
  • A024419 (program): a(n) = n! (1/C(n,0) + 1/C(n,1) + … + 1/C(n,[ n/2 ])).
  • A024420 (program): a(n) = n! * Sum_{j=0..floor(n/2)} (-1)^j/binomial(n,j).
  • A024421 (program): a(n) = n!*(1/C(n,0) - 1/C(n,1) - … - 1/C(n,[ n/2 ])).
  • A024426 (program): a(n) = floor((1/n)*(S(n,1) + S(n,2) + … + S(n,n))), where S(i,j) are Stirling numbers of second kind.
  • A024429 (program): Expansion of e.g.f. sinh(exp(x)-1).
  • A024430 (program): Expansion of e.g.f. cosh(exp(x)-1).
  • A024434 (program): Expansion of 1/((1-x)(1-6x)(1-10x)(1-11x)).
  • A024435 (program): Expansion of 1/((1-x)(1-6x)(1-10x)(1-12x)).
  • A024436 (program): Expansion of 1/((1-x)(1-6x)(1-11x)(1-12x)).
  • A024437 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-9x)).
  • A024438 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-10x)).
  • A024439 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-11x)).
  • A024440 (program): Expansion of 1/((1-x)(1-7x)(1-8x)(1-12x)).
  • A024441 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-10x)).
  • A024442 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-11x)).
  • A024443 (program): Expansion of 1/((1-x)(1-7x)(1-9x)(1-12x)).
  • A024444 (program): Expansion of 1/((1-x)(1-7x)(1-10x)(1-11x)).
  • A024445 (program): Expansion of 1/((1-x)(1-7x)(1-10x)(1-12x)).
  • A024446 (program): Expansion of 1/((1-x)(1-7x)(1-11x)(1-12x)).
  • A024447 (program): Sum of the products of the primes taken 2 at a time from the first n primes.
  • A024450 (program): Sum of squares of the first n primes.
  • A024451 (program): a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
  • A024458 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers).
  • A024459 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (Lucas numbers).
  • A024460 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (1, p(1), p(2), …).
  • A024461 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (composite numbers).
  • A024463 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (odd natural numbers).
  • A024464 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A000201 (lower Wythoff sequence).
  • A024465 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A001950 (upper Wythoff sequence).
  • A024466 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers), t = A023533.
  • A024467 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = A014306.
  • A024468 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (primes).
  • A024469 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers).
  • A024470 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (1, p(1), p(2), …).
  • A024471 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (composite numbers).
  • A024472 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (F(2), F(3), …).
  • A024473 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (odd natural numbers).
  • A024474 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A000201 (lower Wythoff sequence).
  • A024475 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A001950 (upper Wythoff sequence).
  • A024476 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Lucas numbers), t = A023533.
  • A024477 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = A014306.
  • A024478 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Lucas numbers), t = (primes).
  • A024479 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (1, p(1), p(2), …).
  • A024482 (program): a(n) = (1/2)*(binomial(2n, n) - binomial(2n-2, n-1)).
  • A024483 (program): a(n) = binomial(2*n, n) mod binomial(2*n-2, n-1).
  • A024485 (program): a(n) = (2/(3*n-1))*binomial(3*n,n).
  • A024486 (program): a(n) = (1/(2n+1))*Multinomial(3n; n,n,n).
  • A024487 (program): a(n) = (1/(4n+2))*M(3n; n,n,n).
  • A024488 (program): a(n) = (1/(3n-1))*M(3n; n,n,n), where M(…) is a multinomial coefficient.
  • A024489 (program): a(n) = (1/(9n-3))*M(3n; n,n,n), where M() is a multinomial coefficient.
  • A024490 (program): a(n) = C(n-1,1) + C(n-3,3) + … + C(n-2*m-1,2*m+1), where m = floor((n-2)/4).
  • A024491 (program): a(n) = (1/(4n-1))*C(4n,2n).
  • A024492 (program): Catalan numbers with odd index: a(n) = binomial(4*n+2, 2*n+1)/(2*n+2).
  • A024493 (program): a(n) = C(n,0) + C(n,3) + … + C(n,3[n/3]).
  • A024494 (program): a(n) = C(n,1) + C(n,4) + … + C(n, 3*floor(n/3) + 1).
  • A024495 (program): a(n) = C(n,2) + C(n,5) + … + C(n, 3*floor(n/3)+2).
  • A024496 (program): a(n) = (3/(8n-4))*C(4n,n).
  • A024498 (program): a(n) = [ C(2n,n)/n ].
  • A024499 (program): a(n) = [ C(2n,n)/(n-1) ].
  • A024500 (program): a(n) = [ C(2n,n)/n^2 ].
  • A024501 (program): [ C(4n,2n)/C(4n,n) ].
  • A024502 (program): a(n) = floor(C(2n,n)/2^n).
  • A024503 (program): a(n) = floor(binomial(2*n,n)/3^n).
  • A024504 (program): a(n) = floor(C(2n,n)/2^(n+1)).
  • A024505 (program): a (n) = [C (2 n, n)/2^(n + 2)].
  • A024506 (program): a(n) = [ C(2n,n)/2^(n+3) ].
  • A024507 (program): Numbers that are the sum of 2 distinct nonzero squares (with repetition).
  • A024508 (program): Numbers that are a sum of 2 distinct nonzero squares in more than one way.
  • A024509 (program): Numbers that are the sum of 2 nonzero squares, including repetitions.
  • A024515 (program): Positions of even numbers in A000404 (sums of 2 nonzero squares).
  • A024516 (program): Positions of odd numbers in A000404 (sums of 2 nonzero squares).
  • A024522 (program): a(n) = 2nd elementary symmetric function of {1, p(1), p(2), …, p(n-1)}, where p(0) = 1.
  • A024525 (program): a(n) = 1^2 + prime(1)^2 + prime(2)^2 + … + prime(n)^2.
  • A024528 (program): a(n) = n-th elementary symmetric function of {1, prime(1), prime(2), …, prime(n)}.
  • A024529 (program): a(n) = s(1)*s(2)*…*s(n)*(1/s(1) - 1/s(2) + … + c/s(n)), where s(1) = 1, s(k) = p(k-1) for k >= 2 and c = (-1)^(n+1).
  • A024537 (program): a(n) = floor( a(n-1)/(sqrt(2) - 1) ), with a(0) = 1.
  • A024538 (program): a(n) = [ n/{n*sqrt(2)} ], where {x} := x - [ x ].
  • A024539 (program): a(n) = [ 1/{n*sqrt(2)} ], where {x} := x - [ x ].
  • A024540 (program): a(n) = Sum_{k=1..n} floor( 1/{k*sqrt(2)} ), where {x} := x - floor(x).
  • A024543 (program): [ n/{n/sqrt(2)} ], where {x} := x - [ x ].
  • A024544 (program): a(n) = [ 1/{n/sqrt(2)} ], where {x} := x - [ x ].
  • A024545 (program): a(n) = Sum_{k=1..n} floor( 1/{k/sqrt(2)} ), where {x} := x - floor(x).
  • A024547 (program): a(n) = [ n/{n*sqrt(3)} ], where {x} := x - [ x ].
  • A024548 (program): [ 1/{n*sqrt(3)} ], where {x} := x - [ x ].
  • A024549 (program): Sum of [ 1/{k*sqrt(3)} ], k = 1,2,…,n, where {x} := x - [ x ].
  • A024551 (program): a(n) = floor(a(n-1)/(sqrt(5) - 2)) for n > 0 and a(0) = 1.
  • A024552 (program): a(n) = [ n/{n*sqrt(5)} ], where {x} := x - [ x ].
  • A024553 (program): [ 1/{n*sqrt(5)} ], where {x} := x - [ x ].
  • A024554 (program): a(n) = Sum_{k=1..n} floor( 1/{k*sqrt(5)} ), where {x} := x - floor(x).
  • A024556 (program): Odd squarefree composite numbers.
  • A024557 (program): a(n) = [ a(n-1)/(sqrt(6) - 2) ], where a(0) = 1.
  • A024558 (program): a(n) = [ n/{n*sqrt(6)} ], where {x} := x - [ x ].
  • A024559 (program): a(n) = [ 1/{n*sqrt(6)} ], where {x} := x - [ x ].
  • A024560 (program): a(n) = Sum_{k=1..n} floor(1/{k*sqrt(6)}) where {x} := x - floor(x).
  • A024562 (program): a(n) = integer nearest a(n-1)/(sqrt(6) - 2), where a(0) = 1.
  • A024563 (program): a(n) = [ n/{n*sqrt(7)} ], where {x} := x - [ x ].
  • A024564 (program): a(n) = [ 1/{n*sqrt(7)} ], where {x} := x - [ x ].
  • A024565 (program): a(n) = Sum_{k=1..n} [ 1/{k*sqrt(7)} ] where {x} := x - [ x ].
  • A024567 (program): a(n) = integer nearest a(n-1)/(sqrt(7) - 2), where a(1) = 1.
  • A024568 (program): a(n) = [ n/{n*r} ], where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
  • A024569 (program): [ 1/{n*r} ], where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
  • A024570 (program): a(n) = Sum_{k=1..n} [ 1/{k*r} ] where r = (1 + sqrt(5))/2 and {x} := x - [ x ].
  • A024572 (program): a(n) = [ n/{n*e} ], {x} := x - [ x ].
  • A024573 (program): a(n) = floor(1/frac(n*e)).
  • A024574 (program): a(n) = Sum_{k=1..n} [ 1/{k*e} ] where {x} := x - [ x ].
  • A024577 (program): a(n) = [ n/{n/e} ], {x} := x - [ x ].
  • A024578 (program): a(n) = [ 1/{n/e} ], {x} := x - [ x ].
  • A024579 (program): a(n) = Sum_{k=1..n} [ 1/{k/e} ], where {x} := x - [ x ].
  • A024591 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …).
  • A024592 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = (odd natural numbers).
  • A024593 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A000201 (lower Wythoff sequence).
  • A024594 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A001950 (upper Wythoff sequence).
  • A024595 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (F(2), F(3), …), t = A023533.
  • A024596 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = A014306.
  • A024597 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (F(2), F(3), …), t = (primes).
  • A024598 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers).
  • A024599 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A000201 (lower Wythoff sequence).
  • A024600 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A001950 (upper Wythoff sequence).
  • A024601 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers), t = A023533.
  • A024602 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = A014306.
  • A024603 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (odd natural numbers), t = (primes).
  • A024605 (program): Number in position n when the numbers i^2 - i*j + j^2 (1 <= i <= j) are arranged in nondecreasing order.
  • A024606 (program): Numbers of form x^2 + xy + y^2 with distinct x and y > 0.
  • A024609 (program): Positions of odd numbers in A003136.
  • A024619 (program): Numbers that are not powers of primes p^k (k >= 0); complement of A000961.
  • A024620 (program): Positions of primes among the powers of primes (A000961).
  • A024624 (program): a(n) = position of square of n-th prime among the powers of primes (A000961).
  • A024629 (program): n written in fractional base 3/2.
  • A024630 (program): n written in fractional base 4/2.
  • A024631 (program): n written in fractional base 4/3.
  • A024632 (program): n written in fractional base 5/2.
  • A024633 (program): n written in fractional base 5/3.
  • A024634 (program): n written in fractional base 5/4.
  • A024635 (program): n written in fractional base 6/2.
  • A024636 (program): n written in fractional base 6/3.
  • A024637 (program): n written in fractional base 6/4.
  • A024638 (program): n written in fractional base 6/5.
  • A024639 (program): n written in fractional base 7/2.
  • A024640 (program): n written in fractional base 7/3.
  • A024641 (program): n written in fractional base 7/4.
  • A024642 (program): n written in fractional base 7/5.
  • A024643 (program): n written in fractional base 7/6.
  • A024644 (program): n written in fractional base 8/2.
  • A024645 (program): n written in fractional base 8/3.
  • A024646 (program): n written in fractional base 8/4.
  • A024647 (program): n written in fractional base 8/5.
  • A024648 (program): n written in fractional base 8/6.
  • A024649 (program): n written in fractional base 8/7.
  • A024650 (program): n written in fractional base 9/2.
  • A024651 (program): n written in fractional base 9/3.
  • A024652 (program): n written in fractional base 9/4.
  • A024653 (program): n written in fractional base 9/5.
  • A024654 (program): n written in fractional base 9/6.
  • A024655 (program): n written in fractional base 9/7.
  • A024656 (program): n written in fractional base 9/8.
  • A024661 (program): n written in fractional base 10/6.
  • A024664 (program): n written in fractional base 10/9.
  • A024670 (program): Numbers that are sums of 2 distinct positive cubes.
  • A024675 (program): Average of two consecutive odd primes.
  • A024676 (program): Prime divisors (not necessarily distinct) of n-th term of sequence A024675 (averages of two consecutive odd primes).
  • A024677 (program): Smallest prime divisor of n-th terms of sequence A024675 (averages of two consecutive odd primes).
  • A024678 (program): a(n) is the position of (prime(n+1) + prime(n+2))/2 in the ordered nonprimes.
  • A024683 (program): a(n) is the number of ways prime(n) is a sum of two composite numbers r,s satisfying r < s.
  • A024685 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = [ (n+1)/2 ], s = A000201 (lower Wythoff sequence).
  • A024692 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n+1-k), where k = floor((n+1)/2), s = A023533.
  • A024698 (program): a(n) = (prime(n+1) - 1)/4 if this is an integer or (prime(n+1) + 1)/4 otherwise.
  • A024699 (program): a(n) = (prime(n+2)-1)/6 if this is an integer or (prime(n+2)+ 1)/6 otherwise.
  • A024700 (program): a(n) = (prime(n+2)^2 - 1)/3.
  • A024701 (program): a(n) = (-1 + prime(n+1)^2)/4.
  • A024702 (program): a(n) = (prime(n)^2 - 1)/24.
  • A024703 (program): Prime divisors, including repetitions, of n-th term of A024702.
  • A024704 (program): Positions of even numbers in A024702.
  • A024705 (program): Positions of odd numbers in A024702.
  • A024706 (program): Positions of multiples of 3 in A024702.
  • A024707 (program): Positions of multiples of 5 in A024702.
  • A024708 (program): Number of distinct prime divisors of n-th term of A024702.
  • A024709 (program): Least prime divisor of A024702(n).
  • A024710 (program): Greatest prime divisor of A024702(n).
  • A024711 (program): a(n) = residue mod 2 of n-th term of A024702.
  • A024712 (program): a(n) = residue mod 3 of n-th term of A024702.
  • A024713 (program): a(n) = residue mod 5 of n-th term of A024702.
  • A024714 (program): a(n) = residue mod 7 of n-th term of A024702.
  • A024715 (program): a(n) = residue mod 11 of n-th term of A024702.
  • A024716 (program): a(n) = Sum_{1 <= j <= i <= n} S(i,j), where S(i,j) are Stirling numbers of the second kind.
  • A024717 (program): Sum of max{S(i,j): 1<=j<=i} for i = 1,2,…,n, where S(i,j) are Stirling numbers of the second kind.
  • A024718 (program): a(n) = (1/2)*(1 + Sum_{k=0..n} binomial(2*k, k)).
  • A024719 (program): a(n) = (1/3)*(2 + Sum_{k=0..n} C(3k,k)).
  • A024720 (program): a(n) = (1/4)*(3 + Sum_{k=0..n} C(4k,k)).
  • A024721 (program): a(n) = (1/5)*(4 + sum of C(5k,k)) for k = 0,1,2,…,n.
  • A024771 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-10x)).
  • A024772 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-11x)).
  • A024778 (program): Expansion of 1/((1-x)(1-8x)(1-9x)(1-12x)).
  • A024786 (program): Number of 2’s in all partitions of n.
  • A024787 (program): Number of 3’s in all partitions of n.
  • A024788 (program): Number of 4’s in all partitions of n.
  • A024789 (program): Number of 5’s in all partitions of n.
  • A024790 (program): Number of 6’s in all partitions of n.
  • A024791 (program): Number of 7’s in all partitions of n.
  • A024792 (program): Number of 8’s in all partitions of n.
  • A024793 (program): Number of 9’s in all partitions of n.
  • A024794 (program): Number of 10’s in all partitions of n.
  • A024798 (program): Positions of even numbers in A000408.
  • A024810 (program): a(n) = floor( tan(m*Pi/2) ), where m = 1 - 2^(-n).
  • A024811 (program): a(n) = floor(tan(m*Pi/2)), where m = 1 - 1/n.
  • A024812 (program): Numbers n for which there is exactly one positive integer m such that n = floor(cot(Pi/(2m))).
  • A024816 (program): Antisigma(n): Sum of the numbers less than n that do not divide n.
  • A024819 (program): a(n) = least m such that if r and s in {1/1, 1/3, 1/5,…, 1/(2n-1)} satisfy r < s, then r < k/m < s for some integer k.
  • A024820 (program): a(n) = least m such that if r and s in {1/2, 1/4, 1/6,…, 1/2n} satisfy r < s, then r < k/m < s for some integer k.
  • A024822 (program): a(n) = least m such that if r and s in {1/1, 1/4, 1/7,…, 1/(3n-2)} satisfy r < s, then r < k/m < s for some integer k.
  • A024823 (program): Least m such that if r and s in {1/2, 1/5, 1/8,…, 1/(3n-1)}, satisfy r < s, then r < k/m < s for some integer k.
  • A024824 (program): a(n) = least m such that if r and s in {1/3, 1/6, 1/9,…, 1/3n} satisfy r < s, then r < k/m < s for some integer k.
  • A024825 (program): a(n) = least m such that if r and s in {1/4, 1/8, 1/12,…, 1/4n} satisfy r < s, then r < k/m < s for some integer k.
  • A024831 (program): a(n) = least m such that if r and s in {F(h)/F(2*h): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).
  • A024832 (program): Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k.
  • A024835 (program): a(n) = least m such that if r and s in {1/2, 1/4, 1/6, …, 1/2n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
  • A024838 (program): Least m such that if r and s in {1/3, 1/6, 1/9, …, 1/3n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
  • A024839 (program): Least m such that if r and s in {1/4, 1/8, 1/12, …, 1/4n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
  • A024849 (program): a(n) = least m such that if r and s in {|F(h+1)-tau*F(h)|: h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).
  • A024851 (program): Least m such that if r and s in {-F(2*h) + tau*(F(2*h-1): h = 1,2,…,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).
  • A024853 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (natural numbers >= 2).
  • A024854 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = (natural numbers), t = (natural numbers >= 3).
  • A024855 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A023531.
  • A024856 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A023532.
  • A024857 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Fibonacci numbers).
  • A024858 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Lucas numbers).
  • A024860 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (composite numbers).
  • A024861 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (F(2), F(3), F(4), … ).
  • A024862 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor( n/2 ), s = natural numbers, t = odd natural numbers.
  • A024863 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A000201 (lower Wythoff sequence).
  • A024864 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A001950 (upper Wythoff sequence).
  • A024865 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000027, t = A023533.
  • A024866 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = A014306.
  • A024867 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (primes).
  • A024868 (program): a(n) = 2*(n+1) + 3*n + … + (k+1)*(n+2-k), where k = floor(n/2).
  • A024869 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = floor( n/2 ), s = natural numbers >= 2, t = natural numbers >= 3.
  • A024870 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = A023531.
  • A024871 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = A023532.
  • A024872 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (Fibonacci numbers).
  • A024873 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (Lucas numbers).
  • A024874 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (F(2), F(3), F(4), …).
  • A024875 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = floor( n/2 ), s = natural numbers >= 3.
  • A024876 (program): Expansion of (3-2*x-3*x^2-4*x^3)/(1-3*x+x^2+x^3+x^4).
  • A024877 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (Lucas numbers).
  • A024878 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (F(2), F(3), F(4), …).
  • A024879 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = A023531.
  • A024886 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = A023531, t = (odd natural numbers).
  • A024892 (program): Numbers k such that 3*k+1 is prime.
  • A024893 (program): Numbers k such that 3*k+2 is prime.
  • A024894 (program): Numbers k such that 5*k + 1 is prime.
  • A024895 (program): Numbers k such that 5*k - 3 is prime.
  • A024896 (program): Numbers k such that 5*k - 2 is prime.
  • A024897 (program): Numbers k such that 5*k + 4 is prime.
  • A024898 (program): Positive integers k such that 6*k - 1 is prime.
  • A024899 (program): Numbers k such that 6*k + 1 is prime.
  • A024900 (program): Numbers k such that 7*k + 6 is prime.
  • A024901 (program): Numbers k such that 7*k - 2 is prime.
  • A024902 (program): Numbers k such that 7*k + 4 is prime.
  • A024903 (program): Numbers k such that 7*k - 4 is prime.
  • A024904 (program): Numbers k such that 7*k - 5 is prime.
  • A024905 (program): Numbers k such that 7*k + 1 is prime.
  • A024906 (program): Numbers k such that 9*k + 1 is prime.
  • A024907 (program): Numbers k such that 9*k - 7 is prime.
  • A024908 (program): Numbers k such that 9*k - 5 is prime.
  • A024909 (program): Numbers k such that 9*k - 4 is prime.
  • A024910 (program): Numbers k such that 9*k - 2 is prime.
  • A024912 (program): Numbers k such that 10*k + 1 is prime.
  • A024913 (program): Numbers k such that 10*k - 7 is prime.
  • A024914 (program): Numbers k such that 10*k - 3 is prime.
  • A024916 (program): a(n) = Sum_{k=1..n} k*floor(n/k); also Sum_{k=1..n} sigma(k) where sigma(n) = sum of divisors of n (A000203).
  • A024917 (program): a(n) = Sum_{k=2..n} k*floor(n/k).
  • A024918 (program): Partial sums of the sequence of prime powers (A000961).
  • A024919 (program): a(n) = Sum_{k=1..n} (-1)^k*k*floor(n/k).
  • A024920 (program): a(n) = Sum_{k=1..n} (n-k) * floor(n/k).
  • A024921 (program): a(n) = Sum_{k=1..n} floor((n/k)*floor(n/k)).
  • A024922 (program): a(n) = Sum_{k=1..n} floor((n/k) * floor((n/k) * floor(n/k))).
  • A024923 (program): Partial products of the sequence of prime powers (A000961).
  • A024924 (program): a(n) = Sum_{k=1..n} prime(k)*floor(n/prime(k)).
  • A024925 (program): Sum of remainders of n mod prime(k), for k = 1,2,3,…,n.
  • A024926 (program): a(n) = Sum_{k=1..n} floor(p(k)/k).
  • A024927 (program): a(n) = Sum_{k=1..n} k*floor( prime(k)/k ).
  • A024930 (program): a(n) = sum of remainders of n mod 1,3,5,…,2k-1, where k = [ (n+1)/2 ].
  • A024931 (program): a(n) = sum of remainders of n mod 2,4,6,…,2k, where k = [ n/2 ].
  • A024932 (program): a(n) = Sum_{k=1..n} k*[ (n/k)*[ n/k ] ].
  • A024933 (program): a(n) = Sum_{k=1..n} k*[ (n/k)*[ (n/k)*[ n/k ] ] ].
  • A024934 (program): Sum of remainders n mod p, over all primes p < n.
  • A024935 (program): a(n) = minimal length of any partition of n into distinct primes.
  • A024937 (program): a(n) = number of 2’s in all partitions of n into distinct primes.
  • A024939 (program): Number of partitions of n into distinct odd primes.
  • A024966 (program): 7 times triangular numbers: 7*n*(n+1)/2.
  • A024973 (program): Sum of three distinct positive cubes, including repetitions (first differs from A024975 at 1009).
  • A024975 (program): Sums of three distinct positive cubes.
  • A024997 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.
  • A024998 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A024996.
  • A024999 (program): Expansion of 1/((1-x)(1-8x)(1-10x)(1-11x)).
  • A025000 (program): a(1) = 3; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
  • A025001 (program): a(1) = 5; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
  • A025002 (program): a(1) = 7; a(n+1) = a(n)-th nonprime, where nonprimes begin at 0.
  • A025004 (program): a(1) = 3; a(n+1) = a(n)-th nonprime, where nonprimes begin at 1.
  • A025007 (program): Expansion of 1/((1-x)(1-8x)(1-10x)(1-12x)).
  • A025008 (program): Expansion of 1/((1-x)(1-8x)(1-11x)(1-12x)).
  • A025009 (program): Expansion of 1/((1-x)(1-9x)(1-10x)(1-11x)).
  • A025012 (program): Central heptanomial coefficients: largest coefficient of (1+x+…+x^6)^n.
  • A025016 (program): Final digits of !n = Sum i!, i=0..n, (A003422) for very large n, read from right.
  • A025020 (program): Numbers whose least quadratic nonresidue (A020649) is 2.
  • A025031 (program): Expansion of 1/((1-x)(1-9x)(1-10x)(1-12x)).
  • A025035 (program): Number of partitions of { 1, 2, …, 3n } into sets of size 3.
  • A025036 (program): Number of partitions of { 1, 2, …, 4n } into sets of size 4.
  • A025037 (program): Number of partitions of { 1, 2, …, 5n } into sets of size 5.
  • A025038 (program): Number of partitions of { 1, 2, …, 6n } into sets of size 6.
  • A025045 (program): a(n) not of form prime +- a(k), k < n.
  • A025065 (program): Number of palindromic partitions of n.
  • A025078 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ] and s = (Fibonacci numbers).
  • A025079 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (Lucas numbers).
  • A025081 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (composite numbers).
  • A025082 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (F(2), F(3), F(4), …).
  • A025083 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (odd natural numbers).
  • A025084 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A000201 (lower Wythoff sequence).
  • A025085 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A001950 (upper Wythoff sequence).
  • A025086 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.
  • A025087 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = A014306.
  • A025088 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Fibonacci numbers), t = (primes).
  • A025089 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (Lucas numbers).
  • A025090 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (1, p(1), p(2), …).
  • A025091 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (composite numbers).
  • A025092 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (F(2), F(3), F(4), …).
  • A025093 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (odd natural numbers).
  • A025094 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A000201 (lower Wythoff sequence).
  • A025095 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A001950 (upper Wythoff sequence).
  • A025096 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A000032, t = A023533.
  • A025097 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = A014306.
  • A025098 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (primes).
  • A025099 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (1, p(1), p(2), …).
  • A025105 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …).
  • A025106 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = (odd natural numbers).
  • A025107 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A000201 (lower Wythoff sequence).
  • A025108 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A001950 (upper Wythoff sequence).
  • A025109 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = (F(2), F(3), F(4), …), t = A023533.
  • A025110 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = A014306.
  • A025111 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (F(2), F(3), F(4), …), t = (primes).
  • A025112 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = floor(n/2), s = (odd natural numbers).
  • A025113 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A000201 (lower Wythoff sequence).
  • A025114 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A001950 (upper Wythoff sequence).
  • A025115 (program): a(n) = s(1)*t(n) + s(2)*t(n-1) + … + s(k)*t(n-k+1), where k = floor(n/2), s = A005408 (odd natural numbers), t = A023533.
  • A025116 (program): s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = A014306.
  • A025117 (program): a(n) = s(1)t(n) + s(2)t(n-1) + … + s(k)t(n-k+1), where k = [ n/2 ], s = (odd natural numbers), t = (primes).
  • A025118 (program): a(n) = s(1)s(n) + s(2)s(n-1) + … + s(k)s(n-k+1), where k = [ n/2 ], s = A000201 (lower Wythoff sequence).
  • A025125 (program): a(n) = s(1)*s(n) + s(2)*s(n-1) + … + s(k)*s(n-k+1), where k = floor(n/2), s = A023533.
  • A025130 (program): Expansion of 1/((1-x)(1-9x)(1-11x)(1-12x)).
  • A025134 (program): a(n) = n-th elementary symmetric function of C(n,0), C(n,1), …, C(n,n).
  • A025136 (program): a(n) = 2nd elementary symmetric function of C(n,0), C(n,1), …, C(n,[ n/2 ]).
  • A025140 (program): a(n) = floor(n/2)-th elementary symmetric function of C(n,0), C(n,1), …, C(n, floor(n/2)).
  • A025147 (program): Number of partitions of n into distinct parts >= 2.
  • A025156 (program): A prime number of consecutive composites follow n.
  • A025163 (program): The value of the associated Legendre Polynomial of index n and order 1 evaluated at x=2^(-1/2) multiplied by 2^(3*n/2-1).
  • A025164 (program): a(n) = a(n-2) + (2n-1)a(n-1); a(0)=1, a(1)=1.
  • A025165 (program): a(n) = H_n(1) / 2^floor(n/2) where H_n is the n-th Hermite polynomial.
  • A025166 (program): E.g.f.: -exp(-x/(1-2*x))/(1-2*x).
  • A025167 (program): E.g.f: exp(x/(1-2*x))/(1-2*x).
  • A025168 (program): E.g.f.: exp(x/(1-2*x)).
  • A025169 (program): a(n) = 2*Fibonacci(2*n+2).
  • A025170 (program): G.f.: 1/(1 + 2*x + 9*x^2).
  • A025171 (program): Reciprocal Chebyshev polynomial of second kind evaluated at 4 multiplied by (-1)^n.
  • A025172 (program): Let phi = arccos(1/3), the dihedral angle of the regular tetrahedron. Then cos(n*phi) = a(n)/3^n.
  • A025173 (program): The Gegenbauer Polynomial of index n, order 1, evaluated at x=1/3 and multiplied by n*3^n/2.
  • A025174 (program): a(n) = binomial(3n-1, n-1).
  • A025175 (program): Jacobi polynomial P((1, 1), n, (1/2)).
  • A025176 (program): a(n) = Jacobi P-Polynomial P_n(alpha=1, beta=1, x=sqrt(2)) multiplied by 2^(n/2+floor(n/2)) and divided by n+1.
  • A025177 (program): Triangular array, read by rows: first differences in n,n direction of trinomial array A027907.
  • A025178 (program): First differences of the central trinomial coefficients A002426.
  • A025179 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.
  • A025180 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A025177.
  • A025181 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.
  • A025182 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.
  • A025183 (program): a(n) = T(2n-1,n), where T is the array defined in A025177.
  • A025184 (program): a(n) = T(2n,n), where T is the array defined in A025177.
  • A025185 (program): a(n) = T(3n,n), where T is the array defined in A025177.
  • A025186 (program): T(4n,n), where T is the array defined in A025177.
  • A025187 (program): a(n) = T(2n,n-1), where T is the array defined in A025177.
  • A025188 (program): a(n) = T(2n,n+1), where T is the array defined in A025177.
  • A025189 (program): a(n) = T(n,[ n/2 ]), where T is the array defined in A025177.
  • A025190 (program): Expansion of 1/((1-x)(1-10x)(1-11x)(1-12x)).
  • A025191 (program): a(n) = Sum{T(n,k)}, k = 0,1,…,n, where T is the array defined in A025177.
  • A025192 (program): a(0)=1; a(n) = 2*3^(n-1) for n >= 1.
  • A025211 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-5x)).
  • A025218 (program): a(n) = floor( Sum_{k=1..n} sqrt(k+1) ).
  • A025225 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).
  • A025226 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 2. Also a(n) = 3^n*C(n-1), where C = A000108 (Catalan numbers).
  • A025227 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + … + a(n-1)*a(1) for n >= 3.
  • A025228 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
  • A025229 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
  • A025230 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
  • A025231 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
  • A025232 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 3.
  • A025233 (program): Expansion of Product_{m>=1} (1 + q^m)^48.
  • A025234 (program): An L-tile is a 2 X 2 square with the upper 1 X 1 subsquare removed; no rotations are allowed. a(n) = number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or L-tiles.
  • A025235 (program): a(n) = (1/2)*s(n+2), where s = A014431.
  • A025237 (program): Expansion of (1 -x -sqrt(1-2*x-11*x^2))/(6*x^2).
  • A025238 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
  • A025239 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
  • A025240 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-2)*a(2) for n >= 3.
  • A025242 (program): Generalized Catalan numbers.
  • A025246 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
  • A025247 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
  • A025248 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
  • A025249 (program): a(n) = (1/2)*s(n+3), where s = A025248.
  • A025250 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
  • A025251 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-3)*a(3) for n >= 4.
  • A025252 (program): a(n) = (1/2)*s(n+3), where s = A025251.
  • A025262 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 4.
  • A025265 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + … + a(n-1)*a(1) for n >= 4.
  • A025266 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 4.
  • A025273 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
  • A025275 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
  • A025276 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5, with a(1) = 1, a(2) = a(3) = 0, a(4) = 1.
  • A025277 (program): a(n) = a(1)*a(n-1) + a(2)*a(n-2) + …+ a(n-1)*a(1) for n >= 5.
  • A025281 (program): a(n) = sopfr(n!), where sopfr = A001414 is the integer log.
  • A025284 (program): Numbers that are the sum of 2 nonzero squares in exactly 1 way.
  • A025285 (program): Numbers that are the sum of 2 nonzero squares in exactly 2 ways.
  • A025302 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 1 way.
  • A025303 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.
  • A025304 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 3 ways.
  • A025305 (program): Numbers that are the sum of 2 distinct nonzero squares in exactly 4 ways.
  • A025426 (program): Number of partitions of n into 2 nonzero squares.
  • A025435 (program): Number of partitions of n into 2 distinct squares.
  • A025440 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-6x)).
  • A025441 (program): Number of partitions of n into 2 distinct nonzero squares.
  • A025445 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-7x)).
  • A025446 (program): Number of partitions of n into 2 nonnegative cubes.
  • A025447 (program): Number of partitions of n into 3 nonnegative cubes.
  • A025448 (program): Number of partitions of n into 4 nonnegative cubes.
  • A025455 (program): a(n) is the number of partitions of n into 2 positive cubes.
  • A025456 (program): Number of partitions of n into 3 positive cubes.
  • A025464 (program): Number of partitions of n into 2 distinct nonnegative cubes.
  • A025465 (program): Number of partitions of n into 3 distinct nonnegative cubes.
  • A025467 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-8x)).
  • A025468 (program): a(n) is the number of partitions of n into 2 distinct positive cubes.
  • A025469 (program): Number of partitions of n into 3 distinct positive cubes.
  • A025470 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-9x)).
  • A025473 (program): a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).
  • A025474 (program): Exponent of the n-th prime power A000961(n).
  • A025475 (program): 1 and the prime powers p^m where m >= 2, thus excluding the primes.
  • A025476 (program): Prime root of n-th nontrivial prime power (A025475).
  • A025480 (program): a(2n) = n, a(2n+1) = a(n).
  • A025484 (program): a(0) = 0; a(n) = a(n/5)/5 if n = a(n/5) = 0 (mod 5); a(n) = a(n-1)+1 otherwise.
  • A025485 (program): Number of iterations of function f(k) = ceiling(sqrt(k))^2 - k on n required to force n <= 2.
  • A025486 (program): Least k with A025485(k) = n.
  • A025492 (program): Fixed point reached by iterating the Kempner function A002034 starting at n.
  • A025496 (program): Number of terms in Zeckendorf representation of 4^n.
  • A025497 (program): Number of terms in Zeckendorf representation of 5^n.
  • A025498 (program): Number of terms in Zeckendorf representation of 6^n.
  • A025499 (program): Number of terms in Zeckendorf representation of 7^n.
  • A025500 (program): Number of terms in Zeckendorf representation of 8^n.
  • A025501 (program): Number of terms in Zeckendorf representation of 9^n.
  • A025502 (program): Number of terms in Zeckendorf representation of 10^n.
  • A025505 (program): Index of n-th 2 in A006928.
  • A025512 (program): Index of n-th 2 in A022300.
  • A025516 (program): Index of n-th 2 in A022303.
  • A025523 (program): a(n) = 1 + Sum_{ k < n and k | n} a(k).
  • A025527 (program): a(n) = n!/lcm{1,2,…,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), …, C(n-1,n-1)}.
  • A025528 (program): Number of prime powers <= n with exponents > 0 (A246655).
  • A025529 (program): a(n) = (1/1 + 1/2 + … + 1/n)*lcm{1,2,…,n}.
  • A025530 (program): a(n) = (1/1 - 1/2 + … + (-1)^(n-1)/n)*lcm{1..n}.
  • A025532 (program): a(n) is the sum of exponents in the prime factorization of lcm{C(n,0), C(n,1), …, C(n,n)}.
  • A025533 (program): a(n) = (1/C(n,0) + 1/C(n,1) + … + 1/C(n,n))*L, where L = LCM{C(n,0), C(n,1),…, C(n,n)}..
  • A025534 (program): a(n) = (1/C(n,0) + 1/C(n,1) + … + 1/C(n,k))*L, where k = [ n/2 ], L = LCM{C(n,0), C(n,1),…, C(n,n)}.
  • A025535 (program): a(n) = (1/C(2n,0) - 1/C(2n,1) + … + d/C(2n,2n))*L, where d = (-1)^2n, L = LCM{C(2n,0), C(2n,1),…, C(2n,2n)}.
  • A025536 (program): a(n) = (1/C(n,0) - 1/C(n,1) + … + d/C(n,k))*L, where d = (-1)^k,k = [ n/2 ], L = LCM{C(n,0), C(n,1),…, C(n,n)}.
  • A025540 (program): Least common multiple of {C(0,0), C(2,1), …, C(2n,n)}.
  • A025543 (program): Least common multiple of the first n composite numbers.
  • A025544 (program): a(n) = sum of the exponents in the prime factorization of the least common multiple of the first n composite numbers.
  • A025547 (program): Least common multiple of {1,3,5,…,2n-1}.
  • A025548 (program): a(n) = sum of the exponents in the prime factorization of the least common multiple of {1,3,5,…,2n-1}.
  • A025549 (program): a(n) = (2n-1)!!/lcm{1,3,5,…,2n-1}.
  • A025551 (program): a(n) = 3^n*(3^n + 1)/2.
  • A025552 (program): LCM of {C(0,0), C(1,0), …, C(n, floor(n/2))}.
  • A025555 (program): Least common multiple (or LCM) of first n positive triangular numbers (A000217).
  • A025556 (program): a(n) = sum of the exponents in the prime factorization of LCM{1,3,6,…,C(n+1,2)}.
  • A025557 (program): a(n) = (n+1)!/LCM{1,3,6,…,C(n+1,2)}.
  • A025558 (program): a(n) = (n/(n+1)) * lcm(1,2,…,n+1).
  • A025559 (program): (1/1 - 1/3 + 1/6 + … + d/C(n+1,2))*LCM{1,3,6,…,C(n+1,2)}, where d = (-1)^n.
  • A025560 (program): a(n) = LCM{1, C(n-1,1), C(n-2,2), …, C(n-[ n/2 ],[ n/2 ])}.
  • A025561 (program): a(n) = sum of the exponents in the prime factorization of LCM{1, n-1, …, C(n-[ n/2 ],[ n/2 ])}.
  • A025562 (program): a(n) = n!/LCM{1, C(n-1,1), C(n-2,2), …, C(n-[ n/2 ],[ n/2 ])}.
  • A025564 (program): Triangular array, read by rows: pairwise sums of trinomial array A027907.
  • A025565 (program): a(n) = T(n,n-1), where T is array defined in A025564.
  • A025566 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.
  • A025567 (program): a(n) = T(n,n+1), where T is the array defined in A025564.
  • A025568 (program): a(n) = T(n,n+2) where T is the array defined in A025564.
  • A025569 (program): T(2n-1,n), where T is the array defined in A025564.
  • A025570 (program): a(n) = T(2n,n), where T is the array defined in A025564.
  • A025571 (program): a(n) = T(3n,n), where T is the array defined in A025564.
  • A025572 (program): a(n) = T(4n,n), where T is the array defined in A025564.
  • A025573 (program): a(n) = T(2n,n-1), where T is the array defined in A025564.
  • A025574 (program): T(2n,n+1), where T is the array defined in A025564.
  • A025575 (program): a(n) = T(n,[ n/2 ]), where T is the array defined in A025564.
  • A025576 (program): a(n) = T(n,[ n/2 ]+1), where T is the array defined in A025564.
  • A025577 (program): Expansion of (x/(1-x))*sqrt((1+x)/(1-3*x)).
  • A025578 (program): a(n) = Sum{T(n,k-1), k = 1,2,…,n}.
  • A025579 (program): a(1)=1, a(2)=2, a(n) = 4*3^(n-3) for n >= 3.
  • A025581 (program): Triangle read by rows: T(n, k) = n-k, for 0 <= k <= n.
  • A025583 (program): Composite numbers that are not the sum of 2 primes.
  • A025584 (program): Primes p such that p-2 is not a prime.
  • A025585 (program): Central Eulerian numbers A(2n-1,n).
  • A025586 (program): Largest value in ‘3x+1’ trajectory of n.
  • A025607 (program): Number of n-move rook paths on 8 X 8 board from given corner to same corner.
  • A025608 (program): Number of n-move rook paths on 8 X 8 board from given corner to opposite corner.
  • A025609 (program): Number of n-move rook paths on 8 X 8 board from given corner to adjacent corner.
  • A025620 (program): Numbers of form 4^i*9^j, with i, j >= 0.
  • A025643 (program): Exponent of 3 (value of i) in n-th number of form 3^i*8^j.
  • A025644 (program): Exponent of 3 (value of i) in n-th number of form 3^i*10^j.
  • A025669 (program): Exponent of 7 (value of i) in n-th number of form 7^i*8^j.
  • A025672 (program): Exponent of 8 (value of j) in n-th number of form 3^i*8^j.
  • A025675 (program): Exponent of 8 (value of j) in n-th number of form 7^i*8^j.
  • A025676 (program): Exponent of 8 (value of i) in n-th number of form 8^i*9^j.
  • A025682 (program): Exponent of 9 (value of j) in n-th number of form 8^i*9^j.
  • A025683 (program): Exponent of 9 (value of i) in n-th number of form 9^i*10^j.
  • A025685 (program): Exponent of 10 (value of j) in n-th number of form 3^i*10^j.
  • A025691 (program): Exponent of 10 (value of j) in n-th number of form 9^i*10^j.
  • A025692 (program): Index of 2^n within sequence of numbers of form 2^i*6^j.
  • A025693 (program): Index of 2^n within sequence of numbers of form 2^i*7^j.
  • A025694 (program): Index of 2^n within sequence of numbers of form 2^i * 9^j.
  • A025695 (program): Index of 2^n within sequence of numbers of form 2^i*10^j.
  • A025696 (program): Index of 3^n within sequence of numbers of form 3^i*4^j.
  • A025697 (program): Index of 3^n within sequence of numbers of form 3^i*6^j.
  • A025698 (program): Index of 3^n within sequence of numbers of form 3^i*7^j.
  • A025699 (program): Index of 3^n within sequence of numbers of form 3^i*8^j (A025615).
  • A025700 (program): Index of 3^n within sequence of numbers of form 3^i*10^j.
  • A025701 (program): Index of 4^n within sequence of numbers of form 3^i*4^j.
  • A025702 (program): Index of 4^n within sequence of numbers of form 4^i*5^j.
  • A025703 (program): Index of 4^n within sequence of numbers of form 4^i*6^j.
  • A025704 (program): Index of 4^n within sequence of numbers of form 4^i*7^j.
  • A025705 (program): Index of 4^n within sequence of numbers of form 4^i*10^j.
  • A025706 (program): Index of 5^n within sequence of numbers of form 4^i*5^j.
  • A025707 (program): Index of 5^n within sequence of numbers of form 5^i*6^j.
  • A025708 (program): Index of 5^n within sequence of numbers of form 5^i*7^j.
  • A025709 (program): Index of 5^n within sequence of numbers of form 5^i*8^j.
  • A025710 (program): Index of 5^n within sequence of numbers of form 5^i*9^j.
  • A025711 (program): Index of 5^n within sequence of numbers of form 5^i*10^j.
  • A025712 (program): Index of 6^n within sequence of numbers of form 2^i*6^j.
  • A025713 (program): Index of 6^n within sequence of numbers of form 3^i*6^j.
  • A025714 (program): Index of 6^n within sequence of numbers of form 4^i*6^j.
  • A025715 (program): Index of 6^n in A025622 (numbers of form 5^i*6^j).
  • A025716 (program): Index of 6^n within sequence of numbers of form 6^i*7^j.
  • A025717 (program): Index of 6^n within sequence of numbers of form 6^i*8^j.
  • A025718 (program): Index of 6^n within sequence of numbers of form 6^i*9^j.
  • A025719 (program): Index of 6^n within sequence of numbers of form 6^i*10^j.
  • A025720 (program): Index of 7^n within sequence of numbers of form 2^i*7^j.
  • A025721 (program): Index of 7^n within sequence of numbers of form 3^i*7^j.
  • A025722 (program): Index of 7^n within sequence of numbers of form 4^i*7^j.
  • A025723 (program): Index of 7^n within sequence of numbers of form 5^i*7^j.
  • A025724 (program): Index of 7^n within sequence of numbers of form 6^i*7^j.
  • A025725 (program): Index of 7^n within sequence of numbers of form 7^i*8^j.
  • A025726 (program): Index of 7^n within sequence of numbers of form 7^i*9^j.
  • A025727 (program): Index of 7^n within sequence of numbers of form 7^i*10^j.
  • A025728 (program): Index of 8^n within sequence of numbers of form 3^i*8^j (A025615).
  • A025729 (program): Index of 8^n within sequence of numbers of form 5^i*8^j.
  • A025730 (program): Index of 8^n within sequence of numbers of form 6^i*8^j.
  • A025731 (program): Index of 8^n within sequence of numbers of form 7^i*8^j.
  • A025732 (program): Index of 8^n within sequence of numbers of form 8^i*9^j.
  • A025733 (program): Index of 8^n within sequence of numbers of form 8^i*10^j.
  • A025734 (program): Index of 9^n within sequence of numbers of form 2^i*9^j.
  • A025735 (program): Index of 9^n within sequence of numbers of form 5^i*9^j.
  • A025736 (program): Index of 9^n within sequence of numbers of form 6^i*9^j.
  • A025737 (program): Index of 9^n within sequence of numbers of form 7^i*9^j.
  • A025738 (program): Index of 9^n within sequence of numbers of form 8^i*9^j.
  • A025739 (program): Index of 9^n within sequence of numbers of form 9^i*10^j.
  • A025740 (program): Index of 10^n within sequence of numbers of form 2^i*10^j.
  • A025742 (program): a(n) is the index of 10^n within sequence of numbers of form 4^i*10^j.
  • A025743 (program): Index of 10^n within sequence of numbers of form 5^i*10^j.
  • A025744 (program): Index of 10^n within sequence of numbers of form 6^i*10^j.
  • A025745 (program): Index of 10^n within sequence of numbers of form 7^i*10^j.
  • A025746 (program): Index of 10^n within sequence of numbers of form 8^i*10^j.
  • A025748 (program): 3rd order Patalan numbers (generalization of Catalan numbers).
  • A025749 (program): 4th order Patalan numbers (generalization of Catalan numbers).
  • A025750 (program): 5th-order Patalan numbers (generalization of Catalan numbers).
  • A025751 (program): 6th-order Patalan numbers (generalization of Catalan numbers).
  • A025752 (program): 7th-order Patalan numbers (generalization of Catalan numbers).
  • A025753 (program): 8th-order Patalan numbers (generalization of Catalan numbers).
  • A025754 (program): 9th-order Patalan numbers (generalization of Catalan numbers).
  • A025755 (program): 10th-order Patalan numbers (generalization of Catalan numbers).
  • A025756 (program): 3rd order Vatalan numbers (generalization of Catalan numbers).
  • A025757 (program): 4th order Vatalan numbers (generalization of Catalan numbers).
  • A025758 (program): 5th-order Vatalan numbers (generalization of Catalan numbers).
  • A025759 (program): 6th-order Vatalan numbers (generalization of Catalan numbers).
  • A025760 (program): 7th-order Vatalan numbers (generalization of Catalan numbers).
  • A025761 (program): 8th-order Vatalan numbers (generalization of Catalan numbers).
  • A025762 (program): 9th-order Vatalan numbers (generalization of Catalan numbers).
  • A025763 (program): 10th-order Vatalan numbers (generalization of Catalan numbers).
  • A025764 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)).
  • A025765 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)).
  • A025766 (program): Expansion of 1/((1-x)(1-x^2)(1-x^11)).
  • A025767 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^4)).
  • A025768 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^7)).
  • A025769 (program): Expansion of 1/((1-x)(1-x^3)(1-x^8)).
  • A025770 (program): Expansion of 1/((1-x)(1-x^3)(1-x^10)).
  • A025771 (program): Expansion of 1/((1-x)(1-x^3)(1-x^11)).
  • A025772 (program): Expansion of 1/((1-x)(1-x^4)(1-x^5)).
  • A025773 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)).
  • A025774 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)).
  • A025775 (program): Expansion of 1/((1-x)(1-x^4)(1-x^11)).
  • A025776 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)).
  • A025777 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)).
  • A025778 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)).
  • A025779 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^9)).
  • A025780 (program): Expansion of 1/((1-x)(1-x^5)(1-x^11)).
  • A025781 (program): Expansion of 1/((1-x)(1-x^5)(1-x^12)).
  • A025782 (program): Expansion of 1/((1-x)*(1-x^6)*(1-x^7)).
  • A025783 (program): Expansion of 1/((1-x)(1-x^6)(1-x^11)).
  • A025784 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)).
  • A025785 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)).
  • A025786 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)).
  • A025787 (program): Expansion of 1/((1-x)(1-x^7)(1-x^11)).
  • A025788 (program): Expansion of 1/((1-x)(1-x^7)(1-x^12)).
  • A025789 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)).
  • A025790 (program): Expansion of 1/((1-x)(1-x^8)(1-x^11)).
  • A025791 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)).
  • A025792 (program): Expansion of 1/((1-x)(1-x^9)(1-x^11)).
  • A025793 (program): Expansion of 1/((1-x)(1-x^10)(1-x^11)).
  • A025794 (program): Expansion of 1/((1-x)(1-x^11)(1-x^12)).
  • A025795 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)).
  • A025796 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)).
  • A025797 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)).
  • A025798 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)).
  • A025799 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)).
  • A025800 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^11)).
  • A025801 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^12)).
  • A025802 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)).
  • A025803 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)).
  • A025804 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)).
  • A025805 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^11)).
  • A025806 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)).
  • A025807 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^7)).
  • A025808 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)).
  • A025809 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)).
  • A025810 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)) in powers of x.
  • A025811 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^11)).
  • A025812 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^12)).
  • A025813 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^7)).
  • A025814 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^9)).
  • A025815 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^11)).
  • A025816 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^8)).
  • A025817 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^9)).
  • A025818 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^10)).
  • A025819 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^11)).
  • A025820 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^12)).
  • A025821 (program): Expansion of 1/((1-x^2)(1-x^8)(1-x^9)).
  • A025822 (program): Expansion of 1/((1-x^2)(1-x^8)(1-x^11)).
  • A025823 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^10)).
  • A025824 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^11)).
  • A025825 (program): Expansion of 1/((1-x^2)(1-x^9)(1-x^12)).
  • A025826 (program): Expansion of 1/((1-x^2)(1-x^10)(1-x^11)).
  • A025827 (program): Expansion of 1/((1-x^2)(1-x^11)(1-x^12)).
  • A025828 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)).
  • A025829 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)).
  • A025830 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)).
  • A025831 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)).
  • A025832 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)).
  • A025833 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^11)).
  • A025834 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^12)).
  • A025835 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)).
  • A025836 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)).
  • A025837 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^9)).
  • A025838 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)).
  • A025839 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^11)).
  • A025840 (program): Expansion of 1/((1-x^3)*(1-x^5)*(1-x^12)).
  • A025841 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)).
  • A025842 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)).
  • A025843 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)).
  • A025844 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^11)).
  • A025845 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)).
  • A025846 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)).
  • A025847 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)).
  • A025848 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^11)).
  • A025849 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^12)).
  • A025850 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)).
  • A025851 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)).
  • A025852 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^11)).
  • A025853 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^12)).
  • A025854 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)).
  • A025855 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^11)).
  • A025856 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^11)).
  • A025857 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^12)).
  • A025858 (program): Expansion of 1/((1-x^3)*(1-x^11)*(1-x^12)).
  • A025859 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)).
  • A025860 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)).
  • A025861 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)).
  • A025862 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)).
  • A025863 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^11)).
  • A025864 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^12)).
  • A025865 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)).
  • A025866 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^11)).
  • A025867 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)).
  • A025868 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)).
  • A025869 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)).
  • A025870 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^11)).
  • A025871 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^12)).
  • A025872 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)).
  • A025873 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^11)).
  • A025874 (program): Expansion of 1/((1-x^4)*(1-x^9)*(1-x^12)).
  • A025875 (program): Expansion of 1/((1-x^4)*(1-x^11)*(1-x^12)).
  • A025876 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^7)).
  • A025877 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^8)).
  • A025878 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^9)).
  • A025879 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^10)).
  • A025880 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^11)).
  • A025881 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^12)).
  • A025882 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^8)).
  • A025883 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^9)).
  • A025884 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^10)).
  • A025885 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^11)).
  • A025886 (program): Expansion of 1/((1-x^5)*(1-x^7)*(1-x^12)).
  • A025887 (program): Expansion of 1/((1-x^5)*(1-x^8)*(1-x^9)).
  • A025888 (program): Expansion of 1/((1-x^5)*(1-x^8)*(1-x^10)).
  • A025889 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^11)).
  • A025890 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^12)).
  • A025891 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)).
  • A025892 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^11)).
  • A025893 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^12)).
  • A025894 (program): Expansion of 1/((1-x^5)(1-x^10)(1-x^11)).
  • A025895 (program): Expansion of 1/((1-x^5)(1-x^10)(1-x^12)).
  • A025896 (program): Expansion of 1/((1-x^5)(1-x^11)(1-x^12)).
  • A025897 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)).
  • A025898 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)).
  • A025899 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)).
  • A025900 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^11)).
  • A025901 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^12)).
  • A025902 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)).
  • A025903 (program): Expansion of 1/((1-x^6)*(1-x^8)*(1-x^11)).
  • A025904 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)).
  • A025905 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^11)).
  • A025906 (program): Expansion of 1/((1-x^6)(1-x^10)(1-x^11)).
  • A025907 (program): Expansion of 1/((1-x^6)(1-x^11)(1-x^12)).
  • A025908 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)).
  • A025909 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)).
  • A025910 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^11)).
  • A025911 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^12)).
  • A025912 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)).
  • A025913 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^11)).
  • A025914 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^12)).
  • A025915 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^11)).
  • A025916 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^12)).
  • A025917 (program): Expansion of 1/((1-x^7)(1-x^11)(1-x^12)).
  • A025918 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)).
  • A025919 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^11)).
  • A025920 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^12)).
  • A025921 (program): Expansion of 1/((1-x^8)(1-x^10)(1-x^11)).
  • A025922 (program): Expansion of 1/((1-x^8)(1-x^11)(1-x^12)).
  • A025923 (program): Expansion of 1/((1-x^9)*(1-x^10)*(1-x^11)).
  • A025924 (program): Expansion of 1/((1-x^9)*(1-x^10)*(1-x^12)).
  • A025925 (program): Expansion of 1/((1-x^9)(1-x^11)(1-x^12)).
  • A025926 (program): Expansion of 1/((1-x^10)(1-x^11)(1-x^12)).
  • A025927 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-10x)).
  • A025928 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-11x)).
  • A025929 (program): Expansion of 1/((1-2x)(1-3x)(1-4x)(1-12x)).
  • A025930 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-6x)).
  • A025931 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-7x)).
  • A025932 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-8x)).
  • A025933 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-9x)).
  • A025934 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-10x)).
  • A025935 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-11x)).
  • A025936 (program): Expansion of 1/((1-2x)(1-3x)(1-5x)(1-12x)).
  • A025937 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-7x)).
  • A025938 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-8x)).
  • A025939 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-9x)).
  • A025940 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-10x)).
  • A025941 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-11x)).
  • A025942 (program): Expansion of 1/((1-2x)(1-3x)(1-6x)(1-12x)).
  • A025943 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-8x)).
  • A025944 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-9x)).
  • A025945 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-10x)).
  • A025946 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-11x)).
  • A025947 (program): Expansion of 1/((1-2x)(1-3x)(1-7x)(1-12x)).
  • A025948 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-9x)).
  • A025949 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-10x)).
  • A025950 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-11x)).
  • A025951 (program): Expansion of 1/((1-2x)(1-3x)(1-8x)(1-12x)).
  • A025952 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-10x)).
  • A025953 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-11x)).
  • A025954 (program): Expansion of 1/((1-2x)(1-3x)(1-9x)(1-12x)).
  • A025955 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)(1-11x)).
  • A025956 (program): Expansion of 1/((1-2x)(1-3x)(1-10x)(1-12x)).
  • A025957 (program): Expansion of 1/((1-2x)(1-3x)(1-11x)(1-12x)).
  • A025958 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-6x)).
  • A025959 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-7x)).
  • A025960 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-8x)).
  • A025961 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-9x)).
  • A025962 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-10x)).
  • A025963 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-11x)).
  • A025964 (program): Expansion of 1/((1-2x)(1-4x)(1-5x)(1-12x)).
  • A025965 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-7x)).
  • A025966 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-8x)).
  • A025967 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-9x)).
  • A025968 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-10x)).
  • A025969 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-11x)).
  • A025970 (program): Expansion of 1/((1-2x)(1-4x)(1-6x)(1-12x)).
  • A025971 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-8x)).
  • A025972 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-9x)).
  • A025973 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-10x)).
  • A025974 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-11x)).
  • A025975 (program): Expansion of 1/((1-2x)(1-4x)(1-7x)(1-12x)).
  • A025976 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-9x)).
  • A025977 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-10x)).
  • A025978 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-11x)).
  • A025979 (program): Expansion of 1/((1-2x)(1-4x)(1-8x)(1-12x)).
  • A025980 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-10x)).
  • A025981 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-11x)).
  • A025982 (program): Expansion of 1/((1-2x)(1-4x)(1-9x)(1-12x)).
  • A025983 (program): Expansion of 1/((1-2x)(1-4x)(1-10x)(1-11x)).
  • A025984 (program): Expansion of 1/((1-2x)(1-4x)(1-10x)(1-12x)).
  • A025985 (program): Expansion of 1/((1-2x)(1-4x)(1-11x)(1-12x)).
  • A025986 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-7x)).
  • A025987 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-8x)).
  • A025988 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-9x)).
  • A025989 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-10x)).
  • A025990 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-11x)).
  • A025991 (program): Expansion of 1/((1-2x)(1-5x)(1-6x)(1-12x)).
  • A025992 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-8x)).
  • A025993 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-9x)).
  • A025994 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-10x)).
  • A025995 (program): Expansion of 1/((1-2x)(1-5x)(1-7x)(1-11x)).
  • A025996 (program): Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-12*x)).
  • A025997 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-9x)).
  • A025998 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-10x)).
  • A025999 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-11x)).
  • A026000 (program): a(n) = T(2n, n), where T is the Delannoy triangle (A008288).
  • A026001 (program): a(n) = T(3n,n), where T = Delannoy triangle (A008288).
  • A026002 (program): a(n) = T(n,n+2), where T = Delannoy triangle (A008288).
  • A026003 (program): a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288).
  • A026004 (program): a(n) = T(3n+1,n), where T = Catalan triangle (A008315).
  • A026005 (program): a(n) = T(4*n,n), where T = Catalan triangle (A008315).
  • A026006 (program): Expansion of 1/((1-2x)(1-5x)(1-8x)(1-12x)).
  • A026007 (program): Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.
  • A026008 (program): a(n) = T(n, floor(n/2)), where T = Catalan triangle (A008315).
  • A026010 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.
  • A026011 (program): Expansion of Product_{m>=1} (1 + q^m)^(2*m).
  • A026012 (program): Second differences of Catalan numbers A000108.
  • A026013 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 4. Also a(n) = T(2n,n-1), where T is the array defined in A026009.
  • A026014 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 6. Also a(n) = T(2n,n-2), where T is the array defined in A026009.
  • A026015 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n) = 8. Also a(n) = T(2n,n-3), where T is the array defined in A026009.
  • A026016 (program): a(n) = binomial(2*n-1, n) - binomial(2*n-1, n+3).
  • A026017 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n-1) = 5. Also a(n) = T(2n-1,n-2), where T is the array defined in A026009.
  • A026018 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 2, s(2n-1) = 7. Also a(n) = T(2n-1,n-3), where T is the array defined in A026009.
  • A026019 (program): a(n) = binomial(3*n,n) - binomial(3*n,n-3).
  • A026020 (program): a(n) = binomial(4n, n) - binomial(4n, n - 3).
  • A026021 (program): T(n,[ n/2 ]), where T is the array defined in A026009.
  • A026023 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n and s(0) = 3. Also a(n) = Sum{T(n,k), k = 0,1,…,[ (n+3)/2 ]}, where T is defined in A026022.
  • A026024 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-10x)).
  • A026025 (program): a(n) = (n!)^2 * (1 + Sum(k=0…n-1) 1/((k+1)(k!)^2)).
  • A026026 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n-1) = 4. Also a(n) = T(2n-1,n-1), where T is defined in A026022.
  • A026027 (program): a(n) = number of (s(0), s(1), …, s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n-1) = 6. Also a(n) = T(2n-1,n-2), where T is defined in A026022.
  • A026028 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-11x)).
  • A026029 (program): Number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,….,n, s(0) = 3, s(2n) = 3. Also T(2n,n), where T is defined in A026022.
  • A026030 (program): a(n) = T(2n,n-1), where T is defined in A026022.
  • A026031 (program): a(n) = number of (s(0), s(1), …, s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,…,n, s(0) = 3, s(2n) = 7. Also a(n) = T(2n,n-2), where T is defined in A026022.
  • A026032 (program): a(n) = C(3n,n) - C(3n,n-4).
  • A026033 (program): C(4n,n) - C(4n,n-4).
  • A026034 (program): T(n,[ n/2 ]), where T is defined in A026022.
  • A026035 (program): Expansion of x^2*(2 - x + x^2) / ((1 + x)*(1 - x)^4).
  • A026036 (program): (d(n)-r(n))/5, where d = A006527 and r is the periodic sequence with fundamental period (4,1,4,0,1).
  • A026037 (program): a(n) = dot_product(1,2,…,n)*(3,4,…,n,1,2).
  • A026038 (program): a(n) = (d(n)-r(n))/2, where d = A026037 and r is the periodic sequence with fundamental period (1,0,0,1).
  • A026039 (program): a(n) = (d(n) - r(n))/5, where d = A026037 and r is the periodic sequence with fundamental period (1,2,0,2,0).
  • A026040 (program): a(n) = dot_product(1,2,…,n)*(4,5,…,n,1,2,3).
  • A026041 (program): a(n) = d(n)/2, where d = A026040.
  • A026042 (program): a(n) = (d(n)-r(n))/5, where d = A026040 and r is the periodic sequence with fundamental period (4,0,4,3,4).
  • A026043 (program): a(n) = dot_product(1,2,…,n)*(5,6,…,n,1,2,3,4).
  • A026044 (program): a(n) = (d(n)-r(n))/2, where d = A026043 and r is the periodic sequence with fundamental period (1,1,0,0).
  • A026045 (program): a(n) = (d(n)-r(n))/5, where d = A026043 and r is the periodic sequence with fundamental period (0,2,3,0,0).
  • A026046 (program): a(n) = dot_product(1,2,…,n)*(6,7,…,n,1,2,3,4,5).
  • A026047 (program): a(n) = (d(n)-r(n))/2, where d = A026046 and r is the periodic sequence with fundamental period (0,1,0,1).
  • A026048 (program): (d(n)-r(n))/5, where d = A026046 and r is the periodic sequence with fundamental period (1,0,4,0,0).
  • A026049 (program): a(n) = dot_product(1,2,…,n)*(7,8,…,n,1,2,3,4,5,6).
  • A026050 (program): a(n) = (d(n)-r(n))/2, where d = A026049 and r is the periodic sequence with fundamental period (1,0,0,1).
  • A026051 (program): a(n) = (d(n)-r(n))/5, where d = A026049 and r is the periodic sequence with fundamental period (4,1,4,0,1).
  • A026052 (program): (d(n)-r(n))/2, where d = A008778 and r is the periodic sequence with fundamental period (1,1,0,1).
  • A026053 (program): (d(n)-r(n))/5, where d = A008778 and r is the periodic sequence with fundamental period (0,3,1,0,1).
  • A026054 (program): dot product (n,n-1,…2,1).(3,4,…,n,1,2).
  • A026055 (program): a(n) = (d(n)-r(n))/2, where d = A026054 and r is the periodic sequence with fundamental period (1,0,0,0).
  • A026056 (program): a(n) = (d(n)-r(n))/5, where d = A026054 and r is the periodic sequence with fundamental period (3,3,0,0,4).
  • A026057 (program): a(n) = n*(n^2 + 12*n - 25)/6.
  • A026058 (program): a(n) = (d(n)-r(n))/2, where d = A026057 and r is the periodic sequence with fundamental period (0,0,1,0).
  • A026059 (program): a(n) = (d(n)-r(n))/5, where d = A026057 and r is the periodic sequence with fundamental period (1,0,3,1,0).
  • A026060 (program): a(n) = dot_product(n,n-1,…2,1)*(5,6,…,n,1,2,3,4).
  • A026061 (program): a(n) = (d(n)-r(n))/2, where d = A026060 and r is the periodic sequence with fundamental period (1,0,0,0).
  • A026062 (program): a(n) = (d(n)-r(n))/5, where d = A026060 and r is the periodic sequence with fundamental period (0,0,1,4,0).
  • A026063 (program): dot_product(n,n-1,…2,1)*(6,7,…,n,1,2,3,4,5).
  • A026064 (program): a(n) = (d(n)-r(n))/2, where d = A026063 and r is the periodic sequence with fundamental period (1,1,0,1).
  • A026065 (program): a(n) = (d(n)-r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).
  • A026066 (program): dot_product(n,n-1,…2,1)*(7,8,…,n,1,2,3,4,5,6).
  • A026067 (program): a(n) = (d(n)-r(n))/2, where d = A026066 and r is the periodic sequence with fundamental period (1,0,0,0).
  • A026068 (program): (d(n)-r(n))/5, where d = A026066 and r is the periodic sequence with fundamental period (0,3,1,0,1).
  • A026069 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A024996.
  • A026070 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A024996.
  • A026071 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A024996.
  • A026072 (program): a(n) = T(2n-1,n), where T is the array defined in A024996.
  • A026073 (program): T(2n,n), where T is the array defined in A024996.
  • A026074 (program): a(n) = T(3n,n), where T is the array defined in A024996.
  • A026075 (program): a(n) = T(4n,n), where T is the array defined in A024996.
  • A026076 (program): a(n) = T(2n,n-1), where T is the array defined in A024996.
  • A026077 (program): a(n) = T(2n,n+1), where T is the array defined in A024996.
  • A026079 (program): a(n) = Sum_{k = 1..n} T(k,k-1), where T is the array defined in A024996.
  • A026083 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4. Also a(n) = T(n,n), where T is the array defined in A026082.
  • A026084 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A026082.
  • A026085 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A026082.
  • A026086 (program): Number of (s(0), s(1), …, s(n)) such that s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 3; also a(n) = T(n,n-3), where T is the array defined in A026082.
  • A026087 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A026082.
  • A026088 (program): a(n) = T(2n-1,n), where T is the array defined in A026082.
  • A026089 (program): a(n) = T(2n,n), where T is the array defined in A026082.
  • A026091 (program): a(n) = T(4n,n), where T is the array defined in A026082.
  • A026092 (program): a(n) = T(2n,n-1), where T is the array defined in A026082.
  • A026093 (program): T(2n,n+1), where T is the array defined in A026082.
  • A026095 (program): a(n) = Sum{T(k,k-1)}, k = 1,2,…,n, where T is the array defined in A026082.
  • A026097 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2,3; |s(i) - s(i-1)| <= 1 for i >= 4. Also a(n) = sum of numbers in row n+1 of the array T defined in A026082 and a(n) = 24*3^(n-4) for n >= 4.
  • A026107 (program): Second differences of Motzkin numbers (A001006).
  • A026108 (program): Expansion of 1/((1-2x)(1-5x)(1-9x)(1-12x)).
  • A026109 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 3, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-3), where T is the array defined in A026105.
  • A026110 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-4), where T is the array defined in A026105.
  • A026112 (program): a(n) = T(2n,n), where T is the array defined in A026105.
  • A026116 (program): T(2n,n+1), where T is the array defined in A026105.
  • A026119 (program): Bisection of A000016 (also of A000013).
  • A026121 (program): a(n) = 3^n*(3^n-1)/2.
  • A026122 (program): a(n) is the number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array in A026120.
  • A026123 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-1), where T is the array in A026120; a(n) = U(n,n+1), where U is the array in A026148.
  • A026124 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 3, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-2), where T is the array in A026120.
  • A026125 (program): a(n) = number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 4, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-3), where T is the array in A026120.
  • A026134 (program): a(n) = Sum_{k=1..n} T(k, k-1), where T is the array in A026120.
  • A026135 (program): Number of (s(0),s(1),…,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120.
  • A026136 (program): Lexicographically earliest permutation of the positive integers such that |a(n)-n| = [a(n)/2].
  • A026137 (program): a(n) = position of n in A026136.
  • A026138 (program): Numbers k such that s(j) < s(k) for all j < k, where s = A026136.
  • A026139 (program): a(n) = s(k), where k is the n-th number such that s(j) < s(k) for all j < k, where s = A026136. Also a(n) = 2*t(n) - 1, where t = A026138.
  • A026140 (program): a(n) = (1/2)*(s(n) - 1), where s = A026139.
  • A026141 (program): a(n) = (s(n)-s(n-1))/2, where s = A026139.
  • A026144 (program): Numbers k such that s(j) < s(k) for all j < k, where s = A026142.
  • A026145 (program): a(n) = s(k), where k is the n-th number such that s(j) < s(k) for all j < k, where s = A026142. Also a(n) = 2*t(n) for n >= 2, where t = A026144.
  • A026146 (program): a(n) = (1/2)*|s(n) - s(n-1)|, where s = A026145.
  • A026147 (program): a(n) = position of n-th 1 in A001285 or A010059 (Thue-Morse sequence).
  • A026149 (program): Expansion of 1/((1-2x)(1-5x)(1-10x)(1-11x)).
  • A026150 (program): a(0) = a(1) = 1; a(n+2) = 2*a(n+1) + 2*a(n).
  • A026151 (program): a(n) = T(n,n), where T is the array in A026148.
  • A026152 (program): a(n) = T(n,n-1), where T is the array in A026148.
  • A026153 (program): T(n,n-2), where T is the array in A026148.
  • A026154 (program): a(n) = T(n,n-3), where T is the array in A026148.
  • A026155 (program): T(n,n-4), where T is the array in A026148.
  • A026163 (program): Sum{T(k,k-1)}, k = 1,2,…,n, where T is the array in A026148.
  • A026165 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T in A026148.
  • A026166 (program): For n >= 2, let h=floor((n-1)/2), L=n-h, R=n+h; then a(L)=n if a(L) not yet defined, otherwise a(R)=n; thus |a(n)-n| = floor((1/2)*(a(n)-1)).
  • A026167 (program): a(n) is the position of n in A026166.
  • A026168 (program): Numbers k such that A026166(j) < A026166(k) for all j < k.
  • A026169 (program): a(n) = s(k), where k is the n-th number k such that s(j)<s(k) for all j<k, where s = A026166.
  • A026177 (program): For n >= 2, let h=floor(n/2), L=n-h, R=n+h; then a(R)=n if n odd or a(L) already defined, otherwise a(L)=n.
  • A026178 (program): a(n) is the position of n in A026177.
  • A026179 (program): Numbers k such that A026177(j) < A026177(k) for all j < k.
  • A026180 (program): a(n) = s(k), where k is the n-th number such that s(j)<s(k) for all j<k, where s = A026177.
  • A026181 (program): a(n) = (1/2)*(s(n) - s(n-1)), where s = A026180.
  • A026182 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A026136.
  • A026183 (program): Position of n in A026182.
  • A026184 (program): a(n) = (1/3)*s(n), where s(n) is the n-th multiple of 3 in A026136.
  • A026185 (program): If n even, then 2n. If n odd, then nearest integer to 2n/3.
  • A026188 (program): a(n) = (1/5)*s(n), where s(n) is the n-th multiple of 5 in A026136.
  • A026200 (program): a(n) = (s(n) + 2)/3, where s(n) is the n-th number congruent to 1 mod 3 in A026166.
  • A026201 (program): Position of n in A026200.
  • A026202 (program): a(n) = (1/4)*s(n), where s(n) is the n-th multiple of 4 in A026166.
  • A026203 (program): position of n in A026202.
  • A026204 (program): a(n) = (1/5)*s(n), where s(n) is the n-th multiple of 5 in A026166.
  • A026214 (program): a(n) = (1/2)*s(n), where s(n) is the n-th even number in A026177.
  • A026215 (program): a(n) is the position of n in A026214.
  • A026218 (program): a(n) = (1/3)*(s(n) + 2), where s(n) is the n-th number congruent to 1 mod 3 in A026177.
  • A026219 (program): Position of n in A026218.
  • A026222 (program): Numbers k such that A026136(k) = A026142(k).
  • A026223 (program): (1/3)*s(n+1), where s = A026222.
  • A026224 (program): Numbers n such that t(n) = s(n) + 1, where s = A026136, t = A026142.
  • A026225 (program): Numbers of the form 3^i * (3k+1).
  • A026226 (program): Numbers k such that A026136(k) = A026166(k).
  • A026227 (program): a(n) = (1/3)*(s(n) + 2), where s = A026226.
  • A026228 (program): Numbers k such that A026166(k) = A026136(k) - 1.
  • A026229 (program): Numbers k such that A026166(k) = A026142(k) - 2.
  • A026230 (program): a(n) = (1/3)*s(n+1), where s = A026229.
  • A026231 (program): Numbers k such that A026166(k) = A026142(k) + 1.
  • A026232 (program): a(n) = (1/3)*(s(n) + 1), where s = A026231.
  • A026233 (program): a(n) = j if n is the j-th prime, else a(n) = k if n is the k-th nonprime.
  • A026238 (program): a(n) = j if n is the j-th prime, else a(n) = k if n is the k-th composite.
  • A026241 (program): Expansion of 1/((1-2x)(1-5x)(1-10x)(1-12x)).
  • A026242 (program): a(n) = j if n is L(j), else a(n) = k if n is U(k), where L = A000201, U = A001950 (lower and upper Wythoff sequences).
  • A026243 (program): a(n) = A000522(n) - 2.
  • A026244 (program): a(n) = 4^n*(4^n+1)/2.
  • A026245 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A002251.
  • A026247 (program): a(n) = (1/2)*s(n), where s(n) is n-th even number in A002251.
  • A026249 (program): a(n) = j if n = [ j*sqrt(2) ], else a(n) = k if n = [ k*(2 + sqrt(2)) ].
  • A026250 (program): Beginning with the natural numbers, swap [ k*sqrt(2) ] and [ k*(2 + sqrt(2)) ], for all k >= 1.
  • A026251 (program): a(n) = |s(n) - n|, where s = A026250. Also a(n) = 2*t(n), where t = A026249.
  • A026252 (program): a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A026250. Also a(n) = position of n in A026252.
  • A026253 (program): a(n) = (1/2)*s(n), where s(n) is the n-th even number in A026250. Also a(n) = position of n in A026253.
  • A026254 (program): a(n) = j if n = [ j*sqrt(3) ], else a(n) = k if n = [ (k/2)*(3 + sqrt(3)) ].
  • A026261 (program): a(n) = j if n = [ j*sqrt(5) ], else a(n) = k if n = [ (k/4)*(5 + sqrt(5)) ].
  • A026269 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n) and a(n) = Sum{T(k,k-1)}, k = 1,2,…,n, where T is array in A026268.
  • A026270 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1 = s(n), |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also T(n,n-1), where T is the array in A026268.
  • A026271 (program): a(n) = sum of the numbers between the two n’s in A026242.
  • A026272 (program): a(n) = smallest k such that k=a(n-k-1) is the only appearance of k so far; if there is no such k, then a(n) = least positive integer that has not yet appeared.
  • A026273 (program): a(n) = least k such that s(k) = n, where s = A026272.
  • A026274 (program): Greatest k such that s(k) = n, where s = A026272.
  • A026275 (program): Sum of numbers between the two n’s in A026272.
  • A026276 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 2, else a(n) = least positive integer that has not yet occurred.
  • A026277 (program): a(n) = least k such that s(k) = n, where s = A026276.
  • A026278 (program): a(n) = greatest k such that s(k) = n, where s = A026276.
  • A026280 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 3, else a(n) = least positive integer that has not yet occurred.
  • A026281 (program): a(n) = least k such that s(k) = n, where s = A026280.
  • A026282 (program): a(n) = greatest k such that s(k) = n, where s = A026280.
  • A026284 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m + 4, else a(n) = least positive integer that has not yet occurred.
  • A026285 (program): a(n) = least k such that s(k) = n, where s = A026284.
  • A026286 (program): a(n) = greatest k such that s(k) = n, where s = A026284.
  • A026288 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 2, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also T(n,n-2), where T is the array in A026268.
  • A026289 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 3, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n-3), where T is the array in A026268.
  • A026290 (program): a(n) = number of (s(0), s(1), …, s(n)) such that every s(i) is an integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >=2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n-4), where T is the array in A026268.
  • A026299 (program): Number of (s(0), s(1), …, s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also sum of numbers in row n+1 of the array T in A026268.
  • A026300 (program): Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,…,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).
  • A026302 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.
  • A026303 (program): a(n) = T(3n,n), where T is the array in A026300.
  • A026304 (program): a(n) = T(4n,n), where T is the array in A026300.
  • A026305 (program): a(n) = T(2n,n-1), where T is the array in A026300.
  • A026306 (program): a(n) = T(2n,n+1), where T is the array in A026300.
  • A026307 (program): a(n) = T(n,[ n/2 ]), where T is the array in A026300.
  • A026308 (program): Expansion of 1/((1-2x)(1-5x)(1-11x)(1-12x)).
  • A026310 (program): sin(n) > cos(n+1).
  • A026312 (program): n-th nonnegative integer k satisfying cos(k) > sin(k+1).
  • A026313 (program): Numbers k such that |sin(k)*sin(k+2)| < (sin(k+1))^2.
  • A026314 (program): a(n) = n-th nonnegative integer k satisfying |cos(k)*cos(k+2)| > (cos(k+1))^2.
  • A026315 (program): |sin(n)| < |sin(n+1)|.
  • A026316 (program): Numbers k such that |sin(k)| > |cos(k+1)|.
  • A026317 (program): Nonnegative integers k such that |cos(k)| > |sin(k+1)|.
  • A026318 (program): a(n) = n-th nonnegative integer k satisfying sin(k) < cos(k) < sin(k+1).
  • A026319 (program): a(n) = n-th nonnegative integer k satisfying |sin(k)| < |cos(k)| < |sin(k+1)|.
  • A026320 (program): sin(n) > cos(n) > sin(n+1).
  • A026321 (program): n-th nonnegative integer k satisfying |sin(k)| > |cos(k)| > |sin(k+1)|.
  • A026322 (program): |sin(2n)| > |sin(n)|.
  • A026324 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-8x)).
  • A026325 (program): Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0).
  • A026326 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-9x)).
  • A026327 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 4. Also a(n) = T(n,n-2), where T is the array in A026323.
  • A026328 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 5. Also a(n) = T(n,n-3), where T is the array in A026323.
  • A026329 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(n) = 6. Also a(n) = T(n,n-4), where T is the array in A026323.
  • A026330 (program): a(n) = number of (s(0), s(1), …, s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,…,n, s(0) = 2, s(2n) = n+1. Also a(n) = T(2n,n+1), where T is the array in A026323.
  • A026337 (program): a(n) = 4^n*(4^n - 1)/2.
  • A026338 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = m+[ m/2 ]+1, else a(n) = least positive integer that has not yet occurred.
  • A026339 (program): a(n) = least k such that s(k) = n, where s = A026338.
  • A026340 (program): a(n) = greatest k such that s(k) = n, where s = A026338.
  • A026343 (program): Least k such that s(k) = n, where s = A026342.
  • A026344 (program): a(n) = greatest k such that s(k) = n, where s = A026342.
  • A026346 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+[ 3m/2 ], else a(n) = least positive integer that has not yet occurred.
  • A026347 (program): a(n) = least k such that s(k) = n, where s = A026346.
  • A026348 (program): Greatest k such that s(k) = n, where s = A026346.
  • A026350 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+m-1, else a(n) = least positive integer that has not yet occurred.
  • A026351 (program): a(n) = floor(n*phi) + 1, where phi = (1+sqrt(5))/2.
  • A026352 (program): a(n) = floor(n*tau)+n+1.
  • A026353 (program): a(n) = sum of the numbers between the two n’s in A026350.
  • A026354 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+m-2, else a(n) = least positive integer that has not yet occurred.
  • A026355 (program): a(n) = least k such that s(k) = n+1, where s = A026354.
  • A026356 (program): a(n) = floor((n-1)*phi) + n + 1, n > 0, where phi = (1+sqrt(5))/2.
  • A026357 (program): a(n) = sum of the numbers between the two n’s in A026354.
  • A026358 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m-2, else a(n) = least positive integer that has not yet occurred.
  • A026359 (program): a(n) = least k such that s(k) = n, where s = A026358.
  • A026360 (program): a(n) = greatest k such that s(k) = n, where s = A026358.
  • A026362 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m-1, else a(n) = least positive integer that has not yet occurred.
  • A026363 (program): a(n) = least k such that s(k) = n, where s = A026362.
  • A026364 (program): a(n) = greatest k such that s(k) = n, where s = A026362.
  • A026366 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m, else a(n) = least positive integer that has not yet occurred.
  • A026367 (program): a(n) = least k such that s(k) = n, where s = A026366.
  • A026368 (program): a(n) = greatest k such that s(k) = n, where s = A026366.
  • A026370 (program): a(n) = a(m) if a(m) has already occurred exactly once and n = a(m)+2m+1, else a(n) = least positive integer that has not yet occurred.
  • A026371 (program): a(n) = least k such that s(k) = n, where s = A026370.
  • A026372 (program): a(n) = greatest k such that s(k) = n, where s = A026370.
  • A026374 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0, T(n,k) = T(n-1,k-1) + T(n-1,k) for odd n and 1< = k <= n-1, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for even n and 1 <= k <= n-1.
  • A026375 (program): a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).
  • A026376 (program): a(n) is the number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).
  • A026377 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).
  • A026378 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=1; also a(n) = T(2n-1,n-1).
  • A026379 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026374 that have s(n)=3; also a(n) = T(2n-1,n-2).
  • A026380 (program): a(n) = T(n,[ n/2 ]), where T is the array in A026374.
  • A026381 (program): T(n,n-2), where T is the array in A026374.
  • A026382 (program): a(n) = T(n,n-3), where T is the array in A026374.
  • A026383 (program): a(n) = 5*a(n-2), starting 1,2.
  • A026384 (program): a(n) = Sum_{j=0..i, i=0..n} T(i,j), where T is the array in A026374.
  • A026385 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026374.
  • A026386 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for all n >= 0; T(n,k) = T(n-1,k-1) + T(n-1,k) for even n and k = 1..n-1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for odd n and k = 1 ..n-1.
  • A026387 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=0; also a(n) = T(2n,n).
  • A026388 (program): a(n) is the number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=2; also a(n) = T(2n,n-1).
  • A026389 (program): a(n) = number of integer strings s(0),…,s(n) counted by array T in A026386 that have s(n)=4; also a(n) = T(2n,n-2).
  • A026390 (program): Expansion of (2 + x + x^2)/((1 - x)*(1 - x - x^2)).
  • A026391 (program): Expansion of 1/((1-2x)(1-6x)(1-7x)(1-10x)).
  • A026392 (program): T(n,[ n/2 ]), where T is the array in A026386.
  • A026393 (program): a(n) = T(n,n-2), where T is the array in A026386.
  • A026394 (program): a(n) = T(n,n-3), where T is the array in A026386.
  • A026395 (program): a(n) = 5*a(n-2), starting 1,2,4.
  • A026396 (program): Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.
  • A026397 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026386.
  • A026422 (program): a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1 <= i <= j < n.
  • A026424 (program): Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.
  • A026430 (program): a(n) is the sum of first n terms of A001285 (Thue-Morse sequence).
  • A026465 (program): Length of n-th run of identical symbols in the Thue-Morse sequence A010060 (or A001285).
  • A026472 (program): {3, 7} together with the numbers congruent to {1, 2} mod 12.
  • A026474 (program): a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j) or a(i)+a(j)+a(k) for 1<=i<j<k<n (a 3-Stohr sequence).
  • A026476 (program): For n>3, a(n) = 7*n - 21 + 2*(-1)^n.
  • A026478 (program): a(n) = least positive integer > a(n-1) and not of form a(i)*a(j)*a(k) for 1<=i<=j<=k<n.
  • A026488 (program): a(n) is the least positive integer > a(n-1) and not a(i)*a(j)-a(k) for 1 <= i <= j <= k <= n, where a(1) = 1.
  • A026490 (program): Length of n-th run of identical symbols in A026465.
  • A026491 (program): a(n) = least k > a(n-1) such that A001285(k-1) = A001285(n-1) for n >= 1.
  • A026492 (program): a(n) = t(3n), where t = A001285 (Thue-Morse sequence).
  • A026498 (program): a(n) = t(1+3n), where t = A001285 (Thue-Morse sequence).
  • A026513 (program): a(n) = t(2+3n), where t = A001285 (Thue-Morse sequence).
  • A026517 (program): a(n) = t(5n), where t = A001285 (Thue-Morse sequence).
  • A026520 (program): a(n) = T(n,n), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 0.
  • A026521 (program): a(n) = T(n, n-1), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 1.
  • A026522 (program): a(n) = T(n, n-2), where T is given by A026519. Also number of integer strings s(0), …, s(n), counted by T, such that s(n) = 2.
  • A026523 (program): a(n) = T(n, n-3), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 3.
  • A026524 (program): a(n) = T(n, n-4), T given by A026519. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 4.
  • A026525 (program): a(n) = T(2*n, n), where T is given by A026519.
  • A026526 (program): a(n) = T(2n,n-1), T given by A026519.
  • A026527 (program): a(n) = T(2*n, n-2), where T is given by A026519.
  • A026528 (program): a(n) = T(2*n-1, n-1), T given by A026519.
  • A026529 (program): a(n) = T(2*n-1, n-2), where T is given by A026519.
  • A026530 (program): a(n) = T(n, floor(n/2)), T given by A026519.
  • A026532 (program): Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, …
  • A026534 (program): a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
  • A026535 (program): a(n) = t(1+5n) where t = A001285 (Thue-Morse sequence).
  • A026537 (program): a(n) = T(n,n), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n)=0.
  • A026538 (program): a(n) = T(n,n-1), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 1.
  • A026539 (program): a(n) = T(n,n-2), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 2.
  • A026540 (program): a(n) = T(n,n-3), T given by A026536. Also number of integer strings s(0), …, s(n), counted by T, such that s(n) = 3.
  • A026541 (program): a(n) = T(n,n-4), T given by A026536. Also a(n) = number of integer strings s(0), …, s(n), counted by T, such that s(n) = 4.
  • A026542 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-11*x)).
  • A026543 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-12*x)).
  • A026545 (program): a(n) = T(2n-1, n-1), T given by A026536.
  • A026546 (program): a(n) = T(2n-1,n-2), T given by A026536.
  • A026547 (program): a(n) = T(n, floor(n/2)), T given by A026536.
  • A026549 (program): Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, …
  • A026551 (program): Expansion of 3*(1+2*x-2*x^2)/((1-x)*(1-6*x^2)).
  • A026553 (program): a(n) = T(n,n), T given by A026552. Also a(n) is the number of integer strings s(0),…,s(n) counted by T, such that s(n)=0.
  • A026554 (program): a(n) = T(n,n-1), T given by A026552. Also a(n) is the number of integer strings s(0),…,s(n) counted by T, such that s(n)=1.
  • A026555 (program): a(n) = T(n, n-2), T given by A026552. Also a(n) = number of integer strings s(0), …, s(n) counted by T, such that s(n) = 2.
  • A026556 (program): a(n) = T(n, n-3), T given by A026552. Also a(n) = number of integer strings s(0), …, s(n) counted by T, such that s(n) = 3.
  • A026557 (program): a(n) = T(n, n-4), T given by A026552. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
  • A026558 (program): a(n) = T(2*n, n), where T is given by A026552.
  • A026559 (program): a(n) = T(2*n, n-1), where T is given by A026552.
  • A026560 (program): a(n) = T(2*n, n-2), where T is given by A026552.
  • A026561 (program): Expansion of 1/((1-2x)(1-6x)(1-8x)(1-9x)).
  • A026562 (program): Expansion of 1/((1-2x)(1-6x)(1-8x)(1-10x)).
  • A026563 (program): a(n) = T(n, floor(n/2)), where T is given by A026552.
  • A026565 (program): a(n) = 6*a(n-2), starting with 1, 3, 9.
  • A026567 (program): a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.
  • A026569 (program): a(n) = T(n,n), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=0.
  • A026570 (program): a(n)=T(n,n-1), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T such that s(n)=1.
  • A026571 (program): a(n)=T(n,n-2), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=2.
  • A026572 (program): a(n) = T(n,n-3), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=3.
  • A026573 (program): a(n)=T(n,n-4), T given by A026568. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
  • A026574 (program): T(2n,n), T given by A026568.
  • A026575 (program): T(2n,n-1), T given by A026568.
  • A026576 (program): T(2n,n-2), T given by A026568.
  • A026577 (program): T(2n-1,n-1), T given by A026568.
  • A026578 (program): T(2n-1,n-2), T given by A026568.
  • A026579 (program): T(n,[ n/2 ]), T given by A026568.
  • A026581 (program): Expansion of (1 + 2*x) / (1 - x - 4*x^2).
  • A026583 (program): a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=2n, T given by A026568.
  • A026585 (program): a(n) = T(n,n), T given by A026584. Also a(n) is the number of integer strings s(0), …, s(n) counted by T, such that s(n)=0.
  • A026587 (program): a(n) = T(n, n-2), T given by A026584. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=2.
  • A026589 (program): a(n) = T(n,n-4), T given by A026584. Also a(n) = number of integer strings s(0),…,s(n) counted by T, such that s(n)=4.
  • A026590 (program): a(n) = T(2*n, n), where T is given by A026584.
  • A026591 (program): a(n) = T(2*n, n-1), where T is given by A026584.
  • A026592 (program): a(n) = T(2*n, n-2), where T is given by A026584.
  • A026593 (program): a(n) = T(2*n-1, n-1), where T is given by A026584.
  • A026594 (program): a(n) = T(2*n-1, n-2), where T is given by A026584.
  • A026595 (program): a(n) = T(n, floor(n/2)), where T is given by A026584.
  • A026597 (program): Expansion of (1+x)/(1-x-4*x^2).
  • A026599 (program): a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).
  • A026600 (program): a(n) is the n-th letter of the infinite word generated from w(1)=1 inductively by w(n)=JUXTAPOSITION{w(n-1),w’(n-1),w”(n-1)}, where w(k) becomes w’(k) by the cyclic permutation 1->2->3->1 and w”(k) = (w’)’(k).
  • A026601 (program): Numbers k such that A026600(k) = 1.
  • A026602 (program): Numbers k such that A026600(k) = 2.
  • A026603 (program): Numbers k such that A026600(k) = 3.
  • A026604 (program): a(n) = s(1) + s(2) + … + s(n), where s = A026600.
  • A026605 (program): [3->null]-transform of three-symbol Thue-Morse A026600
  • A026606 (program): [1->null]-transform of three-symbol Thue-Morse A026600, with 1 subtracted.
  • A026607 (program): Delete all 2’s from A026600 and then replace each 3 with 2.
  • A026608 (program): a(n) = number of 2’s between n-th 1 and (n+1)st 1 in A026600.
  • A026609 (program): a(n) = number of 3’s between n-th 1 and (n+1)st 1 in A026600.
  • A026610 (program): a(n) = number of 1’s between n-th 2 and (n+1)st 2 in A026600.
  • A026611 (program): Number of 3’s between n-th 2 and (n+1)st 2 in A026600.
  • A026612 (program): a(n) = number of 1’s between n-th 3 and (n+1)st 3 in A026600.
  • A026613 (program): Number of 2’s between n-th 3 and (n+1)st 3 in A026600.
  • A026614 (program): a(n) least k > a(n-1) such that a(k)=s(n), for n >= 2, where s = A026600.
  • A026615 (program): Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(n,1)=T(n,n-1)=2n-1 for n >= 1; T(n,k)=T(n-1,k-1)+T(n-1,k) for 2<=k<=n-2, n >= 4.
  • A026616 (program): T(2n,n), T given by A026615.
  • A026617 (program): T(2n,n-1), T given by A026615.
  • A026618 (program): T(2n,n-2), T given by A026615.
  • A026619 (program): T(2n-1,n-1), T given by A026615.
  • A026620 (program): T(2n-1,n-2), T given by A026615.
  • A026621 (program): T(n,[ n/2 ]), T given by A026615.
  • A026622 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A026615.
  • A026623 (program): a(n) = T(n,0) + T(n,1) + … + T(n,[ n/2 ]), T given by A026615.
  • A026624 (program): a(n) = Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026615.
  • A026625 (program): a(n) = Sum_{k=0..floor(n/2)} A026615(n-k,k).
  • A026627 (program): T(2n,n), T given by A026626.
  • A026628 (program): T(2n,n-1), T given by A026626.
  • A026630 (program): T(2n-1,n-1), T given by A026626.
  • A026632 (program): T(n,[ n/2 ]), T given by A026626.
  • A026633 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026626.
  • A026635 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026626.
  • A026636 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], T given by A026626.
  • A026638 (program): T(2n,n), T given by A026637.
  • A026639 (program): T(2n,n-1), T given by A026637.
  • A026640 (program): T(2n,n-2), T given by A026637.
  • A026641 (program): Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.
  • A026642 (program): a(n) = T(2n-1,n-2), T given by A026637.
  • A026643 (program): T(n,[ n/2 ]), T given by A026637.
  • A026644 (program): a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.
  • A026646 (program): a(n) = Sum_{0<=i,j<=n} A026637(i,j).
  • A026647 (program): Sum{T(n-k,k)}, 0<=k<=[ n/2 ], T given by A026637.
  • A026655 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026648.
  • A026657 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026648.
  • A026670 (program): Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 1, T(n,1) = T(n,n-1) = n+1; for n >= 2, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k = n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
  • A026671 (program): Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).
  • A026672 (program): a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.
  • A026673 (program): a(n) = T(2n,n-2), T given by A026670.
  • A026674 (program): a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.
  • A026675 (program): a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.
  • A026676 (program): a(n) = T(n, floor(n/2)), T given by A026670.
  • A026677 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A026670.
  • A026678 (program): a(n) = T(n,0) + T(n,1) + … + T(n,[ n/2 ]), T given by A026670.
  • A026679 (program): Sum{T(i,j)}, 0<=i<=n, 0<=j<=n, T given by A026670.
  • A026704 (program): T(2n,n), T given by A026703.
  • A026705 (program): T(2n,n-1), T given by A026703.
  • A026706 (program): T(2n,n-2), T given by A026703.
  • A026707 (program): T(2n-1,n-1), T given by A026703.
  • A026708 (program): T(2n-1,n-2), T given by A026703.
  • A026726 (program): a(n) = T(2n,n), T given by A026725.
  • A026727 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)*(1-11*x)).
  • A026728 (program): a(n) = number of primes of the form k*(n-k) + 1.
  • A026729 (program): Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by antidiagonals.
  • A026730 (program): a(8n)=n, a(8n+4)=a(8n)+a(8n+8), a(4n+2)=a(4n)+a(4n+4), a(2n+1)=a(2n)+a(2n+2).
  • A026731 (program): Greatest number in row n of array T given by A026725.
  • A026732 (program): a(n) = Sum_{k=0..n} T(n,k), T given by A026725.
  • A026733 (program): a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.
  • A026734 (program): a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.
  • A026737 (program): a(n) = T(2*n,n), T given by A026736.
  • A026738 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)*(1-12*x)).
  • A026740 (program): a(n) = 2^n*(2^n - 1)*(2^n - 2)/6.
  • A026741 (program): a(n) = n if n odd, n/2 if n even.
  • A026742 (program): a(n) = T(n, floor(n/2)), T given by A026736.
  • A026743 (program): a(n) = Sum_{j=0..n} T(n,j), T given by A026736.
  • A026745 (program): a(n) = Sum_{j=0..n} Sum_{i=0..n} T(j,i), T given by A026736.
  • A026748 (program): a(n) = T(2n,n), T given by A026747.
  • A026759 (program): a(n) = T(2n, n), T given by A026758.
  • A026762 (program): a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747.
  • A026773 (program): a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.
  • A026795 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-9*x)*(1-10*x)).
  • A026796 (program): Number of partitions of n in which the least part is 3.
  • A026806 (program): a(n) = number of numbers k such that only one partition of n has least part k.
  • A026808 (program): a(n) is the number of products P of distinct positive integers satisfying P <= n.
  • A026809 (program): a(n) = 3^n*(3^n-1)*(3^n-2)/6.
  • A026810 (program): Number of partitions of n in which the greatest part is 4.
  • A026811 (program): Number of partitions of n in which the greatest part is 5.
  • A026812 (program): Number of partitions of n in which the greatest part is 6.
  • A026813 (program): Number of partitions of n in which the greatest part is 7.
  • A026814 (program): Number of partitions of n in which the greatest part is 8.
  • A026815 (program): Number of partitions of n in which the greatest part is 9.
  • A026817 (program): Number of sets which can be obtained by selecting unique elements from two sets with 2n and 3n elements respectively and n common elements.
  • A026818 (program): Largest digit of n concatenated with smallest digit of n is prime.
  • A026822 (program): CONTINUANT transform of Fibonacci number 1, 1, 2, 3, 5, 8, …
  • A026834 (program): a(n) = number of numbers k such that only one partition of n into distinct parts has least part k.
  • A026837 (program): Number of partitions of n into distinct parts, the greatest being odd.
  • A026838 (program): Number of partitions of n into distinct parts, the greatest being even.
  • A026841 (program): a(n) = T(2n,n-4), T given by A026725.
  • A026842 (program): a(n) = T(2n,n-3), T given by A026725.
  • A026843 (program): a(n) = T(2n,n+3), T given by A026725.
  • A026844 (program): a(n) = T(2n,n+4), T given by A026725.
  • A026846 (program): a(n) = T(2n+1,n+4), T given by A026725.
  • A026847 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m=[ (n+1)/2 ], T given by A026725.
  • A026848 (program): a(n) = T(2n,n-4), T given by A026736.
  • A026849 (program): a(n) = T(2n,n-3), T given by A026736.
  • A026850 (program): a(n) = T(2n,n+1), T given by A026736.
  • A026851 (program): a(n) = T(2n,n+2), T given by A026736.
  • A026852 (program): a(n) = T(2n,n+3), T given by A026736.
  • A026853 (program): a(n) = T(2n,n+4), T given by A026736.
  • A026854 (program): a(n) = T(2n+1,n+1), T given by A026736.
  • A026855 (program): a(n) = T(2n+1,n+2), T given by A026736.
  • A026856 (program): a(n) = T(2n+1,n+3), T given by A026736.
  • A026857 (program): a(n) = T(2n+1,n+4), T given by A026736.
  • A026861 (program): T(2n,n+1), T given by A026747.
  • A026898 (program): a(n) = Sum_{k=0..n} (n-k+1)^k.
  • A026905 (program): Partial sums of the partition numbers A000041 of the positive integers.
  • A026906 (program): Number of sums S of distinct positive integers satisfying S <= n.
  • A026907 (program): Triangular array T read by rows (9-diamondization of Pascal’s triangle). Step 1: t(n,k) = sum of 9 entries in diamond-shaped subarray of Pascal’s triangle having vertices C(n,k), C(n+4,k+2), C(n+2,k), C(n+2,k+2). Step 2: T(n,k) = t(n,k) - t(0,0) + 1.
  • A026908 (program): T(2n,n), T given by A026907.
  • A026909 (program): (1/2)*T(2n,n), T given by A026907.
  • A026910 (program): T(2n,n-1), T given by A026907.
  • A026911 (program): T(2n,n-2), T given by A026907.
  • A026912 (program): T(2n-1,n-1), T given by A026907.
  • A026913 (program): T(2n-1,n-2), T given by A026907.
  • A026914 (program): T(n,[ n/2 ]), T given by A026907.
  • A026915 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A026907.
  • A026917 (program): a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=n, T given by A026907.
  • A026922 (program): Number of partitions of n into an odd number of parts, the greatest being 2; also, a(n+3) = number of partitions of n+1 into an even number of parts, each <=2.
  • A026923 (program): Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.
  • A026927 (program): Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3.
  • A026928 (program): Number of partitions of n into an even number of parts, the greatest being 4; also, a(n+7) = number of partitions of n+3 into an odd number of parts, each <=4.
  • A026933 (program): Self-convolution of array T given by A008288.
  • A026934 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A008288.
  • A026937 (program): a(n) = Sum_{k=0..n} (k+1)*T(n,n-k), where T is given by A008288.
  • A026938 (program): Greatest number in row of n array T given by A026300.
  • A026939 (program): Self-convolution of array T given by A026300.
  • A026940 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026300.
  • A026943 (program): a(n) = Sum_{k=0..n} (k+1) * T(n, k), with T given by A026300.
  • A026945 (program): A bisection of the Motzkin numbers A001006.
  • A026946 (program): Self-convolution of array T given by A026374.
  • A026947 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026374.
  • A026948 (program): a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026374.
  • A026949 (program): a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026374.
  • A026950 (program): a(n) = Sum{(k+1)*T(n,k)}, 0<=k<=n, T given by A026374.
  • A026951 (program): Self-convolution of array T given by A026386.
  • A026952 (program): a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026386.
  • A026953 (program): a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026386.
  • A026954 (program): a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026386.
  • A026955 (program): a(n) = Sum_{k=0..n} (k+1) * T(n,k), with T given by A026386.
  • A026956 (program): a(n) = self-convolution of array T given by A026615.
  • A026960 (program): a(n) = Sum_{k=0..n} (k+1) * A026615(n,k).
  • A026965 (program): a(n) = Sum_{k=0..n} (k+1) * A026626(n,k).
  • A026970 (program): a(n) = Sum_{k=0..n} (k+1) * A026637(n,k).
  • A026975 (program): a(n) = Sum_{k=0..n} (k+1) * A026648(n,k).
  • A026985 (program): a(n) = Sum_{k=0..n} (k+1) * A026670(n, k).
  • A026998 (program): Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027960, 0<=k<=n, n >= 0.
  • A027000 (program): a(n) = Lucas(2n+3) - (6n+4).
  • A027001 (program): a(n) = T(2*n, n+2), T given by A026998.
  • A027002 (program): a(n) = T(2*n, n+3), T given by A026998.
  • A027003 (program): a(n) = A026998(2n, n+4).
  • A027004 (program): a(n) = T(2*n+1,n+1), T given by A026998.
  • A027005 (program): a(n) = T(2*n+1,n+2), T given by A026998.
  • A027006 (program): a(n) = T(2*n+1, n+3), T given by A026998.
  • A027007 (program): a(n) = A026998(2n+1, n+4).
  • A027008 (program): a(n) = greatest number in row n of array T given by A026998.
  • A027009 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m=[ (n+2)/2 ], T given by A026998.
  • A027010 (program): a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is the n-th diagonal sum of left-justified array T given by A026998.
  • A027011 (program): Triangular array T read by rows: T(n,k) = t(n, 2k+1) for 0 <= k <= floor((2n-1)/2), t given by A027960, n >= 0.
  • A027012 (program): a(n) = T(2*n, n+1), T given by A027011.
  • A027013 (program): a(n) = T(2*n, n+2), T given by A027011.
  • A027014 (program): a(n) = T(2*n, n+3), T given by A027011.
  • A027015 (program): a(n) = A027011(2n, n+4).
  • A027016 (program): T(2n+1,n+1), T given by A027011.
  • A027017 (program): a(n) = T(2*n+1, n+2), T given by A027011.
  • A027018 (program): a(n) = T(2*n+1, n+3), T given by A027011.
  • A027019 (program): a(n) = A027011(2n+1, n+4).
  • A027020 (program): a(n) = greatest number in row n of array T given by A027011.
  • A027021 (program): a(n) = T(n,n) + T(n,m+1) + … + T(n,n), where m=[ (n+2)/2 ], T given by A027011.
  • A027022 (program): a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is n-th diagonal sum of left-justified array T given by A027011.
  • A027024 (program): a(n) = T(n,n+2), T given by A027023.
  • A027025 (program): a(n) = T(n,n+3), T given by A027023.
  • A027026 (program): a(n) = T(n,n+4), T given by A027023.
  • A027053 (program): a(n) = T(n,n+2), T given by A027052.
  • A027054 (program): a(n) = T(n, n+3), T given by A027052.
  • A027055 (program): a(n) = T(n, n+4), T given by A027052.
  • A027056 (program): a(n) = A027052(n, 2n-1).
  • A027057 (program): a(n) = (1/2) * A027052(n, 2n-1).
  • A027058 (program): a(n) = A027052(n, 2n-2).
  • A027059 (program): a(n) = A027052(n, 2n-3).
  • A027083 (program): a(n) = A027082(n, n+2)
  • A027084 (program): G.f.: x^2*(x^2 + x + 1)/(x^4 - 2*x + 1).
  • A027085 (program): a(n) = A027082(n, n+3).
  • A027086 (program): a(n) = A027082(n, n+4).
  • A027107 (program): a(n) = Sum_{k=0..2n} (k+1) * A027082(n, 2n-k).
  • A027114 (program): a(n) = A027113(n, n+2).
  • A027116 (program): a(n) = A027113(n, n+3).
  • A027117 (program): a(n) = A027113(n, n+4).
  • A027138 (program): a(n) = Sum_{k=0..2n} (k+1) * A027113(n, 2n-k).
  • A027151 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027144.
  • A027153 (program): a(n) = Sum_{0<=j<=i<=n} A027144(i, j).
  • A027154 (program): a(n) = Sum_{k=0..floor(n/2)} A027144(n-k, k).
  • A027164 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027157.
  • A027166 (program): a(n) = Sum_{0<=j<=i<=n} A027157(i, j).
  • A027167 (program): a(n) = Sum_{k=0..floor(n/2)} A027157(n-k, k).
  • A027170 (program): Triangular array T read by rows (4-diamondization of Pascal’s triangle). Step 1: t(n,k) = C(n+2,k+1) + C(n+1,k) + C(n+1,k+1) + C(n,k). Step 2: T(n,k) = t(n,k) - t(0,0) + 1. Domain: 0 <= k <= n, n >= 0.
  • A027171 (program): a(n) = A027170(2n, n).
  • A027172 (program): a(n) = (1/2) * A027170(2n, n).
  • A027173 (program): a(n) = A027170(2n, n-1).
  • A027174 (program): a(n) = A027170(2n, n-2).
  • A027175 (program): a(n) = A027170(2n-1, n-1).
  • A027176 (program): a(n) = A027170(2n-1, n-2).
  • A027177 (program): a(n) = A027170(n, floor(n/2)).
  • A027178 (program): a(n) = T(n,0) + T(n,1) + … + T(n,n), T given by A027170.
  • A027180 (program): a(n) = Sum_{0<=j<=i<=n} A027170(i, j).
  • A027181 (program): a(n) = Lucas(n+4) - 2*(n+3).
  • A027187 (program): Number of partitions of n into an even number of parts.
  • A027193 (program): Number of partitions of n into an odd number of parts.
  • A027257 (program): a(n) = self-convolution of row n of array T given by A025177.
  • A027258 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A025177.
  • A027259 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A025177.
  • A027260 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A025177.
  • A027261 (program): a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).
  • A027262 (program): a(n) = self-convolution of row n of array T given by A026519.
  • A027263 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026519.
  • A027264 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026519.
  • A027265 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026519.
  • A027266 (program): a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).
  • A027267 (program): a(n) = self-convolution of row n of array T given by A026536.
  • A027268 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.
  • A027269 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026536.
  • A027270 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026536.
  • A027271 (program): a(n) = Sum_{k=0..2n} (k+1)*T(n,k), where T is given by A026536.
  • A027272 (program): Self-convolution of row n of array T given by A026552.
  • A027273 (program): a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.
  • A027274 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026552.
  • A027275 (program): a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026552.
  • A027276 (program): a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
  • A027277 (program): a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n-k,k).
  • A027279 (program): a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026568.
  • A027281 (program): a(n) = Sum_{k=0..2n} (k+1) * A026568(n, k).
  • A027282 (program): a(n) = self-convolution of row n of array T given by A026584.
  • A027284 (program): a(n) = Sum_{k=0..2*n-2} T(n,k) * T(n,k+2), with T given by A026584.
  • A027286 (program): a(n) = Sum_{k=0..2n} (k+1) * A026584(n, k).
  • A027292 (program): a(n) = Sum_{k=0..m} (k+1) * A026009(n, m-k) where m = floor(n/2)+1.
  • A027293 (program): Triangular array given by rows: P(n,k) is the number of partitions of n that contain k as a part.
  • A027301 (program): a(n) = self-convolution of row n of Catalan triangle (A008315).
  • A027302 (program): a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315.
  • A027305 (program): a(n) = Sum_{k=0..floor((n+1)/2)} (k+1) * A008315(n, k).
  • A027306 (program): a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
  • A027307 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).
  • A027309 (program): a(n) = Sum_{k=0..n+1} T(n,k) * T(n,k+1), with T given by A026323.
  • A027313 (program): a(n) = Sum_{k=0..2n} (k+1) * A026323(n, 2n-k).
  • A027314 (program): a(n) is the sum of squares of numbers in row n of array T given by A026323.
  • A027315 (program): Self-convolution of array T given by A026082.
  • A027327 (program): a(n) = Sum_{k=0..m} (k+1) * A026120(n, m-k), where m=0 for n=0,1; m=n for n >= 2.
  • A027328 (program): a(n) is the sum of squares of the numbers in row n of array T given by A026120.
  • A027334 (program): a(n) = Sum_{k=0..m} (k+1) * A026148(n, m-k), where m=0 for n=1; m=n+1 for n >= 2.
  • A027336 (program): Number of partitions of n that do not contain 2 as a part.
  • A027337 (program): Number of partitions of n that do not contain 3 as a part.
  • A027338 (program): Number of partitions of n that do not contain 4 as a part.
  • A027339 (program): Number of partitions of n that do not contain 5 as a part.
  • A027340 (program): Number of partitions of n that do not contain 6 as a part.
  • A027341 (program): Number of partitions of n that do not contain 7 as a part.
  • A027342 (program): Number of partitions of n that do not contain 8 as a part.
  • A027343 (program): Number of partitions of n that do not contain 9 as a part.
  • A027346 (program): Expansion of Product_{m>=1} (1 + q^m)^(3*m).
  • A027375 (program): Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.
  • A027376 (program): Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.
  • A027377 (program): Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.
  • A027378 (program): Expansion of (1+x^2-x^3)/(1-x)^4.
  • A027379 (program): Expansion of (1+x^2-x^3)/(1-x)^3.
  • A027380 (program): Number of irreducible polynomials of degree n over GF(8); dimensions of free Lie algebras.
  • A027381 (program): Number of irreducible polynomials of degree n over GF(9); dimensions of free Lie algebras.
  • A027382 (program): a(n) = n^4 - 6*n^3 + 12*n^2 - 4*n + 1.
  • A027383 (program): a(2*n) = 3*2^n - 2; a(2*n+1) = 2^(n+2) - 2.
  • A027390 (program): Number of labeled servers of dimension 3.
  • A027391 (program): Number of labeled servers of dimension 4.
  • A027396 (program): Number of labeled servers of dimension 9.
  • A027397 (program): Number of labeled servers of dimension 10.
  • A027398 (program): Number of labeled servers of dimension 11.
  • A027399 (program): Number of labeled servers of dimension 12.
  • A027400 (program): Number of labeled servers of dimension 13.
  • A027401 (program): Number of labeled servers of dimension 14.
  • A027402 (program): Number of labeled servers of dimension 15.
  • A027403 (program): Number of labeled servers of dimension 16.
  • A027404 (program): Number of labeled servers of dimension 17.
  • A027405 (program): Number of labeled servers of dimension 18.
  • A027406 (program): Number of labeled servers of dimension 19.
  • A027407 (program): Number of labeled servers of dimension 20.
  • A027408 (program): Number of labeled servers of dimension 21.
  • A027409 (program): Number of labeled servers of dimension 22.
  • A027410 (program): Number of labeled servers of dimension 23.
  • A027411 (program): Number of labeled servers of dimension 24.
  • A027412 (program): a(n) = 2*a(n-1) + (n-2)*a(n-2).
  • A027414 (program): G.f. for Moebius transform is x * (1 + x) / (1 + x^4).
  • A027423 (program): Number of divisors of n!.
  • A027434 (program): a(1) = 2; then defined by property that a(n) = smallest number >= a(n-1) such that successive runs have lengths 1,1,2,2,3,3,4,4.
  • A027437 (program): a(n) = floor( e * 2^n ).
  • A027439 (program): Expansion of 1/(1 - 4*x + 5*x^2 - 3*x^3).
  • A027441 (program): a(n) = (n^4 + n)/2 (Row sums of an n X n X n magic cube, when it exists).
  • A027444 (program): a(n) = n^3 + n^2 + n.
  • A027445 (program): a(n) = n^4 + n^3 + n^2 + n^1.
  • A027449 (program): Second diagonal of A027446.
  • A027451 (program): First diagonal of A027447.
  • A027454 (program): First diagonal of A027448.
  • A027457 (program): a(n) = (H(n) - 1)*lcm{1,…,n}, where H(n) is the n-th harmonic number.
  • A027459 (program): Numerator of Sum_{k=1..n} H(k)/k, where H(k) is k-th harmonic number.
  • A027462 (program): a(n) is the numerator of (-1/6) * Integral_{x=0..1} x^n * log^3(1-x).
  • A027465 (program): Cube of lower triangular normalized binomial matrix.
  • A027466 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j).
  • A027467 (program): Triangle whose (n,k)-th entry is 15^(n-k)*binomial(n,k).
  • A027468 (program): 9 times the triangular numbers A000217.
  • A027469 (program): a(n) = 49*(n-1)*(n-2)/2.
  • A027470 (program): a(n) = 225*(n-1)*(n-2)/2.
  • A027471 (program): a(n) = (n-1)*3^(n-2), n > 0.
  • A027472 (program): Third convolution of the powers of 3 (A000244).
  • A027473 (program): Second column of A027466.
  • A027474 (program): a(n) = 7^(n-2) * C(n,2).
  • A027475 (program): a(n) = (n-1) * 15^(n-2).
  • A027476 (program): Third column of A027467.
  • A027480 (program): a(n) = n*(n+1)*(n+2)/2.
  • A027481 (program): Second subdiagonal of triangle A027477, constructed from the Stirling numbers of the first kind.
  • A027482 (program): a(n) = n*(n^3 - 1)/2.
  • A027484 (program): a(n) = n*(n^4-1)/2.
  • A027540 (program): Second diagonal of A027537.
  • A027542 (program): Second diagonal of A027538.
  • A027544 (program): Second diagonal of A027539.
  • A027555 (program): Triangle of binomial coefficients C(-n,k).
  • A027556 (program): Unbalanced strings of length n.
  • A027557 (program): Number of 3-balanced strings of length n: let d(S)= #(1)’s in S - #(0)’s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=3.
  • A027558 (program): Number of 3-unbalanced strings of length n (= 2^n - A027557(n)).
  • A027559 (program): Number of 4-balanced strings of length n: let d(S)= #(1)’s in S - #(0)’s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=4.
  • A027561 (program): Number of 4-unbalanced strings of length n (=2^n-A027559(n)).
  • A027575 (program): a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2.
  • A027578 (program): Sums of five consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2.
  • A027599 (program): a(n) = 3*n^2 - 7*n + 6.
  • A027602 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3.
  • A027603 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3.
  • A027604 (program): a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3 + (n+4)^3.
  • A027608 (program): Expansion of 1/((1-x)*(1-2*x)^4).
  • A027611 (program): Denominator of n * n-th harmonic number.
  • A027612 (program): Numerator of 1/n + 2/(n-1) + 3/(n-2) + … + (n-1)/2 + n.
  • A027615 (program): Number of 1’s when n is written in base -2.
  • A027616 (program): Number of permutations of n elements containing a 2-cycle.
  • A027617 (program): Number of permutations of n elements containing a 3-cycle.
  • A027618 (program): c(i,j) is cost of evaluation of edit distance of two strings with lengths i and j, when you use recursion (every call has a unit cost, other computations are free); sequence gives c(n,n).
  • A027620 (program): a(n) = n + (n+1)^2 + (n+2)^3.
  • A027621 (program): a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4.
  • A027622 (program): a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.
  • A027625 (program): Numerator of n*(n+5)/((n+2)*(n+3)).
  • A027626 (program): Denominator of n*(n+5)/((n+2)*(n+3)).
  • A027628 (program): Expansion of Molien series for 5-dimensional group G_3 acting on Jacobi polynomials of ternary self-dual codes.
  • A027637 (program): a(n) = Product_{i=1..n} (4^i - 1).
  • A027639 (program): Order of unitary 2^n X 2^n group H_{n,4} acting on Siegel modular forms.
  • A027641 (program): Numerator of Bernoulli number B_n.
  • A027642 (program): Denominator of Bernoulli number B_n.
  • A027649 (program): a(n) = 2*(3^n) - 2^n.
  • A027650 (program): Poly-Bernoulli numbers B_n^(k) with k=-3.
  • A027656 (program): Expansion of 1/(1-x^2)^2 (included only for completeness - the policy is always to omit the zeros from such sequences).
  • A027657 (program): Expansion of (1+4*x)/(1-34*x+x^2).
  • A027658 (program): a(n) = binomial(n+2, 2) + binomial(n+4, 5).
  • A027659 (program): a(n) = binomial(n+2,2) + binomial(n+3,3) + binomial(n+4,4) + binomial(n+5,5).
  • A027660 (program): a(n) = C(n+2, 2) + C(n+2, 3) + C(n+2, 4) + C(n+2, 5).
  • A027670 (program): Number of different bracelets with 6 beads of at most n colors, allowing turning over.
  • A027674 (program): Numerical distance between m-th and (m+n)-th spheres in loxodromic sequence of spheres in which each 5 consecutive spheres are in mutual contact.
  • A027688 (program): a(n) = n^2 + n + 3.
  • A027689 (program): a(n) = n^2 + n + 4.
  • A027690 (program): a(n) = n^2 + n + 5.
  • A027691 (program): a(n) = n^2 + n + 6.
  • A027692 (program): a(n) = n^2 + n + 7.
  • A027693 (program): a(n) = n^2 + n + 8.
  • A027694 (program): a(n) = n^2 + n + 9.
  • A027695 (program): Number of primitive polynomials of degree n over GF(4).
  • A027697 (program): Odious primes: primes with odd number of 1’s in binary expansion.
  • A027698 (program): Numbers k such that the k-th prime has an odd number of 1’s in its binary expansion.
  • A027699 (program): Evil primes: primes with even number of 1’s in their binary expansion.
  • A027700 (program): Numbers k such that the k-th prime has an even number of 1’s in its binary expansion.
  • A027709 (program): Minimal perimeter of polyomino with n square cells.
  • A027710 (program): Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.
  • A027711 (program): Number of binary sequences of length n with an even number of ones, at least two of the ones being contiguous.
  • A027742 (program): a(n) = phi(4^n-1)/(2*n).
  • A027749 (program): Take the list 1,2,3,4,… and replace each n with all d > 1 that divide n.
  • A027750 (program): Triangle read by rows in which row n lists the divisors of n.
  • A027751 (program): Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention.
  • A027752 (program): Numbers k such that k^2 + k + 3 is prime.
  • A027753 (program): Primes of form n^2 + n + 3.
  • A027754 (program): Numbers k such that k^2 + k + 5 is prime.
  • A027755 (program): Primes of the form k^2 + k + 5.
  • A027756 (program): Numbers k such that k^2 + k + 7 is prime.
  • A027757 (program): Numbers k such that k^2 + k + 9 is prime.
  • A027758 (program): Primes of the form k^2 + k + 9.
  • A027759 (program): Numerator of Sum_{p prime, p-1|n} 1/p.
  • A027760 (program): Denominator of Sum_{p prime, p-1 divides n} 1/p.
  • A027761 (program): Numerator of sum_{p prime, p-1 divides 2*n} 1/p.
  • A027762 (program): Denominator of Sum_{p prime, p-1 divides 2*n} 1/p.
  • A027764 (program): a(n) = (n+1)*binomial(n+1,4).
  • A027765 (program): a(n) = (n+1)*binomial(n+1,5).
  • A027766 (program): a(n) = (n+1)*binomial(n+1,6).
  • A027767 (program): a(n) = (n+1)*binomial(n+1,7).
  • A027768 (program): a(n) = (n+1)*binomial(n+1,8).
  • A027769 (program): a(n) = (n+1)*binomial(n+1, 9).
  • A027770 (program): a(n) = (n + 1)*binomial(n + 1, 10).
  • A027771 (program): a(n) = (n+1)*binomial(n+1,11).
  • A027772 (program): a(n) = (n+1)*binomial(n+1,12).
  • A027773 (program): a(n) = (n+1)*binomial(n+1,13).
  • A027774 (program): a(n) = (n+1)*binomial(n+1,14).
  • A027775 (program): a(n) = (n+1)*binomial(n+1, 15).
  • A027776 (program): a(n) = (n+1)*binomial(n+1,16).
  • A027777 (program): a(n) = 2*(n+1)*binomial(n+2,4).
  • A027778 (program): a(n) = 5*(n+1)*binomial(n+2, 5)/2.
  • A027779 (program): a(n) = 3*(n+1)*binomial(n+2,6).
  • A027780 (program): a(n) = 7*(n+1)*binomial(n+2,7)/2.
  • A027781 (program): a(n) = 4*(n+1)*binomial(n+2,8).
  • A027782 (program): a(n) = 9*(n+1)*binomial(n+2,9)/2.
  • A027783 (program): a(n) = 5*(n+1)*binomial(n+2,10).
  • A027784 (program): a(n) = 11*(n+1)*binomial(n+2,11)/2.
  • A027785 (program): a(n) = 6*(n+1)*binomial(n+2,12).
  • A027786 (program): a(n) = 13*(n+1)*binomial(n+2,13)/2.
  • A027787 (program): a(n) = 7*(n+1)*binomial(n+2,14).
  • A027788 (program): a(n) = 15*(n+1)*binomial(n+2,15)/2.
  • A027789 (program): a(n) = 2*(n+1)*binomial(n+3,4).
  • A027790 (program): a(n) = 10*(n+1)*binomial(n+3,5)/3.
  • A027791 (program): a(n) = 5*(n+1)*binomial(n+3,6).
  • A027792 (program): a(n) = 7*(n+1)*binomial(n+3,7).
  • A027793 (program): a(n) = 28*(n+1)*binomial(n+3,8)/3.
  • A027794 (program): a(n) = 12*(n+1)*binomial(n+3,9).
  • A027795 (program): a(n) = 15*(n+1)*binomial(n+3,10).
  • A027796 (program): a(n) = 55*(n+1)*binomial(n+3,11)/3.
  • A027797 (program): a(n) = 22*(n+1)*binomial(n+3,12).
  • A027798 (program): a(n) = 26*(n+1)*binomial(n+3,13).
  • A027799 (program): a(n) = 91*(n+1)*binomial(n+3,14)/3.
  • A027800 (program): a(n) = (n+1)*binomial(n+4, 4).
  • A027801 (program): a(n) = 5*(n+1)*binomial(n+4,5)/2.
  • A027802 (program): a(n) = 5*(n+1)*binomial(n+4,6).
  • A027803 (program): a(n) = 35*(n+1)*binomial(n+4, 7)/4.
  • A027804 (program): a(n) = 14*(n+1)*binomial(n+4,8).
  • A027805 (program): a(n) = 21*(n+1)*binomial(n+4,9).
  • A027806 (program): a(n) = 30*(n+1)*binomial(n+4,10).
  • A027807 (program): a(n) = 165*(n+1)*binomial(n+4,11)/4.
  • A027808 (program): a(n) = 55*(n+1)*binomial(n+4,12).
  • A027809 (program): a(n) = 143*(n+1)*binomial(n+4,13)/2.
  • A027810 (program): a(n) = (n+1)*binomial(n+5, 5).
  • A027811 (program): a(n) = 3*(n+1)*binomial(n+5,6).
  • A027812 (program): a(n) = 7*(n+1)*binomial(n+5,7).
  • A027813 (program): a(n) = 14*(n+1)*binomial(n+5,8).
  • A027814 (program): a(n) = 126*(n+1)*binomial(n+5,9)/5.
  • A027815 (program): a(n) = 42*(n+1) * binomial(n+5,10).
  • A027816 (program): a(n) = 66*(n+1)*binomial(n+5,11).
  • A027817 (program): a(n) = 99*(n+1)*binomial(n+5,12).
  • A027818 (program): a(n) = (n+1)*binomial(n+6,6).
  • A027819 (program): a(n) = 7*(n+1)*binomial(n+6,7)/2.
  • A027820 (program): a(n) = 28*(n+1)*binomial(n+6,8)/3.
  • A027821 (program): a(n) = 21*(n+1)*binomial(n+6,9).
  • A027822 (program): a(n) = 42*(n+1)*binomial(n+6,10).
  • A027823 (program): a(n) = 77*(n+1)*binomial(n+6,11).
  • A027826 (program): Inverse binomial transform of a_0 = 1, a_1, a_2, etc. is a_0, 0, a_1, 0, a_2, 0, etc.
  • A027828 (program): First differences of A010785.
  • A027831 (program): Expansion of 1/(1 - 4*x + 2*x^2 + 4*x^3 - 2*x^4).
  • A027833 (program): Distances between successive 2’s in sequence A001223 of differences between consecutive primes.
  • A027837 (program): Number of subgroups of index n in free group of rank 3.
  • A027847 (program): a(n) = Sum_{d|n} sigma(n/d)*d^3.
  • A027848 (program): a(n) = Sum_{ d|n } sigma(n/d)*d^4.
  • A027849 (program): a(n) = (n+1)*(5*n^2+4*n+1).
  • A027850 (program): a(n) = (n+1)*(14*n^3+13*n^2+6*n+1).
  • A027857 (program): Number of positive divisors of n!, read mod n.
  • A027861 (program): Numbers k such that k^2 + (k+1)^2 is prime.
  • A027862 (program): Primes of the form j^2 + (j+1)^2.
  • A027863 (program): Numbers k such that k^2 + (k+1)^2 + (k+2)^2 is prime.
  • A027864 (program): Primes of the form k^2 + (k+1)^2 + (k+2)^2.
  • A027865 (program): Sums of six consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.
  • A027866 (program): Numbers k such that k^2 + (k+1)^2 + (k+2)^2 + (k+3)^2 + (k+4)^2 + (k+5)^2 is prime.
  • A027867 (program): Primes of the form n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2.
  • A027868 (program): Number of trailing zeros in n!; highest power of 5 dividing n!.
  • A027869 (program): Number of 0’s in n!.
  • A027871 (program): a(n) = Product_{i=1..n} (3^i - 1).
  • A027872 (program): a(n) = Product_{i=1..n} (5^i - 1).
  • A027873 (program): a(n) = Product_{i=1..n} (6^i - 1).
  • A027874 (program): Minimal degree path length of a tree with n leaves.
  • A027875 (program): a(n) = Product_{i=1..n} (7^i - 1).
  • A027876 (program): a(n) = Product_{i=1..n} (8^i - 1).
  • A027877 (program): a(n) = Product_{i=1..n} (9^i - 1).
  • A027878 (program): a(n) = Product_{i=1..n} (10^i - 1).
  • A027879 (program): a(n) = Product_{i=1..n} (11^i - 1).
  • A027880 (program): a(n) = Product_{i=1..n} (12^i - 1).
  • A027882 (program): a(n) = sum_{k>=1} k^n (2/3)^k.
  • A027883 (program): Positions of primes in sequence (A246655) of primes and prime powers {p^i, i >= 1}.
  • A027903 (program): n * (n + 1) * (3*n + 1).
  • A027904 (program): Terminating decimals of length n of form p/2^q using at most one of each nonzero digit.
  • A027906 (program): Expansion of Product_{m>=1} (1+q^m)^(4*m).
  • A027907 (program): Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.
  • A027908 (program): a(n) = T(2*n, n), T given by A027907.
  • A027909 (program): T(2n,n-1), T given by A027907.
  • A027910 (program): T(2n,n-2), T given by A027907.
  • A027911 (program): a(n) = T(2*n+1,n), with T given by A027907.
  • A027912 (program): T(2n-1,n-2), T given by A027907.
  • A027913 (program): T(n,[ n/2 ]), T given by A027907.
  • A027914 (program): T(n,0) + T(n,1) + … + T(n,n), T given by A027907.
  • A027915 (program): a(n) = Sum_{0<=j<=i, 0<=i<=n} A027907(i, j).
  • A027916 (program): Least k such that 1+2+…+k >= E{1,2,…,n}, where E = 2nd elementary symmetric function.
  • A027917 (program): a(n) = least k such that 1+2+…+k >= E{1,2,…,n}, where E is the 3rd elementary symmetric function.
  • A027918 (program): Least k such that 1+2+…+k >= E{1,2,…,n}, where E is the 4th elementary symmetric function.
  • A027922 (program): Least k such that 1+2+…+k >= 1^2 + 2^2 + … + n^2.
  • A027924 (program): a(n) = least k such that 1+2+…+k >= 1^3 + 2^3 + … + n^3.
  • A027925 (program): a(n) = least k such that E{1,2,…,k} >= 1^3 + 2^3 + … + n^3, where E = 2nd elementary symmetric function.
  • A027926 (program): Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.
  • A027927 (program): Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.
  • A027928 (program): a(n) = T(n, 2*n-5), T given by A027926.
  • A027929 (program): a(n) = T(n, 2*n-6), T given by A027926.
  • A027930 (program): a(n) = T(n, 2*n-7), T given by A027926.
  • A027931 (program): T(n, 2n-8), T given by A027926.
  • A027932 (program): T(n, 2n-9), T given by A027926.
  • A027933 (program): a(n) = T(n, 2*n-10), T given by A027926.
  • A027934 (program): a(0)=0, a(1)=1, a(2)=2; for n > 2, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
  • A027935 (program): Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027926; 0 <= k <= n, n >= 0.
  • A027937 (program): a(n) = T(2*n, n+1), T given by A027935.
  • A027938 (program): a(n) = T(2n, n+2), T given by A027935.
  • A027939 (program): a(n) = T(2*n, n+3), T given by A027935.
  • A027940 (program): a(n) = T(2*n, n+4), T given by A027935.
  • A027941 (program): a(n) = Fibonacci(2*n + 1) - 1.
  • A027942 (program): a(n) = T(2n+1, n+2), T given by A027935.
  • A027943 (program): a(n) = T(2*n+1, n+3), T given by A027935.
  • A027944 (program): a(n) = T(2n+1, n+4), T given by A027935.
  • A027945 (program): Greatest number in row n of array T given by A027935.
  • A027946 (program): a(n) is the sum of the non-Fibonacci numbers in row n of array T given by A027935, computed as T(n,m) + T(n,m+1) + … + T(n,n-1), where m = floor((n+2)/2).
  • A027947 (program): a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027935.
  • A027948 (program): Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0.
  • A027949 (program): a(n) = T(2n,n+1), T given by A027948.
  • A027950 (program): a(n) = T(2n,n+2), T given by A027948.
  • A027951 (program): a(n) = T(2n,n+3), T given by A027948.
  • A027952 (program): a(n) = T(2n,n+4), T given by A027948.
  • A027953 (program): a(0)=1, a(n) = Fibonacci(2n+4) - (2n+3).
  • A027954 (program): a(n) = T(2n+1, n+2), T given by A027948.
  • A027955 (program): a(n) = T(2n+1, n+3), T given by A027948.
  • A027956 (program): a(n) = T(2n+1, n+4), T given by A027948.
  • A027957 (program): a(n) = greatest number in row n of array T given by A027948.
  • A027958 (program): a(n) = T(n,m) + T(n,m+1) + … + T(n,n), where m = floor((n+2)/2), T given by A027948.
  • A027959 (program): a(n) = Sum_{k=m..n} T(k,n-k), where m = floor((n+1)/2); a(n) is the n-th diagonal-sum of left justified array T given by A027948.
  • A027960 (program): ‘Lucas array’: triangular array T read by rows.
  • A027961 (program): a(n) = Lucas(n+2) - 3.
  • A027963 (program): T(n,n+3), T given by A027960.
  • A027964 (program): T(n,n+4), T given by A027960.
  • A027965 (program): T(n, 2*n-3), T given by A027960.
  • A027966 (program): T(n, 2*n-4), T given by A027960.
  • A027967 (program): T(n, 2*n-5), T given by A027960.
  • A027968 (program): a(n) = T(n, 2*n-6), T given by A027960.
  • A027969 (program): a(n) = T(n, 2*n-7), T given by A027960.
  • A027970 (program): a(n) = T(n, 2*n-8), T given by A027960.
  • A027971 (program): T(n, 2n-9), T given by A027960.
  • A027972 (program): T(n, 2n-10), T given by A027960.
  • A027973 (program): a(n) = T(n,n) + T(n,n+1) + … + T(n,2n), T given by A027960.
  • A027974 (program): a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960.
  • A027975 (program): a(n) is the n-th diagonal sum of left justified array T given by A027960.
  • A027976 (program): n-th diagonal sum of right justified array T given by A027960.
  • A027977 (program): a(n) = greatest number in row n of array T given by A027960.
  • A027978 (program): a(n) = self-convolution of row n of array T given by A027960.
  • A027979 (program): a(n) = Sum_{k=0..n} T(n,k)*T(n,2n-k), T given by A027960.
  • A027980 (program): a(n) = Sum_{k=0..n-1} T(n,k)*T(n,2n-k), T given by A027960.
  • A027981 (program): Sum{(k+1)*T(n,k)}, 0<=k<=2n, T given by A027960.
  • A027982 (program): Sum{(k+1)*T(n,2n-k)}, 0<=k<=2n, T given by A027960.
  • A027983 (program): T(n,n+1) + T(n,n+2) + … + T(n,2n), T given by A027960.
  • A027984 (program): a(n) = Sum{T(n,k)*T(n,n+k)}, 0<=k<=n, T given by A027960.
  • A027988 (program): Greatest number in row n of array T given by A027926.
  • A027989 (program): a(n) = self-convolution of row n of array T given by A027926.
  • A027990 (program): Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n, T given by A027926.
  • A027991 (program): a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.
  • A027992 (program): a(n) = 1*T(n,0) + 2*T(n,1) + … + (2n+1)*T(n,2n), T given by A027926.
  • A027993 (program): a(n) = 1*T(n,2n) + 2*T(n,2n-1) + … + (2n+1)*T(n,0), T given by A027926.
  • A027994 (program): a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.
  • A027995 (program): a(n)=Sum{T(n,k)*T(n,k+1)}, 0<=k<=2n-1, T given by A027926.
  • A027996 (program): a(n)=Sum{T(n,k)*T(n,k+2)}, 0<=k<=2n-2, T given by A027926.
  • A027997 (program): Sum{T(n,k)*T(n,k+3)}, 0<=k<=2n-3, T given by A027926.
  • A027998 (program): Expansion of Product_{m>=1} (1+q^m)^(m^2).
  • A028000 (program): Expansion of 1/((1-2x)(1-6x)(1-9x)(1-11x)).
  • A028001 (program): Expansion of 1/((1-2x)(1-6x)(1-9x)(1-12x)).
  • A028002 (program): Expansion of 1/((1-2*x)*(1-6*x)*(1-10*x)*(1-11*x)).
  • A028003 (program): Expansion of 1/((1-2x)(1-6x)(1-10x)(1-12x)).
  • A028004 (program): Expansion of 1/((1-2x)(1-6x)(1-11x)(1-12x)).
  • A028005 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-9x)).
  • A028006 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-10x)).
  • A028007 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-11x)).
  • A028008 (program): Expansion of 1/((1-2x)(1-7x)(1-8x)(1-12x)).
  • A028009 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-10x)).
  • A028010 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-11x)).
  • A028011 (program): Expansion of 1/((1-2x)(1-7x)(1-9x)(1-12x)).
  • A028012 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)(1-11x)).
  • A028013 (program): Expansion of 1/((1-2x)(1-7x)(1-10x)(1-12x)).
  • A028014 (program): Expansion of 1/((1-2x)(1-7x)(1-11x)(1-12x)).
  • A028015 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-10x)).
  • A028016 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-11x)).
  • A028017 (program): Expansion of 1/((1-2x)(1-8x)(1-9x)(1-12x)).
  • A028018 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)(1-11x)).
  • A028019 (program): Expansion of 1/((1-2x)(1-8x)(1-10x)(1-12x)).
  • A028020 (program): Expansion of 1/((1-2x)(1-8x)(1-11x)(1-12x)).
  • A028021 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)(1-11x)).
  • A028022 (program): Expansion of 1/((1-2x)(1-9x)(1-10x)(1-12x)).
  • A028023 (program): Expansion of 1/((1-2x)(1-9x)(1-11x)(1-12x)).
  • A028024 (program): Expansion of 1/((1-2x)(1-10x)(1-11x)(1-12x)).
  • A028025 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-6x)).
  • A028026 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-7x)).
  • A028027 (program): Expansion of 1 / ((1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 8*x)).
  • A028028 (program): Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)*(1-9*x)).
  • A028029 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-10x)).
  • A028030 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-11x)).
  • A028031 (program): Expansion of 1/((1-3x)(1-4x)(1-5x)(1-12x)).
  • A028032 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-7x)).
  • A028033 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-8x)).
  • A028034 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-9x)).
  • A028035 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-10x)).
  • A028036 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-11x)).
  • A028037 (program): Expansion of 1/((1-3x)(1-4x)(1-6x)(1-12x)).
  • A028038 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-8x)).
  • A028039 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-9x)).
  • A028040 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-10x)).
  • A028041 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-11x)).
  • A028042 (program): Expansion of 1/((1-3x)(1-4x)(1-7x)(1-12x)).
  • A028043 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-9x)).
  • A028044 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-10x)).
  • A028045 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-11x)).
  • A028046 (program): Expansion of 1/((1-3x)(1-4x)(1-8x)(1-12x)).
  • A028047 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-10x)).
  • A028048 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-11x)).
  • A028049 (program): Expansion of 1/((1-3x)(1-4x)(1-9x)(1-12x)).
  • A028050 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)(1-11x)).
  • A028051 (program): Expansion of 1/((1-3x)(1-4x)(1-10x)(1-12x)).
  • A028052 (program): Expansion of 1/((1-3x)(1-4x)(1-11x)(1-12x)).
  • A028053 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-7x)).
  • A028054 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-8x)).
  • A028055 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-9x)).
  • A028056 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-10x)).
  • A028057 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-11x)).
  • A028058 (program): Expansion of 1/((1-3x)(1-5x)(1-6x)(1-12x)).
  • A028059 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-8x)).
  • A028060 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-9x)).
  • A028061 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-10x)).
  • A028062 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-11x)).
  • A028063 (program): Expansion of 1/((1-3x)(1-5x)(1-7x)(1-12x)).
  • A028064 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-9x)).
  • A028065 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-10x)).
  • A028066 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-11x)).
  • A028067 (program): Expansion of 1/((1-3x)(1-5x)(1-8x)(1-12x)).
  • A028068 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-10x)).
  • A028069 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-11x)).
  • A028070 (program): Expansion of 1/((1-3x)(1-5x)(1-9x)(1-12x)).
  • A028071 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)(1-11x)).
  • A028072 (program): Expansion of 1/((1-3x)(1-5x)(1-10x)(1-12x)).
  • A028073 (program): Expansion of 1/((1-3x)(1-5x)(1-11x)(1-12x)).
  • A028074 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-8x)).
  • A028075 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-9x)).
  • A028076 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-10x)).
  • A028077 (program): Expansion of 1/((1-3x)(1-6x)(1-7x)(1-11x)).
  • A028078 (program): Expansion of 1/((1-3*x)*(1-6*x)*(1-7*x)*(1-12*x)).
  • A028079 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-9x)).
  • A028080 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-10x)).
  • A028081 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-11x)).
  • A028082 (program): Expansion of 1/((1-3x)(1-6x)(1-8x)(1-12x)).
  • A028083 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-10x)).
  • A028084 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-11x)).
  • A028085 (program): Expansion of 1/((1-3x)(1-6x)(1-9x)(1-12x)).
  • A028086 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)(1-11x)).
  • A028087 (program): Expansion of 1/((1-3x)(1-6x)(1-10x)(1-12x)).
  • A028088 (program): Expansion of 1/((1-3x)(1-6x)(1-11x)(1-12x)).
  • A028089 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-9x)).
  • A028090 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-10x)).
  • A028091 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-11x)).
  • A028092 (program): Expansion of 1/((1-3x)(1-7x)(1-8x)(1-12x)).
  • A028093 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-10x)).
  • A028094 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-11x)).
  • A028095 (program): Expansion of 1/((1-3x)(1-7x)(1-9x)(1-12x)).
  • A028096 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)(1-11x)).
  • A028097 (program): Expansion of 1/((1-3x)(1-7x)(1-10x)(1-12x)).
  • A028098 (program): Expansion of 1/((1-3x)(1-7x)(1-11x)(1-12x)).
  • A028099 (program): Expansion of 1/((1 - 3*x)*(1 - 8*x)*(1 - 9*x)*(1 - 10*x)).
  • A028100 (program): Expansion of 1/((1-3x)(1-8x)(1-9x)(1-11x)).
  • A028101 (program): Expansion of 1/((1-3x)(1-8x)(1-9x)(1-12x)).
  • A028102 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)(1-11x)).
  • A028103 (program): Expansion of 1/((1-3x)(1-8x)(1-10x)(1-12x)).
  • A028104 (program): Expansion of 1/((1-3x)(1-8x)(1-11x)(1-12x)).
  • A028105 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)(1-11x)).
  • A028106 (program): Expansion of 1/((1-3x)(1-9x)(1-10x)(1-12x)).
  • A028107 (program): Expansion of 1/((1-3x)(1-9x)(1-11x)(1-12x)).
  • A028108 (program): Expansion of 1/((1-3x)(1-10x)(1-11x)(1-12x)).
  • A028110 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-8x)).
  • A028111 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-9x)).
  • A028112 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-10x)).
  • A028113 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-11x)).
  • A028114 (program): Expansion of 1/((1-4x)(1-5x)(1-6x)(1-12x)).
  • A028115 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-8x)).
  • A028116 (program): Expansion of 1 / ((1-4*x)*(1-5*x)*(1-7*x)*(1-9*x)).
  • A028117 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-10x)).
  • A028118 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-11x)).
  • A028119 (program): Expansion of 1/((1-4x)(1-5x)(1-7x)(1-12x)).
  • A028120 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-9x)).
  • A028121 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-10x)).
  • A028122 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-11x)).
  • A028123 (program): Expansion of 1/((1-4x)(1-5x)(1-8x)(1-12x)).
  • A028124 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-10x)).
  • A028125 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-11x)).
  • A028126 (program): Expansion of 1/((1-4x)(1-5x)(1-9x)(1-12x)).
  • A028127 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)(1-11x)).
  • A028128 (program): Expansion of 1/((1-4x)(1-5x)(1-10x)(1-12x)).
  • A028129 (program): Expansion of 1/((1-4x)(1-5x)(1-11x)(1-12x)).
  • A028130 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-8x)).
  • A028131 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-9x)).
  • A028132 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-10x)).
  • A028133 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-11x)).
  • A028134 (program): Expansion of 1/((1-4x)(1-6x)(1-7x)(1-12x)).
  • A028135 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-9x)).
  • A028136 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-10x)).
  • A028137 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-11x)).
  • A028138 (program): Expansion of 1/((1-4x)(1-6x)(1-8x)(1-12x)).
  • A028139 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-10x)).
  • A028140 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-11x)).
  • A028141 (program): Expansion of 1/((1-4x)(1-6x)(1-9x)(1-12x)).
  • A028142 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)(1-11x)).
  • A028143 (program): Expansion of 1/((1-4x)(1-6x)(1-10x)(1-12x)).
  • A028144 (program): Expansion of 1/((1-4x)(1-6x)(1-11x)(1-12x)).
  • A028145 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-9x)).
  • A028146 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-10x)).
  • A028147 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-11x)).
  • A028148 (program): Expansion of 1/((1-4x)(1-7x)(1-8x)(1-12x)).
  • A028149 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-10x)).
  • A028150 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-11x)).
  • A028151 (program): Expansion of 1/((1-4x)(1-7x)(1-9x)(1-12x)).
  • A028152 (program): Expansion of 1/((1-4x)(1-7x)(1-10x)(1-11x)).
  • A028153 (program): Expansion of 1/((1-4x)(1-7x)(1-10x)(1-12x)).
  • A028154 (program): Expansion of 1/((1-4x)(1-7x)(1-11x)(1-12x)).
  • A028155 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-10x)).
  • A028156 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-11x)).
  • A028157 (program): Expansion of 1/((1-4x)(1-8x)(1-9x)(1-12x)).
  • A028158 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)(1-11x)).
  • A028159 (program): Expansion of 1/((1-4x)(1-8x)(1-10x)(1-12x)).
  • A028160 (program): Expansion of 1/((1-4x)(1-8x)(1-11x)(1-12x)).
  • A028161 (program): Expansion of 1/((1-4*x)*(1-9*x)*(1-10*x)*(1-11*x)).
  • A028162 (program): Expansion of 1/((1-4x)(1-9x)(1-10x)(1-12x)).
  • A028163 (program): Expansion of 1/((1-4x)(1-9x)(1-11x)(1-12x)).
  • A028164 (program): Expansion of 1/((1-4x)(1-10x)(1-11x)(1-12x)).
  • A028165 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-8x)).
  • A028166 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-9x)).
  • A028167 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-10x)).
  • A028168 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-11x)).
  • A028169 (program): Expansion of 1/((1-5x)(1-6x)(1-7x)(1-12x)).
  • A028170 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-9x)).
  • A028171 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-10x)).
  • A028172 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-11x)).
  • A028173 (program): Expansion of 1/((1-5x)(1-6x)(1-8x)(1-12x)).
  • A028174 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-10x)).
  • A028175 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-11x)).
  • A028176 (program): Expansion of 1/((1-5x)(1-6x)(1-9x)(1-12x)).
  • A028177 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)(1-11x)).
  • A028178 (program): Expansion of 1/((1-5x)(1-6x)(1-10x)(1-12x)).
  • A028179 (program): Expansion of 1/((1-5x)(1-6x)(1-11x)(1-12x)).
  • A028180 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-9x)).
  • A028181 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-10x)).
  • A028182 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-11x)).
  • A028183 (program): Expansion of 1/((1-5x)(1-7x)(1-8x)(1-12x)).
  • A028184 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-10x)).
  • A028185 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-11x)).
  • A028186 (program): Expansion of 1/((1-5x)(1-7x)(1-9x)(1-12x)).
  • A028187 (program): Expansion of 1/((1-5x)(1-7x)(1-10x)(1-11x)).
  • A028188 (program): Expansion of 1/((1-5*x)*(1-7*x)*(1-10*x)*(1-12*x)).
  • A028189 (program): Expansion of 1/((1-5x)(1-7x)(1-11x)(1-12x)).
  • A028190 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-10x)).
  • A028191 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-11x)).
  • A028192 (program): Expansion of 1/((1-5x)(1-8x)(1-9x)(1-12x)).
  • A028193 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)(1-11x)).
  • A028194 (program): Expansion of 1/((1-5x)(1-8x)(1-10x)(1-12x)).
  • A028195 (program): Expansion of 1/((1-5x)(1-8x)(1-11x)(1-12x)).
  • A028196 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)(1-11x)).
  • A028197 (program): Expansion of 1/((1-5x)(1-9x)(1-10x)(1-12x)).
  • A028198 (program): Expansion of 1/((1-5x)(1-9x)(1-11x)(1-12x)).
  • A028199 (program): Expansion of 1/((1-5x)(1-10x)(1-11x)(1-12x)).
  • A028200 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-9x)).
  • A028201 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-10x)).
  • A028202 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-11x)).
  • A028203 (program): Expansion of 1/((1-6x)(1-7x)(1-8x)(1-12x)).
  • A028204 (program): Expansion of 1/((1-6*x)*(1-7*x)*(1-9*x)*(1-10*x)).
  • A028205 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)(1-11x)).
  • A028206 (program): Expansion of 1/((1-6x)(1-7x)(1-9x)(1-12x)).
  • A028207 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)(1-11x)).
  • A028208 (program): Expansion of 1/((1-6x)(1-7x)(1-10x)(1-12x)).
  • A028209 (program): Expansion of 1/((1-6x)(1-7x)(1-11x)(1-12x)).
  • A028210 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-10x)).
  • A028211 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-11x)).
  • A028212 (program): Expansion of 1/((1-6x)(1-8x)(1-9x)(1-12x)).
  • A028213 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)(1-11x)).
  • A028214 (program): Expansion of 1/((1-6x)(1-8x)(1-10x)(1-12x)).
  • A028215 (program): Expansion of 1/((1-6x)(1-8x)(1-11x)(1-12x)).
  • A028216 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)(1-11x)).
  • A028217 (program): Expansion of 1/((1-6x)(1-9x)(1-10x)(1-12x)).
  • A028218 (program): Expansion of 1/((1-6x)(1-9x)(1-11x)(1-12x)).
  • A028219 (program): Expansion of 1/((1 - 6*x)*(1 - 10*x)*(1 - 11*x)*(1 - 12*x)).
  • A028220 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-11x)).
  • A028221 (program): Expansion of 1/((1-7x)(1-8x)(1-9x)(1-12x)).
  • A028222 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)(1-11x)).
  • A028223 (program): Expansion of 1/((1-7x)(1-8x)(1-10x)(1-12x)).
  • A028224 (program): Expansion of 1/((1-7x)(1-8x)(1-11x)(1-12x)).
  • A028225 (program): Expansion of 1/((1-7x)(1-9x)(1-10x)(1-11x)).
  • A028226 (program): Expansion of 1/((1-7x)(1-9x)(1-10x)(1-12x)).
  • A028227 (program): Expansion of 1/((1-7x)(1-9x)(1-11x)(1-12x)).
  • A028228 (program): Expansion of 1/((1-7x)(1-10x)(1-11x)(1-12x)).
  • A028229 (program): Call m Egyptian if we can partition m = x_1+x_2+…+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all non-Egyptian numbers.
  • A028230 (program): Bisection of A001353. Indices of square numbers which are also octagonal.
  • A028231 (program): From hexagons in a circle problem.
  • A028233 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.
  • A028234 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = n/p_1^e_1, with a(1) = 1.
  • A028235 (program): If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947).
  • A028236 (program): If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j.
  • A028242 (program): Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.
  • A028243 (program): a(n) = 3^(n-1) - 2*2^(n-1) + 1 (essentially Stirling numbers of second kind).
  • A028244 (program): a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).
  • A028245 (program): a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind).
  • A028246 (program): Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.
  • A028249 (program): Molien series for complete weight enumerator of self-dual code over GF(4) containing 1^n.
  • A028250 (program): Sequence arising in multiprocessor page migration.
  • A028251 (program): Sequence arising in multiprocessor page migration.
  • A028252 (program): Sequence arising in multiprocessor page migration.
  • A028253 (program): n mod Fibonacci(n).
  • A028255 (program): Fibonacci(n+3) mod n-th prime.
  • A028256 (program): Fibonacci(n+2) mod n-th prime.
  • A028258 (program): Expansion of 1/((1-2*x)*(1-4*x)(1-8*x)(1-16*x)).
  • A028260 (program): Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda(k) (A008836) is positive.
  • A028261 (program): Numbers whose total number of prime factors (counting multiplicity) is squarefree.
  • A028262 (program): Elements in 3-Pascal triangle (by row).
  • A028263 (program): Elements in 3-Pascal triangle A028262 (by row) that are not 1.
  • A028264 (program): Odd elements in 3-Pascal triangle A028262 (by row).
  • A028265 (program): Odd elements in 3-Pascal triangle A028262 (by row) that are not 1.
  • A028266 (program): Even elements in 3-Pascal triangle A028262 (by row).
  • A028270 (program): Central elements in 3-Pascal triangle A028262 (by row).
  • A028271 (program): Elements to right of central elements in 3-Pascal triangle A028262.
  • A028272 (program): Elements to right of central elements in 3-Pascal triangle A028262 that are not 1.
  • A028273 (program): Even elements to right of central elements in 3-Pascal triangle A028262.
  • A028274 (program): Odd elements (greater than 1) to right of central elements in 3-Pascal triangle A028262.
  • A028275 (program): Elements in 4-Pascal triangle (by row).
  • A028276 (program): Elements in 4-Pascal triangle A028275 (by row) that are not 1.
  • A028277 (program): Odd elements in 4-Pascal triangle A028275 (by row).
  • A028278 (program): Odd elements in 4-Pascal triangle A028275 (by row) that are not 1.
  • A028279 (program): Even elements in 4-Pascal triangle A028275 (by row).
  • A028283 (program): Central elements in 4-Pascal triangle A028275 (by row).
  • A028284 (program): Elements to right of central elements in 4-Pascal triangle A028275.
  • A028285 (program): Elements to right of central elements in 4-Pascal triangle A028275 that are not 1.
  • A028286 (program): Even elements to right of central elements in 4-Pascal triangle A028275.
  • A028287 (program): Odd elements (greater than 1) to right of central elements in 4-Pascal triangle A028275.
  • A028288 (program): Molien series for complex 4-dimensional Clifford group of order 92160 and genus 2. Also Molien series of ring of biweight enumerators of Type II self-dual binary codes.
  • A028289 (program): Expansion of (1+x^2+x^3+x^5)/((1-x)(1-x^3)(1-x^4)(1-x^6)).
  • A028290 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^5)(1-x^8)).
  • A028291 (program): Expansion of 1/((1-x)^2(1-x^2)(1-x^3)(1-x^5)) in powers of x.
  • A028293 (program): Period 7.
  • A028296 (program): Expansion of e.g.f. Gudermannian(x) = 2*arctan(exp(x)) - Pi/2.
  • A028297 (program): Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).
  • A028302 (program): a(n) = prime(n)*Catalan(n).
  • A028303 (program): a(n) = floor((1/(ceiling(n/2)+1))*binomial(n,floor(n/2))) (interpolates between Catalan numbers).
  • A028304 (program): a(n) = ceiling((1/(ceiling(n/2)+1))*binomial(n,floor(n/2))) (interpolates between Catalan numbers).
  • A028309 (program): Molien series for ring of symmetrized weight enumerators of self-dual codes (with respect to Euclidean inner product) of length n over GF(4).
  • A028310 (program): Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.
  • A028311 (program): Odd numbers k such that {1..k-1} can be partitioned into disjoint sets I, J with 2I == -J (mod k) such that I, J are unions of cyclotomic cosets mod k.
  • A028312 (program): Odd numbers k such that {1..k-1} cannot be partitioned into disjoint sets I, J such that 2I == -J (mod k) and I, J are unions of cyclotomic cosets mod k.
  • A028313 (program): Elements in the 5-Pascal triangle (by row).
  • A028314 (program): Elements in the 5-Pascal triangle A028313 that are not 1.
  • A028315 (program): Odd elements in the 5-Pascal triangle A028313.
  • A028316 (program): Odd elements in the 5-Pascal triangle A028313 that are not 1.
  • A028317 (program): Even elements in the 5-Pascal triangle A028313.
  • A028321 (program): Even elements to the right of the central elements of the 5-Pascal triangle A028313.
  • A028322 (program): Central elements in the 5-Pascal triangle A028313.
  • A028323 (program): Elements to the right of the central elements of the 5-Pascal triangle A028313.
  • A028324 (program): Elements to the right of the central elements of the 5-Pascal triangle A028313 that are not 1.
  • A028325 (program): Odd elements to the right of the central elements of the 5-Pascal triangle A028313.
  • A028326 (program): Twice Pascal’s triangle A007318: T(n,k) = 2*C(n,k).
  • A028327 (program): Elements in the even-Pascal triangle A028326 that are not 2.
  • A028329 (program): Twice central binomial coefficients.
  • A028330 (program): Elements to the right of the central elements of the even-Pascal triangle A028326.
  • A028331 (program): Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.
  • A028334 (program): Differences between consecutive odd primes, divided by 2.
  • A028339 (program): Coefficient of x^2 in expansion of (x+1)*(x+3)*…*(x+2*n-1).
  • A028340 (program): Coefficient of x^3 in expansion of (x+1)*(x+3)*…*(x+2*n-1).
  • A028342 (program): Expansion of Product_{i>=1} (1 - x^i)^(-1/i); also of exp(Sum_{n>=1} (d(n)*x^n/n)) where d is number of divisors function.
  • A028343 (program): Expansion of Product_{i>=1} (1-x^i)^(1/i); also of exp(- Sum_{n>=1}(d(n)*x^n/n)) where d(n) is the number of divisors of n.
  • A028346 (program): Expansion of 1/((1-x)^4*(1-x^2)^2).
  • A028347 (program): a(n) = n^2 - 4.
  • A028350 (program): Expansion of -1/x + 6*3F2( 5/6, 1, 7/6; 3/2, 2; 108*x).
  • A028352 (program): A Golomb-like recurrence that decreases infinitely often.
  • A028353 (program): Coefficient of x^(2*n+1) in arctanh(x)/sqrt(1-x^2), multiplied by (2*n+1)!.
  • A028356 (program): Simple periodic sequence underlying clock sequence A028354.
  • A028357 (program): Partial sums of A028356.
  • A028358 (program): Partial sums of A028357.
  • A028359 (program): Two-bell analog of A028355.
  • A028361 (program): Number of totally isotropic spaces of index n in orthogonal geometry of dimension 2n.
  • A028362 (program): Total number of self-dual binary codes of length 2n. Totally isotropic spaces of index n in symplectic geometry of dimension 2n.
  • A028365 (program): Order of general affine group over GF(2), AGL(n,2).
  • A028368 (program): a(n) = (Product_{j=1..n-1} (2^j-1)) * 2^binomial(n+1,2).
  • A028373 (program): Numbers that have only the straight digits {1, 4, 7}.
  • A028374 (program): Curved numbers: numbers that have only curved digits (0, 2, 3, 5, 6, 8, 9).
  • A028375 (program): Squares of (odd numbers not divisible by 5).
  • A028379 (program): a(n) = 6*(n+1)*(2*n+6)!/((n+3)!*(n+5)!).
  • A028387 (program): a(n) = n + (n+1)^2.
  • A028389 (program): The 5x + 1 sequence beginning at 7.
  • A028390 (program): Nearest integer to 3n/4 unless that is an integer, when 3n/2.
  • A028391 (program): a(n) = n - floor(sqrt(n)).
  • A028392 (program): a(n) = n + floor(sqrt(n)).
  • A028393 (program): Iterate the map in A006368 starting at 8.
  • A028394 (program): Iterate the map in A006369 starting at 8.
  • A028395 (program): Iterate the map in A006368 starting at 14.
  • A028396 (program): Iterate the map in A006369 starting at 14.
  • A028399 (program): a(n) = 2^n - 4.
  • A028400 (program): a(n) = (2^n + 1)^2.
  • A028401 (program): The (2^n+1)-th triangular number (cf. A000217).
  • A028402 (program): Number of types of Boolean functions of n variables under a certain group.
  • A028403 (program): Number of types of Boolean functions of n variables under a certain group.
  • A028408 (program): Number of types of Boolean functions of n variables under a certain group.
  • A028410 (program): Number of types of Boolean functions of n variables under a certain group.
  • A028425 (program): Clog sequence in base 4. Right to left concatenation of n, int(log_4(n)), int(log_4(int(log_4(n)))), … in base 4.
  • A028426 (program): Clog sequence in base 5. Right to left concatenation of n,int(log_5(n)),int(log_5(int(log_5(n)))),… in base5.
  • A028427 (program): Clog sequence in base 6. Right to left concatenation of n,int(log_6(n)),int(log_6(int(log_6(n)))),… in base6.
  • A028428 (program): Clog sequence in base 7. Right to left concatenation of n,int(log_7(n)),int(log_7(int(log_7(n)))),… in base7.
  • A028429 (program): Clog sequence in base 8. Right to left concatenation of n, int(log_8(n)),int(log_8(int(log_8(n)))),… in base8.
  • A028430 (program): Clog sequence in base 9. Right to left concatenation of n, int(log_9(n)), int(log_9(int(log_9(n)))),… in base9.
  • A028431 (program): Clog sequence in base 10. Right to left concatenation of n, int(log_10(n)), int(log_10(int(log_10(n)))),… in base10.
  • A028434 (program): Golc sequence in base 4. Left to right concatenation of n,int(log_4(n)),int(log_4(int(log_4(n)))),… in base 4.
  • A028435 (program): Golc sequence in base 5. Left to right concatenation of n,int(log_5(n)),int(log_5(int(log_5(n)))),… in base5.
  • A028436 (program): Golc sequence in base 6. Left to right concatenation of n,int(log_6(n)),int(log_6(int(log_6(n)))),… in base6.
  • A028438 (program): Golc sequence in base 8. Left to right concatenation of n,int(log_8(n)),int(log_8(int(log_8(n)))),… in base8.
  • A028439 (program): Golc sequence in base 9. Left to right concatenation of n,int(log_9(n)),int(log_9(int(log_9(n)))),… in base9.
  • A028440 (program): Golc sequence in base 10. Left to right concatenation of n,int(log_10(n)),int(log_10(int(log_10(n)))),… in base 10.
  • A028477 (program): Number of perfect matchings in graph C_{6} X P_{n}.
  • A028493 (program): a(0) = 16, a(n+1) = 3a(n) - (6-n)^2.
  • A028494 (program): a(n) = -(1/2)*(n+2)*(n^2 - 6*n - 1).
  • A028495 (program): Expansion of (1-x^2)/(1-x-2*x^2+x^3).
  • A028505 (program): Number of primes <= 100*n.
  • A028552 (program): a(n) = n*(n+3).
  • A028557 (program): a(n) = n*(n+5).
  • A028560 (program): a(n) = n*(n + 6), also numbers j such that 9*(9 + j) is a perfect square.
  • A028563 (program): a(n) = n*(n+7).
  • A028566 (program): a(n) = n*(n+8).
  • A028569 (program): a(n) = n*(n + 9).
  • A028572 (program): Expansion of theta_3(z)*theta_3(2z) + theta_2(z)*theta_2(2z) in powers of q^(1/4).
  • A028574 (program): Expansion of 1/((1-16*x)^2*(1 - 14*x + 56*x^2 - 64*x^3)).
  • A028594 (program): Expansion of (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2 in powers of q.
  • A028601 (program): Expansion of (theta_3(z)*theta_3(9z) + theta_2(z)*theta_2(9z)).
  • A028609 (program): Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z)).
  • A028617 (program): Expansion of (theta_3(z)*theta_3(13z) + theta_2(z)*theta_2(13z)).
  • A028625 (program): Expansion of (theta_3(z)*theta_3(15z)+theta_2(z)*theta_2(15z)).
  • A028633 (program): Expansion of (theta_3(z)*theta_3(17z) + theta_2(z)*theta_2(17z)).
  • A028641 (program): Expansion of theta_3(q) * theta_3(q^19) + theta_2(q) * theta_2(q^19) in powers of q.
  • A028665 (program): Galois numbers for p=3; order of group AGL(n,3).
  • A028666 (program): a(n) = order of the orthogonal group O_n(2) if n is odd or O^(+)_n(2) if n is even.
  • A028723 (program): a(n) = (1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2).
  • A028724 (program): a(n) = (1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2).
  • A028725 (program): a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.
  • A028729 (program): Nonsquares mod 16.
  • A028731 (program): Nonsquares mod 18.
  • A028733 (program): Nonsquares mod 20.
  • A028734 (program): Nonsquares mod 21.
  • A028735 (program): Nonsquares mod 22.
  • A028736 (program): Nonsquares mod 23.
  • A028737 (program): Nonsquares mod 24.
  • A028738 (program): Nonsquares mod 25.
  • A028739 (program): Nonsquares mod 26.
  • A028740 (program): Nonsquares mod 27.
  • A028741 (program): Nonsquares mod 28.
  • A028742 (program): Nonsquares mod 29.
  • A028743 (program): Nonsquares mod 30.
  • A028744 (program): Nonsquares mod 31.
  • A028745 (program): Nonsquares mod 32.
  • A028746 (program): Nonsquares mod 33.
  • A028747 (program): Nonsquares mod 34.
  • A028748 (program): Nonsquares mod 35.
  • A028749 (program): Nonsquares mod 36.
  • A028750 (program): Nonsquares mod 37.
  • A028751 (program): Nonsquares mod 38.
  • A028752 (program): Nonsquares mod 39.
  • A028753 (program): Nonsquares mod 40.
  • A028754 (program): Nonsquares mod 41.
  • A028755 (program): Nonsquares mod 42.
  • A028756 (program): Nonsquares mod 43.
  • A028757 (program): Nonsquares mod 44.
  • A028758 (program): Nonsquares mod 45.
  • A028760 (program): Nonsquares mod 47.
  • A028761 (program): Nonsquares mod 48.
  • A028762 (program): Nonsquares mod 49.
  • A028763 (program): Nonsquares mod 50.
  • A028764 (program): Nonsquares mod 51.
  • A028765 (program): Nonsquares mod 52.
  • A028766 (program): Nonsquares mod 53.
  • A028767 (program): Nonsquares mod 54.
  • A028768 (program): Nonsquares mod 55.
  • A028769 (program): Nonsquares mod 56.
  • A028770 (program): Nonsquares mod 57.
  • A028771 (program): Nonsquares mod 58.
  • A028772 (program): Nonsquares mod 59.
  • A028773 (program): Nonsquares mod 60.
  • A028774 (program): Nonsquares mod 61.
  • A028775 (program): Nonsquares mod 62.
  • A028776 (program): Nonsquares mod 63.
  • A028777 (program): Nonsquares mod 64.
  • A028778 (program): Nonsquares mod 65.
  • A028779 (program): Nonsquares mod 66.
  • A028780 (program): Nonsquares mod 67.
  • A028781 (program): Nonsquares mod 68.
  • A028783 (program): Nonsquares mod 70.
  • A028785 (program): Nonsquares mod 72.
  • A028787 (program): Nonsquares mod 74.
  • A028788 (program): Nonsquares mod 75.
  • A028789 (program): Nonsquares mod 76.
  • A028791 (program): Nonsquares mod 78.
  • A028792 (program): Nonsquares mod 79.
  • A028793 (program): Nonsquares mod 80.
  • A028794 (program): Nonsquares mod 81.
  • A028795 (program): Nonsquares mod 82.
  • A028796 (program): Nonsquares mod 83.
  • A028797 (program): Nonsquares mod 84.
  • A028798 (program): Nonsquares mod 85.
  • A028799 (program): Nonsquares mod 86.
  • A028800 (program): Nonsquares mod 87.
  • A028801 (program): Nonsquares mod 88.
  • A028803 (program): Nonsquares mod 90.
  • A028804 (program): Nonsquares mod 91.
  • A028805 (program): Nonsquares mod 92.
  • A028806 (program): Nonsquares mod 93.
  • A028807 (program): Nonsquares mod 94.
  • A028808 (program): Nonsquares mod 95.
  • A028809 (program): Nonsquares mod 96.
  • A028811 (program): Nonsquares mod 98.
  • A028812 (program): Nonsquares mod 99.
  • A028813 (program): Nonsquares mod 100.
  • A028814 (program): Expansion of (1-2*x)/((1-x)^3*(1-4*x)).
  • A028815 (program): a(n) = n-th prime + 1 (starting with 1).
  • A028823 (program): Numbers k such that k^2 + k + 17 is prime.
  • A028826 (program): Distinct orders of elements of Mathieu group M_24.
  • A028828 (program): Distinct orders of elements of Conway simple group Co_3.
  • A028830 (program): Distinct orders of elements of Conway simple group Co_2.
  • A028831 (program): Expansion of (1+2*x+3*x^2)/(1-x-x^2-x^3-x^4).
  • A028834 (program): Numbers whose sum of digits is a prime.
  • A028835 (program): Numbers whose iterated sum of digits is a prime.
  • A028836 (program): Iterated sum of digits of n is a power of 2.
  • A028837 (program): Iterated sum of digits of n is a square.
  • A028838 (program): Numbers whose sum of digits is a power of 2.
  • A028839 (program): Sum of digits of n is a square.
  • A028840 (program): Numbers k such that sum of digits of k is a Fibonacci number.
  • A028841 (program): Iterated sum of digits of n is a Fibonacci number.
  • A028843 (program): Numbers whose iterated product of digits is a prime.
  • A028845 (program): Iterated product of digits of n is a nonzero square.
  • A028846 (program): Numbers whose product of digits is a power of 2.
  • A028859 (program): a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.
  • A028860 (program): a(n+2) = 2*a(n+1) + 2*a(n); a(0) = -1, a(1) = 1.
  • A028870 (program): Numbers k such that k^2 - 2 is prime.
  • A028871 (program): Primes of the form k^2 - 2.
  • A028872 (program): a(n) = n^2 - 3.
  • A028873 (program): Numbers k such that k^2 - 3 is prime.
  • A028874 (program): Primes of form n^2 - 3.
  • A028875 (program): a(n) = n^2 - 5.
  • A028876 (program): Numbers k such that k^2 - 5 is prime.
  • A028877 (program): Primes of form k^2 - 5.
  • A028878 (program): a(n) = (n+3)^2 - 6.
  • A028879 (program): Numbers k such that k^2 - 6 is prime.
  • A028880 (program): Primes of the form n^2 - 6.
  • A028881 (program): a(n) = n^2 - 7.
  • A028882 (program): Numbers k such that k^2 - 7 is prime.
  • A028883 (program): Primes of form n^2 - 7.
  • A028884 (program): a(n) = (n + 3)^2 - 8.
  • A028885 (program): Numbers k such that k^2 - 8 is prime.
  • A028886 (program): Primes of the form k^2 - 8.
  • A028887 (program): Theta series of 4-dimensional 5-modular lattice with det 25 and minimal norm 2.
  • A028889 (program): Numbers whose iterated product of digits is a power of 2.
  • A028890 (program): Product of digits of n is a nonzero Fibonacci number.
  • A028892 (program): a(n) = Fibonacci(n) - 2^(floor(n/2)).
  • A028894 (program): a(n) = either 4a(n-1)+1 or 4a(n-1)+3 depending on corresponding term of A005614, +1 for 0, +3 for 1.
  • A028895 (program): 5 times triangular numbers: a(n) = 5*n*(n+1)/2.
  • A028896 (program): 6 times triangular numbers: a(n) = 3*n*(n+1).
  • A028897 (program): If n = Sum c_i 10^i then a(n) = Sum c_i 2^i.
  • A028899 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 4^i.
  • A028900 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 5^i.
  • A028901 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 6^i.
  • A028902 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 7^i.
  • A028903 (program): Map n = Sum c_i 10^i to a(n) = Sum c_i 8^i.
  • A028905 (program): Arrange digits of primes in ascending order.
  • A028906 (program): Arrange digits of primes in descending order.
  • A028907 (program): Arrange digits of squares in ascending order.
  • A028908 (program): Arrange digits of squares in descending order.
  • A028909 (program): Arrange digits of 2^n in ascending order.
  • A028910 (program): Arrange digits of 2^n in descending order.
  • A028913 (program): First differences of A007952.
  • A028914 (program): Divide A028913 by 2.
  • A028917 (program): a(n) = (3*n+1)! / (24*n).
  • A028918 (program): (3n+1)!/(4*(3n-1)).
  • A028919 (program): Congruent to 0, 6, 10, 12 (mod 14).
  • A028920 (program): Pit harvesting sequence for winning solitaire Tchoukaillon (or Mancala).
  • A028925 (program): Maximal number of pairs of minimal vectors in an n-dimensional lattice.
  • A028927 (program): Numbers represented by quadratic form with Gram matrix [ 3, 1; 1, 5 ].
  • A028929 (program): Numbers represented by quadratic form with Gram matrix [ 4, 1; 1, 6 ], divided by 2.
  • A028931 (program): Strings giving winning positions in Tchoukaillon (or Mancala) solitaire.
  • A028935 (program): a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).
  • A028936 (program): Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
  • A028937 (program): Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.
  • A028939 (program): a(n) = denominator of y-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
  • A028940 (program): a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.
  • A028941 (program): Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
  • A028943 (program): Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
  • A028944 (program): Numerator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
  • A028945 (program): a(n) = A006720(n)^2 (squared terms of Somos-4 sequence).
  • A028949 (program): Write numbers from 1 to n(n+1)/2 in a left-justified lower triangular array (a) downwards and (b) across; a(n) is number of numbers in same position in both.
  • A028950 (program): Minimal norm of n-dimensional, strictly odd, unimodular lattice.
  • A028951 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 4 ] (or the Kleinian 2-d lattice, see A002652).
  • A028954 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 6 ]. (divided by 2).
  • A028955 (program): Numbers represented by quadratic form with Gram matrix [ 4, 1; 1, 4 ] (divided by 2).
  • A028956 (program): Theta series of quadratic form (or lattice) with Gram matrix [ 4, 1; 1, 4 ].
  • A028957 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 8 ] (divided by 2).
  • A028958 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 12 ] (divided by 2).
  • A028962 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 0; 1, 3, 1; 0, 1, 5 ].
  • A028966 (program): Norms of vectors in the a.c.c. lattice, divided by 2.
  • A028968 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 1; 1, 2, 1; 1, 1, 3 ].
  • A028982 (program): Squares and twice squares.
  • A028983 (program): Numbers whose sum of divisors is even.
  • A028991 (program): Odd 9-gonal (or enneagonal) numbers.
  • A028992 (program): Even 9-gonal (or enneagonal) numbers.
  • A028993 (program): Odd 10-gonal (or decagonal) numbers.
  • A028994 (program): Even 10-gonal (or decagonal) numbers.
  • A029000 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^6)).
  • A029001 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^7)).
  • A029002 (program): Expansion of 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^8)).
  • A029003 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^9)).
  • A029004 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^10)).
  • A029005 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^11)).
  • A029006 (program): Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^12)).
  • A029007 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^5)).
  • A029008 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^7)).
  • A029009 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^9)).
  • A029010 (program): Expansion of 1/((1-x)(1-x^2)(1-x^4)(1-x^11)).
  • A029011 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^6)).
  • A029012 (program): Expansion of 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^7)).
  • A029013 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^8)).
  • A029014 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^9)).
  • A029015 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^11)).
  • A029016 (program): Expansion of 1/((1-x)(1-x^2)(1-x^5)(1-x^12)).
  • A029017 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^7)).
  • A029018 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^9)).
  • A029019 (program): Expansion of 1/((1-x)(1-x^2)(1-x^6)(1-x^11)).
  • A029020 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^8)).
  • A029021 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^9)).
  • A029022 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^10)).
  • A029023 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^11)).
  • A029024 (program): Expansion of 1/((1-x)(1-x^2)(1-x^7)(1-x^12)).
  • A029025 (program): Expansion of 1/((1-x)(1-x^2)(1-x^8)(1-x^9)).
  • A029026 (program): Expansion of 1/((1-x)(1-x^2)(1-x^8)(1-x^11)).
  • A029027 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^10)).
  • A029028 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^11)).
  • A029029 (program): Expansion of 1/((1-x)(1-x^2)(1-x^9)(1-x^12)).
  • A029030 (program): Expansion of 1/((1-x)(1-x^2)(1-x^10)(1-x^11)).
  • A029031 (program): Expansion of 1/((1-x)(1-x^2)(1-x^11)(1-x^12)).
  • A029032 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^5)).
  • A029033 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^7)).
  • A029034 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^8)).
  • A029035 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^9)).
  • A029036 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^10)).
  • A029037 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^11)).
  • A029038 (program): Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^12)).
  • A029039 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^6)).
  • A029040 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^8)).
  • A029041 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^9)).
  • A029042 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^10)).
  • A029043 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^11)).
  • A029044 (program): Expansion of 1/((1-x)(1-x^3)(1-x^5)(1-x^12)).
  • A029045 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^7)).
  • A029046 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^8)).
  • A029047 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^10)).
  • A029048 (program): Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^11)).
  • A029049 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^8)).
  • A029050 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^9)).
  • A029051 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^10)).
  • A029052 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^11)).
  • A029053 (program): Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^12)).
  • A029054 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^9)).
  • A029055 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^10)).
  • A029056 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^8)*(1-x^11)).
  • A029057 (program): Expansion of 1/((1-x)(1-x^3)(1-x^8)(1-x^12)).
  • A029058 (program): Expansion of 1/((1-x)(1-x^3)(1-x^9)(1-x^10)).
  • A029059 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^11)).
  • A029060 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^10)*(1-x^11)).
  • A029061 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^10)*(1-x^12)).
  • A029062 (program): Expansion of 1/((1-x)*(1-x^3)*(1-x^11)*(1-x^12)).
  • A029063 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^6)).
  • A029064 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^7)).
  • A029065 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^8)).
  • A029066 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^9)).
  • A029067 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^10)).
  • A029068 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^11)).
  • A029069 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^12)).
  • A029070 (program): Expansion of 1/((1-x)*(1-x^4)*(1-x^6)*(1-x^7)).
  • A029071 (program): Expansion of 1/((1-x)(1-x^4)(1-x^6)(1-x^9)).
  • A029072 (program): Expansion of 1/((1-x)(1-x^4)(1-x^6)(1-x^11)).
  • A029073 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^8)).
  • A029074 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^9)).
  • A029075 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^10)).
  • A029076 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^11)).
  • A029077 (program): Expansion of 1/((1-x)(1-x^4)(1-x^7)(1-x^12)).
  • A029078 (program): Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^9)).
  • A029079 (program): Expansion of 1/((1-x)(1-x^4)(1-x^8)(1-x^11)).
  • A029080 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^10)).
  • A029081 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^11)).
  • A029082 (program): Expansion of 1/((1-x)(1-x^4)(1-x^9)(1-x^12)).
  • A029083 (program): Expansion of 1/((1-x)(1-x^4)(1-x^10)(1-x^11)).
  • A029084 (program): Expansion of 1/((1-x)(1-x^4)(1-x^11)(1-x^12)).
  • A029085 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^7)).
  • A029086 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^8)).
  • A029087 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^9)).
  • A029088 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^10)).
  • A029089 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^6)*(1-x^11)).
  • A029090 (program): Expansion of 1/((1-x)(1-x^5)(1-x^6)(1-x^12)).
  • A029091 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^8)).
  • A029092 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^9)).
  • A029093 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^10)).
  • A029094 (program): Expansion of 1/((1-x)(1-x^5)(1-x^7)(1-x^11)).
  • A029095 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).
  • A029096 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^9)).
  • A029097 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^10)).
  • A029098 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^11)).
  • A029099 (program): Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^12)).
  • A029100 (program): Expansion of 1/((1-x)(1-x^5)(1-x^9)(1-x^10)).
  • A029101 (program): Expansion of 1/((1-x)*(1-x^5)*(1-x^9)*(1-x^11)).
  • A029102 (program): Expansion of 1/((1-x)(1-x^5)(1-x^9)(1-x^12)).
  • A029103 (program): Expansion of 1/((1-x)(1-x^5)(1-x^10)(1-x^11)).
  • A029104 (program): Expansion of 1/((1-x)(1-x^5)(1-x^10)(1-x^12)).
  • A029105 (program): Expansion of 1/((1-x)(1-x^5)(1-x^11)(1-x^12)).
  • A029106 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^8)).
  • A029107 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^9)).
  • A029108 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^10)).
  • A029109 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^11)).
  • A029110 (program): Expansion of 1/((1-x)(1-x^6)(1-x^7)(1-x^12)).
  • A029111 (program): Expansion of 1/((1-x)(1-x^6)(1-x^8)(1-x^9)).
  • A029112 (program): Expansion of 1/((1-x)(1-x^6)(1-x^8)(1-x^11)).
  • A029113 (program): Expansion of 1/((1-x)(1-x^6)(1-x^9)(1-x^10)).
  • A029114 (program): Expansion of 1/((1-x)(1-x^6)(1-x^9)(1-x^11)).
  • A029115 (program): Expansion of 1/((1-x)(1-x^6)(1-x^10)(1-x^11)).
  • A029116 (program): Expansion of 1/((1-x)(1-x^6)(1-x^11)(1-x^12)).
  • A029117 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^9)).
  • A029118 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^10)).
  • A029119 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^11)).
  • A029120 (program): Expansion of 1/((1-x)(1-x^7)(1-x^8)(1-x^12)).
  • A029121 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^10)).
  • A029122 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^11)).
  • A029123 (program): Expansion of 1/((1-x)(1-x^7)(1-x^9)(1-x^12)).
  • A029124 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)(1-x^11)).
  • A029125 (program): Expansion of 1/((1-x)(1-x^7)(1-x^10)(1-x^12)).
  • A029126 (program): Expansion of 1/((1-x)(1-x^7)(1-x^11)(1-x^12)).
  • A029127 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)(1-x^10)).
  • A029128 (program): Expansion of 1/((1-x)(1-x^8)(1-x^9)(1-x^11)).
  • A029129 (program): Expansion of 1/((1-x)*(1-x^8)*(1-x^9)*(1-x^12)).
  • A029130 (program): Expansion of 1/((1-x)(1-x^8)(1-x^10)(1-x^11)).
  • A029131 (program): Expansion of 1/((1-x)(1-x^8)(1-x^11)(1-x^12)).
  • A029132 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)(1-x^11)).
  • A029133 (program): Expansion of 1/((1-x)(1-x^9)(1-x^10)(1-x^12)).
  • A029134 (program): Expansion of 1/((1-x)(1-x^9)(1-x^11)(1-x^12)).
  • A029135 (program): Expansion of 1/((1-x)(1-x^10)(1-x^11)(1-x^12)).
  • A029136 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
  • A029137 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)).
  • A029138 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^8)).
  • A029139 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^9)).
  • A029140 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^10)).
  • A029141 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^11)).
  • A029142 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^12)).
  • A029143 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). Molien series for u.g.g.r. #31 of order 46080. Poincaré series [or Poincare series] for ring of even weight Siegel modular forms of genus 2.
  • A029144 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^7)).
  • A029145 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^8)).
  • A029146 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^9)).
  • A029147 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^10)).
  • A029148 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^5)(1-x^11)).
  • A029149 (program): Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)).
  • A029150 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^7)).
  • A029151 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^8)).
  • A029152 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^9)).
  • A029153 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^10)).
  • A029154 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^11)).
  • A029155 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^12)).
  • A029156 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^8)).
  • A029157 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^9)).
  • A029158 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^10)).
  • A029159 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^11)).
  • A029160 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^7)(1-x^12)).
  • A029161 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^9)).
  • A029162 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^10)).
  • A029163 (program): Expansion of 1/((1 - x^2)*(1 - x^3)*(1 - x^8)*(1 - x^11)).
  • A029164 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^12)).
  • A029165 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^10)).
  • A029166 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^11)).
  • A029167 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^12)).
  • A029168 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)(1-x^11)).
  • A029169 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^10)(1-x^12)).
  • A029170 (program): Expansion of 1/((1-x^2)(1-x^3)(1-x^11)(1-x^12)).
  • A029171 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^6)).
  • A029172 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^7)).
  • A029173 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^8)).
  • A029174 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^9)).
  • A029175 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^10)).
  • A029176 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^11)).
  • A029177 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^12)).
  • A029178 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^7)).
  • A029179 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^9)).
  • A029180 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^6)(1-x^11)).
  • A029181 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^8)).
  • A029182 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^9)).
  • A029183 (program): Expansion of 1/((1-x^2)*(1-x^4)*(1-x^7)*(1-x^10)).
  • A029184 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^11)).
  • A029185 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^7)(1-x^12)).
  • A029186 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^8)(1-x^9)).
  • A029187 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^8)(1-x^11)).
  • A029188 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^10)).
  • A029189 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^11)).
  • A029190 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^9)(1-x^12)).
  • A029191 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^10)(1-x^11)).
  • A029192 (program): Expansion of 1/((1-x^2)(1-x^4)(1-x^11)(1-x^12)).
  • A029193 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^7)).
  • A029194 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^8)).
  • A029195 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^9)).
  • A029196 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)).
  • A029197 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^11)).
  • A029198 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^12)).
  • A029199 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^7)(1-x^8)).
  • A029200 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^9)).
  • A029201 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)).
  • A029202 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^11)).
  • A029203 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^12)).
  • A029204 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^8)*(1-x^9)).
  • A029205 (program): Expansion of 1/((1-x^2)*(1-x^5)*(1-x^8)*(1-x^10)).
  • A029206 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)(1-x^11)).
  • A029207 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^8)(1-x^12)).
  • A029208 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^10)).
  • A029209 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^11)).
  • A029210 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^9)(1-x^12)).
  • A029211 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)(1-x^11)).
  • A029212 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^10)(1-x^12)).
  • A029213 (program): Expansion of 1/((1-x^2)(1-x^5)(1-x^11)(1-x^12)).
  • A029214 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^7)(1-x^8)).
  • A029215 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^9)).
  • A029216 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^10)).
  • A029217 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^11)).
  • A029218 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^7)*(1-x^12)).
  • A029219 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^9)).
  • A029220 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^8)*(1-x^11)).
  • A029221 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^10)).
  • A029222 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^11)).
  • A029223 (program): Expansion of 1/((1-x^2)*(1-x^6)*(1-x^9)*(1-x^12)).
  • A029224 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^10)(1-x^11)).
  • A029225 (program): Expansion of 1/((1-x^2)(1-x^6)(1-x^11)(1-x^12)).
  • A029226 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^9)).
  • A029227 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^10)).
  • A029228 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^11)).
  • A029229 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^8)(1-x^12)).
  • A029230 (program): Expansion of 1/((1-x^2)(1-x^7)(1-x^9)(1-x^10)).
  • A029231 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^9)*(1-x^11)).
  • A029232 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^9)*(1-x^12)).
  • A029233 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^11)).
  • A029234 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^12)).
  • A029235 (program): Expansion of 1/((1-x^2)*(1-x^7)*(1-x^11)*(1-x^12)).
  • A029236 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^10)).
  • A029237 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^11)).
  • A029238 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^9)*(1-x^12)).
  • A029239 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^10)*(1-x^11)).
  • A029240 (program): Expansion of 1/((1-x^2)*(1-x^8)*(1-x^11)*(1-x^12)).
  • A029241 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^10)*(1-x^11)).
  • A029242 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^10)*(1-x^12)).
  • A029243 (program): Expansion of 1/((1-x^2)*(1-x^9)*(1-x^11)*(1-x^12)).
  • A029244 (program): Expansion of 1/((1-x^2)(1-x^10)(1-x^11)(1-x^12)).
  • A029245 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^7)).
  • A029246 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^8)).
  • A029247 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^9)).
  • A029248 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^10)).
  • A029249 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^11)).
  • A029250 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^12)).
  • A029251 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)(1-x^7)).
  • A029252 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^6)(1-x^8)).
  • A029253 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^9)).
  • A029254 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^10)).
  • A029255 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^11)).
  • A029256 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)*(1-x^12)).
  • A029257 (program): Expansion of 1/((1-x^3)*(1-x^4)*(1-x^7)*(1-x^8)).
  • A029258 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^9)).
  • A029259 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^10)).
  • A029260 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^11)).
  • A029261 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^7)(1-x^12)).
  • A029262 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^9)).
  • A029263 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^10)).
  • A029264 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^11)).
  • A029265 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^12)).
  • A029266 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^10)).
  • A029267 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^11)).
  • A029268 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^12)).
  • A029269 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)(1-x^11)).
  • A029270 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^10)(1-x^12)).
  • A029271 (program): Expansion of 1/((1-x^3)(1-x^4)(1-x^11)(1-x^12)).
  • A029272 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^7)).
  • A029273 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^8)).
  • A029274 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^9)).
  • A029275 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^10)).
  • A029276 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^11)).
  • A029277 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^6)(1-x^12)).
  • A029278 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^8)).
  • A029279 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^10)).
  • A029280 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^11)).
  • A029281 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^12)).
  • A029282 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^9)).
  • A029283 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^10)).
  • A029284 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^11)).
  • A029285 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^8)(1-x^12)).
  • A029286 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^10)).
  • A029287 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^11)).
  • A029288 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^12)).
  • A029289 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^11)).
  • A029290 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^12)).
  • A029291 (program): Expansion of 1/((1-x^3)(1-x^5)(1-x^11)(1-x^12)).
  • A029292 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^8)).
  • A029293 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^9)).
  • A029294 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^10)).
  • A029295 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^11)).
  • A029296 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^7)(1-x^12)).
  • A029297 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^9)).
  • A029298 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^10)).
  • A029299 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^11)).
  • A029300 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^8)(1-x^12)).
  • A029301 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^9)(1-x^10)).
  • A029302 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^9)(1-x^11)).
  • A029303 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)(1-x^11)).
  • A029304 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^10)(1-x^12)).
  • A029305 (program): Expansion of 1/((1-x^3)(1-x^6)(1-x^11)(1-x^12)).
  • A029306 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^9)).
  • A029307 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^10)).
  • A029308 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^11)).
  • A029309 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^8)(1-x^12)).
  • A029310 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^10)).
  • A029311 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^11)).
  • A029312 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^9)(1-x^12)).
  • A029313 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)(1-x^11)).
  • A029314 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^10)(1-x^12)).
  • A029315 (program): Expansion of 1/((1-x^3)(1-x^7)(1-x^11)(1-x^12)).
  • A029316 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^10)).
  • A029317 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^11)).
  • A029318 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^9)(1-x^12)).
  • A029319 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)(1-x^11)).
  • A029320 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^10)(1-x^12)).
  • A029321 (program): Expansion of 1/((1-x^3)(1-x^8)(1-x^11)(1-x^12)).
  • A029322 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)(1-x^11)).
  • A029323 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^10)(1-x^12)).
  • A029324 (program): Expansion of 1/((1-x^3)(1-x^9)(1-x^11)(1-x^12)).
  • A029325 (program): Expansion of 1/((1-x^3)(1-x^10)(1-x^11)(1-x^12)).
  • A029326 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^7)).
  • A029327 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^8)).
  • A029328 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^9)).
  • A029329 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^10)).
  • A029330 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^11)).
  • A029331 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^12)).
  • A029332 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^8)).
  • A029333 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^9)).
  • A029334 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^10)).
  • A029335 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^7)(1-x^11)).
  • A029336 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^7)*(1-x^12)).
  • A029337 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^9)).
  • A029338 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^10)).
  • A029339 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^11)).
  • A029340 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^8)(1-x^12)).
  • A029341 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)(1-x^10)).
  • A029342 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^9)(1-x^11)).
  • A029343 (program): Expansion of 1/((1-x^4)*(1-x^5)*(1-x^9)*(1-x^12)).
  • A029344 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)(1-x^11)).
  • A029345 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^10)(1-x^12)).
  • A029346 (program): Expansion of 1/((1-x^4)(1-x^5)(1-x^11)(1-x^12)).
  • A029347 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^8)).
  • A029348 (program): Expansion of 1/((1-x^4)*(1-x^6)*(1-x^7)*(1-x^9)).
  • A029349 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^10)).
  • A029350 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^11)).
  • A029351 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^7)(1-x^12)).
  • A029352 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^8)(1-x^9)).
  • A029353 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^8)(1-x^11)).
  • A029354 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^10)).
  • A029355 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^11)).
  • A029356 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^9)(1-x^12)).
  • A029357 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^10)(1-x^11)).
  • A029358 (program): Expansion of 1/((1-x^4)(1-x^6)(1-x^11)(1-x^12)).
  • A029359 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^9)).
  • A029360 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^10)).
  • A029361 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^11)).
  • A029362 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^8)(1-x^12)).
  • A029363 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^10)).
  • A029364 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^11)).
  • A029365 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^9)(1-x^12)).
  • A029366 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)(1-x^11)).
  • A029367 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^10)(1-x^12)).
  • A029368 (program): Expansion of 1/((1-x^4)(1-x^7)(1-x^11)(1-x^12)).
  • A029369 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^10)).
  • A029370 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^11)).
  • A029371 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^9)(1-x^12)).
  • A029372 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^10)(1-x^11)).
  • A029373 (program): Expansion of 1/((1-x^4)(1-x^8)(1-x^11)(1-x^12)).
  • A029374 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^10)(1-x^11)).
  • A029375 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^10)(1-x^12)).
  • A029376 (program): Expansion of 1/((1-x^4)(1-x^9)(1-x^11)(1-x^12)).
  • A029377 (program): Expansion of 1/((1-x^4)(1-x^10)(1-x^11)(1-x^12)).
  • A029378 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^8)).
  • A029379 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^9)).
  • A029380 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^10)).
  • A029381 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^11)).
  • A029382 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^7)(1-x^12)).
  • A029383 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^9)).
  • A029384 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^10)).
  • A029385 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^11)).
  • A029386 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^8)(1-x^12)).
  • A029387 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^9)(1-x^10)).
  • A029388 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^9)(1-x^11)).
  • A029389 (program): Expansion of 1/((1-x^5)*(1-x^6)*(1-x^9)*(1-x^12)).
  • A029390 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^10)(1-x^11)).
  • A029391 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^10)(1-x^12)).
  • A029392 (program): Expansion of 1/((1-x^5)(1-x^6)(1-x^11)(1-x^12)).
  • A029393 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^9)).
  • A029394 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^10)).
  • A029395 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^11)).
  • A029396 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^8)(1-x^12)).
  • A029397 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^10)).
  • A029398 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^11)).
  • A029399 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^9)(1-x^12)).
  • A029400 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^10)(1-x^11)).
  • A029401 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^10)(1-x^12)).
  • A029402 (program): Expansion of 1/((1-x^5)(1-x^7)(1-x^11)(1-x^12)).
  • A029403 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^10)).
  • A029404 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^11)).
  • A029405 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^12)).
  • A029406 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^10)(1-x^11)).
  • A029407 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^10)(1-x^12)).
  • A029408 (program): Expansion of 1/((1-x^5)(1-x^8)(1-x^11)(1-x^12)).
  • A029409 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)(1-x^11)).
  • A029410 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^10)(1-x^12)).
  • A029411 (program): Expansion of 1/((1-x^5)(1-x^9)(1-x^11)(1-x^12)).
  • A029412 (program): Expansion of 1/((1-x^5)*(1-x^10)*(1-x^11)*(1-x^12)).
  • A029413 (program): Expansion of 1/((1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)).
  • A029414 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^10)).
  • A029415 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^11)).
  • A029416 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^8)(1-x^12)).
  • A029417 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^10)).
  • A029418 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^11)).
  • A029419 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^9)(1-x^12)).
  • A029420 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)(1-x^11)).
  • A029421 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^10)(1-x^12)).
  • A029422 (program): Expansion of 1/((1-x^6)(1-x^7)(1-x^11)(1-x^12)).
  • A029423 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^10)).
  • A029424 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^11)).
  • A029425 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^12)).
  • A029426 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^10)(1-x^11)).
  • A029427 (program): Expansion of 1/((1-x^6)(1-x^8)(1-x^11)(1-x^12)).
  • A029428 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)(1-x^11)).
  • A029429 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^10)(1-x^12)).
  • A029430 (program): Expansion of 1/((1-x^6)(1-x^9)(1-x^11)(1-x^12)).
  • A029431 (program): Expansion of 1/((1-x^6)(1-x^10)(1-x^11)(1-x^12)).
  • A029432 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^10)).
  • A029433 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^11)).
  • A029434 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^9)(1-x^12)).
  • A029435 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)(1-x^11)).
  • A029436 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^10)(1-x^12)).
  • A029437 (program): Expansion of 1/((1-x^7)(1-x^8)(1-x^11)(1-x^12)).
  • A029438 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)(1-x^11)).
  • A029439 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^10)(1-x^12)).
  • A029440 (program): Expansion of 1/((1-x^7)(1-x^9)(1-x^11)(1-x^12)).
  • A029441 (program): Expansion of 1/((1-x^7)(1-x^10)(1-x^11)(1-x^12)).
  • A029442 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)(1-x^11)).
  • A029443 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^10)(1-x^12)).
  • A029444 (program): Expansion of 1/((1-x^8)(1-x^9)(1-x^11)(1-x^12)).
  • A029445 (program): Expansion of 1/((1-x^8)(1-x^10)(1-x^11)(1-x^12)).
  • A029446 (program): Expansion of 1/((1-x^9)(1-x^10)(1-x^11)(1-x^12)).
  • A029546 (program): Expansion of 1/( (1-x)*(1-34*x+x^2) ).
  • A029547 (program): Expansion of 1/(1-34*x+x^2).
  • A029548 (program): Expansion of 1/(1 - 32*x + x^2).
  • A029549 (program): a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.
  • A029551 (program): Highest minimal norm for an (even or odd) 3-modular lattice in dimension n.
  • A029571 (program): Number of permutations of an n-set containing a 4-cycle.
  • A029572 (program): Number of permutations of an n-set containing a 5-cycle.
  • A029573 (program): Number of permutations of an n-set containing a 6-cycle.
  • A029574 (program): Number of permutations of an n-set containing a 7-cycle.
  • A029578 (program): The natural numbers interleaved with the even numbers.
  • A029579 (program): a(2*n) = n+1, a(2*n-1) = 2*n-1.
  • A029580 (program): a(n+1) = [ A*a(n)+B ]/p^r, where p^r is the highest power of p diving [ A*a(n)+B ] and p=2, A=2.00013, B=3.0.
  • A029582 (program): E.g.f. sin(x) + cos(x) + tan(x).
  • A029583 (program): Expansion of sin x + cos x + tan x + sec x.
  • A029584 (program): Expansion of cos x + tan x + sec x.
  • A029587 (program): a(n) = A029571(n) / 6.
  • A029588 (program): a(n) = A029572(n) / 24.
  • A029598 (program): Numbers represented by quadratic form with Gram matrix [ 2, 1, 0; 1, 2, 1; 0, 1, 3 ].
  • A029600 (program): Numbers in the (2,3)-Pascal triangle (by row).
  • A029602 (program): Numbers in the (2,3)-Pascal triangle A029600 that are different from 2.
  • A029603 (program): Numbers in the (2,3)-Pascal triangle A029600 that are different from 3.
  • A029604 (program): Odd numbers in the (2,3)-Pascal triangle A029600.
  • A029605 (program): Even numbers in the (2,3)-Pascal triangle A029600.
  • A029606 (program): Odd numbers in the (2,3)-Pascal triangle A029600 that are different from 3.
  • A029607 (program): Even numbers in the (2,3)-Pascal triangle A029600 that are different from 2.
  • A029609 (program): Central numbers in the (2,3)-Pascal triangle A029600.
  • A029610 (program): Numbers to the left of the central numbers of the (2,3)-Pascal triangle A029600.
  • A029611 (program): Numbers to the left of the central elements of the (2,3)-Pascal triangle A029600 that are different from 2.
  • A029612 (program): Odd numbers to the left of the central elements of the (2,3)-Pascal triangle A029600.
  • A029613 (program): Even numbers (not equal to 2) to the left of the central elements of the (2,3)-Pascal triangle A029600.
  • A029614 (program): Numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
  • A029615 (program): Numbers to the right of the central elements of the (2,3)-Pascal triangle A029600 that are different from 3.
  • A029616 (program): Odd numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
  • A029617 (program): Table read by rows: list of even numbers to the right of the central elements of the (2,3)-Pascal triangle A029600.
  • A029618 (program): Numbers in (3,2)-Pascal triangle (by row).
  • A029620 (program): Numbers in (3,2)-Pascal triangle A029618 that are different from 2.
  • A029621 (program): Numbers in (3,2)-Pascal triangle A029618 that are different from 3.
  • A029622 (program): Odd numbers in (3,2)-Pascal triangle A029618.
  • A029623 (program): Even numbers in (3,2)-Pascal triangle A029618.
  • A029624 (program): Odd numbers in (3,2)-Pascal triangle A029618 that are different from 3.
  • A029625 (program): Even numbers in (3,2)-Pascal triangle A029618 that are different from 2.
  • A029627 (program): Even numbers to right of central numbers of the (3,2)-Pascal triangle A029618.
  • A029628 (program): Numbers to left of central numbers of the (3,2)-Pascal triangle A029618.
  • A029629 (program): Numbers to left of central elements of the (3,2)-Pascal triangle A029618 that are different from 3.
  • A029630 (program): Odd numbers to left of central elements of the (3,2)-Pascal triangle A029618.
  • A029631 (program): Even numbers to left of central elements of the (3,2)-Pascal triangle A029618.
  • A029632 (program): Numbers to right of central elements of the (3,2)-Pascal triangle A029618.
  • A029633 (program): Numbers to right of central elements of the (3,2)-Pascal triangle A029618 that are different from 2.
  • A029634 (program): Odd numbers to right of central elements of the (3,2)-Pascal triangle A029618.
  • A029635 (program): The (1,2)-Pascal triangle (or Lucas triangle) read by rows.
  • A029637 (program): Numbers in the (1,2)-Pascal triangle A029635 that are different from 2.
  • A029638 (program): Numbers in the (1,2)-Pascal triangle A029635 that are different from 1.
  • A029639 (program): Odd numbers in the (1,2)-Pascal triangle A029635 that are different from 1.
  • A029640 (program): Even numbers in the (1,2)-Pascal triangle A029635.
  • A029641 (program): Even numbers in the (1,2)-Pascal triangle A029635 that are different from 2.
  • A029643 (program): Even numbers to the right of the central numbers of the (1,2)-Pascal triangle A029635.
  • A029644 (program): Numbers to the left of the central numbers of the (1,2)-Pascal triangle A029635.
  • A029645 (program): Numbers to the left of the central elements of the (1,2)-Pascal triangle A029635 that are different from 1.
  • A029646 (program): Odd numbers to the left of the central elements of the (1,2)-Pascal triangle A029635.
  • A029647 (program): Even numbers to the left of the central elements of the (1,2)-Pascal triangle A029635.
  • A029648 (program): Numbers to the right of the central elements of the (1,2)-Pascal triangle A029635.
  • A029649 (program): Numbers to the right of the central elements of the (1,2)-Pascal triangle A029635 that are different from 2.
  • A029650 (program): Odd numbers to the right of the central elements of the (1,2)-Pascal triangle A029635.
  • A029651 (program): Central elements of the (1,2)-Pascal triangle A029635.
  • A029652 (program): Odd numbers in the (1,2)-Pascal triangle A029635.
  • A029653 (program): Numbers in (2,1)-Pascal triangle (by row).
  • A029655 (program): Numbers in the (2,1)-Pascal triangle A029653 that are different from 2.
  • A029656 (program): Numbers in the (2,1)-Pascal triangle A029653 that are different from 1.
  • A029657 (program): Odd numbers in (2,1)-Pascal triangle A029653 that are different from 1.
  • A029658 (program): Even numbers in the (2,1)-Pascal triangle A029653.
  • A029659 (program): Even numbers in the (2,1)-Pascal triangle A029653 that are different from 2.
  • A029661 (program): Even numbers to the right of the central numbers of the (2,1)-Pascal triangle A029653.
  • A029662 (program): Numbers to the left of the central numbers of the (2,1)-Pascal triangle A029653.
  • A029663 (program): Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
  • A029664 (program): Odd numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.
  • A029665 (program): Even numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.
  • A029666 (program): Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653.
  • A029667 (program): Numbers to the left of the central elements of the (2,1)-Pascal triangle A029653 that are different from 2.
  • A029668 (program): Odd numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
  • A029669 (program): Odd numbers in the (2,1)-Pascal triangle A029653.
  • A029691 (program): n-th binary digit in fractional part of square root of n.
  • A029697 (program): Number of words of length 2n in the 6 transpositions of S[ 4 ] equivalent to the identity.
  • A029698 (program): Number of words of length 2n in the 10 transpositions of S[5] equivalent to the identity.
  • A029699 (program): Number of words of length 4 in the n(n-1)/2 transpositions of S[ n ] equivalent to the identity.
  • A029706 (program): Sum C(n,k)*b(k), k=1..n, where b(k) is given by A001861.
  • A029707 (program): Numbers n such that the n-th and the (n+1)-st primes are twin primes.
  • A029708 (program): Numbers k such that k-2 and k+2 are consecutive primes.
  • A029709 (program): Numbers k such that k-th and (k+1)st primes differ by 4.
  • A029710 (program): Primes such that next prime is 4 greater.
  • A029711 (program): a(n) = n^(n+1) + (n-1)^2.
  • A029714 (program): a(n) = Sum_{k divides 3^n} S(k), where S is the Kempner function A002034.
  • A029715 (program): a(n) = Sum_{k divides 2^n} S(k), where S is the Kempner function A002034.
  • A029716 (program): Partial sums of Kempner numbers A002034.
  • A029717 (program): First differences of Kempner numbers A002034.
  • A029718 (program): Numbers of form 2x^2 + 2xy + 3y^2.
  • A029723 (program): Trace of Frobenius of the reduction mod 2 of the elliptic curve C / L, L a lattice with Gram matrix [ 4 1; 1 2n ].
  • A029739 (program): Numbers that are congruent to {1, 3, 4} mod 6.
  • A029742 (program): Nonpalindromic numbers.
  • A029744 (program): Numbers of the form 2^n or 3*2^n.
  • A029745 (program): Expansion of (1 + 2x + 6x^2 + x^3)/(1 - 2x^2).
  • A029746 (program): Numbers of the form 2^k or 7*2^k.
  • A029747 (program): Numbers of the form 2^k times 1, 3 or 5.
  • A029748 (program): Numbers of the form 2^k times 1, 3 or 7.
  • A029749 (program): Numbers of the form 2^k times 1, 5 or 7.
  • A029750 (program): List of numbers of the form 2^k times 1, 3, 5 or 7.
  • A029757 (program): a(n) = 5^n mod 2^n.
  • A029758 (program): Number of AVL trees of height n.
  • A029759 (program): Number of permutations which are the union of an increasing and a decreasing subsequence.
  • A029760 (program): A sum with next-to-central binomial coefficients of even order, Catalan related.
  • A029761 (program): Partial sums of A005001.
  • A029763 (program): Denominator of Bernoulli(2n+2) - Bernoulli(2n).
  • A029765 (program): Denominator of |Bernoulli(2n+2)| - |Bernoulli(2n)|.
  • A029766 (program): Unary-binary rooted trees with n nodes.
  • A029767 (program): a(n) = (n-1)!*(2^n-1) for n>=1, a(0)=0.
  • A029803 (program): Numbers that are palindromic in base 8.
  • A029826 (program): Expansion of 1/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1) (inverse of Salem polynomial).
  • A029832 (program): A discrete version of the Mangoldt function: if n is prime then ceiling(log(n)) else 0.
  • A029833 (program): A discrete version of the Mangoldt function: if n is prime then round(log(n)) else 0.
  • A029834 (program): A discrete version of the Mangoldt function: if n is prime then floor(log(n)) else 0.
  • A029835 (program): [ log(n-th prime) ].
  • A029836 (program): log( n-th prime) rounded to nearest integer.
  • A029837 (program): Binary order of n: log_2(n) rounded up to next integer.
  • A029838 (program): Expansion of square root of q times normalized Hauptmodul for Gamma(4) in powers of q^8.
  • A029839 (program): McKay-Thompson series of class 16B for the Monster group.
  • A029840 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^3.
  • A029841 (program): McKay-Thompson series of class 8E for the Monster group.
  • A029842 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^5.
  • A029843 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^6.
  • A029844 (program): Expansion of Product_{m>=1} ((1+q^(2*m-1))/(1+q^(2*m)))^7.
  • A029845 (program): Expansion of 16/lambda(z) in powers of nome q = exp(Pi*i*z).
  • A029846 (program): a(n) = a(n-1)*b(n-2)+2, b() given by A029758.
  • A029848 (program): a(n) = 1 + C(2*n,n) + C(3*n,n).
  • A029854 (program): a(n) = gcd(prime(n)+prime(n+1), prime(n+1)+prime(n+2)).
  • A029858 (program): a(n) = (3^n - 3)/2.
  • A029859 (program): Euler transform of 3 2 1 1 1 1 1 1…
  • A029863 (program): Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), … = 2 3 2 3 2 3 2 3 ….
  • A029865 (program): Smallest covering radius of [ n,6 ] binary code.
  • A029879 (program): Binomial transform of Thue-Morse sequence A001285.
  • A029880 (program): Inverse binomial transform of Thue-Morse sequence A001285.
  • A029882 (program): Inverse Moebius transform of Thue-Morse sequence A001285.
  • A029883 (program): First differences of Thue-Morse sequence A001285.
  • A029884 (program): Second differences of Thue-Morse sequence A001285.
  • A029887 (program): A sum over scaled A000531 related to Catalan numbers C(n).
  • A029898 (program): Pitoun’s sequence: a(n+1) is digital root of a(0) + … + a(n).
  • A029903 (program): p(n), where exists one-parameter family of strategic partitions (k+p(n)+q(n), k+q(n), r(n)) for k = 0,1,2,… in Chomp.
  • A029905 (program): r(n), where exists one-parameter family of strategic partitions (k+p(n)+q(n), k+q(n), r(n)) for k = 0,1,2,… in Chomp.
  • A029906 (program): Zack’s sequence (the pattern is evident).
  • A029907 (program): a(n+1) = a(n) + a(n-1) + Fibonacci(n), with a(0) = 0 and a(1) = 1.
  • A029908 (program): Starting with n, repeatedly sum prime factors (with multiplicity) until reaching 0 or a fixed point. Then a(n) is the fixed point (or 0).
  • A029909 (program): Starting with n (but omitting the primes), repeatedly sum prime factors (counted with multiplicity) until reaching a limit.
  • A029910 (program): Start with n; if prime, stop; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
  • A029911 (program): Start with n; if prime, skip; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
  • A029912 (program): Start with n; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.
  • A029915 (program): Convert n from yards to meters.
  • A029916 (program): Convert n from meters to yards.
  • A029917 (program): Convert n from feet to meters.
  • A029918 (program): Convert n from meters to feet.
  • A029919 (program): Convert n from inches (“) to centimeters (cm).
  • A029920 (program): Convert n from centimeters (cm) to inches (“).
  • A029921 (program): Convert n from miles to kilometers (km).
  • A029922 (program): Convert n from kilometers (km) to miles.
  • A029925 (program): Convert n from degrees Celsius to Fahrenheit.
  • A029926 (program): Convert n from degrees Fahrenheit to Centigrade (or Celsius).
  • A029927 (program): Convert n from nautical miles to statute miles.
  • A029928 (program): Convert n from statute miles to nautical miles.
  • A029929 (program): a(n) = n*(n + ceiling(2^n/12)).
  • A029930 (program): If 2n = Sum 2^e_i, a(n) = Product 2^e_i.
  • A029931 (program): If 2n = Sum 2^e_i, a(n) = Sum e_i.
  • A029935 (program): a(n) = Sum phi(d)*phi(n/d); d divides n.
  • A029936 (program): Number of cusps of Gamma_1(n)\P_1(Q).
  • A029938 (program): a(n) = (p-5)(p-7)/24, where p=prime(n).
  • A029939 (program): a(n) = Sum_{d|n} phi(d)^2.
  • A029940 (program): a(n) = Product_{d|n} phi(d).
  • A029950 (program): Odd palindromes.
  • A029951 (program): Even palindromes.
  • A029952 (program): Palindromic in base 5.
  • A029953 (program): Palindromic in base 6.
  • A029954 (program): Palindromic in base 7.
  • A029955 (program): Palindromic in base 9.
  • A030002 (program): (prime(n)-5)(prime(n)-7)(prime(n)-9)/48.
  • A030003 (program): (prime(n)-3)(prime(n)-5)(prime(n)-7)/48.
  • A030004 (program): (prime(n)-1)(prime(n)-3)(prime(n)-5)/48.
  • A030005 (program): (prime(n)-1)(prime(n)-3)/8.
  • A030006 (program): a(n) = (prime(n)-1)*(prime(n)-5)/12.
  • A030007 (program): a(n) = (prime(n)-3)*(prime(n)-5)/8.
  • A030014 (program): Inverse Moebius transform of {1, primes}.
  • A030015 (program): Binomial transform of {1, primes}.
  • A030016 (program): Inverse binomial transform of {1, primes}.
  • A030017 (program): a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.
  • A030018 (program): Coefficients in 1/(1+P(x)), where P(x) is the generating function of the primes.
  • A030019 (program): Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).
  • A030031 (program): Binomial((n+1)^2, prime(n)).
  • A030053 (program): a(n) = binomial(2n+1,n-3).
  • A030054 (program): a(n) = binomial(2n+1,n-4).
  • A030055 (program): a(n) = binomial(2*n+1, n-5).
  • A030056 (program): a(n) = binomial(2*n+1, n-6).
  • A030057 (program): Least number that is not a sum of distinct divisors of n.
  • A030059 (program): Numbers that are the product of an odd number of distinct primes.
  • A030060 (program): Third derivative of Catalan generating function/3!.
  • A030065 (program): a(4n)=n, a(4n+2)=a(4n)+a(4n+4), a(2n+1)=a(2n)+a(2n+2).
  • A030067 (program): The “Semi-Fibonacci sequence”: a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).
  • A030068 (program): The “semi-Fibonacci numbers”: a(n) = A030067(2n - 1), where A030067 is the semi-Fibonacci sequence.
  • A030076 (program): a(n) = 10 - m, where m = maximal digit of n.
  • A030078 (program): Cubes of primes.
  • A030096 (program): Primes whose digits are all odd.
  • A030097 (program): Numbers k such that k^2 has only even digits.
  • A030098 (program): Squares whose digits are all even.
  • A030101 (program): a(n) is the number produced when n is converted to binary digits, the binary digits are reversed and then converted back into a decimal number.
  • A030102 (program): Base-3 reversal of n (written in base 10).
  • A030103 (program): Base 4 reversal of n (written in base 10).
  • A030104 (program): Base 5 reversal of n (written in base 10).
  • A030105 (program): Base 6 reversal of n (written in base 10).
  • A030106 (program): Base 7 reversal of n (written in base 10).
  • A030107 (program): Base 8 reversal of n (written in base 10).
  • A030108 (program): Base 9 reversal of n (written in base 10).
  • A030109 (program): Write n in binary, reverse bits, subtract 1, divide by 2.
  • A030110 (program): a(n) = 2^n - n^2 + 1.
  • A030111 (program): Triangular array in which k-th entry in n-th row is C([ (n+k)/2 ],k) (1<=k<=n).
  • A030117 (program): Number of triangles a queen can make (starting anywhere) on an n X n board.
  • A030118 (program): a(0) = 1, a(1) = 1, a(n) = a(n-1) - a(n-2) + n.
  • A030119 (program): a(n) = a(n-1) + a(n-2) + n, a(0) = a(1) = 1.
  • A030123 (program): Most likely total for a roll of n 6-sided dice, choosing the smallest if there is a choice.
  • A030124 (program): Complement (and also first differences) of Hofstadter’s sequence A005228.
  • A030130 (program): Binary expansion contains a single 0.
  • A030132 (program): Digital root of Fibonacci(n).
  • A030133 (program): a(n+1) is the sum of digits of (a(n) + a(n-1)).
  • A030139 (program): a(n+1) = sum of digits of (a(n) + a(n-1)).
  • A030140 (program): The nonsquares squared.
  • A030141 (program): Numbers in which parity of the decimal digits alternates.
  • A030142 (program): Odd numbers in which parity of digits alternates.
  • A030143 (program): Even numbers in which parity of digits alternates.
  • A030151 (program): Numbers k such that in k^2 the parity of digits alternates.
  • A030152 (program): Squares in which parity of digits alternates.
  • A030173 (program): Differences p(i)-p(j) between primes, sorted in numerical order.
  • A030179 (program): Quarter-squares squared: A002620^2.
  • A030180 (program): a(n) = (n^7 - n)/42.
  • A030182 (program): McKay-Thompson series of class 3B for the Monster group with a(0) = -12.
  • A030186 (program): a(n) = 3*a(n-1) + a(n-2) - a(n-3) for n >= 3, a(0)=1, a(1)=2, a(2)=7.
  • A030191 (program): Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2.
  • A030192 (program): Scaled Chebyshev U-polynomial evaluated at sqrt(6)/2.
  • A030195 (program): a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=1.
  • A030203 (program): Expansion of q^(-1/6) * eta(q) * eta(q^3) in powers of q.
  • A030204 (program): Expansion of q^(-1/8) * eta(q) * eta(q^2) in powers of q.
  • A030207 (program): Expansion of eta(q)^2 * eta(q^2) * eta(q^4) * eta(q^8)^2 in powers of q.
  • A030211 (program): Expansion of q^(-1/2) * (eta(q) * eta(q^2))^4 in powers of q.
  • A030221 (program): Chebyshev even indexed U-polynomials evaluated at sqrt(7)/2.
  • A030229 (program): Numbers that are the product of an even number of distinct primes.
  • A030230 (program): Numbers that have an odd number of distinct prime divisors.
  • A030231 (program): Number of distinct primes dividing n is even.
  • A030236 (program): Cycle-path coverings of a family of digraphs.
  • A030237 (program): Catalan’s triangle with right border removed (n > 0, 0 <= k < n).
  • A030238 (program): Backwards shallow diagonal sums of Catalan triangle A009766.
  • A030240 (program): Scaled Chebyshev U-polynomials evaluated at sqrt(7)/2.
  • A030241 (program): Minimal determinant of any n-dimensional even lattice.
  • A030267 (program): Compose the natural numbers with themselves, A(x) = B(B(x)) where B(x) = x/(1-x)^2 is the generating function for natural numbers.
  • A030270 (program): Number of nonisomorphic and nonantiisomorphic reflexive transitive and cotransitive (complement is transitive) relations.
  • A030280 (program): COMPOSE triangular numbers with triangular numbers.
  • A030297 (program): a(n) = n*(n + a(n-1)) with a(0)=0.
  • A030300 (program): Runs have lengths 2^n, n >= 0.
  • A030301 (program): n-th run has length 2^(n-1).
  • A030308 (program): Triangle T(n, k): Write n in base 2, reverse order of digits, to get the n-th row.
  • A030309 (program): Position of n-th 0 in A030308.
  • A030310 (program): Position of n-th 1 in A030308.
  • A030314 (program): (# 1’s)-(# 0’s) in first n terms of A030308.
  • A030426 (program): a(n) = Fibonacci(prime(n)).
  • A030428 (program): a(n) = 0! * 1! * 2! * … * n! - 1.
  • A030429 (program): a(n+2) = 7*a(n+1) - 7*a(n) - 9*n; a(n+4) = 9*a(n+3) - 22*a(n+2) + 21*a(n+1) - 7*a(n).
  • A030430 (program): Primes of the form 10*n+1.
  • A030431 (program): Primes of form 10n+3.
  • A030432 (program): Primes of form 10n+7.
  • A030433 (program): Primes of form 10*k + 9.
  • A030434 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(2*n-7)*(2*n^2-11*n+18).
  • A030435 (program): Expansion of g.f.: (1+x-2*x^2-x^3)/(1/2-2*x^2+x^4).
  • A030436 (program): Expansion of (1+x-2*x^2-x^3)/(1-4*x^2+2*x^4).
  • A030438 (program): a(n) = A030019(n)*n! (or A035051*(n-1)!).
  • A030439 (program): a(n+1) = smallest number not containing any digits of a(n), working in base 3.
  • A030440 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(n-1)*(2*n+3)*(2*n-1).
  • A030441 (program): Values of Newton-Gregory forward interpolating polynomial (1/3)*(2*n - 3)*(2*n^2 - 3*n + 4).
  • A030442 (program): Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).
  • A030451 (program): a(2*n) = n, a(2*n+1) = n+2.
  • A030452 (program): Markov numbers satisfying region 5 (x=5) of the equation x^2 + y^2 + z^2 = 3xyz.
  • A030457 (program): Numbers k such that k concatenated with k+1 is prime.
  • A030458 (program): Primes formed by concatenating n with n+1.
  • A030474 (program): n does not have the property that all even digits occur together and all odd digits occur together.
  • A030494 (program): If n is even, 2(n/2 + 1)! - 1; if n is odd, ((n + 1)/2 + 1)! - 1.
  • A030495 (program): a(n) = (n+1)!+ n.
  • A030503 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,3) constant-weight code.
  • A030504 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,4) constant-weight code.
  • A030511 (program): Graham-Sloane-type lower bound on the size of a ternary (n,3,3) constant-weight code.
  • A030512 (program): Concatenation of first n 2-digit positive integers including leading zeros.
  • A030513 (program): Numbers with 4 divisors.
  • A030514 (program): a(n) = prime(n)^4.
  • A030515 (program): Numbers with exactly 6 divisors.
  • A030516 (program): Numbers with 7 divisors. 6th powers of primes.
  • A030517 (program): Number of walks of length n between two vertices on an icosahedron at distance 1.
  • A030518 (program): Number of walks of length n between two vertices on an icosahedron at distance 2.
  • A030523 (program): A convolution triangle of numbers obtained from A001792.
  • A030528 (program): Triangle read by rows: a(n,k) = binomial(k,n-k).
  • A030530 (program): n appears A070939(n) times.
  • A030531 (program): Value of 3^x - 2^x - 5 for the solutions of 3^x - 2^x == 5 (mod 7).
  • A030533 (program): Expansion of Molien series for 4-D extraspecial group 2^{1+2*2}.
  • A030541 (program): Remainder-numerators from Egyptian fraction expansion of 2/588391 using odd greedy algorithm.
  • A030542 (program): Remainder-numerators from Egyptian fraction expansion of 4/538199 using odd greedy algorithm.
  • A030546 (program): Remainder-numerators from Egyptian fraction expansion of 5/5809 using odd greedy algorithm.
  • A030556 (program): run length of n-th run of digit 0 in A030548.
  • A030625 (program): n(n+Z(n)), where Z( ) is the Narayana-Zidek-Capell sequence (A002083).
  • A030626 (program): Numbers with exactly 8 divisors.
  • A030627 (program): Numbers with 9 divisors.
  • A030628 (program): 1 together with numbers of the form p*q^4 and p^9, where p and q are primes.
  • A030629 (program): Numbers with 11 divisors.
  • A030630 (program): Numbers with 12 divisors.
  • A030631 (program): Numbers with 13 divisors.
  • A030632 (program): Numbers with 14 divisors.
  • A030634 (program): Numbers with 16 divisors.
  • A030635 (program): Numbers with 17 divisors.
  • A030636 (program): Numbers with 18 divisors.
  • A030637 (program): Numbers with 19 divisors.
  • A030638 (program): Numbers with 20 divisors.
  • A030640 (program): Discriminant of lattice A_n of determinant n+1.
  • A030644 (program): Decimal expansion of 10 - Pi.
  • A030647 (program): Dimension of multiples of minimal representation of complex Lie algebra F4.
  • A030648 (program): Dimensions of multiples of minimal representation of complex Lie algebra E6.
  • A030649 (program): Dimensions of multiples of minimal representation of complex Lie algebra E7.
  • A030653 (program): n^3*a(n) is the number of circles in complex projective plane tangent to three smooth curves of degree n in general position.
  • A030654 (program): n^4*a(n) is the number of spheres in complex projective space tangent to 4 smooth surfaces of degree n in general position.
  • A030655 (program): Pair up the numbers.
  • A030656 (program): Pair up the numbers.
  • A030657 (program): Parity of digits of Pi.
  • A030658 (program): 1 iff n-th digit of Pi is >= (n+1)st digit.
  • A030661 (program): Product of next 2 primes after n.
  • A030662 (program): Number of combinations of n things from 1 to n at a time, with repeats allowed.
  • A030664 (program): Product of largest prime <= n and smallest prime >= n.
  • A030695 (program): Smallest nontrivial extension of n-th cube which is a cube.
  • A030696 (program): Cube root of A030695.
  • A030701 (program): Decimal expansion of 4^n contains no zeros (probably finite).
  • A030702 (program): Decimal expansion of 6^n contains no zeros (probably finite).
  • A030703 (program): Decimal expansion of 7^n contains no zeros (probably finite).
  • A030704 (program): Numbers k such that the decimal expansion of 8^k contains no zeros (probably finite).
  • A030705 (program): Numbers k such that the decimal expansion of 9^k contains no zeros (probably finite).
  • A030706 (program): Decimal expansion of 11^n contains no zeros (probably finite).
  • A030799 (program): a(n) = floor(exp(1/2)*n!).
  • A030804 (program): a(n) = floor(exp(7/24)*n!).
  • A030805 (program): a(n) = floor(exp(5/24)*n!).
  • A030806 (program): a(n) = floor(exp(1/24)*n!).
  • A030809 (program): a(n) = floor(exp(20/23) * n!).
  • A030812 (program): a(n) = floor(exp(17/23) * n!).
  • A030813 (program): a(n) = floor(exp(16/23) * n!).
  • A030816 (program): a(n) = floor(exp(13/23)*n!).
  • A030817 (program): Floor(exp(12/23) * n!).
  • A030818 (program): [ exp(11/23)*n! ].
  • A030819 (program): [ exp(10/23)*n! ].
  • A030820 (program): [ exp(9/23)*n! ].
  • A030821 (program): [ exp(8/23)*n! ].
  • A030822 (program): [ exp(7/23)*n! ].
  • A030823 (program): [ exp(6/23)*n! ].
  • A030824 (program): [ exp(5/23)*n! ].
  • A030825 (program): [ exp(4/23)*n! ].
  • A030826 (program): [ exp(3/23)*n! ].
  • A030827 (program): [ exp(2/23)*n! ].
  • A030828 (program): [ exp(1/23)*n! ].
  • A030831 (program): [ exp(17/22)*n! ].
  • A030832 (program): [ exp(15/22)*n! ].
  • A030833 (program): [ exp(13/22)*n! ].
  • A030834 (program): [ exp(9/22)*n! ].
  • A030835 (program): [ exp(7/22)*n! ].
  • A030836 (program): [ exp(5/22)*n! ].
  • A030838 (program): [ exp(3/22)*n! ].
  • A030839 (program): [ exp(1/22)*n! ].
  • A030841 (program): a(n) = floor( exp(19/21)*n! ).
  • A030842 (program): [ exp(17/21)*n! ].
  • A030843 (program): [ exp(16/21)*n! ].
  • A030845 (program): [ exp(11/21)*n! ].
  • A030846 (program): [ exp(10/21)*n! ].
  • A030847 (program): [ exp(8/21)*n! ].
  • A030848 (program): [ exp(5/21)*n! ].
  • A030849 (program): Floor( exp(4/21)*n! ).
  • A030850 (program): [ exp(2/21)*n! ].
  • A030851 (program): a(n) = floor(exp(1/21) * n!).
  • A030853 (program): [ exp(17/20)*n! ].
  • A030854 (program): [ exp(13/20)*n! ].
  • A030855 (program): [ exp(11/20)*n! ].
  • A030856 (program): [ exp(9/20)*n! ].
  • A030857 (program): [ exp(7/20)*n! ].
  • A030858 (program): [ exp(3/20)*n! ].
  • A030859 (program): [ exp(1/20)*n! ].
  • A030861 (program): [ exp(17/19)*n! ].
  • A030862 (program): [ exp(16/19)*n! ].
  • A030864 (program): [ exp(14/19)*n! ].
  • A030865 (program): [ exp(13/19)*n! ].
  • A030867 (program): a(n) = floor( exp(11/19)*n! ).
  • A030868 (program): [ exp(10/19)*n! ].
  • A030869 (program): [ exp(9/19)*n! ].
  • A030870 (program): [ exp(8/19)*n! ].
  • A030872 (program): [ exp(6/19)*n! ].
  • A030873 (program): [ exp(5/19)*n! ].
  • A030874 (program): [ exp(4/19)*n! ].
  • A030875 (program): [ exp(3/19)*n! ].
  • A030876 (program): [ exp(2/19)*n! ].
  • A030877 (program): [ exp(1/19)*n! ].
  • A030879 (program): [ exp(13/18)*n! ].
  • A030881 (program): [ exp(7/18)*n! ].
  • A030882 (program): [ exp(5/18)*n! ].
  • A030883 (program): [ exp(1/18)*n! ].
  • A030888 (program): a(n) = floor(exp(12/17)*n!).
  • A030889 (program): [ exp(11/17)*n! ].
  • A030890 (program): [ exp(10/17)*n! ].
  • A030891 (program): [ exp(9/17)*n! ].
  • A030892 (program): [ exp(8/17)*n! ].
  • A030893 (program): a(n) = floor( exp(7/17)*n! ).
  • A030894 (program): [ exp(6/17)*n! ].
  • A030896 (program): [ exp(4/17)*n! ].
  • A030897 (program): [ exp(3/17)*n! ].
  • A030898 (program): [ exp(2/17)*n! ].
  • A030899 (program): [ exp(1/17)*n! ].
  • A030903 (program): [ exp(9/16)*n! ].
  • A030904 (program): [ exp(7/16)*n! ].
  • A030905 (program): [ exp(5/16)*n! ].
  • A030906 (program): [ exp(3/16)*n! ].
  • A030907 (program): a(n) = floor( exp(1/16)*n! ).
  • A030910 (program): [ exp(11/15)*n! ].
  • A030911 (program): [ exp(8/15)*n! ].
  • A030912 (program): [ exp(7/15)*n! ].
  • A030913 (program): [ exp(4/15)*n! ].
  • A030914 (program): [ exp(2/15)*n! ].
  • A030915 (program): [ exp(1/15)*n! ].
  • A030916 (program): [ exp(13/14)*n! ].
  • A030917 (program): [ exp(11/14)*n! ].
  • A030918 (program): [ exp(9/14)*n! ].
  • A030919 (program): [ exp(5/14)*n! ].
  • A030921 (program): [ exp(1/14)*n! ].
  • A030922 (program): [ exp(12/13)*n! ].
  • A030924 (program): [ exp(10/13)*n! ].
  • A030926 (program): [ exp(8/13)*n! ].
  • A030928 (program): [ exp(6/13)*n! ].
  • A030929 (program): a(n) = floor( exp(5/13)*n! ).
  • A030930 (program): [ exp(4/13)*n! ].
  • A030931 (program): [ exp(3/13)*n! ].
  • A030932 (program): [ exp(2/13)*n! ].
  • A030933 (program): a(n) = floor(exp(1/13)*n!).
  • A030936 (program): [ exp(5/12)*n! ].
  • A030937 (program): [ exp(1/12)*n! ].
  • A030939 (program): [ exp(9/11)*n! ].
  • A030940 (program): [ exp(8/11)*n! ].
  • A030941 (program): [ exp(7/11)*n! ].
  • A030942 (program): [ exp(6/11)*n! ].
  • A030943 (program): a(n) = floor( exp(5/11)*n! ).
  • A030944 (program): [ exp(4/11)*n! ].
  • A030945 (program): [ exp(3/11)*n! ].
  • A030946 (program): [ exp(2/11)*n! ].
  • A030947 (program): [ exp(1/11)*n! ].
  • A030948 (program): [ exp(9/10)*n! ].
  • A030949 (program): [ exp(7/10)*n! ].
  • A030950 (program): [ exp(3/10)*n! ].
  • A030951 (program): [ exp(1/10)*n! ].
  • A030954 (program): [ exp(5/9)*n! ].
  • A030956 (program): [ exp(2/9)*n! ].
  • A030957 (program): [ exp(1/9)*n! ].
  • A030959 (program): [ exp(5/8)*n! ].
  • A030960 (program): [ exp(3/8)*n! ].
  • A030961 (program): [ exp(1/8)*n! ].
  • A030962 (program): [ exp(6/7)*n! ].
  • A030963 (program): a(n) = floor( exp(5/7)*n! ).
  • A030964 (program): [ exp(4/7)*n! ].
  • A030965 (program): [ exp(3/7)*n! ].
  • A030966 (program): [ exp(2/7)*n! ].
  • A030967 (program): [ exp(1/7)*n! ].
  • A030968 (program): [ exp(5/6)*n! ].
  • A030969 (program): [ exp(1/6)*n! ].
  • A030970 (program): [ exp(4/5)*n! ].
  • A030971 (program): [ exp(3/5)*n! ].
  • A030972 (program): [ exp(2/5)*n! ].
  • A030973 (program): [ exp(1/5)*n! ].
  • A030974 (program): [ exp(3/4)*n! ].
  • A030975 (program): [ exp(1/4)*n! ].
  • A030977 (program): a(n) = floor(exp(1/3)*n!).
  • A030978 (program): Maximal number of non-attacking knights on an n X n board.
  • A030980 (program): Number of planted noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes, root degree 1 and no nonroot nodes of degree 1.
  • A030981 (program): Number of noncrossing bushes with n nodes; i.e., rooted noncrossing trees with n nodes and no nonroot nodes of degree 1.
  • A030982 (program): Number of noncrossing nonplanted bushes with n nodes, i.e., rooted noncrossing trees with n nodes and no nodes of degree 1.
  • A030983 (program): Number of rooted noncrossing trees with n nodes such that root has degree 1 and the child of the root has degree at least 2.
  • A030984 (program): 2-automorphic numbers: final digits of 2*n^2 agree with n.
  • A030985 (program): 3-automorphic numbers ending in 2: final digits of 3*n^2 agree with n.
  • A030986 (program): 3-automorphic numbers ending in 5: final digits of 3*n^2 agree with n.
  • A030987 (program): 4-automorphic numbers: final digits of 4*n^2 agree with n.
  • A030988 (program): 5-automorphic numbers: final digits of 5n^2 agree with n.
  • A030989 (program): 6-automorphic numbers: final digits of 6n^2 agree with n.
  • A030990 (program): 7-automorphic numbers ending in 3: final digits of 7n^2 agree with n.
  • A030991 (program): 7-automorphic numbers ending in 5: final digits of 7n^2 agree with n.
  • A030992 (program): 7-automorphic numbers ending in 8: final digits of 7n^2 agree with n.
  • A030993 (program): 8-automorphic numbers: final digits of 8*n^2 agree with n.
  • A030994 (program): 9-automorphic numbers ending in 4: final digits of 9*n^2 agree with n.
  • A030995 (program): 9-automorphic numbers ending in 5: final digits of 9*n^2 agree with n.
  • A031123 (program): Expansion of Sum_{m>=1} z^(m^2)/(1-z^((m+1)^2)).
  • A031124 (program): Expansion of (1+z)/(1-z) - 2*Sum_{m>=1} z^(m^2)/(1-z^((m+1)^2)).
  • A031131 (program): Difference between n-th prime and (n+2)-nd prime.
  • A031138 (program): Numbers k such that 1^5 + 2^5 + … + k^5 is a square.
  • A031164 (program): Irreducible Euler sums of weight 8 and depth 10+2n.
  • A031165 (program): a(n) = prime(n+3) - prime(n).
  • A031166 (program): a(n) = prime(n+4) - prime(n).
  • A031167 (program): a(n) = prime(n+5) - prime(n).
  • A031168 (program): a(n) = prime(n+6) - prime(n).
  • A031169 (program): a(n) = prime(n+7) - prime(n).
  • A031170 (program): a(n) = prime(n+8) - prime(n).
  • A031171 (program): a(n) = prime(n+9) - prime(n).
  • A031172 (program): a(n) = prime(n+10) - prime(n).
  • A031176 (program): Periods of sum of squares of digits iterated until the sequence becomes periodic.
  • A031177 (program): Unhappy numbers: numbers having period-8 2-digitized sequences.
  • A031193 (program): Numbers having period-22 5-digitized sequences.
  • A031215 (program): Even-indexed primes: a(n) = prime(2n).
  • A031216 (program): Write primes in base 10 but interpret as if in base 11.
  • A031218 (program): Largest prime power <= n.
  • A031286 (program): Additive persistence: number of summations of digits needed to obtain a single digit (the additive digital root).
  • A031313 (program): Position of n-th 0 in A031312.
  • A031336 (program): a(n) = prime(3*n).
  • A031337 (program): a(n) = prime(4*n).
  • A031338 (program): a(n) = prime(5*n).
  • A031339 (program): a(n) = prime(6*n).
  • A031340 (program): a(n) = prime(7*n).
  • A031341 (program): a(n) = prime(8*n).
  • A031342 (program): a(n) = prime(9*n).
  • A031343 (program): a(n) = prime(10*n).
  • A031344 (program): Write primes in base 10 but interpret as if in base 12.
  • A031345 (program): Write primes in base 10 but interpret as if in base 13.
  • A031347 (program): Multiplicative digital root of n (keep multiplying digits of n until reaching a single digit).
  • A031358 (program): Number of coincidence site lattices of index 4n+1 in lattice Z^2.
  • A031359 (program): Bisection of A001615.
  • A031363 (program): Positive numbers of the form x^2 + xy - y^2; or, of the form 5x^2 - y^2.
  • A031368 (program): Odd-indexed primes: a(n) = prime(2n-1).
  • A031369 (program): a(n) = prime(3n-1).
  • A031370 (program): a(n) = prime(4n-1).
  • A031371 (program): a(n) = prime(5n-1).
  • A031372 (program): a(n) = prime(6*n - 1).
  • A031373 (program): Primes p(7n-1).
  • A031374 (program): a(n) = prime(8*n - 1).
  • A031375 (program): Primes p(9n-1).
  • A031376 (program): a(n) = prime(10*n - 1).
  • A031377 (program): a(n) = prime(3n-2).
  • A031378 (program): a(n) = prime(4*n - 2).
  • A031379 (program): a(n) = prime(5*n - 2).
  • A031380 (program): a(n) = prime(6*n - 2).
  • A031381 (program): a(n) = prime(7*n - 2).
  • A031382 (program): a(n) = prime(8*n - 2).
  • A031383 (program): a(n) = prime(9*n - 2).
  • A031384 (program): a(n) = prime(10*n - 2).
  • A031385 (program): a(n) = prime(4*n-3).
  • A031386 (program): a(n) = prime(5*n-3).
  • A031387 (program): a(n) = prime(6*n-3).
  • A031388 (program): a(n) = prime(7*n-3).
  • A031389 (program): a(n) = prime(8*n-3).
  • A031390 (program): a(n) = prime(9*n - 3).
  • A031391 (program): a(n) = prime(10*n-3).
  • A031392 (program): a(n) = prime(5*n-4).
  • A031393 (program): a(n) = prime(6*n - 4).
  • A031394 (program): a(n) = prime(7*n - 4).
  • A031395 (program): a(n) = prime(8*n - 4).
  • A031401 (program): Period of continued fraction for sqrt(A031400(n)).
  • A031443 (program): Digitally balanced numbers: positive numbers that in base 2 have the same number of 0’s as 1’s.
  • A031444 (program): Numbers whose base-2 representation has one more 0 than 1’s.
  • A031445 (program): Numbers whose base-2 representation has 2 more 0’s than 1’s.
  • A031446 (program): Numbers whose base-2 representation has 3 more 0’s than 1’s.
  • A031447 (program): Numbers whose base-2 representation has 4 more 0’s than 1’s.
  • A031448 (program): Numbers whose base-2 representation has one fewer 0’s than 1’s.
  • A031449 (program): Numbers whose base-2 representation has two fewer 0’s than 1’s.
  • A031450 (program): Numbers whose base-2 representation has 3 fewer 0’s than 1’s.
  • A031451 (program): Numbers whose base-2 representation has 4 fewer 0’s than 1’s.
  • A031452 (program): Numbers whose base-3 representation has the same number of 0’s as 2’s.
  • A031453 (program): Numbers whose base-3 representation has one more 0 than 2’s.
  • A031454 (program): Numbers whose base-3 representation has 2 more 0’s than 2’s.
  • A031455 (program): Numbers whose base-3 representation has 3 more 0’s than 2’s.
  • A031456 (program): Numbers whose base-3 representation has 4 more 0’s than 2’s.
  • A031457 (program): Numbers whose base-3 representation has one fewer 0 than 2’s.
  • A031458 (program): Numbers whose base-3 representation has 2 fewer 0’s than 2’s.
  • A031459 (program): Numbers whose base-3 representation has 3 fewer 0’s than 2’s.
  • A031460 (program): Numbers whose base-3 representation has 4 fewer 0’s than 2’s.
  • A031461 (program): Numbers whose base-4 representation has the same number of 0’s as 3’s.
  • A031462 (program): Numbers whose base-4 representation has one more 0 than 3’s.
  • A031463 (program): Numbers whose base-4 representation has 2 more 0’s than 3’s.
  • A031464 (program): Numbers whose base-4 representation has 3 more 0’s than 3’s.
  • A031465 (program): Numbers whose base-4 representation has 4 more 0’s than 3’s.
  • A031466 (program): Numbers whose base-4 representation has one fewer 0 than 3’s.
  • A031467 (program): Numbers whose base-4 representation has 2 fewer 0’s than 3’s.
  • A031468 (program): Numbers whose base-4 representation has 3 fewer 0’s than 3’s.
  • A031469 (program): Numbers whose base-4 representation has 4 fewer 0’s than 3’s.
  • A031470 (program): Numbers whose base-5 representation has the same number of 0’s as 4’s.
  • A031471 (program): Numbers whose base-5 representation has one more 0 than 4’s.
  • A031472 (program): Numbers whose base-5 representation has 2 more 0’s than 4’s.
  • A031473 (program): Numbers whose base-5 representation has 3 more 0’s than 4’s.
  • A031474 (program): Numbers whose base-5 representation has one fewer 0 than 4’s.
  • A031475 (program): Numbers whose base-5 representation has 2 fewer 0’s than 4’s.
  • A031476 (program): Numbers whose base-5 representation has 3 fewer 0’s than 4’s.
  • A031477 (program): Numbers whose base-6 representation has the same number of 0’s as 5’s.
  • A031478 (program): Numbers whose base-6 representation has one more 0 than 5’s.
  • A031479 (program): Numbers whose base-6 representation has 2 more 0’s than 5’s.
  • A031480 (program): Numbers whose base-6 representation has one fewer 0 than 5’s.
  • A031481 (program): Numbers whose base-6 representation has 2 fewer 0’s than 5’s.
  • A031483 (program): Numbers whose base-7 representation has one more 0 than 6’s.
  • A031484 (program): Numbers whose base-7 representation has 2 more 0’s than 6’s.
  • A031485 (program): Numbers whose base-7 representation has one fewer 0 than 6’s.
  • A031493 (program): Numbers whose base-9 representation has one more 0 than 8’s.
  • A031495 (program): Numbers whose base-9 representation has one fewer 0 than 8’s.
  • A031497 (program): Numbers whose base-10 representation has one more 0 than 9’s.
  • A031498 (program): Numbers whose base-10 representation has 2 more 0’s than 9’s.
  • A031499 (program): Numbers whose base-10 representation has one fewer 0 than 9’s.
  • A031505 (program): Upper prime of a difference of 4 between primes.
  • A031506 (program): Number of consecutive integers placed in n bins under a certain packing scheme.
  • A031778 (program): Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 100.
  • A031876 (program): a(n) = Sum_{k=0..n} floor(k^(1/3)).
  • A031878 (program): Maximal number of edges in Hamiltonian path in complete graph on n nodes.
  • A031904 (program): a(n) = prime(9*n - 4).
  • A031905 (program): a(n) = prime(10*n - 4).
  • A031906 (program): a(n) = prime(6*n - 5).
  • A031907 (program): a(n) = prime(7*n - 5).
  • A031908 (program): a(n) = prime(8*n - 5).
  • A031909 (program): a(n) = prime(9*n - 5).
  • A031910 (program): a(n) = prime(10*n - 5).
  • A031911 (program): a(n) = prime(7*n - 6).
  • A031912 (program): a(n) = prime(8*n - 6).
  • A031913 (program): a(n) = prime(9*n - 6).
  • A031914 (program): a(n) = prime(10*n - 6).
  • A031915 (program): a(n) = prime(8*n - 7).
  • A031916 (program): a(n) = prime(9*n-7).
  • A031917 (program): a(n) = prime(10*n-7).
  • A031918 (program): a(n) = prime(9*n-8).
  • A031919 (program): a(n) = prime(10*n-8).
  • A031920 (program): a(n) = prime(10*n-9).
  • A031921 (program): a(n) = prime(100*n).
  • A031923 (program): Let r and s be consecutive Fibonacci numbers. Sequence is r^4, r^3 s, r^2 s^2, and r s^3.
  • A031924 (program): Primes followed by a gap of 6, i.e., next prime is p + 6.
  • A031925 (program): Upper prime of a difference of 6 between consecutive primes.
  • A031926 (program): Lower prime of a difference of 8 between consecutive primes.
  • A031927 (program): Upper prime of a difference of 8 between consecutive primes.
  • A031928 (program): Lower prime of a difference of 10 between consecutive primes.
  • A031929 (program): Upper prime of a difference of 10 between consecutive primes.
  • A031930 (program): Lower prime of a difference of 12 between consecutive primes.
  • A031931 (program): Upper prime of a difference of 12 between consecutive primes.
  • A031932 (program): Lower prime of a pair of consecutive primes having a difference of 14.
  • A031933 (program): Upper prime of a difference of 14 between consecutive primes.
  • A031934 (program): Lower prime of a pair of consecutive primes having a difference of 16.
  • A031935 (program): Upper prime of a difference of 16 between consecutive primes.
  • A031936 (program): Lower prime of a difference of 18 between consecutive primes.
  • A031937 (program): Upper prime of a difference of 18 between consecutive primes.
  • A031938 (program): Lower prime of a difference of 20 between consecutive primes.
  • A031939 (program): Upper prime of a difference of 20 between consecutive primes.
  • A031940 (program): Length of longest legal domino snake using full set of dominoes up to [n:n].
  • A031941 (program): Numbers without consecutive equal base 3 digits.
  • A031942 (program): Numbers with no consecutive equal base 4 digits.
  • A031943 (program): Numbers with no consecutive equal base-5 digits.
  • A031946 (program): Numbers whose base-5 expansions have 5 distinct digits.
  • A031954 (program): Numbers with exactly two distinct base-9 digits.
  • A031964 (program): Numbers with exactly four distinct base-5 digits.
  • A031970 (program): Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.
  • A031971 (program): a(n) = Sum_{k=1..n} k^n.
  • A031972 (program): a(n) = Sum_{k=1..n} n^k.
  • A031973 (program): a(n) = Sum_{k=0..n} n^k.
  • A031974 (program): 1 repeated prime(n) times.
  • A031987 (program): Numbers with exactly five distinct base-10 digits.
  • A031999 (program): Numbers whose base-4 digits are in nonincreasing order.
  • A032031 (program): Triple factorial numbers: (3n)!!! = 3^n*n!.
  • A032032 (program): Number of ways to partition n labeled elements into sets of sizes of at least 2 and order the sets.
  • A032033 (program): Stirling transform of A032031.
  • A032037 (program): Doubles (index 2+) under “AIJ” (ordered, indistinct, labeled) transform.
  • A032069 (program): Number of reversible strings with n labeled beads of 2 colors, no palindromes of more than 1 bead.
  • A032070 (program): Number of reversible strings with n labeled beads of 3 colors, no palindromes of more than 1 bead.
  • A032071 (program): Number of reversible strings with n labeled beads of 4 colors, no palindromes of more than 1 bead.
  • A032072 (program): Number of reversible strings with n labeled beads of 5 colors, no palindromes of more than 1 bead.
  • A032085 (program): Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
  • A032086 (program): Number of reversible strings with n beads of 3 colors. If more than 1 bead, not palindromic.
  • A032087 (program): Number of reversible strings with n beads of 4 colors. If more than 1 bead, not palindromic.
  • A032088 (program): Number of reversible strings with n beads of 5 colors. If more than 1 bead, not palindromic.
  • A032089 (program): “BHK” (reversible, identity, unlabeled) transform of 1,0,1,0…(odds).
  • A032090 (program): “BHK” (reversible, identity, unlabeled) transform of 0,1,1,1…
  • A032091 (program): Number of reversible strings with n-1 beads of 2 colors. 4 beads are black. String is not palindromic.
  • A032092 (program): Number of reversible strings with n-1 beads of 2 colors. 5 beads are black. String is not palindromic.
  • A032093 (program): Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.
  • A032094 (program): Number of reversible strings with n-1 beads of 2 colors. 7 beads are black. String is not palindromic.
  • A032095 (program): Number of reversible strings with n-1 black beads and n-1 white beads. String is not palindromic.
  • A032096 (program): “BHK” (reversible, identity, unlabeled) transform of 2,2,2,2,…
  • A032097 (program): “BHK” (reversible, identity, unlabeled) transform of 2,1,1,1,…
  • A032098 (program): “BHK” (reversible, identity, unlabeled) transform of 3,3,3,3,…
  • A032099 (program): “BHK” (reversible, identity, unlabeled) transform of 1,2,3,4,…
  • A032106 (program): Number of reversible strings with n black beads and n-1 white beads. String is not palindromic.
  • A032107 (program): Number of reversible strings with n labeled beads of 2 colors.
  • A032108 (program): Number of reversible strings with n labeled beads of 3 colors.
  • A032109 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,1,1,1,…
  • A032110 (program): “BIJ” (reversible, indistinct, labeled) transform of 0,1,1,1…
  • A032111 (program): “BIJ” (reversible, indistinct, labeled) transform of 2,2,2,2…
  • A032112 (program): “BIJ” (reversible, indistinct, labeled) transform of 2,1,1,1…
  • A032113 (program): “BIJ” (reversible, indistinct, labeled) transform of 3,3,3,3…
  • A032114 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,2,3,4,…
  • A032115 (program): “BIJ” (reversible, indistinct, labeled) transform of 1,3,5,7…
  • A032119 (program): Number of labeled series-reduced dyslexic planted planar trees (root unlabeled) with n leaves.
  • A032120 (program): Number of reversible strings with n beads of 3 colors.
  • A032121 (program): Number of reversible strings with n beads of 4 colors.
  • A032122 (program): Number of reversible strings with n beads of 5 colors.
  • A032123 (program): Number of 2n-bead black-white reversible strings with n black beads.
  • A032124 (program): “BIK” (reversible, indistinct, unlabeled) transform of 2,2,2,2…
  • A032125 (program): “BIK” (reversible, indistinct, unlabeled) transform of 3,3,3,3…
  • A032126 (program): “BIK” (reversible, indistinct, unlabeled) transform of 1,2,3,4…
  • A032127 (program): “BIK” (reversible, indistinct, unlabeled) transform of 1,3,5,7…
  • A032164 (program): Number of aperiodic necklaces of n beads of 6 colors; dimensions of free Lie algebras.
  • A032165 (program): Number of aperiodic necklaces of n beads of 10 colors.
  • A032168 (program): Number of aperiodic necklaces of n beads of 2 colors, 10 of them black.
  • A032169 (program): Number of aperiodic necklaces of n beads of 2 colors, 11 of them black.
  • A032179 (program): Number of necklaces with n labeled beads of 3 colors.
  • A032180 (program): Number of ways to partition n labeled elements into 6 pie slices.
  • A032181 (program): Number of ways to partition n labeled elements into pie slices each of at least 2 elements.
  • A032182 (program): “CIJ” (necklace, indistinct, labeled) transform of 2,1,1,1…
  • A032183 (program): “CIJ” (necklace, indistinct, labeled) transform of 3,3,3,3…
  • A032184 (program): a(n) = 2^n*(n-1)! for n > 1, a(1) = 1.
  • A032189 (program): Number of ways to partition n elements into pie slices each with an odd number of elements.
  • A032190 (program): Number of cyclic compositions of n into parts >= 2.
  • A032191 (program): Number of necklaces with 6 black beads and n-6 white beads.
  • A032192 (program): Number of necklaces with 7 black beads and n-7 white beads.
  • A032195 (program): Number of necklaces with 10 black beads and n-10 white beads.
  • A032196 (program): Number of necklaces with 11 black beads and n-11 white beads.
  • A032198 (program): “CIK” (necklace, indistinct, unlabeled) transform of 1,2,3,4,…
  • A032246 (program): “DHK[ 5 ]” (bracelet, identity, unlabeled, 5 parts) transform of 1,1,1,1,…
  • A032260 (program): Number of n X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.
  • A032261 (program): Number of bracelets with n labeled beads of 3 colors.
  • A032262 (program): Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.
  • A032263 (program): Number of ways to partition n labeled elements into 4 pie slices allowing the pie to be turned over; number of 2-element proper antichains of an n-element set.
  • A032266 (program): “DIJ” (bracelet, indistinct, labeled) transform of 2,2,2,2,…
  • A032277 (program): Number of ways to partition n elements into pie slices each with an odd number of elements allowing the pie to be turned over.
  • A032278 (program): Number of ways to partition n elements into pie slices each with at least 2 elements allowing the pie to be turned over.
  • A032279 (program): Number of bracelets (turnover necklaces) of n beads of 2 colors, 5 of them black.
  • A032282 (program): Number of bracelets (turnover necklaces) of n beads of 2 colors, 11 of them black.
  • A032284 (program): “DIK” (bracelet, indistinct, unlabeled) transform of 3,3,3,3…
  • A032303 (program): “EFK” (unordered, size, unlabeled) transform of 2,1,1,1,…
  • A032321 (program): Number of aperiodic necklaces with n labeled beads of 2 colors.
  • A032322 (program): Number of aperiodic necklaces with n labeled beads of 3 colors.
  • A032323 (program): Number of aperiodic necklaces with n labeled beads of 4 colors.
  • A032324 (program): Number of aperiodic necklaces with n labeled beads of 5 colors.
  • A032343 (program): a(n) = 10*a(n-1)+n^2, a(0)=0.
  • A032346 (program): Essentially shifts 1 place right under inverse binomial transform.
  • A032347 (program): Inverse binomial transform of A032346.
  • A032349 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).
  • A032350 (program): Palindromic nonprime numbers.
  • A032351 (program): Number of permutations of length n which avoid the patterns 2143, 1324 (smooth permutations); or avoid the patterns 1342, 2431; etc.
  • A032352 (program): Numbers k such that there is no prime between 10*k and 10*k+9.
  • A032357 (program): Convolution of Catalan numbers and powers of -1.
  • A032358 (program): Number of iterations of phi(n) needed to reach 2.
  • A032378 (program): Noncubes such that n is divisible by floor(n^(1/3)).
  • A032434 (program): Triangle read by rows: last survivors of Josephus elimination process.
  • A032438 (program): a(n) = n^2 - floor((n+1)/2)^2.
  • A032439 (program): a(n) = Sum_{i=0..4} binomial(Fibonacci(n),i).
  • A032440 (program): Sum binomial(Fibonacci(n),i); i=0..3).
  • A032441 (program): a(n) = Sum_{i=0..2} binomial(Fibonacci(n),i).
  • A032443 (program): a(n) = Sum_{i=0..n} binomial(2*n, i).
  • A032448 (program): Smallest prime == -1 modulo prime(n).
  • A032509 (program): a(n) = round(tan(Pi*(1-1/n)/2)).
  • A032512 (program): Sum of the integer part of 4th roots of integers <= n.
  • A032513 (program): Sum of the integer part of 5th roots of positive integers less than or equal to n.
  • A032514 (program): Sum of the integer part of 3/2-th roots of integers less than n.
  • A032515 (program): Sum of the integer part of 5/2-th roots of integers less than or equal to n.
  • A032517 (program): Sum of the integer part of 9/2-th roots of integers less than n.
  • A032518 (program): Sum of the integer part of 10/3-th roots of integers less than n.
  • A032519 (program): Sum of the integer part of 11/3-th roots of integers less than n.
  • A032520 (program): Sum of the integer part of 13/3-th roots of integers less than n.
  • A032521 (program): Sum of the integer part of 14/3-th roots of integers less than n.
  • A032525 (program): Floor( 7*n^2/2 ).
  • A032526 (program): a(n) = floor(5*n^2/2).
  • A032527 (program): Concentric pentagonal numbers: floor( 5*n^2 / 4 ).
  • A032528 (program): Concentric hexagonal numbers: floor(3*n^2/2).
  • A032532 (program): Integer part of decimal ‘base-2 looking’ numbers divided by their actual base-2 values (denominator of a(n) is n, numerator is n written in binary but read in decimal).
  • A032533 (program): Numbers that, when expressed in base 2 and then interpreted in base 10, yield a multiple of the original number.
  • A032536 (program): Integer part of decimal ‘base-3 looking’ numbers divided by their actual base-3 values.
  • A032539 (program): Integer part of decimal ‘base-4 looking’ numbers divided by their actual base-4 values.
  • A032542 (program): Integer part of decimal ‘base-5 looking’ numbers divided by their actual base-5 values.
  • A032553 (program): Arrange digits of cubes in ascending order.
  • A032554 (program): Arrange digits of cubes in descending order.
  • A032607 (program): Concatenation of n and n + 2 or {n,n+2}.
  • A032608 (program): Concatenation of n and n + 3.
  • A032609 (program): Concatenation of n and n + 4 or {n,n+4}.
  • A032610 (program): Concatenation of n and n + 5 or {n,n+5}.
  • A032611 (program): Concatenation of n and n + 6 or {n,n+6}.
  • A032612 (program): Concatenation of n and n+7.
  • A032613 (program): Concatenation of n and n + 8 or {n,n+8}.
  • A032614 (program): Concatenation of n and n + 9 or {n,n+9}.
  • A032615 (program): a(n) = floor(n/Pi).
  • A032616 (program): a(n) = floor(n^2/Pi).
  • A032617 (program): Numbers k such that k concatenated with k+2 is a prime.
  • A032619 (program): Numbers k such that k concatenated with k+4 is a prime.
  • A032620 (program): Numbers k such that k concatenated with k+5 is a prime.
  • A032621 (program): Numbers k such that k concatenated with k+6 is a prime.
  • A032623 (program): Numbers k such that k concatenated with k+8 is a prime.
  • A032625 (program): Primes that are concatenations of n with n + 2.
  • A032627 (program): Primes that are concatenations of n with n + 4.
  • A032633 (program): a(n) = floor(n^3 / Pi).
  • A032634 (program): a(n) = floor(n/e).
  • A032635 (program): a(n) = floor(n^2 / e).
  • A032636 (program): [ n^3 / e ].
  • A032664 (program): Digit ‘1’ concatenated with a(n) is a prime.
  • A032665 (program): Digit ‘2’ concatenated with a(n) is a prime.
  • A032666 (program): Digit ‘3’ concatenated with a(n) is a prime.
  • A032667 (program): Digit ‘4’ concatenated with a(n) is a prime.
  • A032668 (program): Digit ‘5’ concatenated with a(n) is a prime.
  • A032669 (program): Digit ‘6’ concatenated with n is a prime.
  • A032670 (program): Digit ‘7’ concatenated with a(n) is a prime.
  • A032671 (program): Digit ‘8’ concatenated with a(n) is a prime.
  • A032672 (program): Digit ‘9’ concatenated with a(n) is a prime.
  • A032682 (program): Numbers k such that k surrounded by digit ‘1’ is a prime.
  • A032683 (program): Numbers k such that k surrounded by digit ‘3’ is a prime.
  • A032684 (program): Numbers k such that k surrounded by digit ‘7’ is prime.
  • A032685 (program): Numbers k such that k surrounded by digit ‘9’ is a prime.
  • A032702 (program): n prefixed by ‘2’ and followed by ‘1’ is a prime.
  • A032703 (program): n prefixed by ‘3’ and followed by ‘1’ is a prime.
  • A032704 (program): n prefixed by ‘4’ and followed by ‘1’ is prime.
  • A032705 (program): Numbers k such that k prefixed by ‘5’ and followed by ‘1’ is prime.
  • A032706 (program): n prefixed by ‘6’ and followed by ‘1’ is a prime.
  • A032707 (program): n prefixed by ‘7’ and followed by ‘1’ is a prime.
  • A032708 (program): n prefixed by ‘8’ and followed by ‘1’ is a prime.
  • A032709 (program): n prefixed by ‘9’ and followed by ‘1’ is a prime.
  • A032710 (program): n prefixed by ‘1’ and followed by ‘3’ is a prime.
  • A032711 (program): Numbers k such that the concatenation ‘2’,k,’3’ is prime.
  • A032712 (program): n prefixed by ‘4’ and followed by ‘3’ is a prime.
  • A032713 (program): Numbers k such that k prefixed by ‘5’ and followed by ‘3’ is prime.
  • A032714 (program): n prefixed by ‘6’ and followed by ‘3’ is a prime.
  • A032715 (program): n prefixed by ‘7’ and followed by ‘3’ is a prime.
  • A032716 (program): Numbers k such that k prefixed by ‘8’ and followed by ‘3’ is prime.
  • A032717 (program): n prefixed by ‘9’ and followed by ‘3’ is a prime.
  • A032718 (program): n prefixed by ‘1’ and followed by ‘7’ is a prime.
  • A032719 (program): Numbers k such that k prefixed by ‘2’ and followed by ‘7’ is prime.
  • A032720 (program): Integers that when prefixed by ‘3’ and followed by ‘7’ yield a prime.
  • A032721 (program): n prefixed by ‘4’ and followed by ‘7’ is a prime.
  • A032722 (program): n prefixed by ‘5’ and followed by ‘7’ is a prime.
  • A032723 (program): Numbers k such that k prefixed by ‘6’ and followed by ‘7’ is a prime.
  • A032724 (program): Numbers k such that k prefixed by ‘8’ and followed by ‘7’ is prime.
  • A032725 (program): n prefixed by ‘9’ and followed by ‘7’ is a prime.
  • A032726 (program): Numbers k such that k prefixed by ‘1’ and followed by ‘9’ is a prime.
  • A032727 (program): Numbers n such that n prefixed by ‘2’ and followed by ‘9’ is prime.
  • A032728 (program): n prefixed by ‘3’ and followed by ‘9’ is a prime.
  • A032729 (program): Numbers n such that n prefixed by ‘4’ and followed by ‘9’ is a prime.
  • A032730 (program): n prefixed by ‘5’ and followed by ‘9’ is a prime.
  • A032731 (program): Numbers k such that k prefixed by ‘6’ and followed by ‘9’ is a prime.
  • A032732 (program): n prefixed by ‘7’ and followed by ‘9’ is a prime.
  • A032733 (program): Numbers n such that n prefixed by ‘8’ and followed by ‘9’ is prime.
  • A032741 (program): a(0) = 0; for n > 0, a(n) = number of proper divisors of n (divisors of n which are less than n).
  • A032742 (program): a(1) = 1; for n > 1, a(n) = largest proper divisor of n.
  • A032765 (program): Floor(n(n+1)(n+2) / (n+ n+1 + n+2)), which equals floor(n(n + 2)/3).
  • A032766 (program): Numbers that are congruent to 0 or 1 (mod 3).
  • A032767 (program): a(n) = floor ( n(n+1)(n+2)(n+3) / (n+(n+1)+(n+2)+(n+3)) ).
  • A032768 (program): Floor( n(n+1)(n+2)(n+3)(n+4) / (n+(n+1)+(n+2)+(n+3)+(n+4)) ).
  • A032769 (program): Numbers that are congruent to {0, 1, 2, 4} mod 5.
  • A032770 (program): Integer quotients of n(n + 1)(n + 2)(n + 3)(n + 4) / (n+(n+1)+(n+2)+(n+3)+(n+4)).
  • A032771 (program): [ n(n+1)(n+2)…(n+5) / (n+(n+1)+(n+2)+…+(n+5)) ].
  • A032774 (program): a(n) = floor( n*(n+1)*(n+2)*…*(n+6) / (n+(n+1)+(n+2)+…+(n+6)) ).
  • A032775 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 7.
  • A032776 (program): Integer quotients n(n+1)(n+2)…(n+6) / (n+(n+1)+(n+2)+…+(n+6)).
  • A032777 (program): Floor( n(n+1)(n+2)…(n+7) / (n+(n+1)+(n+2)+…+(n+7)) ).
  • A032778 (program): Numbers k such that k*(k+1)*(k+2)*…*(k+7) / (k+(k+1)+(k+2)+…+(k+7)) is an integer.
  • A032780 (program): a(n) = n(n+1)(n+2)…(n+8) / (n+(n+1)+(n+2)+…+(n+8)).
  • A032781 (program): Floor ( n(n+1)(n+2)…(n+9) / (n+(n+1)+(n+2)+…+(n+9)) ).
  • A032793 (program): Numbers that are congruent to {1, 2, 4} mod 5.
  • A032794 (program): Positive integers of the form n(n+1)(n+2)(n+3)(n+4)/(n+(n+1)+(n+2)+(n+3)+(n+4)) that are a multiple of n.
  • A032795 (program): Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.
  • A032796 (program): Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.
  • A032797 (program): Numbers n such that n(n+1)(n+2)…(n+10) /(n+(n+1)+(n+2)+…+(n+10)) is a multiple of n.
  • A032798 (program): Numbers such that n(n+1)(n+2)…(n+12) / (n+(n+1)+(n+2)+…+(n+12)) is a multiple of n.
  • A032801 (program): Number of unordered sets a, b, c, d of distinct integers from 1..n such that a+b+c+d = 0 (mod n).
  • A032803 (program): Expansion of Sum_{i>=0} q^i*theta_3^i.
  • A032804 (program): Numbers whose set of base-4 digits is {2,3}.
  • A032805 (program): Numbers whose set of base-5 digits is {2,3}.
  • A032806 (program): Numbers whose set of base-6 digits is {2,3}.
  • A032807 (program): Numbers whose set of base-7 digits is {2,3}.
  • A032808 (program): Numbers whose set of base-8 digits is {2,3}.
  • A032809 (program): Numbers whose set of base-9 digits is {2,3}.
  • A032810 (program): Numbers using only digits 2 and 3.
  • A032811 (program): Numbers whose set of base-11 digits is {2,3}.
  • A032812 (program): Numbers whose set of base-12 digits is {2,3}.
  • A032813 (program): Numbers whose set of base-13 digits is {2,3}.
  • A032814 (program): Numbers whose set of base-14 digits is {2,3}.
  • A032815 (program): Numbers whose set of base-15 digits is {2,3}.
  • A032816 (program): Numbers whose set of base-16 digits is {2,3}.
  • A032817 (program): Numbers whose set of base-5 digits is {1,4}.
  • A032818 (program): Numbers whose set of base-6 digits is {1,4}.
  • A032819 (program): Numbers whose set of base-7 digits is {1,4}.
  • A032820 (program): Numbers whose set of base-8 digits is {1,4}.
  • A032821 (program): Numbers whose set of base-9 digits is {1,4}.
  • A032822 (program): Numbers whose set of base-10 digits is {1,4}.
  • A032823 (program): Numbers whose set of base-11 digits is {1,4}.
  • A032824 (program): Numbers whose set of base-12 digits is {1,4}.
  • A032825 (program): Numbers whose set of base-13 digits is {1,4}.
  • A032826 (program): Numbers whose set of base-14 digits is {1,4}.
  • A032827 (program): Numbers whose set of base-15 digits is {1,4}.
  • A032828 (program): Numbers whose set of base-16 digits is {1,4}.
  • A032829 (program): Numbers whose set of base-5 digits is {3,4}.
  • A032830 (program): Numbers whose set of base-6 digits is {3,4}.
  • A032831 (program): Numbers whose set of base-7 digits is {3,4}.
  • A032832 (program): Numbers whose set of base-8 digits is {3,4}.
  • A032833 (program): Numbers whose set of base-9 digits is {3,4}.
  • A032834 (program): Numbers with digits 3 and 4 only.
  • A032835 (program): Numbers whose set of base-11 digits is {3,4}.
  • A032836 (program): Numbers whose set of base-12 digits is {3,4}.
  • A032837 (program): Numbers whose set of base-13 digits is {3,4}.
  • A032838 (program): Numbers whose set of base-14 digits is {3,4}.
  • A032839 (program): Numbers whose set of base-15 digits is {3,4}.
  • A032840 (program): Numbers whose set of base-16 digits is {3,4}.
  • A032898 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^i, d(m) > 0, has d(0) >= d(1) <= d(2) >= …
  • A032908 (program): One of four 3rd-order recurring sequences for which the first derived sequence and the Galois transformed sequence coincide.
  • A032911 (program): Numbers whose set of base-4 digits is a subset of {1,3}.
  • A032912 (program): Numbers whose set of base-5 digits is {1,3}.
  • A032913 (program): Numbers whose set of base-6 digits is {1,3}.
  • A032914 (program): Numbers whose set of base-7 digits is {1,3}.
  • A032915 (program): Numbers whose set of base-8 digits is {1,3}.
  • A032916 (program): Numbers whose set of base-9 digits is {1,3}.
  • A032917 (program): Numbers having only digits 1 and 3 in their decimal representation.
  • A032918 (program): Numbers whose set of base-11 digits is {1,3}.
  • A032919 (program): Numbers whose set of base-12 digits is {1,3}.
  • A032920 (program): Numbers whose set of base-13 digits is {1,3}.
  • A032921 (program): Numbers whose set of base-14 digits is {1,3}.
  • A032922 (program): Numbers whose set of base-15 digits is {1,3}.
  • A032923 (program): Numbers whose set of base-16 digits is {1,3}.
  • A032924 (program): Numbers whose ternary expansion contains no 0.
  • A032925 (program): Numbers whose set of base-4 digits is a subset of {1,2}.
  • A032926 (program): Numbers whose set of base-5 digits is {1,2}.
  • A032927 (program): Numbers whose set of base-6 digits is {1,2}.
  • A032928 (program): Numbers whose set of base-7 digits is {1,2}.
  • A032929 (program): Numbers whose set of base-8 digits is {1,2}.
  • A032930 (program): Numbers whose set of base-9 digits is {1,2}.
  • A032931 (program): Numbers whose set of base-11 digits is {1,2}.
  • A032932 (program): Numbers whose set of base-12 digits is {1,2}.
  • A032933 (program): Numbers whose set of base-13 digits is {1,2}.
  • A032934 (program): Numbers whose set of base-14 digits is {1,2}.
  • A032935 (program): Numbers whose set of base-15 digits is {1,2}.
  • A032936 (program): Numbers whose set of base-16 digits is {1,2}.
  • A032937 (program): Numbers k whose base-2 representation Sum_{i=0..m} d(i)*2^(m-i) has d(i)=0 for all odd i, excluding 0. Here m is the position of the leading bit of k.
  • A032938 (program): Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^(m-i) has d(i)=0 for all odd i.
  • A032939 (program): Numbers whose base-4 representation Sum_{i=0..m} d(i)*4^(m-i) has d(i)=0 for all odd i.
  • A032940 (program): Numbers whose base-5 representation Sum_{i=0..m} d(i)*5^(m-i) has d(i)=0 for all odd i.
  • A032944 (program): Numbers whose base-9 representation Sum_{i=0..m} d(i)*9^(m-i) has d(i)=0 for all odd i.
  • A032952 (program): Expansion of (1+x*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
  • A032956 (program): Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^(m-i) has even d(i) for all odd i.
  • A032958 (program): Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^(m-i) has even d(i) for all odd i.
  • A032960 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^(m-i) has even d(i) for all odd i.
  • A032961 (program): Numbers whose base-11 representation Sum_{i=0..m} d(i)*11^(m-i) has even d(i) for all odd i.
  • A032962 (program): Numbers whose base-12 representation Sum_{i=0..m} d(i)*12^(m-i) has even d(i) for all odd i.
  • A032963 (program): Numbers whose base-13 representation Sum_{i=0..m} d(i)*13^(m-i) has even d(i) for all odd i.
  • A032964 (program): Numbers whose base-14 representation Sum_{i=0..m} d(i)*14^(m-i) has even d(i) for all odd i.
  • A032965 (program): Numbers whose base-15 representation Sum_{i=0..m} d(i)*15^(m-i) has even d(i) for all odd i.
  • A032966 (program): Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^(m-i) has even d(i) for all odd i.
  • A032973 (program): Numbers with the property that all pairs of consecutive digits differ by more than 1.
  • A033015 (program): Numbers whose base-2 expansion has no run of digits with length < 2.
  • A033030 (program): Derangement numbers d(n,3) where d(n,k) = k(n-1)(d(n-1,k) + d(n-2,k)), with d(0,k) = 1 and d(1,k) = 0.
  • A033031 (program): Squarefree kernels of 3-smooth numbers.
  • A033032 (program): Numbers all of whose base 6 digits are odd.
  • A033033 (program): Numbers all of whose base 7 digits are odd.
  • A033034 (program): Numbers all of whose base 8 digits are odd.
  • A033035 (program): Numbers such that all base 9 digits are odd.
  • A033036 (program): Numbers all of whose base 11 digits are odd.
  • A033037 (program): Numbers all of whose base 12 digits are odd.
  • A033038 (program): Numbers all of whose base 13 digits are odd.
  • A033040 (program): Numbers all of whose base 15 digits are odd.
  • A033041 (program): Numbers all of whose base 16 digits are odd.
  • A033042 (program): Sums of distinct powers of 5.
  • A033043 (program): Sums of distinct powers of 6.
  • A033044 (program): Sums of distinct powers of 7.
  • A033045 (program): Sums of distinct powers of 8.
  • A033046 (program): Sums of distinct powers of 9.
  • A033047 (program): Sums of distinct powers of 11.
  • A033048 (program): Sums of distinct powers of 12.
  • A033049 (program): Sums of distinct powers of 13.
  • A033050 (program): Numbers whose set of base 14 digits is {0,1}.
  • A033051 (program): Numbers whose set of base 15 digits is {0,1}.
  • A033052 (program): a(1) = 1, a(2n) = 16a(n), a(2n+1) = a(2n)+1.
  • A033053 (program): Numbers whose base-2 representation Sum_{i=0..m} d(i)*2^i has d(i)=1 when i != m mod 2.
  • A033057 (program): Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^i has odd d(i) for all odd i.
  • A033059 (program): Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^i has odd d(i) for all odd i.
  • A033061 (program): Numbers whose base-10 representation Sum_{i=0..m} d(i)*10^i has odd d(i) for all odd i.
  • A033062 (program): Numbers whose base-11 representation Sum_{i=0..m} d(i)*11^i has odd d(i) for all odd i.
  • A033063 (program): Numbers whose base-12 representation Sum_{i=0..m} d(i)*12^i has odd d(i) for all odd i.
  • A033064 (program): Numbers whose base-13 representation Sum_{i=0..m} d(i)*13^i has odd d(i) for all odd i.
  • A033065 (program): Numbers whose base-14 representation Sum_{i=0..m} d(i)*14^i has odd d(i) for all odd i.
  • A033066 (program): Numbers whose base-15 representation Sum_{i=0..m} d(i)*15^i has odd d(i) for all odd i.
  • A033067 (program): Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^i has odd d(i) for all odd i.
  • A033093 (program): Number of 0’s when n is written in base b for 2<=b<=n+1.
  • A033094 (program): Number of 0’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033095 (program): Number of 1’s when n is written in base b for 2<=b<=n+1.
  • A033096 (program): Number of 1’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033097 (program): Number of 2’s when n is written in base b for 2<=b<=n+1.
  • A033098 (program): Number of 2’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033099 (program): Number of 3’s when n is written in base b for 2<=b<=n+1.
  • A033100 (program): Number of 3’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033101 (program): Number of 4’s when n is written in base b for 2<=b<=n+1.
  • A033102 (program): Number of 4’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033103 (program): Number of 5’s when n is written in base b for 2<=b<=n+1.
  • A033104 (program): Number of 5’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033105 (program): Number of 6’s when n is written in base b for 2<=b<=n+1.
  • A033106 (program): Number of 6’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033107 (program): Number of 7’s when n is written in base b for 2<=b<=n+1.
  • A033108 (program): Number of 7’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033109 (program): Number of 8’s when n is written in base b for 2<=b<=n+1.
  • A033110 (program): Number of 8’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033111 (program): Number of 9’s when n is written in base b for 2<=b<=n+1.
  • A033112 (program): Number of 9’s when k is written in base b for all b and k satisfying 2<=b<=n+1, 1<=k<=n.
  • A033113 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033114 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033115 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033116 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033117 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033118 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033119 (program): Base-9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
  • A033120 (program): Base-2 digits of a(n) are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033121 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033122 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033123 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033124 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033125 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033126 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033127 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
  • A033128 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,1.
  • A033129 (program): Base-2 digits are, in order, the first n terms of the periodic sequence with initial period [1,1,0].
  • A033130 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033131 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033132 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033133 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033134 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033135 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033136 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
  • A033137 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,1,0.
  • A033138 (program): a(n) = floor(2^(n+2)/7).
  • A033139 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033140 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033141 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033142 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033143 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033144 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033145 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
  • A033146 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,0.
  • A033156 (program): a(1) = 1; for m >= 2, a(n) = a(n-1) + floor(a(n-1)/(n-1)) + 2.
  • A033157 (program): Begins with (1, 4); avoids 3-term arithmetic progressions.
  • A033159 (program): Begins with (2, 3); avoids 3-term arithmetic progressions.
  • A033160 (program): Begins with (2, 4); avoids 3-term arithmetic progressions.
  • A033161 (program): Begins with (2, 5); avoids 3-term arithmetic progressions.
  • A033162 (program): Begins with (3, 4); avoids 3-term arithmetic progressions.
  • A033163 (program): Begins with (3, 5) and avoids 3-term arithmetic progressions.
  • A033164 (program): Begins with (4, 5); avoids 3-term arithmetic progressions.
  • A033168 (program): Longest arithmetic progression of primes with difference 210 and minimal initial term.
  • A033171 (program): Number of days in n years (n=4 is the first leap year).
  • A033172 (program): Number of days in n years (n=3 is the first leap year).
  • A033173 (program): Number of days in n years (n=2 is the first leap year).
  • A033174 (program): Number of days in n years (n=1 is the first leap year).
  • A033175 (program): n 3’s followed by 1.
  • A033182 (program): Number of pairs (p,q) such that 5*p + 6*q = n.
  • A033183 (program): a(n) = number of pairs (p,q) such that 4*p + 9*q = n.
  • A033184 (program): Catalan triangle A009766 transposed.
  • A033190 (program): a(n) = Sum_{k=0..n} binomial(n,k) * binomial(Fibonacci(k)+1,2).
  • A033191 (program): Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, … ], which is essentially binomial(Fibonacci(k) + 1, 2).
  • A033192 (program): a(n) = binomial(Fibonacci(n) + 1, 2).
  • A033193 (program): Binomial transform of A033192.
  • A033196 (program): a(n) = n^3*Product_{p|n} (1 + 1/p).
  • A033197 (program): Discriminants of quadratic number fields Q(sqrt -n) for n squarefree.
  • A033198 (program): Discriminants of real quadratic number fields.
  • A033199 (program): Primes of form x^2+6*y^2.
  • A033200 (program): Primes congruent to {1, 3} (mod 8); or, odd primes of form x^2 + 2*y^2.
  • A033203 (program): Primes p congruent to {1, 2, 3} (mod 8); or primes p of form x^2 + 2*y^2; or primes p such that x^2 = -2 has a solution mod p.
  • A033205 (program): Primes of form x^2 + 5*y^2.
  • A033207 (program): Primes of form x^2+7*y^2.
  • A033212 (program): Primes congruent to 1 or 19 (mod 30).
  • A033215 (program): Primes of form x^2+21*y^2.
  • A033220 (program): Primes of form x^2+30*y^2.
  • A033264 (program): Number of blocks of {1,0} in the binary expansion of n.
  • A033265 (program): Number of i such that d(i) >= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
  • A033270 (program): Number of odd primes <= n.
  • A033271 (program): Number of odd nonprimes <= n.
  • A033272 (program): Number of odd nonprimes dividing n.
  • A033273 (program): Number of nonprime divisors of n.
  • A033275 (program): Number of diagonal dissections of an n-gon into 3 regions.
  • A033276 (program): Number of diagonal dissections of an n-gon into 4 regions.
  • A033277 (program): Number of diagonal dissections of an n-gon into 5 regions.
  • A033278 (program): Number of diagonal dissections of an n-gon into 6 regions.
  • A033279 (program): Number of diagonal dissections of an n-gon into 7 regions.
  • A033280 (program): Number of diagonal dissections of a convex (n+8)-gon into n+1 regions.
  • A033281 (program): Number of diagonal dissections of a convex (n+9)-gon into n+1 regions.
  • A033282 (program): Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
  • A033286 (program): a(n) = n * prime(n).
  • A033287 (program): First differences of A033286.
  • A033291 (program): A Connell-like sequence: take the first multiple of 1, the next 2 multiples of 2, the next 3 multiples of 3, etc.
  • A033292 (program): A Connell-like sequence: take 1 number = 1 (mod Q), 2 numbers = 2 (mod Q), 3 numbers = 3 (mod Q), etc., where Q = 3.
  • A033293 (program): A Connell-like sequence: take 1 number = 1 (mod Q), 2 numbers = 2 (mod Q), 3 numbers = 3 (mod Q), etc., where Q = 8.
  • A033296 (program): Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).
  • A033297 (program): Number of ordered rooted trees with n edges such that the rightmost leaf of each subtree is at even level. Equivalently, number of Dyck paths of semilength n with no return descents of odd length.
  • A033298 (program): a(n+1) = a(n) + sum of digits of a(n)^2.
  • A033299 (program): Smallest safe prime ((p-1)/2 is also prime) > n.
  • A033300 (program): Smallest safe prime ((p-1)/2 is also prime) > n-th prime.
  • A033302 (program): Largest prime < largest prime < n.
  • A033303 (program): Expansion of (1 + x)/(1 - 2*x - x^2 + x^3).
  • A033304 (program): Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).
  • A033305 (program): Number of permutations (p1,…,pn) such that 1 <= |pk - k| <= 2 for all k.
  • A033312 (program): a(n) = n! - 1.
  • A033320 (program): a(n) = floor( sqrt(2) * (3/2)^n ).
  • A033321 (program): Binomial transform of Fine’s sequence A000957: 1, 0, 1, 2, 6, 18, 57, 186, …
  • A033322 (program): a(n) = floor(2/n).
  • A033324 (program): a(n) = floor(4/n).
  • A033325 (program): a(n) = floor(5/n).
  • A033326 (program): a(n) = floor(6/n).
  • A033327 (program): a(n) = floor(7/n).
  • A033328 (program): a(n) = floor(8/n).
  • A033329 (program): a(n) = floor(9/n).
  • A033330 (program): a(n) = floor(10/n).
  • A033331 (program): a(n) = floor(11/n).
  • A033332 (program): a(n) = floor(12/n).
  • A033333 (program): a(n) = floor(13/n).
  • A033334 (program): a(n) = floor(14/n).
  • A033335 (program): a(n) = floor(15/n).
  • A033336 (program): a(n) = floor(16/n).
  • A033337 (program): a(n) = floor(17/n).
  • A033338 (program): a(n) = floor(18/n).
  • A033339 (program): a(n) = floor(19/n).
  • A033340 (program): a(n) = floor(20/n).
  • A033341 (program): a(n) = floor(21/n).
  • A033342 (program): a(n) = floor(22/n).
  • A033343 (program): a(n) = floor(23/n).
  • A033344 (program): a(n) = floor(24/n).
  • A033345 (program): a(n) = floor(25/n).
  • A033346 (program): a(n) = floor(26/n).
  • A033347 (program): a(n) = floor(27/n).
  • A033348 (program): a(n) = floor(28/n).
  • A033349 (program): a(n) = floor(29/n).
  • A033350 (program): a(n) = floor(30/n).
  • A033351 (program): a(n) = floor(31/n).
  • A033352 (program): a(n) = floor(32/n).
  • A033353 (program): a(n) = floor(33/n).
  • A033354 (program): a(n) = floor(34/n).
  • A033355 (program): a(n) = floor(35/n).
  • A033356 (program): a(n) = floor(36/n).
  • A033357 (program): a(n) = floor(37/n).
  • A033358 (program): a(n) = floor(38/n).
  • A033359 (program): a(n) = floor(39/n).
  • A033360 (program): a(n) = floor(40/n).
  • A033361 (program): a(n) = floor(41/n).
  • A033362 (program): a(n) = floor(42/n).
  • A033363 (program): a(n) = floor(43/n).
  • A033364 (program): a(n) = floor(44/n).
  • A033365 (program): a(n) = floor(45/n).
  • A033366 (program): a(n) = floor(46/n).
  • A033367 (program): a(n) = floor(47/n).
  • A033368 (program): a(n) = floor(48/n).
  • A033369 (program): a(n) = floor(49/n).
  • A033370 (program): a(n) = floor(50/n).
  • A033371 (program): a(n) = floor(51/n).
  • A033372 (program): a(n) = floor(52/n).
  • A033373 (program): a(n) = floor(53/n).
  • A033374 (program): a(n) = floor(54/n).
  • A033375 (program): a(n) = floor(55/n).
  • A033376 (program): a(n) = floor(56/n).
  • A033377 (program): a(n) = floor(57/n).
  • A033378 (program): a(n) = floor(58/n).
  • A033379 (program): a(n) = floor(59/n).
  • A033380 (program): a(n) = floor(60/n).
  • A033381 (program): a(n) = floor(61/n).
  • A033382 (program): a(n) = floor(62/n).
  • A033383 (program): a(n) = floor(63/n).
  • A033384 (program): a(n) = floor(64/n).
  • A033385 (program): a(n) = floor(65/n).
  • A033386 (program): a(n) = floor(66/n).
  • A033387 (program): a(n) = floor(67/n).
  • A033388 (program): a(n) = floor(68/n).
  • A033389 (program): a(n) = floor(69/n).
  • A033390 (program): a(n) = floor(70/n).
  • A033391 (program): a(n) = floor(71/n).
  • A033392 (program): a(n) = floor(72/n).
  • A033393 (program): a(n) = floor(73/n).
  • A033394 (program): a(n) = floor(74/n).
  • A033395 (program): a(n) = floor(75/n).
  • A033396 (program): a(n) = floor(76/n).
  • A033397 (program): a(n) = floor(77/n).
  • A033398 (program): a(n) = floor(78/n).
  • A033399 (program): a(n) = floor(79/n).
  • A033400 (program): a(n) = floor(80/n).
  • A033401 (program): a(n) = floor(81/n).
  • A033402 (program): a(n) = floor(82/n).
  • A033403 (program): a(n) = floor(83/n).
  • A033404 (program): a(n) = floor(84/n).
  • A033405 (program): a(n) = floor(85/n).
  • A033406 (program): a(n) = floor(86/n).
  • A033407 (program): a(n) = floor(87/n).
  • A033408 (program): a(n) = floor(88/n).
  • A033409 (program): a(n) = floor(89/n).
  • A033410 (program): a(n) = floor(90/n).
  • A033411 (program): a(n) = floor(91/n).
  • A033412 (program): a(n) = floor(92/n).
  • A033413 (program): a(n) = floor(93/n).
  • A033414 (program): a(n) = floor(94/n).
  • A033415 (program): a(n) = floor(95/n).
  • A033416 (program): a(n) = floor(96/n).
  • A033417 (program): a(n) = floor(97/n).
  • A033418 (program): a(n) = floor(98/n).
  • A033419 (program): a(n) = floor(99/n).
  • A033420 (program): a(n) = floor(100/n).
  • A033421 (program): a(n) = floor(1000/n).
  • A033422 (program): a(n) = floor(10000/n).
  • A033423 (program): a(n) = floor(10^9/n).
  • A033424 (program): a(n) = floor(10^8/n).
  • A033425 (program): a(n) = floor(10^7/n).
  • A033426 (program): a(n) = floor(10^6/n).
  • A033427 (program): a(n) = floor(10^5/n).
  • A033428 (program): a(n) = 3*n^2.
  • A033429 (program): a(n) = 5*n^2.
  • A033430 (program): a(n) = 4*n^3.
  • A033431 (program): a(n) = 2*n^3.
  • A033432 (program): a(n) = floor(1000/sqrt(n)).
  • A033433 (program): a(n) = floor(10000/sqrt(n)).
  • A033434 (program): Third differences of Catalan numbers A000108.
  • A033436 (program): a(n) = ceiling( (3*n^2 - 4)/8 ).
  • A033437 (program): Number of edges in 5-partite Turán graph of order n.
  • A033438 (program): Number of edges in 6-partite Turán graph of order n.
  • A033439 (program): Number of edges in 7-partite Turán graph of order n.
  • A033440 (program): Number of edges in 8-partite Turán graph of order n.
  • A033441 (program): Number of edges in 9-partite Turán graph of order n.
  • A033442 (program): Number of edges in 10-partite Turán graph of order n.
  • A033443 (program): Number of edges in 11-partite Turán graph of order n.
  • A033444 (program): Number of edges in 12-partite Turán graph of order n.
  • A033445 (program): a(n) = (n - 1)*(n^2 + n - 1).
  • A033452 (program): “STIRLING” transform of squares A000290.
  • A033453 (program): “INVERT” transform of squares A000290.
  • A033455 (program): Convolution of nonzero squares A000290 with themselves.
  • A033456 (program): LCM-convolution of squares A000290 with themselves.
  • A033457 (program): GCD-convolution of squares A000290 with themselves.
  • A033461 (program): Number of partitions of n into distinct squares.
  • A033462 (program): Exponential (or “EXP”) transform of squares A000290.
  • A033463 (program): EXPCONV of squares A000290 with themselves.
  • A033465 (program): First differences of sequence {1/(n^2+1)} (numerators).
  • A033466 (program): First differences of sequence {1/(n^2+1)} (denominators).
  • A033467 (program): Partial sums of sequence {1/(i^2+1): i=0..n} (numerators).
  • A033468 (program): Partial sums of sequence {1/(i^2+1): i=0..n} (denominators).
  • A033469 (program): Denominator of Bernoulli(2n,1/2).
  • A033470 (program): Numerator of Bernoulli(2n,1/3).
  • A033471 (program): Denominator of Bernoulli(2n,1/3).
  • A033475 (program): Denominator of Bernoulli(2n,1/4).
  • A033476 (program): Squares of primes or products of pairs of consecutive primes.
  • A033477 (program): Products p^3 or p^2*q, where {p,q} are consecutive primes.
  • A033478 (program): 3x+1 sequence beginning at 3.
  • A033479 (program): 3x+1 sequence beginning at 9.
  • A033480 (program): 3x + 1 sequence beginning at 15.
  • A033481 (program): 3x+1 sequence beginning at 21.
  • A033484 (program): a(n) = 3*2^n - 2.
  • A033485 (program): a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.
  • A033486 (program): a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.
  • A033487 (program): a(n) = n*(n+1)*(n+2)*(n+3)/4.
  • A033488 (program): a(n) = n*(n+1)*(n+2)*(n+3)/6.
  • A033489 (program): a(1) = 1, a(n) = 2*a(n-1) + a([n/2]).
  • A033490 (program): a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2.
  • A033493 (program): Sum of the numbers in the trajectory of n for the 3x+1 problem.
  • A033496 (program): Numbers n such that initial number is largest number in trajectory of Collatz (3x+1) problem.
  • A033497 (program): a(n) = 2*a(n-1) + a(floor(n/2)), with a(1) = 1, a(2) = 2, a(3) = 4.
  • A033504 (program): a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.
  • A033505 (program): Expansion of 1/(1 - 3*x - x^2 + x^3).
  • A033515 (program): Number of matchings in graph C_{3} X P_{n}.
  • A033536 (program): Cubes of Catalan numbers (A000108).
  • A033537 (program): a(n) = n*(2*n+5).
  • A033538 (program): a(0)=1, a(1)=1, a(n) = 3*a(n-1) + a(n-2) + 1.
  • A033539 (program): a(0)=1, a(1)=1, a(2)=1, a(n) = 2*a(n-1) + a(n-2) + 1.
  • A033540 (program): a(n+1) = n*(a(n) + 1) for n >= 1, a(1) = 1.
  • A033543 (program): Expansion of (1 - sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)).
  • A033544 (program): Wiener number of n-hexagonal triangle.
  • A033547 (program): Otto Haxel’s guess for magic numbers of nuclear shells.
  • A033550 (program): a(n) = A005248(n) - n.
  • A033551 (program): Closest integer to (Pi/4)*n^2.
  • A033556 (program): a(n+1) = 2a(n) - {largest prime < a(n)}.
  • A033557 (program): 2n - {largest prime < n}.
  • A033558 (program): a(n) = 2n - {smallest prime > n}.
  • A033559 (program): a(n) = (q - p)/2, where p is the largest prime < n and q is the smallest prime > n.
  • A033560 (program): Primes p such that 4!+p is also prime.
  • A033561 (program): Primes p such that 6!+p is also prime.
  • A033562 (program): a(n) = 2*n^3 + 1.
  • A033566 (program): a(n) = (2*n+1) * (4*n-1).
  • A033567 (program): a(n) = (2*n-1)*(4*n-1).
  • A033568 (program): Second pentagonal numbers with odd index: a(n) = (2*n-1)*(3*n-1).
  • A033569 (program): a(n) = (2*n - 1)*(3*n + 1).
  • A033570 (program): Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1).
  • A033571 (program): a(n) = (2*n + 1)*(5*n + 1).
  • A033572 (program): a(n) = (2*n+1)*(7*n+1).
  • A033573 (program): a(n) = (2*n+1)*(9*n+1).
  • A033574 (program): a(n) = (2*n+1)*(10*n+1).
  • A033575 (program): a(n) = (2*n+1)*(11*n+1).
  • A033576 (program): a(n) = (2*n+1)*(12*n+1).
  • A033577 (program): a(n) = (3*n+1) * (4*n+1).
  • A033578 (program): a(n) = (3*n - 1)*(4*n - 1).
  • A033579 (program): Four times pentagonal numbers: a(n) = 2*n*(3*n-1).
  • A033580 (program): Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
  • A033581 (program): a(n) = 6*n^2.
  • A033582 (program): a(n) = 7*n^2.
  • A033583 (program): a(n) = 10*n^2.
  • A033584 (program): a(n) = 11*n^2.
  • A033585 (program): a(n) = 2*n*(4*n + 1).
  • A033586 (program): a(n) = 4*n*(2*n + 1).
  • A033587 (program): a(n) = 2*n*(4*n + 3).
  • A033589 (program): a(n) = (2*n-1)*(3*n-1)*(4*n-1).
  • A033590 (program): a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1).
  • A033591 (program): a(n) = (2*n+1)*(3*n+1)*(4*n+1).
  • A033592 (program): a(n) = (2*n+1)*(3*n+1)*(4*n+1)*(5*n+1).
  • A033593 (program): a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).
  • A033594 (program): a(n) = (n-1)*(2*n-1)*(3*n-1).
  • A033595 (program): a(n) = (n^2-1)*(2*n^2-1).
  • A033596 (program): a(n) = (n^2 - 1)*(n^2 - 3).
  • A033597 (program): (nextprime(n)+prevprime(n))/2.
  • A033619 (program): Undulating numbers (of form abababab… in base 10).
  • A033622 (program): Good sequence of increments for Shell sort (best on big values).
  • A033627 (program): 0-additive sequence: not the sum of any previous pair.
  • A033633 (program): Primes modulo 19.
  • A033634 (program): OddPowerSigma(n) = sum of odd power divisors of n.
  • A033638 (program): Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).
  • A033648 (program): Trajectory of 3 under map x->x + (x-with-digits-reversed).
  • A033649 (program): Trajectory of 5 under map x->x + (x-with-digits-reversed).
  • A033650 (program): Trajectory of 7 under map x –> x + (x-with-digits-reversed).
  • A033651 (program): Trajectory of 9 under map x->x + (x-with-digits-reversed).
  • A033652 (program): Trajectory of 13 under map x->x + (x-with-digits-reversed).
  • A033653 (program): Trajectory of 15 under map x->x + (x-with-digits-reversed).
  • A033654 (program): Trajectory of 17 under map x->x + (x-with-digits-reversed).
  • A033655 (program): Trajectory of 19 under map x->x + (x-with-digits-reversed).
  • A033656 (program): Trajectory of 21 under map x->x + (x-with-digits-reversed).
  • A033657 (program): Trajectory of 23 under map x->x + (x-with-digits-reversed).
  • A033658 (program): Trajectory of 25 under map x->x + (x-with-digits-reversed).
  • A033659 (program): Trajectory of 27 under map x->x + (x-with-digits-reversed).
  • A033660 (program): Trajectory of 29 under map x->x + (x-with-digits-reversed).
  • A033661 (program): Trajectory of 31 under map x->x + (x-with-digits-reversed).
  • A033662 (program): Possible digital sums of Smith numbers (conjectural).
  • A033668 (program): Theta series of 4-dimensional lattice A_2 tensor A2, with det 81, minimal norm 4.
  • A033669 (program): a(n) = n^6*(n^6 + 1)*(n^2 - 1).
  • A033670 (program): Trajectory of 89 under map x->x + (x-with-digits-reversed).
  • A033671 (program): Trajectory of 59 under map x->x + (x-with-digits-reversed).
  • A033672 (program): Trajectory of 69 under map x->x + (x-with-digits-reversed).
  • A033673 (program): Trajectory of 79 under map x->x + (x-with-digits-reversed).
  • A033674 (program): Trajectory of 99 under map x->x + (x-with-digits-reversed).
  • A033675 (program): Trajectory of 166 under map x->x + (x-with-digits-reversed).
  • A033676 (program): Largest divisor of n <= sqrt(n).
  • A033677 (program): Smallest divisor of n >= sqrt(n).
  • A033683 (program): a(n) = 1 if n is an odd square not divisible by 3, otherwise 0.
  • A033684 (program): 1 iff n is a square not divisible by 3.
  • A033685 (program): Theta series of hexagonal lattice A_2 with respect to deep hole.
  • A033686 (program): One-ninth of theta series of A2[hole]^2.
  • A033687 (program): Theta series of hexagonal lattice A_2 with respect to deep hole divided by 3.
  • A033691 (program): Minimal number of vertices in 1-1 deficient regular graph where minimal degree is 1 and maximal degree is n.
  • A033713 (program): Number of zeros in numbers 1 to 999..9 (n digits).
  • A033714 (program): Number of zeros in numbers 0 to 999..9 (n digits).
  • A033715 (program): Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.
  • A033716 (program): Number of integer solutions to the equation x^2 + 3y^2 = n.
  • A033719 (program): Coefficients in expansion of theta_3(q) * theta_3(q^7) in powers of q.
  • A033723 (program): Product theta3(q^d); d | 11.
  • A033725 (program): Product theta3(q^d); d | 13.
  • A033735 (program): Expansion of Product_{d | 23} theta_3(q^d).
  • A033743 (program): Expansion of Product_{d | 31} theta_3(q^d).
  • A033761 (program): Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)).
  • A033762 (program): Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).
  • A033763 (program): Product t2(q^d); d | 4, where t2 = theta2(q)/(2*q^(1/4)).
  • A033764 (program): Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).
  • A033765 (program): Product t2(q^d); d | 6, where t2 = theta2(q)/(2*q^(1/4)).
  • A033767 (program): Product t2(q^d); d | 8, where t2 = theta2(q)/(2*q^(1/4)).
  • A033768 (program): Product t2(q^d); d | 9, where t2 = theta2(q)/(2*q^(1/4)).
  • A033770 (program): Product t2(q^d); d | 11, where t2 = theta2(q)/(2*q^(1/4)).
  • A033772 (program): Product t2(q^d); d | 13, where t2 = theta2(q)/(2*q^(1/4)).
  • A033775 (program): Product t2(q^d); d | 16, where t2 = theta2(q)/(2*q^(1/4)).
  • A033776 (program): Product t2(q^d); d | 17, where t2 = theta2(q)/(2*q^(1/4)).
  • A033777 (program): Product t2(q^d); d | 18, where t2 = theta2(q)/(2*q^(1/4)).
  • A033778 (program): Product t2(q^d); d | 19, where t2 = theta2(q)/(2*q^(1/4)).
  • A033782 (program): Product t2(q^d); d | 23, where t2 = theta2(q)/(2*q^(1/4)).
  • A033788 (program): Product t2(q^d); d | 29, where t2 = theta2(q)/(2*q^(1/4)).
  • A033790 (program): Product t2(q^d); d | 31, where t2 = theta2(q)/(2*q^(1/4)).
  • A033796 (program): Product t2(q^d); d | 37, where t2 = theta2(q)/(2*q^(1/4)).
  • A033800 (program): Product t2(q^d); d | 41, where t2 = theta2(q)/(2*q^(1/4)).
  • A033802 (program): Product t2(q^d); d | 43, where t2 = theta2(q)/(2*q^(1/4)).
  • A033806 (program): Product t2(q^d); d | 47, where t2 = theta2(q)/(2*q^(1/4)).
  • A033811 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k)(A000032) for k >= 2.
  • A033813 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k)(A000032) for k >= 3.
  • A033814 (program): Convolution of positive integers n with Lucas numbers L(k)(A000032) for k >= 4.
  • A033815 (program): Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).
  • A033816 (program): a(n) = 2*n^2 + 3*n + 3.
  • A033817 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -4.
  • A033818 (program): Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -2.
  • A033820 (program): Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
  • A033822 (program): Numbers of fixed points of elements of group M24.
  • A033823 (program): Numbers of fixed points of elements of group M24.
  • A033824 (program): Finite sequence associated with M24.
  • A033825 (program): Finite sequence associated with M24.
  • A033826 (program): Critical dimensions for N-modular lattices.
  • A033827 (program): Critical dimensions for N-modular lattices.
  • A033831 (program): Number of numbers d dividing n such that d >= 3 and 1 <= n/d <= d-2.
  • A033842 (program): Triangle of coefficients of certain polynomials (exponents in decreasing order).
  • A033845 (program): Numbers n of the form 2^i*3^j, i and j >= 1.
  • A033846 (program): Numbers whose prime factors are 2 and 5.
  • A033860 (program): Sort-then-add sequence: a(n+1) = a(n) + sort(a(n)).
  • A033868 (program): Numbers n such that 7*n-11 is prime.
  • A033872 (program): Numbers k such that A033831(k) is prime.
  • A033876 (program): Expansion of 1/(2*x) * (1/(1-4*x)^(3/2)-1).
  • A033877 (program): Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).
  • A033878 (program): Triangular array associated with Schroeder numbers.
  • A033879 (program): Deficiency of n, or 2n - (sum of divisors of n).
  • A033880 (program): Abundance of n, or (sum of divisors of n) - 2n.
  • A033881 (program): Abundancy of n-th abundant number: sigma(k) - 2k for k such that this is > 0.
  • A033882 (program): Abundancy of the abundant or perfect numbers: m = sigma(n)-2n for n such that m >= 0.
  • A033883 (program): Deficiency of the deficient or perfect numbers: m = 2n - sigma(n) for n such that m >= 0.
  • A033884 (program): Deficiency of n-th deficient number: 2k - sigma(k) for k such that this is > 0.
  • A033885 (program): a(n) = 3*n - sum of divisors of n.
  • A033887 (program): a(n) = Fibonacci(3*n+1).
  • A033888 (program): a(n) = Fibonacci(4n).
  • A033889 (program): a(n) = Fibonacci(4*n + 1).
  • A033890 (program): a(n) = Fibonacci(4*n + 2).
  • A033891 (program): a(n) = Fibonacci(4*n+3).
  • A033893 (program): Sort then Add!.
  • A033894 (program): Sort then Add!.
  • A033895 (program): Sort then Add!.
  • A033896 (program): Sort then Add!.
  • A033897 (program): Sort then Add!.
  • A033898 (program): Sort then Add!.
  • A033899 (program): Sort then Add!.
  • A033900 (program): Sort then Add!.
  • A033901 (program): Sort then Add!.
  • A033902 (program): Sort then Add!.
  • A033903 (program): Sort then Add!.
  • A033904 (program): Sort then Add!.
  • A033905 (program): Sort then Add!.
  • A033906 (program): Sort then Add!.
  • A033907 (program): Sort then Add!.
  • A033918 (program): Triangular array in which n-th row consists of the numbers 1^1, 2^2, … n^n.
  • A033922 (program): Base-2 digital convolution sequence.
  • A033923 (program): Base 3 digital convolution sequence.
  • A033924 (program): Base 4 digital convolution sequence.
  • A033925 (program): Base 5 digital convolution sequence.
  • A033926 (program): Base 6 digital convolution sequence.
  • A033927 (program): Base 7 digital convolution sequence.
  • A033928 (program): Base 8 digital convolution sequence.
  • A033929 (program): Base 9 digital convolution sequence.
  • A033931 (program): a(n) = lcm(n,n+1,n+2).
  • A033934 (program): (10^n+1)^2.
  • A033936 (program): a(n+1) = a(n) + sum of squares of digits of a(n).
  • A033937 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 3.
  • A033940 (program): a(n) = 10^n mod 7.
  • A033941 (program): Number of ways A002808(n) can be properly factored into 2 integers.
  • A033942 (program): Positive integers with at least 3 prime factors (counted with multiplicity).
  • A033946 (program): Values of n corresponding to A033945.
  • A033948 (program): Numbers that have a primitive root (the multiplicative group modulo n is cyclic).
  • A033949 (program): Positive integers that do not have a primitive root.
  • A033950 (program): Refactorable numbers: number of divisors of k divides k. Also known as tau numbers.
  • A033951 (program): Write 1,2,… in clockwise spiral; sequence gives numbers on positive x axis.
  • A033954 (program): Second 10-gonal (or decagonal) numbers: n*(4*n+3).
  • A033955 (program): a(n) = sum of the remainders when the n-th prime is divided by primes up to the (n-1)-th prime.
  • A033956 (program): Add prime(n) to A033955.
  • A033960 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), k >= 4.
  • A033962 (program): Trajectory of 1 under map n->9n+1 if n odd, n->n/2 if n even
  • A033963 (program): Trajectory of 1 under map n->11n+1 if n odd, n->n/2 if n even
  • A033964 (program): Trajectory of 1 under map n->13n+1 if n odd, n->n/2 if n even
  • A033965 (program): Trajectory of 1 under map n->17n+1 if n odd, n->n/2 if n even
  • A033966 (program): Trajectory of 1 under map n->19n+1 if n odd, n->n/2 if n even
  • A033967 (program): Trajectory of 1 under map n->21n+1 if n odd, n->n/2 if n even
  • A033968 (program): Trajectory of 1 under map n->23n+1 if n odd, n->n/2 if n even
  • A033969 (program): Trajectory of 1 under map n->25n+1 if n odd, n->n/2 if n even
  • A033970 (program): Trajectory of 1 under map n->27n+1 if n odd, n->n/2 if n even
  • A033971 (program): Trajectory of 1 under map n->29n+1 if n odd, n->n/2 if n even
  • A033972 (program): Trajectory of 1 under map n->33n+1 if n odd, n->n/2 if n even
  • A033973 (program): Trajectory of 1 under map n->35n+1 if n odd, n->n/2 if n even
  • A033974 (program): Trajectory of 1 under map n->37n+1 if n odd, n->n/2 if n even
  • A033975 (program): Trajectory of 1 under map n->39n+1 if n odd, n->n/2 if n even
  • A033976 (program): Trajectory of 1 under map n->41n+1 if n odd, n->n/2 if n even
  • A033977 (program): Trajectory of 1 under map n->43n+1 if n odd, n->n/2 if n even
  • A033978 (program): Trajectory of 1 under map n->45n+1 if n odd, n->n/2 if n even
  • A033979 (program): Trajectory of 1 under map n->47n+1 if n odd, n->n/2 if n even
  • A033980 (program): Trajectory of 1 under map n->49n+1 if n odd, n->n/2 if n even
  • A033987 (program): Numbers that are divisible by at least 4 primes (counted with multiplicity).
  • A033991 (program): a(n) = n*(4*n-1).
  • A033992 (program): Numbers that are divisible by exactly three different primes.
  • A033993 (program): Numbers that are divisible by exactly four different primes.
  • A033994 (program): a(n) = n*(n+1)*(5*n+1)/6.
  • A033996 (program): 8 times triangular numbers: a(n) = 4*n*(n+1).
  • A033999 (program): a(n) = (-1)^n.
  • A034000 (program): One half of triple factorial numbers.
  • A034001 (program): One third of triple factorial numbers.
  • A034007 (program): First differences of A045891.
  • A034008 (program): a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.
  • A034009 (program): Convolution of A000295(n+2) (n>=0) with itself.
  • A034015 (program): Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.
  • A034017 (program): Numbers that are primitively represented by x^2 + xy + y^2.
  • A034020 (program): Not of the form x^2 + x*y + y^2.
  • A034021 (program): Numbers that are primitively but not imprimitively represented by x^2+xy+y^2.
  • A034044 (program): Numbers that are primitively but not imprimitively represented by x^2+y^2+z^2.
  • A034045 (program): Numbers that are imprimitively but not primitively represented by x^2+y^2+z^2.
  • A034048 (program): Numbers with multiplicative digital root value 0.
  • A034049 (program): Numbers with multiplicative digital root value 2.
  • A034050 (program): Numbers with multiplicative digital root value 3.
  • A034051 (program): Numbers with multiplicative digital root value 4.
  • A034052 (program): Numbers with multiplicative digital root value 5.
  • A034053 (program): Numbers with multiplicative digital root value 6.
  • A034054 (program): Numbers with multiplicative digital root value 7.
  • A034055 (program): Numbers with multiplicative digital root value 8.
  • A034056 (program): Numbers with multiplicative digital root value 9.
  • A034077 (program): Decimal part of n-th root of a(n) starts with digit 0.
  • A034081 (program): Decimal part of n-th root of a(n) starts with digit 4.
  • A034082 (program): a(n) = least integer m such that the part after the decimal point of the n-th root of m starts with the digit 5.
  • A034084 (program): Decimal part of n-th root of a(n) starts with digit 7.
  • A034085 (program): Decimal part of n-th root of a(n) starts with digit 8.
  • A034095 (program): Indices of (-1)sigma perfect numbers.
  • A034096 (program): Fractional part of square root of n starts with digit 0 (squares excluded).
  • A034097 (program): Fractional part of square root of a(n) starts with digit 1.
  • A034098 (program): Fractional part of square root of a(n) starts with digit 2.
  • A034099 (program): Fractional part of square root of a(n) starts with digit 3.
  • A034100 (program): Fractional part of square root of a(n) starts with digit 4.
  • A034101 (program): Numbers whose fractional part of square root starts with digit 5.
  • A034102 (program): Fractional part of square root of a(n) starts with digit 6.
  • A034103 (program): Fractional part of square root of a(n) starts with digit 7.
  • A034104 (program): Fractional part of square root of a(n) starts with digit 8.
  • A034105 (program): Numbers n such that fractional part of square root of n starts with digit 9.
  • A034106 (program): Fractional part of square root of n starts with 0: first term of runs (squares excluded).
  • A034107 (program): Fractional part of square root of a(n) starts with 1: first term of runs.
  • A034108 (program): Fractional part of square root of a(n) starts with 2: first term of runs.
  • A034109 (program): Fractional part of square root of a(n) starts with 3: first term of runs.
  • A034110 (program): Fractional part of square root of a(n) starts with 4: first term of runs.
  • A034111 (program): Fractional part of square root of a(n) starts with 5: first term of runs.
  • A034112 (program): Fractional part of square root of a(n) starts with 6: first term of runs.
  • A034113 (program): Fractional part of square root of a(n) starts with 7: first term of runs.
  • A034114 (program): Fractional part of square root of a(n) starts with 8: first term of runs.
  • A034115 (program): Fractional part of square root of a(n) starts with 9: first term of runs.
  • A034116 (program): Fractional part of cube root of a(n) starts with digit 0 (cubes excluded).
  • A034117 (program): Fractional part of cube root of a(n) starts with digit 1.
  • A034118 (program): Fractional part of cube root of a(n) starts with digit 2.
  • A034119 (program): Fractional part of cube root of a(n) starts with digit 3.
  • A034120 (program): Fractional part of cube root of a(n) starts with digit 4.
  • A034121 (program): Fractional part of cube root of a(n) starts with digit 5.
  • A034122 (program): Fractional part of cube root of a(n) starts with digit 6.
  • A034123 (program): Fractional part of cube root of a(n) starts with digit 7.
  • A034124 (program): Numbers whose fractional part of the cube root starts with digit 8.
  • A034125 (program): Decimal part of cube root of n starts with digit 9.
  • A034126 (program): Decimal part of cube root of a(n) starts with 0: first term of runs (cubes excluded).
  • A034127 (program): Decimal part of cube root of a(n) starts with 1: first term of runs.
  • A034128 (program): Decimal part of cube root of a(n) starts with 2: first term of runs.
  • A034129 (program): Decimal part of cube root of a(n) starts with 3: first term of runs.
  • A034130 (program): Decimal part of cube root of a(n) starts with 4: first term of runs.
  • A034131 (program): Decimal part of cube root of a(n) starts with 5: first term of runs.
  • A034132 (program): Decimal part of cube root of a(n) starts with 6: first term of runs.
  • A034133 (program): Decimal part of cube root of a(n) starts with 7: first term of runs.
  • A034134 (program): Decimal part of cube root of a(n) starts with 8: first term of runs.
  • A034135 (program): Decimal part of cube root of n starts with 9: first term of runs.
  • A034164 (program): Related to triple factorial numbers 2*A034000(n+1).
  • A034166 (program): Maximum length of ‘zig-zag’ self avoiding walk on an n X n lattice from a corner to opposite one.
  • A034171 (program): Related to triple factorial numbers A007559(n+1).
  • A034176 (program): One third of quartic factorial numbers.
  • A034177 (program): a(n) is the n-th quartic factorial number divided by 4.
  • A034178 (program): Number of solutions to n = a^2 - b^2, a > b >= 0.
  • A034182 (program): Number of not-necessarily-symmetric n X 2 crossword puzzle grids.
  • A034188 (program): Number of binary codes of length 3 with n words.
  • A034198 (program): Number of binary codes (not necessarily linear) of length n with 3 words.
  • A034214 (program): Number of ternary codes of length 2 with n words.
  • A034223 (program): Number of ternary codes (not necessarily linear) of length n with 3 words.
  • A034255 (program): Related to quartic factorial numbers A007696.
  • A034256 (program): Expansion of 2 - (1 - 16*x)^(1/4), related to quartic factorial numbers A034176.
  • A034257 (program): Maximal discrete supergroups of Gamma_0(n).
  • A034261 (program): Infinite square array f(a,b) = C(a+b,b+1)*(a*b+a+1)/(b+2), a, b >= 0, read by antidiagonals. Equivalently, triangular array T(n,k) = f(k,n-k), 0 <= k <= n, read by rows.
  • A034262 (program): a(n) = n^3 + n.
  • A034263 (program): a(n) = binomial(n+4,4)*(4*n+5)/5.
  • A034264 (program): a(n)=f(n,4) where f is given in A034261.
  • A034265 (program): a(n) = binomial(n+6,6)*(6*n+7)/7.
  • A034266 (program): Partial sums of A027818.
  • A034267 (program): a(n)=f(n,n) where f is given in A034261.
  • A034268 (program): a(n) = LCM_{k=1..n} (2^k - 1).
  • A034269 (program): a(n) = f(n,n+2) where f is given in A034261.
  • A034270 (program): f(n,n+3) where f is given in A034261.
  • A034271 (program): a(n)=f(n,n+4) where f is given in A034261.
  • A034272 (program): a(n)=f(n,n+5) where f is given in A034261.
  • A034273 (program): a(n) = binomial(2*n+6,n+7)*(n^2+7*n+1)/(n+8) = f(n,n+6) where f is given in A034261.
  • A034274 (program): a(n)=f(n,n-1) where f is given in A034261.
  • A034275 (program): a(n)=f(n,n-2) where f is given in A034261.
  • A034293 (program): Numbers n such that 2^n does not contain the digit 2 (probably finite).
  • A034299 (program): Alternating sum transform (PSumSIGN) of A000975.
  • A034300 (program): a(n) = n-th quintic factorial number divided by 3.
  • A034301 (program): a(n) = n-th quintic factorial number divided by 4.
  • A034323 (program): a(n) = n-th quintic factorial number divided by 2.
  • A034324 (program): a(n) = (n-1)*(n-2)*(n-3) + n.
  • A034325 (program): a(n) is the n-th quintic factorial number divided by 5.
  • A034326 (program): Hours struck by a clock.
  • A034329 (program): Number of matroids: column 3 of A034327.
  • A034333 (program): Number of matroids: column 3 of A034328.
  • A034379 (program): Expansion of 1/(1-x)^2/(1-x^2)/(1-x^3)/(1-x^5)/(1-x^8).
  • A034381 (program): Number of labeled cyclic groups.
  • A034385 (program): Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.
  • A034386 (program): Primorial numbers (second definition): n# = product of primes <= n.
  • A034387 (program): Sum of primes <= n.
  • A034405 (program): Let f(x) = (Pi - 2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1).
  • A034428 (program): E.g.f.: 1 - (1-x)*(tan(x) + sec(x)).
  • A034430 (program): Convolution of A001147 (double factorial numbers) with itself.
  • A034444 (program): a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).
  • A034448 (program): usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).
  • A034460 (program): a(n) = usigma(n) - n, where usigma(n) = sum of unitary divisors of n (A034448).
  • A034470 (program): Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
  • A034472 (program): a(n) = 3^n + 1.
  • A034474 (program): a(n) = 5^n + 1.
  • A034478 (program): a(n) = (5^n + 1)/2.
  • A034488 (program): Sum of n-th powers of divisors of 6.
  • A034491 (program): 7^n + 1.
  • A034494 (program): a(n) = (7^n+1)/2.
  • A034496 (program): Sum of n-th powers of divisors of 8.
  • A034513 (program): a(n) = 1^n + 3^n + 9^n.
  • A034517 (program): Sum of n-th powers of divisors of 10.
  • A034524 (program): 11^n + 1.
  • A034583 (program): Dimension of an irreducible R-module for Clifford algebra Cl_n.
  • A034584 (program): Radon-Hurwitz numbers: log_2 of dimension of an irreducible R-module for Clifford algebra Cl_n.
  • A034585 (program): Dimension of an irreducible Z_2 graded H-module for Clifford algebra Cl_n.
  • A034586 (program): Log_2 of dimension of an irreducible Z_2 graded H-module for Clifford algebra Cl_n.
  • A034602 (program): Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).
  • A034659 (program): a(n) = (11^n + 1)/2.
  • A034660 (program): Sum of n-th powers of divisors of 12.
  • A034661 (program): Sum of n-th powers of divisors of 18.
  • A034662 (program): Sum of n-th powers of divisors of 20.
  • A034663 (program): Sum of n-th powers of divisors of 21.
  • A034664 (program): Sum of n-th powers of divisors of 24.
  • A034665 (program): Sum of n-th powers of divisors of 32.
  • A034666 (program): Sum of n-th powers of divisors of 36.
  • A034667 (program): Sum of n-th powers of divisors of 40.
  • A034668 (program): Sum of n-th powers of divisors of 48.
  • A034669 (program): Sum of n-th powers of divisors of 56.
  • A034671 (program): Sum of n-th powers of divisors of 72.
  • A034672 (program): Sum of n-th powers of divisors of 96.
  • A034673 (program): Sum of n-th powers of divisors of 120.
  • A034674 (program): Sum of n-th powers of divisors of 128.
  • A034675 (program): Sum of n-th powers of divisors of 144.
  • A034676 (program): Sum of squares of unitary divisors of n.
  • A034677 (program): Sum of cubes of unitary divisors of n.
  • A034678 (program): Sum of fourth powers of unitary divisors.
  • A034679 (program): Sum of fifth powers of unitary divisors.
  • A034680 (program): Sum of sixth powers of unitary divisors.
  • A034681 (program): Sum of seventh powers of unitary divisors.
  • A034682 (program): Sum of eighth powers of unitary divisors.
  • A034683 (program): Unitary abundant numbers: numbers k such that usigma(k) > 2*k.
  • A034684 (program): If n = p_1^e_1 * … * p_k^e_k, p_1 < … < p_k primes, then a(n) = min { p_i^e_i }.
  • A034687 (program): Related to quintic factorial numbers A008548.
  • A034688 (program): Expansion of (1-25*x)^(-1/5), related to quintic factorial numbers A008548.
  • A034689 (program): a(n) = n-th sextic factorial number divided by 2.
  • A034690 (program): Sum of digits of all the divisors of n.
  • A034691 (program): Euler transform of powers of 2 [1,2,4,8,16,…].
  • A034692 (program): a(n+1) = smallest number that is not the sum of a(n) or fewer terms of a(1),…,a(n).
  • A034693 (program): Smallest k such that k*n+1 is prime.
  • A034694 (program): Smallest prime == 1 (mod n).
  • A034695 (program): Tau_6 (the 6th Piltz divisor function), the number of ordered 6-factorizations of n; Dirichlet convolution of number-of-divisors function (A000005) with A007426.
  • A034697 (program): a(1)=1, a(n)= 1 + Sum a(p), p prime, p | n-1.
  • A034699 (program): Largest prime power factor of n.
  • A034701 (program): a(n) is the smallest number not of the form a(i) (1<=i<=n-1) or a(i)+a(n-1) (1<=i<=n-2).
  • A034702 (program): a(n+1) is the smallest number not of the form a(i), a(i) + a(n-1), or |a(i) - a(n-1)|.
  • A034706 (program): Numbers which are sums of consecutive triangular numbers.
  • A034709 (program): Numbers divisible by their last digit.
  • A034713 (program): Dirichlet convolution of powers of 2 (2,4,8,…) with themselves.
  • A034714 (program): Dirichlet convolution of squares with themselves.
  • A034715 (program): Dirichlet convolution of triangular numbers with themselves.
  • A034718 (program): Dirichlet convolution of b_n=n with b_n with b_n.
  • A034719 (program): Dirichlet convolution of powers of 3 (3,9,27,…) with themselves.
  • A034720 (program): Number of different words that can be formed from an n X n grid of letters, reading horizontally, vertically or diagonally.
  • A034721 (program): a(n) = (10*n^3 - 9*n^2 + 2*n)/3 + 1.
  • A034723 (program): a(n) is the n-th sextic factorial number divided by 3.
  • A034724 (program): a(n) = n-th sextic factorial number divided by 4.
  • A034729 (program): a(n) = Sum_{ k, k|n } 2^(k-1).
  • A034730 (program): Dirichlet convolution of b_n=1 with c_n=3^(n-1).
  • A034731 (program): Dirichlet convolution of b_n=1 with Catalan numbers.
  • A034732 (program): Dirichlet convolution of b_n=1 with Bell numbers.
  • A034733 (program): Dirichlet convolution of b_n=2^(n-1) with itself.
  • A034734 (program): Dirichlet convolution of b_n=2^(n-1) with Fibonacci numbers.
  • A034735 (program): Dirichlet convolution of b_n=2^(n-1) with c_n=3^(n-1).
  • A034737 (program): Dirichlet convolution of b_n=2^(n-1) with sigma(n).
  • A034738 (program): Dirichlet convolution of b_n = 2^(n-1) with phi(n).
  • A034741 (program): Dirichlet convolution of mu(n) with 3^(n-1).
  • A034745 (program): Dirichlet convolution of Fibonacci numbers with 3^(n-1).
  • A034747 (program): Dirichlet convolution of Fibonacci numbers with sigma(n).
  • A034748 (program): Dirichlet convolution of Fibonacci numbers with phi(n).
  • A034751 (program): Dirichlet convolution of 3^(n-1) with itself.
  • A034753 (program): Dirichlet convolution of 3^(n-1) with sigma(n).
  • A034754 (program): Dirichlet convolution of 3^(n-1) with phi(n).
  • A034760 (program): Dirichlet convolution of primes (with 1) with phi(n).
  • A034761 (program): Dirichlet convolution of sigma(n) with itself.
  • A034762 (program): Dirichlet convolution of primes (with 1) with sigma(n).
  • A034764 (program): Dirichlet convolution of sigma(n) with Catalan numbers.
  • A034765 (program): Dirichlet convolution of sigma(n) with Bell numbers.
  • A034766 (program): Dirichlet convolution of phi(n) with Catalan numbers.
  • A034767 (program): Dirichlet convolution of phi(n) with Bell numbers.
  • A034771 (program): Dirichlet convolution of d(n) (# of divisors) with b_n=2^(n-1).
  • A034772 (program): Dirichlet convolution of d(n) (number of divisors) with Fibonacci numbers.
  • A034773 (program): Dirichlet convolution of d(n) (number of divisors of n) with primes (with 1).
  • A034774 (program): Dirichlet convolution of d(n) (# of divisors) with Catalan numbers.
  • A034775 (program): Dirichlet convolution of d(n) (# of divisors) with Bell numbers.
  • A034777 (program): Dirichlet convolution of [ 1,1,1,… ] with Ramanujan numbers (A000594).
  • A034780 (program): Numbers k such that A034693(k) = 4.
  • A034782 (program): Numbers n such that A034693(n) = 3: 3n + 1 is prime, but neither n + 1 nor 2n + 1.
  • A034783 (program): Numbers k such that A034693(k) = 6.
  • A034784 (program): Numbers n such that A034693(n) = 2.
  • A034785 (program): a(n) = 2^(n-th prime).
  • A034787 (program): a(n) = n-th sextic factorial number divided by 5.
  • A034788 (program): a(n) is the n-th sextic factorial number divided by 6.
  • A034789 (program): Related to sextic factorial numbers A008542.
  • A034793 (program): a(1)=1; thereafter a(n+1) is the least k > a(n) such that k is a square mod a(i) for all i<= n.
  • A034803 (program): Consider the sequence of 4-tuples {0,a,b,c} (c>=a+b; a,b,c>0)) which have the smallest integer ‘c’ required to reach {k,k,k,k} in n steps under map {r,s,t,u}->{|r-s|,|s-t|,|t-u|,|u-r|}. This sequence gives the second term ‘a’ of these quadruples.
  • A034804 (program): Consider the sequence of 4-tuples {0,a,b,c} (c>=a+b; a,b,c>0)) which have the smallest integer ‘c’ required to reach {k,k,k,k} in n steps under map {r,s,t,u}->{|r-s|,|s-t|,|t-u|,|u-r|}. This sequence gives the third term ‘b’ of these quadruples.
  • A034806 (program): Number of distinct sets of 2 numbers > 1 such that their product is between n^2 and (n+1)^2.
  • A034807 (program): Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.
  • A034822 (program): Numbers n such that there are no palindromic squares of length n.
  • A034827 (program): a(n) = 2*binomial(n,4).
  • A034828 (program): a(n) = floor(n^2/4)*(n/2).
  • A034829 (program): a(n) = n-th sept-factorial number divided by 2.
  • A034830 (program): a(n) = n-th sept-factorial number divided by 3.
  • A034831 (program): a(n) = n-th sept-factorial number divided by 4.
  • A034832 (program): a(n) = n-th sept-factorial number divided by 5.
  • A034833 (program): a(n) = n-th sept-factorial number divided by 6.
  • A034834 (program): One seventh of sept-factorial numbers.
  • A034835 (program): Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.
  • A034836 (program): Number of ways to write n as n = x*y*z with 1 <= x <= y <= z.
  • A034839 (program): Triangular array formed by taking every other term of each row of Pascal’s triangle.
  • A034840 (program): Concatenation of 3 or more numbers in arithmetic progression.
  • A034841 (program): a(n) = (n^2)! / (n!)^n.
  • A034846 (program): a(n) = P(n,6) = 1+6*K(n,6)=1+6*A034783(n). P(n,6) are special primes of 6k+1. The relevant values of k are given by A034783.
  • A034847 (program): a(n) = 1 + 4*A034780(n).
  • A034848 (program): a(n) = 1 + 3*A034782(n).
  • A034849 (program): a(n) = 1 + 2*A034784(n).
  • A034850 (program): Triangular array formed by taking every other term of Pascal’s triangle.
  • A034851 (program): Rows of Losanitsch’s triangle T(n, k), n >= 0, 0 <= k <= n.
  • A034852 (program): Rows of (Pascal’s triangle - Losanitsch’s triangle) (n >= 0, k >= 0).
  • A034856 (program): a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.
  • A034857 (program): a(n) = C(n+2,3) + 2*C(n,2) + 2*(n-2).
  • A034858 (program): a(n) = C(n+3,4) + 3*C(n+1,3) + 5*C(n-1,2) + 7*n - 15.
  • A034860 (program): a(n) = n!*(2*n-5)/2.
  • A034865 (program): a(n) = n!*(n-4)/2.
  • A034866 (program): a(n) = n!*(n-4)/2, n > 4, and a(4) = 4.
  • A034867 (program): Triangle of odd-numbered terms in rows of Pascal’s triangle.
  • A034868 (program): Left half of Pascal’s triangle.
  • A034869 (program): Right half of Pascal’s triangle.
  • A034870 (program): Even-numbered rows of Pascal’s triangle.
  • A034871 (program): Odd-numbered rows of Pascal’s triangle.
  • A034872 (program): Central column of Losanitsch’s triangle A034851.
  • A034874 (program): a(1) = 1; for n >= 2, a(n) = n times the reverse of a(n-1).
  • A034877 (program): Rows of (Pascal’s triangle - Losanitsch’s triangle) (n >= 0, k >= 0).
  • A034879 (program): a(n) = product of factorials of digits of a(n-1).
  • A034886 (program): Number of digits in n!.
  • A034887 (program): Number of digits in 2^n.
  • A034888 (program): Number of digits in 3^n.
  • A034891 (program): Number of different products of partitions of n; number of partitions of n into prime parts (1 included); number of distinct orders of Abelian subgroups of symmetric group S_n.
  • A034896 (program): Number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
  • A034899 (program): Euler transform of powers of 2 [ 2,4,8,16,… ].
  • A034904 (program): Related to sept-factorial numbers A045754.
  • A034908 (program): One half of octo-factorial numbers.
  • A034909 (program): One third of octo-factorial numbers.
  • A034910 (program): One quarter of octo-factorial numbers.
  • A034911 (program): One fifth of octo-factorial numbers.
  • A034912 (program): One sixth of octo-factorial numbers.
  • A034928 (program): Triangle of ballot numbers.
  • A034930 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 8.
  • A034931 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 4.
  • A034932 (program): Triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 16.
  • A034934 (program): Numbers k such that (3*k + 1)/2 is prime.
  • A034936 (program): Numbers k such that 3*k + 4 is prime.
  • A034937 (program): Primes p of the form 6k-1 such that 2*p + 3 is prime.
  • A034938 (program): Primes p such that (p-3)/2 is a prime of the form 6k-1.
  • A034939 (program): a(n) is smallest number such that a(n)^2 + 1 is divisible by 5^n.
  • A034940 (program): Number of rooted labeled triangular cacti with 2n+1 nodes (n triangles).
  • A034941 (program): Number of labeled triangular cacti with 2n+1 nodes (n triangles).
  • A034942 (program): Binomial transform of A002054.
  • A034943 (program): Binomial transform of Padovan sequence A000931.
  • A034947 (program): Jacobi (or Kronecker) symbol (-1/n).
  • A034948 (program): Decimal expansion of 1/9801.
  • A034952 (program): Expansion of eta(16z)^4*eta(4z)^2.
  • A034953 (program): Triangular numbers (A000217) with prime indices.
  • A034954 (program): Odd triangular numbers with prime indices.
  • A034955 (program): Even triangular numbers with prime indices.
  • A034956 (program): Divide natural numbers in groups with prime(n) elements and add together.
  • A034957 (program): Divide natural numbers in groups with prime(n) elements and add together.
  • A034959 (program): Divide even numbers into groups with prime(n) elements and add together.
  • A034960 (program): Divide odd numbers into groups with prime(n) elements and add together.
  • A034961 (program): Sums of three consecutive primes.
  • A034962 (program): Primes that are the sum of three consecutive primes.
  • A034963 (program): Sums of four consecutive primes.
  • A034964 (program): Sums of five consecutive primes.
  • A034967 (program): Sum of digits of numbers between 0 and (10^n)-1.
  • A034968 (program): Minimal number of factorials that add to n.
  • A034971 (program): a(n) = floor(E_(n+1)/E_(n)) where E_n is n-th Euler number (see A028296 and A000364).
  • A034972 (program): a(n) = floor(T_(n+1)/T_(n)) where T_n is n-th tangential or “Zag” number (see A000182).
  • A034973 (program): Number of distinct prime factors in central binomial coefficients C(n, floor(n/2)), the terms of A001405.
  • A034974 (program): Number of divisors of binomial(n, floor(n/2)), the terms of A001405.
  • A034975 (program): One seventh of octo-factorial numbers.
  • A034976 (program): One eighth of octo-factorial numbers.
  • A034977 (program): Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.
  • A034996 (program): Related to octo-factorial numbers A045755.
  • A034998 (program): Expansion of Product (1+q^(2k-1))^(-8)*(1+q^(4k))^(-8), k=1..inf.
  • A034999 (program): Number of ways to cut a 2 X n rectangle into rectangles with integer sides.
  • A035004 (program): Number of divisors of the n-th nonprime.
  • A035005 (program): Number of possible queen moves on an n X n chessboard.
  • A035006 (program): Number of possible rook moves on an n X n chessboard.
  • A035008 (program): Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.
  • A035009 (program): STIRLING transform of [1,1,2,4,8,16,32,…].
  • A035011 (program): A006318(n) - 1.
  • A035012 (program): One half of 9-factorial numbers.
  • A035013 (program): One third of 9-factorial numbers.
  • A035014 (program): a(n) contains n digits (either ‘3’ or ‘4’) and is divisible by 2^n.
  • A035016 (program): Fourier coefficients of E_{0,4}.
  • A035017 (program): One quarter of 9-factorial numbers.
  • A035018 (program): One fifth of 9-factorial numbers.
  • A035019 (program): Sizes of successive shells in hexagonal (or A_2) lattice.
  • A035020 (program): One sixth of 9-factorial numbers.
  • A035021 (program): One seventh of 9-factorial numbers.
  • A035022 (program): One eighth of 9-factorial numbers.
  • A035023 (program): One ninth of 9-factorial numbers.
  • A035024 (program): Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.
  • A035026 (program): Number of times that i and 2n-i are both prime, for i = 1, …, 2n-1.
  • A035028 (program): First differences of A002002.
  • A035029 (program): a(n) = Sum_{k=0..n} (k+1) * Sum_{j=0..n} 2^j*binomial(n,j)*binomial(n-k,j).
  • A035032 (program): For n >= 6, max( prevprime(n), 2*prevprime(floor(n/2))).
  • A035033 (program): Numbers n such that n <= d(n)^2, where d() = number of divisors (A000005).
  • A035035 (program): Numbers k such that k > d(k)^2, where d(k) is the number of divisors of k.
  • A035038 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,5).
  • A035039 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,6).
  • A035040 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,7).
  • A035041 (program): a(n) = 2^n - C(n,0) - C(n,1) - … - C(n,8).
  • A035043 (program): Replace any decimal digit ‘1’ with ‘2’ and vice versa.
  • A035044 (program): Exchange 2 and 3.
  • A035045 (program): Inverse binomial transform of A002054.
  • A035047 (program): Denominators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
  • A035048 (program): Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
  • A035051 (program): Number of labeled rooted connected graphs where every block is a complete graph.
  • A035057 (program): Numbers n such that 2^n does not contain the digit 1 (probably finite).
  • A035058 (program): Numbers k such that 2^k does not contain the digit 3 (probably finite).
  • A035059 (program): Numbers k such that 2^k does not contain the digit 4 (probably finite).
  • A035060 (program): Numbers k such that 2^k does not contain the digit 5 (probably finite).
  • A035061 (program): Numbers n such that 2^n does not contain the digit 6 (probably finite).
  • A035063 (program): Numbers n such that 2^n does not contain the digit 8 (probably finite).
  • A035069 (program): a(n) is root of square starting with digit 2: first term of runs.
  • A035070 (program): a(n) is root of square starting with digit 3: first term of runs.
  • A035071 (program): a(n) = ceiling(sqrt(4*10^n)).
  • A035072 (program): a(n) is root of square starting with digit 5: first term of runs.
  • A035073 (program): a(n) is root of square starting with digit 6: first term of runs.
  • A035074 (program): a(n) is root of square starting with digit 7: first term of runs.
  • A035075 (program): a(n) = ceiling(sqrt(8*10^n)).
  • A035076 (program): a(n) is root of square starting with digit 9: first term of runs.
  • A035089 (program): Smallest prime of form 2^n*k + 1.
  • A035091 (program): Smallest prime == 1 mod (n^2).
  • A035092 (program): Smallest k such that (n^2)*k + 1 is prime.
  • A035095 (program): Smallest prime congruent to 1 (mod prime(n)).
  • A035096 (program): a(n) is the smallest k such that prime(n)*k+1 is prime.
  • A035097 (program): Related to 9-factorial numbers A045756.
  • A035098 (program): Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, …, 1, 2.
  • A035099 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = 40.
  • A035100 (program): Number of bits in binary expansion of n-th prime.
  • A035101 (program): E.g.f. x*(c(x/2)-1)/(1-2*x), where c(x) = g.f. for Catalan numbers A000108.
  • A035103 (program): Number of 0’s in binary representation of n-th prime.
  • A035104 (program): First differences give (essentially) A028242.
  • A035105 (program): a(n) = LCM of Fibonacci sequence {F_1,…,F_n}.
  • A035106 (program): 1, together with numbers of the form k*(k+1) or k*(k+2), k > 0.
  • A035107 (program): First differences give (essentially) A028242.
  • A035109 (program): Numerators in expansion of a certain Dirichlet series.
  • A035116 (program): a(n) = tau(n)^2, where tau(n) = A000005(n).
  • A035118 (program): Fourier coefficients of (normalized Delta)^3.
  • A035119 (program): Related to A045720 and A035101.
  • A035143 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -47.
  • A035145 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -45.
  • A035146 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -44.
  • A035147 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -43.
  • A035150 (program): Fourier coefficients of (normalized Delta)^4.
  • A035154 (program): a(n) = Sum_{d|n} Kronecker(-36, d).
  • A035156 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -34.
  • A035159 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -31.
  • A035160 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -30.
  • A035162 (program): Number of positive odd solutions to equation x^2 + 7y^2 = 8n.
  • A035164 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -26.
  • A035165 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -25.
  • A035167 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -23.
  • A035168 (program): a(n) = Sum_{d|n} Kronecker(-22, d).
  • A035170 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -20.
  • A035171 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -19.
  • A035172 (program): a(n) = Sum_{d|n} Kronecker(-18, d).
  • A035174 (program): Ramanujan’s tau function (or tau numbers (A000594)) for 2^n.
  • A035175 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -15.
  • A035178 (program): a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).
  • A035179 (program): a(n) = Sum_{d|n} Kronecker(-11, d).
  • A035180 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -10.
  • A035181 (program): a(n) = Sum_{d|n} Kronecker(-9, d).
  • A035182 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -7.
  • A035183 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -5.
  • A035184 (program): a(n) = Sum_{d|n} Kronecker(-1, d).
  • A035185 (program): Number of divisors of n == 1 or 7 (mod 8) minus number of divisors of n == 3 or 5 (mod 8).
  • A035186 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 3.
  • A035187 (program): Sum over divisors d of n of Kronecker symbol (5|d).
  • A035188 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 6.
  • A035190 (program): Fourier coefficients of (normalized Delta)^5.
  • A035191 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.
  • A035192 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 10.
  • A035194 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 12.
  • A035195 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 13.
  • A035199 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 17.
  • A035200 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 18.
  • A035202 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 20.
  • A035203 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 21.
  • A035204 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 22.
  • A035207 (program): Coefficients in expansion of Dirichlet series Product_p (1 - (Kronecker(m,p) + 1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 25.
  • A035208 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 26.
  • A035211 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.
  • A035214 (program): 2 followed by a run of n 1’s.
  • A035216 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 34.
  • A035218 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 36.
  • A035219 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.
  • A035223 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 41.
  • A035227 (program): Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 45.
  • A035233 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.
  • A035235 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -31.
  • A035240 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -23 (A035167).
  • A035243 (program): Positive numbers of the form x^2+xy+5y^2 (discriminant -19).
  • A035246 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -12.
  • A035247 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -11.
  • A035248 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -7 (A035182).
  • A035249 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -5.
  • A035250 (program): Number of primes between n and 2n (inclusive).
  • A035251 (program): Positive numbers of the form x^2 - 2y^2 with integers x, y.
  • A035252 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 3.
  • A035253 (program): Second differences are 2,2,1,2,1,1,2,1,1,1,2,1,1,1,1,2,1,1,1,1,1,2,.. (A035214).
  • A035254 (program): First differences of A035253.
  • A035256 (program): Positive integers of the form x^2+3xy-y^2.
  • A035258 (program): Positive integers of the form 2x^2+xy-2y^2 (discriminant 17).
  • A035259 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 20.
  • A035260 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 21.
  • A035262 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 26.
  • A035263 (program): Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).
  • A035264 (program): Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.
  • A035265 (program): One half of deca-factorial numbers.
  • A035267 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 37.
  • A035269 (program): Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 41.
  • A035272 (program): One third of deca-factorial numbers.
  • A035273 (program): One quarter of deca-factorial numbers.
  • A035274 (program): One fifth of deca-factorial numbers.
  • A035275 (program): One sixth of deca-factorial numbers.
  • A035276 (program): One seventh of deca-factorial numbers.
  • A035277 (program): One eighth of deca-factorial numbers.
  • A035278 (program): One ninth of deca-factorial numbers.
  • A035279 (program): One tenth of deca-factorial numbers.
  • A035286 (program): Number of ways to place a non-attacking white and black king on n X n chessboard.
  • A035287 (program): Number of ways to place a non-attacking white and black rook on n X n chessboard.
  • A035288 (program): Number of ways to place a non-attacking white and black bishop on n X n chessboard.
  • A035289 (program): Number of ways to place a non-attacking white and black knight on n X n chessboard.
  • A035290 (program): Number of ways to place a non-attacking white and black pawn on n X n chessboard.
  • A035291 (program): Number of ways to place a non-attacking white and black queen on n X n chessboard.
  • A035292 (program): Number of similar sublattices of Z^4 of index n^2.
  • A035294 (program): Number of ways to partition 2n into distinct positive integers.
  • A035295 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..3*n), n=0..inf ).
  • A035296 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..4*n), n=0..inf ).
  • A035297 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..5*n), n=0..inf ).
  • A035298 (program): Expansion of sum ( q^n / product( 1-q^k, k=1..6*n), n=0..inf ).
  • A035299 (program): Minimum square grid needed to fit English words for 1…n crossword style.
  • A035302 (program): a(n+1)=2a(n)-4a(n-1)+4a(n-2).
  • A035303 (program): Divisors of 3600.
  • A035308 (program): Expansion of 1/(1-100*x)^(1/10), related to deca-factorial numbers A045757.
  • A035316 (program): Sum of the square divisors of n.
  • A035317 (program): Pascal-like triangle associated with A000670.
  • A035319 (program): Number of rooted maps of genus n with one vertex and one face; the maps are considered on orientable surfaces and contain 2n edges.
  • A035321 (program): Sum of composite divisors of n that are not primes nor prime powers.
  • A035322 (program): Sum of composite divisors of n that are less than n and are not primes nor prime powers.
  • A035323 (program): Related to deca-factorial numbers A045757.
  • A035324 (program): A convolution triangle of numbers, generalizing Pascal’s triangle A007318.
  • A035327 (program): Write n in binary, interchange 0’s and 1’s, convert back to decimal.
  • A035328 (program): a(n) = n*(2*n-1)*(2*n+1).
  • A035329 (program): a(n) = n*(2*n+5)*(2*n+7).
  • A035330 (program): 5-fold convolution of A001700(n), n >= 0.
  • A035332 (program): Smallest number not the concatenation of consecutive earlier terms.
  • A035336 (program): a(n) = 2*floor(n*phi) + n - 1, where phi = (1+sqrt(5))/2.
  • A035337 (program): Third column of Wythoff array.
  • A035338 (program): 4th column of Wythoff array.
  • A035339 (program): 5th column of Wythoff array.
  • A035340 (program): 6th column of Wythoff array.
  • A035344 (program): Expansion of 1/((1 - x)*(1 - 4*x + 2 * x^2)).
  • A035360 (program): Number of partitions of n into parts 3k or 3k+1.
  • A035361 (program): Number of partitions of n into parts 3k or 3k+2.
  • A035363 (program): Number of partitions of n into even parts.
  • A035376 (program): Number of partitions of n into parts 6k or 6k+2.
  • A035377 (program): Number of partitions of n into parts 6k or 6k+3.
  • A035382 (program): Number of partitions of n into parts congruent to 1 mod 3.
  • A035385 (program): Number of partitions of n into parts 6k+2 or 6k+4.
  • A035386 (program): Number of partitions of n into parts congruent to 2 mod 3.
  • A035430 (program): Number of partitions of n into parts 7k+1 or 7k+6.
  • A035444 (program): Number of partitions of n into parts 4k.
  • A035451 (program): Number of partitions of n into parts congruent to 1 mod 4.
  • A035457 (program): Number of partitions of n into parts of the form 4*k + 2.
  • A035462 (program): Number of partitions of n into parts 4k-1.
  • A035471 (program): Coordination sequence for lattice D*_4 (with edges defined by l_1 norm = 1).
  • A035472 (program): Coordination sequence for lattice D*_6 (with edges defined by l_1 norm = 1).
  • A035487 (program): Second column of Stolarsky array.
  • A035488 (program): 3rd column of Stolarsky array.
  • A035492 (program): Position of card 1 after n-th shuffle in Guy’s shuffling problem (A035485).
  • A035508 (program): a(n) = Fibonacci(2*n+2) - 1.
  • A035513 (program): Wythoff array read by antidiagonals.
  • A035520 (program): Fourth column of triangle A035342; related to A045894.
  • A035522 (program): Reverse and add (in binary) - written in base 10.
  • A035523 (program): Reverse and add (in base 3).
  • A035524 (program): Reverse and add (in base 4).
  • A035526 (program): Reverse and add (in binary).
  • A035530 (program): Binomial transform of A003603.
  • A035531 (program): a(n) = A000120(n) + A001221(n) - 1.
  • A035597 (program): Number of points of L1 norm 3 in cubic lattice Z^n.
  • A035598 (program): Number of points of L1 norm 4 in cubic lattice Z^n.
  • A035599 (program): Number of points of L1 norm 5 in cubic lattice Z^n.
  • A035600 (program): Number of points of L1 norm 6 in cubic lattice Z^n.
  • A035601 (program): Number of points of L1 norm 7 in cubic lattice Z^n.
  • A035602 (program): Number of points of L1 norm 8 in cubic lattice Z^n.
  • A035603 (program): Number of points of L1 norm 9 in cubic lattice Z^n.
  • A035604 (program): Number of points of L1 norm 10 in cubic lattice Z^n.
  • A035605 (program): Number of points of L1 norm 11 in cubic lattice Z^n.
  • A035606 (program): Number of points of L1 norm 12 in cubic lattice Z^n.
  • A035607 (program): Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).
  • A035608 (program): Expansion of x*(1 + 3*x)/((1 + x)*(1 - x)^3).
  • A035610 (program): G.f.: 3/(1 + 2*sqrt(1-12*x)).
  • A035612 (program): Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.
  • A035614 (program): Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1.
  • A035622 (program): Number of partitions of n into parts 4k and 4k+2 with at least one part of each type.
  • A035706 (program): Coordination sequence for 11-dimensional cubic lattice.
  • A035707 (program): Coordination sequence for 12-dimensional cubic lattice.
  • A035708 (program): Coordination sequence for 13-dimensional cubic lattice.
  • A035709 (program): Coordination sequence for 14-dimensional cubic lattice.
  • A035710 (program): Coordination sequence for 15-dimensional cubic lattice.
  • A035711 (program): Coordination sequence for 16-dimensional cubic lattice.
  • A035712 (program): Coordination sequence for 17-dimensional cubic lattice.
  • A035713 (program): Coordination sequence for 18-dimensional cubic lattice.
  • A035714 (program): Coordination sequence for 19-dimensional cubic lattice.
  • A035715 (program): Coordination sequence for 20-dimensional cubic lattice.
  • A035716 (program): Coordination sequence for 21-dimensional cubic lattice.
  • A035717 (program): Coordination sequence for 22-dimensional cubic lattice.
  • A035718 (program): Coordination sequence for 23-dimensional cubic lattice.
  • A035719 (program): Coordination sequence for 24-dimensional cubic lattice.
  • A035720 (program): Coordination sequence for 25-dimensional cubic lattice.
  • A035721 (program): Coordination sequence for 26-dimensional cubic lattice.
  • A035722 (program): Coordination sequence for 27-dimensional cubic lattice.
  • A035723 (program): Coordination sequence for 28-dimensional cubic lattice.
  • A035724 (program): Coordination sequence for 29-dimensional cubic lattice.
  • A035725 (program): Coordination sequence for 30-dimensional cubic lattice.
  • A035726 (program): Coordination sequence for 31-dimensional cubic lattice.
  • A035727 (program): Coordination sequence for 32-dimensional cubic lattice.
  • A035728 (program): Coordination sequence for 33-dimensional cubic lattice.
  • A035729 (program): Coordination sequence for 34-dimensional cubic lattice.
  • A035730 (program): Coordination sequence for 35-dimensional cubic lattice.
  • A035731 (program): Coordination sequence for 36-dimensional cubic lattice.
  • A035732 (program): Coordination sequence for 37-dimensional cubic lattice.
  • A035733 (program): Coordination sequence for 38-dimensional cubic lattice.
  • A035734 (program): Coordination sequence for 39-dimensional cubic lattice.
  • A035735 (program): Coordination sequence for 40-dimensional cubic lattice.
  • A035736 (program): Coordination sequence for 41-dimensional cubic lattice.
  • A035737 (program): Coordination sequence for 42-dimensional cubic lattice.
  • A035738 (program): Coordination sequence for 43-dimensional cubic lattice.
  • A035739 (program): Coordination sequence for 44-dimensional cubic lattice.
  • A035740 (program): Coordination sequence for 45-dimensional cubic lattice.
  • A035741 (program): Coordination sequence for 46-dimensional cubic lattice.
  • A035742 (program): Coordination sequence for 47-dimensional cubic lattice.
  • A035743 (program): Coordination sequence for 48-dimensional cubic lattice.
  • A035744 (program): Coordination sequence for 49-dimensional cubic lattice.
  • A035745 (program): Coordination sequence for 50-dimensional cubic lattice.
  • A035746 (program): Coordination sequence for C_9 lattice.
  • A035747 (program): Coordination sequence for C_10 lattice.
  • A035748 (program): Coordination sequence for C_11 lattice.
  • A035749 (program): Coordination sequence for C_12 lattice.
  • A035750 (program): Coordination sequence for C_13 lattice.
  • A035751 (program): Coordination sequence for C_14 lattice.
  • A035752 (program): Coordination sequence for C_15 lattice.
  • A035753 (program): Coordination sequence for C_16 lattice.
  • A035754 (program): Coordination sequence for C_17 lattice.
  • A035755 (program): Coordination sequence for C_18 lattice.
  • A035756 (program): Coordination sequence for C_19 lattice.
  • A035757 (program): Coordination sequence for C_20 lattice.
  • A035758 (program): Coordination sequence for C_21 lattice.
  • A035759 (program): Coordination sequence for C_22 lattice.
  • A035760 (program): Coordination sequence for C_23 lattice.
  • A035761 (program): Coordination sequence for C_24 lattice.
  • A035762 (program): Coordination sequence for C_25 lattice.
  • A035763 (program): Coordination sequence for C_26 lattice.
  • A035764 (program): Coordination sequence for C_27 lattice.
  • A035765 (program): Coordination sequence for C_28 lattice.
  • A035766 (program): Coordination sequence for C_29 lattice.
  • A035767 (program): Coordination sequence for C_30 lattice.
  • A035768 (program): Coordination sequence for C_31 lattice.
  • A035769 (program): Coordination sequence for C_32 lattice.
  • A035770 (program): Coordination sequence for C_33 lattice.
  • A035771 (program): Coordination sequence for C_34 lattice.
  • A035772 (program): Coordination sequence for C_35 lattice.
  • A035773 (program): Coordination sequence for C_36 lattice.
  • A035774 (program): Coordination sequence for C_37 lattice.
  • A035775 (program): Coordination sequence for C_38 lattice.
  • A035776 (program): Coordination sequence for C_39 lattice.
  • A035777 (program): Coordination sequence for C_40 lattice.
  • A035778 (program): Coordination sequence for C_41 lattice.
  • A035779 (program): Coordination sequence for C_42 lattice.
  • A035780 (program): Coordination sequence for C_43 lattice.
  • A035781 (program): Coordination sequence for C_44 lattice.
  • A035782 (program): Coordination sequence for C_45 lattice.
  • A035783 (program): Coordination sequence for C_46 lattice.
  • A035784 (program): Coordination sequence for C_47 lattice.
  • A035785 (program): Coordination sequence for C_48 lattice.
  • A035786 (program): Coordination sequence for C_49 lattice.
  • A035787 (program): Coordination sequence for C_50 lattice.
  • A035802 (program): Coordination sequence for lattice D*_34 (with edges defined by l_1 norm = 1).
  • A035803 (program): Coordination sequence for lattice D*_36 (with edges defined by l_1 norm = 1).
  • A035804 (program): Coordination sequence for lattice D*_38 (with edges defined by l_1 norm = 1).
  • A035807 (program): Coordination sequence for lattice D*_44 (with edges defined by l_1 norm = 1).
  • A035808 (program): Coordination sequence for lattice D*_46 (with edges defined by l_1 norm = 1).
  • A035809 (program): Coordination sequence for lattice D*_48 (with edges defined by l_1 norm = 1).
  • A035810 (program): Coordination sequence for lattice D*_50 (with edges defined by l_1 norm = 1).
  • A035811 (program): Coordination sequence for lattice D*_52 (with edges defined by l_1 norm = 1).
  • A035812 (program): Coordination sequence for lattice D*_54 (with edges defined by l_1 norm = 1).
  • A035813 (program): Coordination sequence for lattice D*_56 (with edges defined by l_1 norm = 1).
  • A035814 (program): Coordination sequence for lattice D*_58 (with edges defined by l_1 norm = 1).
  • A035815 (program): Coordination sequence for lattice D*_60 (with edges defined by l_1 norm = 1).
  • A035816 (program): Coordination sequence for lattice D*_62 (with edges defined by l_1 norm = 1).
  • A035817 (program): Coordination sequence for lattice D*_64 (with edges defined by l_1 norm = 1).
  • A035818 (program): Coordination sequence for lattice D*_66 (with edges defined by l_1 norm = 1).
  • A035819 (program): Coordination sequence for lattice D*_68 (with edges defined by l_1 norm = 1).
  • A035820 (program): Coordination sequence for lattice D*_70 (with edges defined by l_1 norm = 1).
  • A035821 (program): Coordination sequence for lattice D*_72 (with edges defined by l_1 norm = 1).
  • A035822 (program): Coordination sequence for lattice D*_74 (with edges defined by l_1 norm = 1).
  • A035823 (program): Coordination sequence for lattice D*_76 (with edges defined by l_1 norm = 1).
  • A035824 (program): Coordination sequence for lattice D*_78 (with edges defined by l_1 norm = 1).
  • A035825 (program): Coordination sequence for lattice D*_80 (with edges defined by l_1 norm = 1).
  • A035826 (program): Coordination sequence for lattice D*_82 (with edges defined by l_1 norm = 1).
  • A035827 (program): Coordination sequence for lattice D*_84 (with edges defined by l_1 norm = 1).
  • A035828 (program): Coordination sequence for lattice D*_86 (with edges defined by l_1 norm = 1).
  • A035829 (program): Coordination sequence for lattice D*_88 (with edges defined by l_1 norm = 1).
  • A035830 (program): Coordination sequence for lattice D*_90 (with edges defined by l_1 norm = 1).
  • A035831 (program): Coordination sequence for lattice D*_92 (with edges defined by l_1 norm = 1).
  • A035832 (program): Coordination sequence for lattice D*_94 (with edges defined by l_1 norm = 1).
  • A035833 (program): Coordination sequence for lattice D*_96 (with edges defined by l_1 norm = 1).
  • A035834 (program): Coordination sequence for lattice D*_98 (with edges defined by l_1 norm = 1).
  • A035835 (program): Coordination sequence for lattice D*_100 (with edges defined by l_1 norm = 1).
  • A035837 (program): Coordination sequence for A_11 lattice.
  • A035838 (program): Coordination sequence for A_12 lattice.
  • A035839 (program): Coordination sequence for A_13 lattice.
  • A035840 (program): Coordination sequence for A_14 lattice.
  • A035841 (program): Coordination sequence for A_15 lattice.
  • A035842 (program): Coordination sequence for A_16 lattice.
  • A035843 (program): Coordination sequence for A_17 lattice.
  • A035844 (program): Coordination sequence for A_18 lattice.
  • A035845 (program): Coordination sequence for A_19 lattice.
  • A035846 (program): Coordination sequence for A_20 lattice.
  • A035847 (program): Coordination sequence for A_21 lattice.
  • A035848 (program): Coordination sequence for A_22 lattice.
  • A035849 (program): Coordination sequence for A_23 lattice.
  • A035850 (program): Coordination sequence for A_24 lattice.
  • A035851 (program): Coordination sequence for A_25 lattice.
  • A035852 (program): Coordination sequence for A_26 lattice.
  • A035853 (program): Coordination sequence for A_27 lattice.
  • A035854 (program): Coordination sequence for A_28 lattice.
  • A035855 (program): Coordination sequence for A_29 lattice.
  • A035856 (program): Coordination sequence for A_30 lattice.
  • A035857 (program): Coordination sequence for A_31 lattice.
  • A035858 (program): Coordination sequence for A_32 lattice.
  • A035859 (program): Coordination sequence for A_33 lattice.
  • A035860 (program): Coordination sequence for A_34 lattice.
  • A035861 (program): Coordination sequence for A_35 lattice.
  • A035862 (program): Coordination sequence for A_36 lattice.
  • A035863 (program): Coordination sequence for A_37 lattice.
  • A035864 (program): Coordination sequence for A_38 lattice.
  • A035865 (program): Coordination sequence for A_39 lattice.
  • A035866 (program): Coordination sequence for A_40 lattice.
  • A035867 (program): Coordination sequence for A_41 lattice.
  • A035868 (program): Coordination sequence for A_42 lattice.
  • A035869 (program): Coordination sequence for A_43 lattice.
  • A035870 (program): Coordination sequence for A_44 lattice.
  • A035871 (program): Coordination sequence for A_45 lattice.
  • A035872 (program): Coordination sequence for A_46 lattice.
  • A035873 (program): Coordination sequence for A_47 lattice.
  • A035874 (program): Coordination sequence for A_48 lattice.
  • A035875 (program): Coordination sequence for A_49 lattice.
  • A035876 (program): Coordination sequence for A_50 lattice.
  • A035877 (program): Number of points of l_1 norm n in the “diamond” lattice D^+_2, i. e. the rectangular lattice generated by vectors (1, 1) and (-1/2, 1/2).
  • A035927 (program): One less than number of n-multisets chosen from a 10-set.
  • A035928 (program): Numbers n such that BCR(n) = n, where BCR = binary-complement-and-reverse = take one’s complement then reverse bit order.
  • A035929 (program): Number of Dyck n-paths starting U^mD^m (an m-pyramid), followed by a pyramid-free Dyck path.
  • A035936 (program): Number of squares in (n^3, (n+1)^3 ].
  • A035943 (program): Number of partitions of n into parts not of the form 9k, 9k+4 or 9k-4. Also number of partitions with at most 3 parts of size 1 and differences between parts at distance 3 are greater than 1.
  • A035959 (program): Number of partitions of n in which no parts are multiples of 5.
  • A036015 (program): Number of partitions of n into parts not of form 4k+2, 8k, 8k+1 or 8k-1.
  • A036016 (program): Number of partitions of n into parts not of form 4k+2, 8k, 8k+3 or 8k-3.
  • A036018 (program): Number of partitions of n into parts not of form 4k+2, 12k, 12k+3 or 12k-3.
  • A036026 (program): Number of partitions of n into parts not of forms 4*k+2, 20*k, 20*k+5 or 20*k+15.
  • A036042 (program): k appears partition(k) times.
  • A036044 (program): BCR(n): write in binary, complement, reverse.
  • A036068 (program): Expansion of (-1+1/(1-3*x)^3)/(9*x).
  • A036069 (program): Denominator of rational part of Haar measure on Grassmannian space G(n,1).
  • A036070 (program): Expansion of (-1+1/(1-4*x)^4)/(16*x); related to A038846.
  • A036071 (program): Expansion of 1/(1-5*x)^5.
  • A036083 (program): Expansion of (-1+1/(1-5*x)^5)/(25*x); related to A036071.
  • A036084 (program): Expansion of 1/(1-6*x)^6.
  • A036085 (program): Centered cube numbers: (n+1)^7 + n^7.
  • A036086 (program): Centered cube numbers: a(n) = (n+1)^8+n^8.
  • A036087 (program): Centered cube numbers: a(n) = (n+1)^9 + n^9.
  • A036088 (program): Centered cube numbers: (n+1)^10 + n^10.
  • A036089 (program): Centered cube numbers: (n+1)^11 + n^11.
  • A036090 (program): Centered cube numbers: (n+1)^12 + n^12.
  • A036091 (program): Centered cube numbers: (n+1)^13+n^13.
  • A036092 (program): Centered cube numbers: a(n) = (n+1)^14 + n^14.
  • A036093 (program): Centered cube numbers: (n+1)^15 + n^15.
  • A036094 (program): Centered cube numbers: (n+1)^16 + n^16.
  • A036095 (program): Centered cube numbers: a(n) = (n+1)^17 + n^17.
  • A036096 (program): Centered cube numbers: (n+1)^18 + n^18.
  • A036097 (program): Centered cube numbers: (n+1)^19+n^19.
  • A036098 (program): Centered cube numbers: a(n) = (n+1)^20 + n^20.
  • A036099 (program): Centered cube numbers: (n+1)^21 + n^21.
  • A036100 (program): Centered cube numbers: (n+1)^22 + n^22.
  • A036101 (program): Centered cube numbers: (n+1)^23 + n^23.
  • A036102 (program): Centered cube numbers: (n+1)^24 + n^24.
  • A036116 (program): Numbers n such that the number of distinct primes dividing n is a square.
  • A036117 (program): a(n) = 2^n mod 11.
  • A036118 (program): a(n) = 2^n mod 13.
  • A036119 (program): a(n) = 3^n mod 17.
  • A036120 (program): a(n) = 2^n mod 19.
  • A036121 (program): 5^n mod 23.
  • A036122 (program): a(n) = 2^n mod 29.
  • A036123 (program): a(n) = 3^n mod 31.
  • A036124 (program): a(n) = 2^n mod 37.
  • A036125 (program): a(n) = 6^n mod 41.
  • A036126 (program): a(n) = 3^n mod 43.
  • A036127 (program): a(n) = 5^n mod 47.
  • A036128 (program): a(n) = 2^n mod 53.
  • A036129 (program): a(n) = 2^n mod 59.
  • A036130 (program): a(n) = 2^n mod 61.
  • A036131 (program): a(n) = 2^n mod 67.
  • A036132 (program): a(n) = 7^n mod 71.
  • A036133 (program): a(n) = 5^n mod 73.
  • A036134 (program): a(n) = 3^n mod 79.
  • A036135 (program): a(n) = 2^n mod 83.
  • A036136 (program): a(n) = 3^n mod 89.
  • A036137 (program): a(n) = 5^n mod 97.
  • A036138 (program): a(n) = 2^n mod 101.
  • A036139 (program): a(n) = 5^n mod 103.
  • A036140 (program): a(n) = 2^n mod 107.
  • A036141 (program): a(n) = 6^n mod 109.
  • A036142 (program): 3^n mod 113.
  • A036143 (program): a(n) = 3^n mod 127.
  • A036144 (program): a(n) = 2^n mod 131.
  • A036145 (program): 3^n mod 137.
  • A036146 (program): a(n) = 2^n mod 139.
  • A036147 (program): a(n) = 2^n mod 149.
  • A036148 (program): 6^n mod 151.
  • A036149 (program): 5^n mod 157.
  • A036150 (program): a(n) = 2^n mod 163.
  • A036151 (program): 5^n mod 167.
  • A036152 (program): a(n) = 2^n mod 173.
  • A036153 (program): a(n) = 2^n mod 179.
  • A036154 (program): a(n) = 2^n mod 181.
  • A036155 (program): 19^n mod 191.
  • A036156 (program): 5^n mod 193.
  • A036157 (program): a(n) = 2^n mod 197.
  • A036158 (program): 3^n mod 199.
  • A036159 (program): a(n) = 2^n mod 211.
  • A036160 (program): a(n) = 3^n mod 223.
  • A036161 (program): a(n) = 2^n mod 227.
  • A036162 (program): a(n) = 6^n mod 229.
  • A036165 (program): Log base 2 (n) mod 29.
  • A036167 (program): Log base 2 (n) mod 37.
  • A036171 (program): Log base 2 (n) mod 53.
  • A036172 (program): Log base 2 (n) mod 59.
  • A036173 (program): Log base 2 (n) mod 61.
  • A036174 (program): Log base 2 (n) mod 67.
  • A036178 (program): Log base 2 (n) mod 83.
  • A036181 (program): Log base 2 (n) mod 101.
  • A036183 (program): Log base 2 (n) mod 107.
  • A036187 (program): Log base 2 (n) mod 131.
  • A036189 (program): Log base 2 (n) mod 139.
  • A036190 (program): Log base 2 (n) mod 149.
  • A036193 (program): Log base 2 (n) mod 163.
  • A036195 (program): Log base 2 (n) mod 173.
  • A036196 (program): Log base 2 (n) mod 179.
  • A036197 (program): Log base 2 (n) mod 181.
  • A036200 (program): Log base 2 (n) mod 197.
  • A036202 (program): Log base 2 (n) mod 211.
  • A036204 (program): Log base 2 (n) mod 227.
  • A036211 (program): Successive digits of even numbers.
  • A036213 (program): Duplicating binary multipliers; i.e., n+1 1-bits placed 2n bits from each other.
  • A036215 (program): Binary reversal of 3^n
  • A036216 (program): Expansion of 1/(1 - 3*x)^4; 4-fold convolution of A000244 (powers of 3).
  • A036217 (program): Expansion of 1/(1-3*x)^5; 5-fold convolution of A000244 (powers of 3).
  • A036218 (program): Hours recorded by a 24-hour clock.
  • A036219 (program): Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
  • A036220 (program): Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).
  • A036221 (program): Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).
  • A036222 (program): Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
  • A036223 (program): Expansion of 1/(1-3*x)^10; 10-fold convolution of A000244 (powers of 3).
  • A036224 (program): Expansion of (-1+1/(1-6*x)^6)/(36*x); related to A036084.
  • A036226 (program): Expansion of 1/(1-7*x)^7.
  • A036227 (program): a(1) = 20; a(n+1) = a(n) + sum of decimal digits of a(n).
  • A036228 (program): a(1) = 31; a(n+1) = a(n) + sum of decimal digits of a(n).
  • A036230 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 110.
  • A036231 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 121.
  • A036232 (program): a(n+1) = a(n) + sum of digits of a(n) starting with 211.
  • A036234 (program): Number of primes <= n, if 1 is counted as a prime.
  • A036238 (program): Triangle of numbers a(r,j) = j*(j+1) mod r+2, r>=1, j=1..r.
  • A036239 (program): Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.
  • A036240 (program): Number of 3-way interactions when 3 subsets of power set on {1..n} are chosen at random; number of Boolean functions of n variables and rank 3 from Post class F(8,inf).
  • A036242 (program): Numerator of fraction equal to the continued fraction [0,2,4,…2n].
  • A036243 (program): Denominator of fraction equal to the continued fraction [ 0, 2, 4, …2n ].
  • A036244 (program): Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, …(2n-1)].
  • A036245 (program): Numerator of fraction equal to the continued fraction [ 0, 1, 4, …, n^2 ].
  • A036246 (program): CONTINUANT transform of squares 1, 4, 9, …
  • A036247 (program): Numerator of fraction equal to the continued fraction [ 2, 3, 5, …prime(n) ].
  • A036248 (program): Denominator of fraction equal to the continued fraction [ 2, 3, 5, …, prime(n) ].
  • A036253 (program): Numerator of fraction equal to the continued fraction [ 3, 1, 4, 1, 5… ] (first n digits of Pi).
  • A036254 (program): Denominator of fraction equal to the continued fraction [ 3, 1, 4, 1, 5… ] (first n digits of Pi).
  • A036255 (program): Number of inequivalent strings of 2n+1 digits, when 2 strings are equivalent if turning 1 upside down gives the other.
  • A036256 (program): a(n) = Sum_{i=0..n} binomial(i,floor(i/2)).
  • A036257 (program): Number of inequivalent strings of 2n digits, when 2 strings are equivalent if turning 1 upside down gives the other.
  • A036259 (program): Numbers k such that the multiplicative order of 2 modulo k is odd.
  • A036263 (program): Second differences of primes.
  • A036264 (program): Third differences of primes.
  • A036265 (program): 4th differences of primes.
  • A036266 (program): 5th differences of primes.
  • A036267 (program): 6th differences of primes.
  • A036268 (program): 7th differences of primes.
  • A036269 (program): 8th differences of primes.
  • A036276 (program): a(n) = A001864(n)/2.
  • A036278 (program): Denominators in Taylor series for cot x.
  • A036279 (program): Denominators in Taylor series for tan(x).
  • A036280 (program): Numerators in Taylor series for x * cosec(x).
  • A036282 (program): Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.
  • A036283 (program): Write cosec x = 1/x + Sum e_n x^(2n-1)/(2n-1)!; sequence gives denominators of e_n.
  • A036288 (program): a(n) = 1 + integer log of n: if the prime factorization of n is n = Product (p_j^k_j) then a(n) = 1 + Sum (p_j * k_j) (cf. A001414).
  • A036289 (program): a(n) = n*2^n.
  • A036290 (program): a(n) = n*3^n.
  • A036291 (program): a(n) = n*5^n.
  • A036292 (program): a(n) = n*6^n.
  • A036293 (program): a(n) = n * 7^n.
  • A036294 (program): a(n) = n * 8^n.
  • A036295 (program): Numerator of Sum i/2^i, i=1..n.
  • A036296 (program): Denominator of Sum i/2^i, i=1..n.
  • A036301 (program): Numbers whose sum of even digits and sum of odd digits are equal.
  • A036311 (program): Composite numbers whose prime factors contain no digits other than 2 and 5.
  • A036326 (program): Composite numbers n such that juxtaposition of prime factors of n has length 2.
  • A036329 (program): Composite numbers n such that juxtaposition of prime factors of n has length 5.
  • A036330 (program): Composite numbers n such that juxtaposition of prime factors of n has length 6.
  • A036331 (program): Composite numbers n such that juxtaposition of prime factors of n has length 7.
  • A036332 (program): Composite numbers n such that juxtaposition of prime factors of n has length 8.
  • A036338 (program): Composites whose digit length is equal to their number of prime factors (counted with multiplicity).
  • A036347 (program): Parity of n and its sum of prime factors differs (counted with multiplicity).
  • A036348 (program): Parity of ‘even number’ and its sum of prime factors differs (counted with multiplicity).
  • A036349 (program): Numbers whose sum of prime factors (taken with multiplicity) is even.
  • A036350 (program): Composite numbers such that the sum of the prime factors is odd (counted with multiplicity).
  • A036353 (program): Square pentagonal numbers.
  • A036354 (program): Heptagonal square numbers.
  • A036360 (program): Number of labeled connected functional digraphs.
  • A036361 (program): Number of labeled 2-trees with n nodes.
  • A036363 (program): Line-labeled 2-trees with n nodes.
  • A036371 (program): Number of ternary rooted trees with n nodes and height at most 3.
  • A036377 (program): Floor[concatenation of seven consecutive numbers from n to n+6 divided by 7].
  • A036404 (program): a(n) = ceiling(n^2/5).
  • A036405 (program): a(n) = ceiling(n^2/7).
  • A036406 (program): a(n) = ceiling(n^2/8).
  • A036407 (program): a(n) = ceiling(n^2/9).
  • A036408 (program): a(n) = ceiling(n^2/10).
  • A036409 (program): a(n) = ceiling(n^2/11).
  • A036410 (program): G.f.: (1+x^6)/((1-x)*(1-x^3)*(1-x^4)).
  • A036411 (program): 9-gonal square numbers.
  • A036415 (program): Values of n for which there are no empty intervals when fractional part(m*phi) for m = 1, …, n is plotted along [ 0, 1 ] subdivided into n equal regions.
  • A036428 (program): Square octagonal numbers.
  • A036430 (program): Number of iterations needed to reach 1 under the map n -> Omega(n).
  • A036431 (program): a(n) = number of positive integers b which, when added to the number of their divisors, tau(b), gives n.
  • A036434 (program): Integers which cannot be written as k+tau(k) for some k.
  • A036435 (program): Digits are nonzero squares.
  • A036436 (program): Numbers whose number of divisors is a square.
  • A036438 (program): Integers which can be written as m*tau(m) for some m, where tau = A000005.
  • A036439 (program): a(n) = a(n-1) + prime(n-1), with a(1)=2.
  • A036441 (program): a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.
  • A036442 (program): a(n) = 2^((n-1)*(n+2)/2).
  • A036443 (program): Number of ternary rooted trees with n nodes and height exactly 3.
  • A036447 (program): Double and reverse digits.
  • A036450 (program): a(n) = d(d(d(n))), the 3rd iterate of the number-of-divisors function with an initial value of n.
  • A036452 (program): a(n) = d(d(d(d(n)))), the 4th iterate of number-of-divisors function with initial value of n.
  • A036453 (program): a(n) = d(d(d(d(d(n))))), the 5th iterate of the number-of-divisors function d = A000005, with initial value n.
  • A036454 (program): Prime powers with special exponents: q^(p-1) where p > 2 and q are prime numbers.
  • A036455 (program): Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.
  • A036456 (program): Numbers k for which exactly 4 applications of A000005 are needed to reach 2.
  • A036457 (program): Numbers k for which exactly 5 applications of A000005 are needed to reach 2.
  • A036458 (program): For all n, if d is recursively applied to a(n) exactly 6 times then the fixed point of d-iteration is just reached.
  • A036459 (program): Number of iterations required to reach stationary value when repeatedly applying d, the number of divisors function (A000005).
  • A036461 (program): Number of 1 digits in base 3 representation of 2^n.
  • A036464 (program): Number of ways to place two nonattacking queens on an n X n board.
  • A036467 (program): a(n) + a(n-1) = n-th prime.
  • A036469 (program): Partial sums of A000009 (partitions into distinct parts).
  • A036486 (program): a(n) = ceiling((n^3)/2).
  • A036487 (program): a(n) = floor((n^3)/2).
  • A036488 (program): Nearest integer to n^(5/2).
  • A036489 (program): Nearest integer to n^(7/2).
  • A036494 (program): Nearest integer to n^(9/2).
  • A036495 (program): Nearest integer to n^(11/2).
  • A036496 (program): Number of lines that intersect the first n points on a spiral on a triangular lattice. The spiral starts at (0,0), goes to (1,0) and (1/2, sqrt(3)/2) and continues counterclockwise.
  • A036497 (program): Number of partitions of n into distinct primes (counting 1 as a prime).
  • A036498 (program): Numbers of the form m*(6*m-1) and m*(6*m+1), where m is an integer.
  • A036499 (program): Numbers of the form k*(k+1)/6 for k = 2 or 3 modulo 6.
  • A036500 (program): Number of inequivalent cyclic Hadamard difference sets with parameters (2^n-1, 2^(n-1)-1, 2^(n-2)-1).
  • A036501 (program): Number of inequivalent Golomb rulers with n marks and shortest length.
  • A036502 (program): Numerator of n^(n-2)/n!.
  • A036503 (program): Denominator of n^(n-2)/n!.
  • A036504 (program): Numerator of n^(n-1)/n!.
  • A036505 (program): Numerator of (n+1)^n/n!.
  • A036507 (program): Smallest square containing exactly n 0’s.
  • A036537 (program): Numbers whose number of divisors is a power of 2.
  • A036541 (program): Deficit of central binomial coefficients in terms of number of prime factors: a(n) shows how many fewer prime factors the n-th central binomial coefficient has than n!.
  • A036542 (program): a(n) = T(n, n), array T given by A047858.
  • A036543 (program): a(n) = T(3,n), array T given by A048471.
  • A036544 (program): a(n) = (2*(1 + n + (((10^n-1)/9) - n)/9)).
  • A036545 (program): a(n) = T(4,n), array T given by A048471.
  • A036546 (program): a(n) = T(5,n), array T given by A048471.
  • A036547 (program): a(n) = T(6,n), array T given by A048471.
  • A036548 (program): a(n) = T(7,n), array T given by A048471.
  • A036549 (program): a(n) = T(8,n), array T given by A048471.
  • A036550 (program): a(n) = T(0,n) + T(1,n-1) + … + T(n,0), array T given by A048471.
  • A036551 (program): a(n) = 2^(n-1)*(3^n-1) + 1.
  • A036552 (program): List of pairs (m,2m) where m is the least unused positive number.
  • A036553 (program): Phi(prime(n))-prime(phi(n)).
  • A036554 (program): Numbers whose binary representation ends in an odd number of zeros.
  • A036555 (program): Hamming weight of 3n: number of 1’s in binary expansion of 3n.
  • A036556 (program): Integers which when multiplied by 3 have an odd number of 1’s in their binary expansion (cf. A000069).
  • A036557 (program): Number of multiples of 3 in 0..2^n-1 with an even sum of base-2 digits.
  • A036561 (program): Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.
  • A036562 (program): a(n) = 4^(n+1) + 3*2^n + 1.
  • A036563 (program): a(n) = 2^n - 3.
  • A036564 (program): a(n) = 2^n - 45 with n>5, a(5)=1.
  • A036565 (program): Triangle of numbers in which i-th row is {2^(i-j)*7^j, 0<=j<=i}; i >= 0.
  • A036571 (program): Binary packing of Connell sequence (shifted once right).
  • A036572 (program): Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.
  • A036573 (program): Size of maximal triangulation of an n-antiprism with regular polygonal base.
  • A036576 (program): a(n) is the least number not of the form floor(k^2/n).
  • A036577 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036578 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036579 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036580 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036581 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036582 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036583 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036584 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036585 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036586 (program): Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
  • A036587 (program): Number of binary rooted trees with n nodes and height at most 4.
  • A036603 (program): a(n) = n! in binary.
  • A036604 (program): Sorting numbers: minimal number of comparisons needed to sort n elements.
  • A036605 (program): a(n) = a(n-2) + 2*a(n-3) + a(n-4).
  • A036659 (program): Product of n with sum of next n consecutive integers.
  • A036666 (program): Numbers k such that 5*k + 1 is a square.
  • A036668 (program): Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.
  • A036679 (program): a(n) = n^n - n!.
  • A036681 (program): T(n+2,2) with T as in A036355.
  • A036682 (program): T(n+3,3) with T as in A036355.
  • A036683 (program): T(n+4,4) with T as in A036355.
  • A036684 (program): T(n+5,5) with T as in A036355.
  • A036689 (program): Product of a prime and the previous number.
  • A036690 (program): Product of a prime and the following number.
  • A036691 (program): Compositorial numbers: product of first n composite numbers.
  • A036693 (program): Number of Gaussian integers z = a + bi satisfying n-1 < |z| <= n.
  • A036694 (program): a(n) = (1/4)*A036693(n) for n >= 1.
  • A036695 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, b>=0.
  • A036696 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, b>=0.
  • A036697 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, b>=0.
  • A036698 (program): a(n) is the number of Gaussian integers z=a+bi satisfying |z|<=n, a>0, b>=0.
  • A036700 (program): Number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<a.
  • A036701 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, 0<=b<a.
  • A036702 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<=a.
  • A036703 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1<|z|<=n, a>=0, 0<=b<=a.
  • A036704 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2.
  • A036705 (program): Number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2.
  • A036706 (program): a(n)=number of Gaussian integers z=a+bi satisfying n - 1/2 < |z| <= n + 1/2, a>0, b>=0.
  • A036707 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, b>=0.
  • A036708 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, b>=0.
  • A036709 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, b>=0.
  • A036710 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, b>=0.
  • A036711 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>0, b>=0.
  • A036713 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, 0<=b<a.
  • A036714 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, 0<=b<a.
  • A036715 (program): a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n+1/2, a>=0, 0<=b<=a.
  • A036716 (program): a(n)=number of Gaussian integers z=a+bi satisfying n-1/2<|z|<=n+1/2, a>=0, 0<=b<=a.
  • A036739 (program): a(n) = (n!)^n+1.
  • A036740 (program): a(n) = (n!)^n.
  • A036741 (program): Values increase, Roman numerals increase lexicographically.
  • A036746 (program): Numbers with “long” representations in Roman notation: given by last n letters from …MMMDCCCLXXXVIII.
  • A036758 (program): Number of edge-rooted tree-like octagonal systems.
  • A036762 (program): The integer values of x/d(x) in order of magnitude of x in A033950.
  • A036765 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= three.
  • A036766 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= four.
  • A036767 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= five.
  • A036768 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= six.
  • A036769 (program): Number of ordered rooted trees with n non-root nodes and all outdegrees <= seven.
  • A036770 (program): Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).
  • A036771 (program): Number of labeled rooted trees with a degree constraint: ((3*n)!/(6^n)) * binomial(3*n + 1, n).
  • A036774 (program): Number of labeled rooted unordered binary trees (each node has out-degree <= 2).
  • A036781 (program): a(n) = n + Sum_{k=0..n} k!.
  • A036782 (program): a(n) = n - 1 + Sum_{j=0..n} j!.
  • A036785 (program): Numbers divisible by the squares of two distinct primes.
  • A036789 (program): a(n) = Sum_{i=0..n} floor((2*i + 2)/(n - i + 1)).
  • A036795 (program): Integers that can be decomposed into sums of different Fibonacci numbers of even argument.
  • A036796 (program): Integers that can be decomposed into sums of different Fibonacci numbers of odd argument.
  • A036799 (program): a(n) = 2 + 2^(n+1)*(n-1).
  • A036800 (program): a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).
  • A036820 (program): Number of partitions satisfying (cn(2,5) = cn(3,5) = 0).
  • A036826 (program): a(n) = A036800(n)/2.
  • A036827 (program): a(n) = 26 + 2^(n+1)*(-13 +9*n -3*n^2 +n^3).
  • A036828 (program): A036827/2.
  • A036829 (program): a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).
  • A036830 (program): Schoenheim bound L_1(n,n-4,n-5).
  • A036837 (program): Schoenheim bound L_1(n,n-5,n-6).
  • A036839 (program): RATS(n): Reverse Add Then Sort the digits.
  • A036843 (program): Floor(X/Y), where X = concatenation of the triangular numbers and Y = concatenation of natural numbers.
  • A036844 (program): Numbers k such that k / sopfr(k) is an integer, where sopfr = sum-of-prime-factors, A001414.
  • A036878 (program): a(n) = p^(p-1) where p = prime(n).
  • A036879 (program): If n = (p_1)^(m_1)…(p_k)^(m_k) then a(n) = (p_1)^((p_1)^(m_1) - 1)…(p_k)((p_k)^(m_k) - 1).
  • A036896 (program): Odd refactorable numbers.
  • A036897 (program): Square root of odd refactorable numbers.
  • A036907 (program): Square refactorable numbers.
  • A036908 (program): Number of different compact source directed animals with 1 point on the bottom line.
  • A036909 (program): a(n) = (2/3) * 4^n * binomial(3*n, n).
  • A036910 (program): a(n) = (binomial(4*n, 2*n) + binomial(2*n, n)^2)/2.
  • A036911 (program): a(n) = (binomial(4*n, 2*n) + (-1)^n*binomial(2*n, n)^2)/2.
  • A036914 (program): a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4.
  • A036915 (program): a(n) = Sum_{k=0..n} C(2*n-2*k,n-k)^2 * C(2*n,k)^2.
  • A036916 (program): a(n) = Sum_{k=0..n} binomial(2*n-2*k,n-k)^2 * binomial(n,k)^2.
  • A036917 (program): a(n) = (16*(n-1/2)*(2*n^2-2*n+1)*a(n-1)-256*(n-1)^3*a(n-2))/n^3.
  • A036918 (program): a(n) = floor(e*(n-1)*(n-1)!)).
  • A036919 (program): A036918/2.
  • A036952 (program): Numbers whose binary expansion is a decimal prime.
  • A036953 (program): Primes containing only digits from the set {0, 1, 2}.
  • A036954 (program): Primes with digits in {0,1,2} taken as base 3 and converted to base 10.
  • A036955 (program): Numbers whose base-4 representation is the decimal representation of a prime.
  • A036956 (program): Primes containing only digits from the set (0,1,2,3,4).
  • A036957 (program): Primes with digits (0,…,4) taken as base 5 and converted to base 10.
  • A036958 (program): Primes containing only digits from the set (0,1,2,3,4,5).
  • A036959 (program): Primes with digits (0,…,5) taken as base 6 and converted to base 10.
  • A036960 (program): Primes containing only digits from the set (0,1,2,3,4,5,6).
  • A036961 (program): Primes with digits (0,…,6) taken as base 7 and converted to base 10.
  • A036962 (program): Primes containing only digits from the set (0,1,2,3,4,5,6,7).
  • A036963 (program): Primes with digits (0,…,7) taken as base 8 and converted to base 10.
  • A036964 (program): Primes with digits (0,…,8) taken as base 9 and converted to base 10.
  • A036973 (program): (7*n^3+4*n^2+4*n)*binomial(2*n,n)/30.
  • A036975 (program): Lengths of Golay complementary sequences.
  • A036982 (program): a(n)=[ a*a(n-1)+b ]/p^r, where a=2.001, b=3.2, p=2 and p^r is the highest power of p dividing [ a*a(n-1)+b ].
  • A036987 (program): Fredholm-Rueppel sequence.
  • A036988 (program): Has simplest possible tree complexity of all transcendental sequences.
  • A036989 (program): Read binary expansion of n from the right; keep track of the excess of 1’s over 0’s that have been seen so far; sequence gives 1 + maximum(excess of 1’s over 0’s).
  • A036990 (program): Numbers n such that, in the binary expansion of n, reading from right to left, the number of 1’s never exceeds the number of 0’s.
  • A036993 (program): Numbers n with property that reading from right to left in the binary expansion of n, the number of 0’s always stays ahead of the number of 1’s.
  • A036997 (program): Number of composite numbers <= n and relatively prime to n.
  • A036999 (program): Restricted permutations.
  • A037009 (program): Consider an n X n board with a knight’s path, not necessarily closed, that visits every square exactly once; number the squares [ 1..n^2 ] along the path; a(n) = maximal number of prime numbered squares that can be attacked by a queen.
  • A037011 (program): Baum-Sweet cubic sequence.
  • A037012 (program): Triangle read by rows; row 0 is 0; the n-th row for n>0 contains the coefficients in the expansion of (1-x)*(1+x)^(n-1).
  • A037019 (program): Let n = p_1*p_2*…*p_k be the prime factorization of n, with the primes sorted in descending order. Then a(n) = 2^(p_1 - 1)*3^(p_2 - 1)*…*A000040(k)^(p_k - 1).
  • A037020 (program): Numbers whose sum of proper (or aliquot) divisors is a prime.
  • A037027 (program): Skew Fibonacci-Pascal triangle read by rows.
  • A037029 (program): Primes of the form 666*n + 1.
  • A037030 (program): Numbers n such that 666*n + 1 is prime.
  • A037031 (program): Number of combinations of n objects taken pi(n) at a time.
  • A037034 (program): Least k such that 4*n*k-1 is a prime.
  • A037037 (program): Number of primes between n and 3n.
  • A037038 (program): Number of primes between n and 4n+1.
  • A037039 (program): Least k such that 4*n*k+1 is a prime.
  • A037040 (program): Number of odd nonprimes < (2n+1)^2.
  • A037048 (program): Number of pairs {i,j}, i>1, j>1, such that ij < n^2.
  • A037072 (program): Squares which are the sum of twin prime pairs.
  • A037073 (program): Numbers k such that (6*k)^2 is the sum of a twin prime pair.
  • A037074 (program): Numbers that are the product of a pair of twin primes.
  • A037078 (program): In ternary expansion of n, reading from right to left, digits occur in order …,0,1,2,0,1,2,…
  • A037079 (program): In ternary expansion of n, reading from left to right, digits occur in order …,0,1,2,0,1,2,…
  • A037080 (program): In ternary expansion of n, reading from right to left, successive runs of the digits occur in order …,0,1,2,0,1,2,…
  • A037081 (program): In ternary expansion of n, reading from left to right, successive runs of the digits occur in order …,0,1,2,0,1,2,…
  • A037085 (program): Beatty sequence for Pi^2.
  • A037086 (program): Beatty sequence for sqrt(Pi).
  • A037087 (program): Beatty sequence for e^(1/e).
  • A037095 (program): “Sloping binary representation” of powers of 3 (A000244), slope = -1.
  • A037101 (program): Trajectory of 3 under map n->7n+1 if n odd, n->n/2 if n even.
  • A037102 (program): Trajectory of 3 under map n->9n+1 if n odd, n->n/2 if n even.
  • A037103 (program): Trajectory of 3 under map n->11n+1 if n odd, n->n/2 if n even
  • A037104 (program): Trajectory of 3 under map n->13n+1 if n odd, n->n/2 if n even
  • A037105 (program): Trajectory of 3 under map n->15n+1 if n odd, n->n/2 if n even
  • A037106 (program): Trajectory of 3 under map n->17n+1 if n odd, n->n/2 if n even
  • A037107 (program): Trajectory of 3 under map n->19n+1 if n odd, n->n/2 if n even
  • A037108 (program): Trajectory of 3 under map n->21n+1 if n odd, n->n/2 if n even
  • A037109 (program): Trajectory of 3 under map n->23n+1 if n odd, n->n/2 if n even
  • A037110 (program): Trajectory of 3 under map n->25n+1 if n odd, n->n/2 if n even
  • A037111 (program): Trajectory of 3 under map n->27n+1 if n odd, n->n/2 if n even
  • A037112 (program): Trajectory of 3 under map n->29n+1 if n odd, n->n/2 if n even
  • A037113 (program): Trajectory of 3 under map n->31n+1 if n odd, n->n/2 if n even.
  • A037114 (program): Trajectory of 3 under map n->33n+1 if n odd, n->n/2 if n even
  • A037115 (program): Trajectory of 3 under map n->35n+1 if n odd, n->n/2 if n even
  • A037116 (program): Trajectory of 3 under map n->37n+1 if n odd, n->n/2 if n even
  • A037117 (program): Trajectory of 3 under map n->39n+1 if n odd, n->n/2 if n even
  • A037118 (program): Trajectory of 3 under map n->41n+1 if n odd, n->n/2 if n even
  • A037119 (program): Trajectory of 3 under map n->43n+1 if n odd, n->n/2 if n even
  • A037120 (program): Trajectory of 3 under map n->45n+1 if n odd, n->n/2 if n even
  • A037121 (program): Trajectory of 3 under map n -> 47n+1 if n odd, n->n/2 if n even.
  • A037122 (program): Trajectory of 3 under map n->49n+1 if n odd, n->n/2 if n even
  • A037123 (program): a(n) = a(n-1) + sum of digits of n.
  • A037124 (program): Numbers that contain only one nonzero digit.
  • A037125 (program): Irregular triangle: row n is 1, 2, 3, 4, .., prime(n).
  • A037126 (program): Triangle T(n,k) = prime(k) for k = 1..n.
  • A037140 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= 5.
  • A037141 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= -5, with F(-n)=(-1)^(n+1)*F(n);.
  • A037143 (program): Numbers with at most 2 prime factors (counted with multiplicity).
  • A037144 (program): Numbers with at most 3 prime factors (counted with multiplicity).
  • A037145 (program): Expansion of 1/((1-x^2)(1-x^3)…(1-x^6)).
  • A037147 (program): Denominators of Fourier coefficients of Eisenstein series of degree 2 and weight 10 when evaluated at Gram(A_2)*z.
  • A037156 (program): a(n) = 10^n*(10^n+1)/2.
  • A037157 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= 6.
  • A037158 (program): Convolution of natural numbers n >= 1 with Fibonacci numbers F(k), for k >= -7, with F(-n)=(-1)^(n+1)*F(n).
  • A037165 (program): a(n) = prime(n)*prime(n+1) - prime(n) - prime(n+1).
  • A037166 (program): Prime(n)*prime(n+1)-prime(n).
  • A037167 (program): Prime(n)*prime(n+1)-prime(n+1).
  • A037168 (program): a(n) = 2*prime(n) - 2.
  • A037169 (program): a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).
  • A037178 (program): Longest cycle when squaring modulo n-th prime.
  • A037182 (program): a(n) = 10^n*(10^n-1) / 2.
  • A037184 (program): Functional digraphs with 1 node not in the image.
  • A037202 (program): Number of lines in Pratt certificate for n-th prime.
  • A037205 (program): a(n) = (n+1)^n - 1.
  • A037213 (program): Expansion of Sum_{n>=0} n*q^(n^2).
  • A037223 (program): Number of solutions to non-attacking rooks problem on n X n board that are invariant under 180-degree rotation.
  • A037224 (program): Number of permutations p of {1,2,3…,n} that are fixed points under the operation of first reversing p, then taking the inverse.
  • A037225 (program): a(n) = phi(2n+1).
  • A037227 (program): If n = 2^m*k, k odd, then a(n) = 2*m+1.
  • A037228 (program): a(n) = phi(n) - pi(n).
  • A037229 (program): n such that pi(n) >= phi(n).
  • A037235 (program): a(n) = n*(2*n^2 - 3*n + 4)/3.
  • A037236 (program): Expansion of (3+2*x^2)/(1-x)^4.
  • A037237 (program): Expansion of (3 + x^2) / (1 - x)^4.
  • A037238 (program): x -> 5x - 1 if x odd, else x -> x/2.
  • A037239 (program): Numerator of Pi^(2n)/(GAMMA(2n)*(1-2^(-2n))*Zeta(2n)); = 8*(highest power of 2 dividing n).
  • A037240 (program): Molien series for 3-D group X1.
  • A037244 (program): Base 100 expansion of Pi.
  • A037248 (program): a(n) = n^6*(n^2 - 1)*(n^6 - 1).
  • A037250 (program): a(n) = n^2*(n^2 + 1)*(n-1).
  • A037251 (program): a(n) = n^3*(n^3 + 1)*(n-1).
  • A037253 (program): n^12*(n^8+n^4+1)*(n^6-1)*(n^2-1).
  • A037254 (program): Triangle read by rows: T(n,k) (n >= 1, 1 <= k< = n) gives number of non-distorting tie-avoiding integer vote weights.
  • A037255 (program): For n weights, number of combinations when limited to two weights per pan.
  • A037256 (program): a(n) = n!*Sum_{i=0..n-1} (n-i)*(-2)^i/(i+1)!.
  • A037270 (program): a(n) = n^2*(n^2 + 1)/2.
  • A037281 (program): Number of iterations of transformation in A037280 needed to reach 1 or a prime, or -1 if no such number exists.
  • A037301 (program): Numbers whose base-2 and base-3 expansions have the same digit sum.
  • A037308 (program): Numbers whose base-2 and base-10 expansions have the same digit sum.
  • A037314 (program): Numbers whose base-3 and base-9 expansions have the same digit sum.
  • A037315 (program): Numbers whose base-3 and base-10 expansions have the same digit sum.
  • A037341 (program): Numbers whose base-2 and base-7 expansions have no digits in common.
  • A037342 (program): Numbers whose base-2 and base-8 expansions have no digits in common.
  • A037350 (program): Numbers whose base-3 and base-9 expansions have no digits in common.
  • A037445 (program): Number of infinitary divisors (or i-divisors) of n.
  • A037449 (program): Discriminant of quadratic field Q(sqrt(n)).
  • A037450 (program): Numbers which are one less than a perfect square that cannot otherwise be written as a power.
  • A037451 (program): a(n) = Fibonacci(n) * Fibonacci(2*n).
  • A037453 (program): Positive numbers whose base-5 representation contains no 3 or 4.
  • A037454 (program): a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*3^i is the base 3 representation of n.
  • A037455 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
  • A037456 (program): a(n)=Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
  • A037458 (program): a(1)=1; for n > 1, a(n) = n - a(n-floor(sqrt(n))).
  • A037459 (program): Sum{d(i)*5^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037460 (program): a(n) = Sum{d(i)*6^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037461 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037462 (program): a(n) = Sum_{i = 0..m} d(i)*8^i, where Sum_{i = 0..m} d(i)*4^i is the base 4 representation of n.
  • A037463 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037464 (program): Bisection of A076605.
  • A037465 (program): Sum{d(i)*6^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037466 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037467 (program): Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037468 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037470 (program): a(n)=Sum{d(i)*7^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037471 (program): a(n)=Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037472 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037474 (program): a(n) = Sum{d(i)*8^i: i=0,1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
  • A037475 (program): a(n)=Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
  • A037477 (program): a(n) = Sum{d(i)*9^i: i=0,1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
  • A037479 (program): a(n)=Sum{d(i)*10^i: i=0,1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is the base 9 representation of n.
  • A037480 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037481 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037482 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037483 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037484 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037485 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037486 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
  • A037487 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2.
  • A037488 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037489 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037490 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037491 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037492 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037493 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037494 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1.
  • A037495 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1.
  • A037496 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037497 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037498 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037499 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037500 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037501 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037502 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
  • A037503 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,2.
  • A037504 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037505 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037506 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037507 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037508 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037509 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037510 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0.
  • A037511 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,0.
  • A037512 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037513 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037514 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037515 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037516 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037517 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037518 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1.
  • A037519 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,1.
  • A037520 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037521 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 2, 1, 0.
  • A037522 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037523 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037524 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037525 (program): Base-8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037526 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0.
  • A037527 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,0.
  • A037528 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037529 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037530 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037531 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037532 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037533 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037534 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,2.
  • A037535 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,1,2.
  • A037536 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037537 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037538 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037539 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037540 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037541 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037542 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,1.
  • A037543 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,1.
  • A037544 (program): Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037545 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037546 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037547 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037548 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037549 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037550 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,2.
  • A037551 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,2.
  • A037552 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037553 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037554 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037555 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037556 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037557 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037558 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,1.
  • A037559 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,1.
  • A037560 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037561 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037562 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037563 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037564 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037565 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037566 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,2,1.
  • A037567 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,2,1.
  • A037568 (program): Base 3 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037569 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037570 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037571 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037572 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037573 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037574 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,2.
  • A037575 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,2.
  • A037576 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037577 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037578 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037579 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037580 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037581 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
  • A037582 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3.
  • A037583 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037584 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037585 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037586 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037587 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037588 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1.
  • A037589 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1.
  • A037590 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037591 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037592 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037593 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037594 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037595 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037596 (program): Numbers written in base 4 whose digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3.
  • A037597 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037598 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037599 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037600 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037601 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037602 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0.
  • A037603 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,0.
  • A037604 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037605 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037606 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037607 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037608 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037609 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
  • A037610 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3.
  • A037611 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037612 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037613 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037614 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037615 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037616 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2.
  • A037617 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,2.
  • A037618 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037619 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037620 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037621 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037622 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037623 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3.
  • A037624 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,3.
  • A037625 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037626 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037627 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037628 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037629 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037630 (program): Base-9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0.
  • A037631 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,0.
  • A037632 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037633 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037634 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037635 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037636 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037637 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3.
  • A037638 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,3.
  • A037639 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037640 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037641 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037642 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037643 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037644 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1.
  • A037645 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,1.
  • A037646 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037647 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037648 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037649 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037650 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037651 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1.
  • A037652 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,1.
  • A037653 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037654 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037655 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037656 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037657 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037658 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2.
  • A037659 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,2.
  • A037660 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037661 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037662 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037663 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037664 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037665 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0.
  • A037666 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,0.
  • A037667 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037668 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037669 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037670 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037671 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037672 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0.
  • A037673 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,0.
  • A037674 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037675 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037676 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037677 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037678 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037679 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037680 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,2,3.
  • A037681 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037682 (program): Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037683 (program): Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037684 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037685 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037686 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037687 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,0,3,2.
  • A037688 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037689 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037690 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037691 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037692 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037693 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037694 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,0,3.
  • A037695 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037696 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037697 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037698 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037699 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037700 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037701 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2,3,0.
  • A037702 (program): Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037703 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037704 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037705 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037706 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037707 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037708 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,0,2.
  • A037709 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037710 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037711 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037712 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037713 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037714 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037715 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,3,2,0.
  • A037716 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037717 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037718 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037719 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037720 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037721 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037722 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,1,3.
  • A037723 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037724 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037725 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037726 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037727 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037728 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037729 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,0,3,1.
  • A037730 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037731 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037732 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037733 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037734 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037735 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037736 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,0,3.
  • A037737 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037738 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037739 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037740 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037741 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037742 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037743 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,1,3,0.
  • A037744 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037745 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037746 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037747 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037748 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037749 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037750 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,0,1.
  • A037751 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037752 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037753 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037754 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037755 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037756 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037757 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 2,3,1,0.
  • A037758 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037759 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037760 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037761 (program): Base-7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037762 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037763 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037764 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,1,2.
  • A037765 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037766 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037767 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037768 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037769 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037770 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037771 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,0,2,1.
  • A037772 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037773 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037774 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037775 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037776 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037777 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037778 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,0,2.
  • A037779 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037780 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037781 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037782 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037783 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037784 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037785 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,1,2,0.
  • A037786 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037787 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037788 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037789 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037790 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037791 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037792 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,0,1.
  • A037793 (program): Base 4 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037794 (program): Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037795 (program): Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037796 (program): Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037797 (program): Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037798 (program): Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037799 (program): Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 3,2,1,0.
  • A037800 (program): Number of occurrences of 01 in the binary expansion of n.
  • A037801 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
  • A037802 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is base 4 representation of n.
  • A037803 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037804 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037806 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
  • A037808 (program): Number of i such that d(i)<d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
  • A037809 (program): Number of i such that d(i) <= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
  • A037810 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is the base 3 representation of n.
  • A037811 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037812 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037813 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037815 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
  • A037816 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
  • A037817 (program): Number of i such that d(i)<=d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
  • A037818 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*3^i: i=0,1,….,m} is base 3 representation of n.
  • A037819 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*4^i: i=0,1,….,m} is base 4 representation of n.
  • A037820 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*5^i: i=0,1,….,m} is base 5 representation of n.
  • A037821 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*6^i: i=0,1,….,m} is base 6 representation of n.
  • A037822 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*7^i: i=0,1,….,m} is base 7 representation of n.
  • A037823 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*8^i: i=0,1,….,m} is base 8 representation of n.
  • A037824 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*9^i: i=0,1,….,m} is base 9 representation of n.
  • A037825 (program): Number of i such that d(i)>d(i-1), where Sum{d(i)*10^i: i=0,1,….,m} is base 10 representation of n.
  • A037826 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
  • A037827 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*4^i: i=0,1,…,m} is base 4 representation of n.
  • A037828 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*5^i: i=0,1,…,m} is base 5 representation of n.
  • A037829 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*6^i: i=0,1,…,m} is base 6 representation of n.
  • A037831 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*8^i: i=0,1,…,m} is base 8 representation of n.
  • A037832 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
  • A037833 (program): Number of i such that d(i)>=d(i-1), where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
  • A037834 (program): a(n) = Sum_{i=1..m} |d(i) - d(i-1)|, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
  • A037835 (program): Sum{|d(i)-d(i-1)|: i=0,1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
  • A037836 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*4^i: i=0,1,…,m} is the base 4 representation of n.
  • A037837 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037838 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037839 (program): a(n) = Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
  • A037840 (program): a(n)=Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is the base 8 representation of n.
  • A037841 (program): a(n)=Sum{|d(i)-d(i-1)|: i=1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is the base 9 representation of n.
  • A037844 (program): Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
  • A037845 (program): a(n) = Sum_{i=1..m, d(i)<d(i-1)} d(i-1)-d(i), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
  • A037846 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is the base 5 representation of n.
  • A037847 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=0,1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is the base 6 representation of n.
  • A037848 (program): a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is the base 7 representation of n.
  • A037849 (program): a(n) = Sum_{d(i) < d(i-1), i=1..m} (d(i-1) - d(i)), where Sum{d(i)*8^i: i=0,1,…,m} is the base-8 representation of n.
  • A037852 (program): Number of normal subgroups of dihedral group with 2n elements.
  • A037853 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*3^i: i=0,1,…,m} is base 3 representation of n.
  • A037854 (program): Sum_{i=1..m, d(i)>d(i-1)} d(i)-d(i-1), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
  • A037855 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*5^i: i=0,1,…,m} is base 5 representation of n.
  • A037856 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*6^i: i=0,1,…,m} is base 6 representation of n.
  • A037857 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*7^i: i=0,1,…,m} is base 7 representation of n.
  • A037858 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*8^i: i=0,1,…,m} is base 8 representation of n.
  • A037859 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*9^i: i=0,1,…,m} is base 9 representation of n.
  • A037860 (program): Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,…,m}, where Sum{d(i)*10^i: i=0,1,…,m} is base 10 representation of n.
  • A037861 (program): (Number of 0’s) - (number of 1’s) in the base-2 representation of n.
  • A037862 (program): a(n)=(number of digits <=1)-(number of digits >1) in base 3 representation of n.
  • A037863 (program): a(n)=(number of digits <=1)-(number of digits >1) in base 4 representation of n.
  • A037864 (program): a(n)=(number of digits <=2)-(number of digits >2) in base 5 representation of n.
  • A037865 (program): a(n)=(number of digits <=2)-(number of digits >2) in base 6 representation of n.
  • A037866 (program): a(n)=(number of digits <=3)-(number of digits >3) in base 7 representation of n.
  • A037867 (program): a(n)=(number of digits <=3)-(number of digits >3) in base 8 representation of n.
  • A037868 (program): a(n)=(number of digits <=4)-(number of digits >4) in base 9 representation of n.
  • A037869 (program): a(n) = (number of digits <=4)-(number of digits >4) in base 10 representation of n.
  • A037870 (program): a(n) = (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*2^i} is base 2 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037873 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*5^i} is base 5 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037874 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*6^i} is base 6 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037875 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*7^i} is base 7 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037876 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*8^i} is base 8 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037877 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*9^i} is base-9 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037878 (program): (1/2)*Sum{|d(i)-e(i)|}, where Sum{d(i)*10^i} is base 10 representation of n and e(i) are digits d(i) in nonincreasing order, for i=0,1,…,m.
  • A037879 (program): a(n) = (1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*2^i} is the base-2 representation of n and {e(i)} are digits {d(i)} in nondecreasing order.
  • A037882 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*5^i) is the base 5 representation of n and e(i) are the digits d(i) in nondecreasing order.
  • A037883 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*6^i) is the base 6 representation of n and e(i) are the digits d(i) in nondecreasing order.
  • A037884 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*7^i) is the base 7 representation of n and e(i) are the digits d(i) in nondecreasing order.
  • A037885 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*8^i) is the base 8 representation of n and e(i) are the digits d(i) in nondecreasing order.
  • A037887 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*10^i) is the base 10 representation of n and e(i) are the digits d(i) in nondecreasing order.
  • A037888 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*2^i} is base 2 representation of n and e(i) are digits d(i) in reverse order.
  • A037891 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*5^i} is the base 5 representation of n and e(i) are the digits d(i) in reverse order.
  • A037892 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*6^i} is the base 6 representation of n and e(i) are the digits d(i) in reverse order.
  • A037895 (program): a(n)=(1/2)*Sum{|d(i)-e(i)|} where Sum{d(i)*9^i} is the base 9 representation of n and e(i) are the digits d(i) in reverse order.
  • A037896 (program): Primes of the form k^4 + 1.
  • A037897 (program): (Greatest base 3 digit of n)-(least base 3 digit of n).
  • A037898 (program): a(n)=(greatest base 4 digit of n)-(least base 4 digit of n).
  • A037899 (program): a(n)=(greatest base 5 digit of n)-(least base 5 digit of n).
  • A037900 (program): (greatest base 6 digit of n)-(least base 6 digit of n).
  • A037901 (program): a(n)=(greatest base 7 digit of n)-(least base 7 digit of n).
  • A037902 (program): a(n)=(greatest base 8 digit of n)-(least base 8 digit of n).
  • A037904 (program): Greatest digit of n - least digit of n.
  • A037905 (program): a(n) = 9 - (floor(n*Pi) mod 9).
  • A037906 (program): Number of i such that |d(i) - d(i-1)| = 1, where Sum_{i=0..m} d(i)*3^i is the base-3 representation of n.
  • A037915 (program): a(n) = floor((3*n + 4)/4).
  • A037916 (program): Concatenate exponents in prime factorization of n.
  • A037942 (program): Numbers of the form x^2 + y^2 with x >= 0, y >= 0, gcd(x,y)=1, with multiplicity.
  • A037943 (program): Smallest Fibonacci number that has n as a factor, divided by n.
  • A037951 (program): a(n) = binomial(n, floor((n-3)/2)).
  • A037952 (program): a(n) = binomial(n, floor((n-1)/2)).
  • A037953 (program): a(n) = binomial(n, floor((n-5)/2)).
  • A037954 (program): a(n) = binomial(n, floor((n-7)/2)).
  • A037955 (program): a(n) = binomial(n, floor(n/2)-1).
  • A037956 (program): a(n) = binomial(n, floor((n-4)/2)).
  • A037957 (program): a(n) = binomial(n, floor((n-6)/2)).
  • A037958 (program): a(n) = binomial(n, floor((n-8)/2)).
  • A037959 (program): a(n) = n^2*(n+1)*(n+2)!/48.
  • A037960 (program): a(n) = n*(3*n+1)*(n+2)!/24.
  • A037961 (program): a(n) = n^2*(n+1)*(n+3)!/48.
  • A037962 (program): a(n) = n*(15*n^3 + 30*n^2 + 5*n - 2)*(n+4)!/5760.
  • A037963 (program): a(n) = n^2*(n+1)*(3*n^2 + 7*n - 2)*(n+5)!/11520.
  • A037964 (program): a(n) = (1/2)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n,n)).
  • A037965 (program): a(n) = n*binomial(2*n-2, n-1).
  • A037966 (program): a(n) = n^2*binomial(2*n-2, n-1).
  • A037967 (program): a(n) = (binomial(2*n, n)^2 + binomial(2*n, n))/2.
  • A037969 (program): Numbers whose maximal base-2 run length is 2.
  • A037970 (program): Numbers whose maximal base-2 run length is 3.
  • A037971 (program): Numbers whose maximal base-2 run length is 4.
  • A037972 (program): a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2.
  • A037976 (program): a(n) = (1/4)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2).
  • A037980 (program): a(n) = (1/16)*( binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2 ).
  • A037985 (program): Numbers whose maximal base 6 run length is 2.
  • A037988 (program): Critical values in Conway’s game of one-dimensional phutball.
  • A037992 (program): Smallest number with 2^n divisors.
  • A037993 (program): Numbers whose maximal base-8 run length is 2.
  • A038024 (program): Number of k’s such that A002034(k) = n.
  • A038033 (program): a(n) = A000166(n-1)*n*(n-1).
  • A038039 (program): a(n) = Sum_{d|n} (2^d*3^(n/d)).
  • A038040 (program): a(n) = n*d(n), where d(n) = number of divisors of n (A000005).
  • A038048 (program): a(n) = (n-1)! * sigma(n).
  • A038049 (program): Number of labeled rooted trees with 2-colored leaves.
  • A038050 (program): Number of labeled rooted trees with 3-colored leaves.
  • A038051 (program): G.f.: B(x/(1-x)) where B is g.f. of A000169.
  • A038053 (program): Number of labeled planted trees with 2-colored leaves.
  • A038054 (program): Number of labeled trees with 2-colored leaves.
  • A038057 (program): a(n) = 2^n*n^(n-1).
  • A038058 (program): Number of labeled trees with 2-colored nodes.
  • A038061 (program): a(n) = 3^n*n^(n-1).
  • A038062 (program): Number of labeled trees with 3-colored nodes.
  • A038082 (program): Number of n-node rooted identity trees of height at most 3.
  • A038094 (program): Number of rooted graphs on n labeled nodes where the root has degree 2.
  • A038096 (program): Number of rooted graphs on n labeled nodes where the root has degree 3.
  • A038107 (program): Number of primes < n^2.
  • A038108 (program): Number of prime pairs {p,q}, such that pq < n^2.
  • A038109 (program): Divisible exactly by the square of a prime.
  • A038110 (program): Numerator of frequency of integers with smallest divisor prime(n).
  • A038111 (program): Denominator of density of integers with smallest prime factor prime(n).
  • A038112 (program): a(n) = T(2n,n), where T(n,k) is in A037027.
  • A038121 (program): E.g.f.: (1 + 15*x + (45/2)*x^2 + (5/2)*x^3)/(1 - 2*x)^(13/2).
  • A038123 (program): Beatty sequence for Feigenbaum’s constant.
  • A038124 (program): Beatty sequence for Brun’s constant.
  • A038125 (program): a(n) = Sum_{k=0..n} (k-n)^k.
  • A038127 (program): a(n) = floor(n*2^sqrt(2)).
  • A038128 (program): Beatty sequence for Euler’s constant (A001620).
  • A038129 (program): Beatty sequence for cube root of 2.
  • A038130 (program): Beatty sequence for 2*Pi.
  • A038137 (program): Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027.
  • A038138 (program): Order of n (mod 7).
  • A038139 (program): Order of n (mod 9).
  • A038146 (program): Number of n-celled helicenes with peri-fragments.
  • A038149 (program): a(n) = max T(n,k), with T as in A037027.
  • A038151 (program): Bilateral directed animals in first and 8th octants.
  • A038152 (program): Beatty sequence for e^Pi.
  • A038154 (program): a(n) = n! * Sum_{k=0..n-2} 1/k!.
  • A038155 (program): a(n) = (n!/2) * Sum_{k=0..n-2} 1/k!.
  • A038156 (program): a(n) = n! * Sum_{k=1..n-1} 1/k!.
  • A038157 (program): a(n) = n! * Sum_{k=1..n-2} 1/k!.
  • A038158 (program): a(n) = (n!/2)*Sum(1/k!, k=1..n-2).
  • A038159 (program): a(n) = n*a(n-1) + 1, a(0) = 2.
  • A038161 (program): (A038590-1)/6.
  • A038163 (program): G.f.: 1/((1-x)*(1-x^2))^3.
  • A038164 (program): G.f.: 1/((1-x)*(1-x^2))^4.
  • A038165 (program): G.f.: 1/((1-x)*(1-x^2))^5.
  • A038166 (program): G.f.: 1/((1-x)*(1-x^2))^6.
  • A038167 (program): G.f.: x*(1+3*x+x^2)/((1-x^2)^2*(1-x^5)).
  • A038179 (program): Result of second stage of sieve of Eratosthenes (after eliminating multiples of 2 and 3).
  • A038183 (program): One-dimensional cellular automaton ‘sigma-minus’ (Rule 90): 000,001,010,011,100,101,110,111 -> 0,1,0,1,1,0,1,0.
  • A038184 (program): State of one-dimensional cellular automaton ‘sigma’ (Rule 150): 000,001,010,011,100,101,110,111 -> 0,1,1,0,1,0,0,1 at generation n, converted to a decimal number.
  • A038185 (program): One-dimensional cellular automaton ‘sigma’ (Rule 150).
  • A038187 (program): Numbers other than powers of 10 that are coprime to the sum of their digits.
  • A038189 (program): Bit to left of least significant 1-bit in binary expansion of n.
  • A038190 (program): Pagoda sequence: a(0) = b(n)-b(n-2) mod 3, where b(n) = A038189(n).
  • A038191 (program): A034166/2.
  • A038192 (program): Bisection of A001317.
  • A038194 (program): Iterated sum-of-digits of n-th prime; or digital root of n-th prime; or n-th prime modulo 9.
  • A038195 (program): Triangle read by rows: T(n,k) (n >= 2, 0 <= k <= n) = number of over-all crude totals of unbranched k-5-catapolyheptagons.
  • A038196 (program): 3-wave sequence starting with 1, 1, 1.
  • A038199 (program): Row sums of triangle T(m,n) = number of solutions to 1 <= a(1) < a(2) < … < a(m) <= n, where gcd(a(1), a(2), …, a(m), n) = 1, in A020921.
  • A038200 (program): Row sums of triangle K(m, n), inverse to triangle T(m,n) in A020921.
  • A038205 (program): Number of derangements of n where minimal cycle size is at least 3.
  • A038207 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).
  • A038208 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^i.
  • A038210 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*4^j.
  • A038212 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*6^j.
  • A038213 (program): Top line of 3-wave sequence A038196, also bisection of A006356.
  • A038214 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*8^j.
  • A038215 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*9^j.
  • A038216 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*10^j.
  • A038217 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*11^j.
  • A038218 (program): Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j)*12^j (with i, j >= 0).
  • A038220 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*2^j.
  • A038221 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.
  • A038222 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*4^j.
  • A038223 (program): Bottom line of 3-wave sequence A038196, also bisection of A006356.
  • A038224 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*6^j.
  • A038225 (program): Top line of 4-wave sequence A038197, also bisection of A006357.
  • A038226 (program): Triangle read by rows: (i,j)-th entry is binomial(i,j)*3^(i-j)*8^j.
  • A038227 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*9^j.
  • A038228 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*10^j.
  • A038229 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*11^j.
  • A038230 (program): Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*12^j.
  • A038231 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).
  • A038232 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*2^j.
  • A038233 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*3^j.
  • A038234 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*4^j.
  • A038235 (program): Bottom line of 4-wave sequence A038197, also bisection of A006357.
  • A038236 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*6^j.
  • A038237 (program): Second line of 4-wave sequence A038197.
  • A038238 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*8^j.
  • A038239 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*9^j.
  • A038240 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*10^j.
  • A038241 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*11^j.
  • A038242 (program): Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j)*12^j.
  • A038243 (program): Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
  • A038244 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*2^j.
  • A038245 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*3^j.
  • A038246 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*4^j.
  • A038247 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*5^j.
  • A038248 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*6^j.
  • A038249 (program): Third line of 4-wave sequence A038197.
  • A038250 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*8^j.
  • A038251 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*9^j.
  • A038252 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*10^j.
  • A038253 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*11^j.
  • A038254 (program): Triangle whose (i,j)-th entry is binomial(i,j)*5^(i-j)*12^j.
  • A038255 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).
  • A038256 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*2^j.
  • A038257 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*3^j.
  • A038258 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*4^j.
  • A038259 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*5^j.
  • A038260 (program): Triangle read by rows: T(n,k) = binomial(n,k)*6^(n-k)*6^k, 0<=k<=n.
  • A038261 (program): First line of 5-wave sequence A038201, also bisection of A006358.
  • A038262 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*8^j.
  • A038263 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*9^j.
  • A038264 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*10^j.
  • A038265 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*11^j.
  • A038266 (program): Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*12^j.
  • A038268 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*2^j.
  • A038269 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*3^j.
  • A038270 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*4^j.
  • A038271 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*5^j.
  • A038272 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*6^j.
  • A038273 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*7^j.
  • A038274 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*8^j.
  • A038275 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*9^j.
  • A038276 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*10^j.
  • A038277 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*11^j.
  • A038278 (program): Triangle whose (i,j)-th entry is binomial(i,j)*7^(i-j)*12^j.
  • A038279 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*1^j.
  • A038280 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*2^j.
  • A038281 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*3^j.
  • A038282 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*4^j.
  • A038283 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*5^j.
  • A038284 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*6^j.
  • A038285 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*7^j.
  • A038286 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*8^j.
  • A038287 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*9^j.
  • A038288 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*10^j.
  • A038289 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*11^j.
  • A038290 (program): Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*12^j.
  • A038291 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*1^j.
  • A038292 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*2^j.
  • A038293 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*3^j.
  • A038294 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*4^j.
  • A038295 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*5^j.
  • A038296 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*6^j.
  • A038297 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*7^j.
  • A038298 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*8^j.
  • A038299 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*9^j.
  • A038300 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*10^j.
  • A038301 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*11^j.
  • A038302 (program): Triangle whose (i,j)-th entry is binomial(i,j)*9^(i-j)*12^j.
  • A038303 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*1^j.
  • A038304 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*2^j.
  • A038305 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*3^j.
  • A038306 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*4^j.
  • A038307 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*5^j.
  • A038308 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*6^j.
  • A038309 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*7^j.
  • A038310 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*8^j.
  • A038311 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*9^j.
  • A038312 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*10^j.
  • A038313 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*11^j.
  • A038314 (program): Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*12^j.
  • A038315 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*1^j.
  • A038316 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*2^j.
  • A038317 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*3^j.
  • A038318 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*4^j.
  • A038319 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*5^j.
  • A038320 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*6^j.
  • A038321 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*7^j.
  • A038322 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*8^j.
  • A038323 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*9^j.
  • A038324 (program): Triangle read by rows whose (i,j)-th entry is binomial(i,j)*11^(i-j)*10^j.
  • A038325 (program): Triangle read by rows whose (i,j)-th entry is binomial(i,j)*11^(i-j)*11^j.
  • A038326 (program): Triangle whose (i,j)-th entry is binomial(i,j)*11^(i-j)*12^j.
  • A038327 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*1^j.
  • A038328 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*2^j.
  • A038329 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*3^j.
  • A038330 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*4^j.
  • A038331 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*5^j.
  • A038332 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*6^j.
  • A038333 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*7^j.
  • A038334 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*8^j.
  • A038335 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*9^j.
  • A038336 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*10^j.
  • A038337 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*11^j.
  • A038338 (program): Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*12^j.
  • A038339 (program): Bottom line of 5-wave sequence A038201, also bisection of A006358.
  • A038342 (program): G.f.: 1/(1 - 3 x - 3 x^2 + 4 x^3 + x^4 - x^5).
  • A038346 (program): Sum of first n primes of form 4k+1.
  • A038347 (program): Sum of first n primes of form 4k-1.
  • A038348 (program): Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).
  • A038349 (program): Partial sums of primes congruent to 1 mod 6.
  • A038350 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 4’s.
  • A038352 (program): Numbers whose base-6 representation has the same nonzero number of 2’s and 3’s.
  • A038353 (program): Numbers whose base-6 representation has the same nonzero number of 2’s and 4’s.
  • A038355 (program): Numbers whose base-6 representation has the same nonzero number of 3’s and 4’s.
  • A038360 (program): Ranks of certain relations among Euler sums of weight n.
  • A038361 (program): Partial sums of primes congruent to 5 mod 6.
  • A038364 (program): Numbers n such that n = (product of digits of n) + (sum of digits of n).
  • A038374 (program): Length of longest contiguous block of 1’s in binary expansion of n.
  • A038376 (program): a(n) = (n-3)*A006918(n)/2.
  • A038377 (program): Number of odd nonprimes <= (2n+1)^2.
  • A038378 (program): Integers which have more distinct digits than any smaller number.
  • A038387 (program): a(n) is the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and a(n) are both integers.
  • A038388 (program): Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives G values.
  • A038389 (program): Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives A values.
  • A038390 (program): Bisection of A028289.
  • A038391 (program): Expansion of (x^3+2*x+1) / ((x-1)^4*(x^2+x+1)^2).
  • A038395 (program): Concatenation of the first n odd numbers in reverse order.
  • A038396 (program): Concatenate first n even numbers in reverse order.
  • A038397 (program): Concatenate first n squares in reverse order.
  • A038398 (program): Concatenate first n cubes in reverse order.
  • A038408 (program): Coordination sequence for Zeolite Code DFT.
  • A038444 (program): Sums of 2 distinct powers of 10.
  • A038446 (program): Sums of 4 distinct powers of 10.
  • A038447 (program): Sums of 5 distinct powers of 10.
  • A038448 (program): Sums of 6 distinct powers of 10.
  • A038449 (program): Sums of 7 distinct powers of 10.
  • A038450 (program): Sums of 8 distinct powers of 10.
  • A038453 (program): Sums of 11 distinct powers of 10.
  • A038454 (program): Sums of 12 distinct powers of 10.
  • A038457 (program): |First digit-last digit| for triangular numbers.
  • A038459 (program): A sequence for measuring seconds: read it aloud.
  • A038461 (program): Sums of 10 distinct powers of 2.
  • A038462 (program): Sums of 11 distinct powers of 2.
  • A038463 (program): Sums of 12 distinct powers of 2.
  • A038464 (program): Sums of 2 distinct powers of 3.
  • A038465 (program): Sums of 3 distinct powers of 3.
  • A038466 (program): Sums of 4 distinct powers of 3.
  • A038467 (program): Sums of 5 distinct powers of 3.
  • A038468 (program): Sums of 6 distinct powers of 3.
  • A038469 (program): Sums of 7 distinct powers of 3.
  • A038470 (program): Sums of 2 distinct powers of 4.
  • A038471 (program): Sums of 3 distinct powers of 4.
  • A038472 (program): Sums of 4 distinct powers of 4.
  • A038473 (program): Sums of 5 distinct powers of 4.
  • A038474 (program): Sums of two distinct powers of 5.
  • A038475 (program): Sums of 3 distinct powers of 5.
  • A038476 (program): Sums of 4 distinct powers of 5.
  • A038477 (program): Sums of 5 distinct powers of 5.
  • A038478 (program): Sums of 2 distinct powers of 6.
  • A038479 (program): Sums of 3 distinct powers of 6.
  • A038480 (program): Sums of 4 distinct powers of 6.
  • A038481 (program): Sums of 2 distinct powers of 7.
  • A038482 (program): Sums of 3 distinct powers of 7.
  • A038483 (program): Sums of 4 distinct powers of 7.
  • A038484 (program): Sums of 2 distinct powers of 8.
  • A038485 (program): Sums of 3 distinct powers of 8.
  • A038486 (program): Sums of 4 distinct powers of 8.
  • A038487 (program): Sums of two distinct powers of 9.
  • A038488 (program): Sums of 3 distinct powers of 9.
  • A038489 (program): Sums of 4 distinct powers of 9.
  • A038490 (program): Sums of 2 distinct powers of 11.
  • A038491 (program): Sums of 3 distinct powers of 11.
  • A038492 (program): Sums of 2 distinct powers of 12.
  • A038493 (program): Sums of 3 distinct powers of 12.
  • A038500 (program): Highest power of 3 dividing n.
  • A038502 (program): Remove 3’s from n.
  • A038503 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at “n choose 0”.
  • A038504 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at “n choose 1”.
  • A038505 (program): Sum of every 4th entry of row n in Pascal’s triangle, starting at binomial(n,2).
  • A038506 (program): Floor of decimal expansion of n read as if it were “base e”.
  • A038507 (program): a(n) = n! + 1.
  • A038508 (program): Expansion of (1-2*x-x^2)/((1-2*x)*(1-2*x+2*x^2)).
  • A038509 (program): Composite numbers congruent to +-1 mod 6.
  • A038510 (program): Composite numbers with smallest prime factor >= 7.
  • A038511 (program): Composite numbers with smallest prime factor >= 11.
  • A038512 (program): Nonprime numbers with smallest prime factor >= 13.
  • A038513 (program): Numbers with three not necessarily distinct prime factors with smallest prime >=5.
  • A038518 (program): Number of elements of GF(2^n) with trace 0 and subtrace 0.
  • A038519 (program): Number of elements of GF(2^n) with trace 0 and subtrace 1.
  • A038520 (program): Number of elements of GF(2^n) with trace 1 and subtrace 0.
  • A038521 (program): Number of elements of GF(2^n) with trace 1 and subtrace 1.
  • A038529 (program): n-th prime - n-th composite.
  • A038530 (program): Concatenate n-th prime and n-th composite.
  • A038533 (program): Denominator of coefficients of both EllipticK/Pi and EllipticE/Pi.
  • A038534 (program): Numerators of coefficients of EllipticK/Pi.
  • A038535 (program): Numerators of coefficients of EllipticE/Pi.
  • A038536 (program): Odd values of n > 1 for which there are n-hyperperfect numbers.
  • A038538 (program): Number of semisimple rings with n elements.
  • A038544 (program): a(n) = Sum_{i=0..10^n} i^3.
  • A038548 (program): Number of divisors of n that are at most sqrt(n).
  • A038550 (program): Products of an odd prime and a power of two (sorted).
  • A038554 (program): Derivative of n: write n in binary, replace each pair of adjacent bits with their mod 2 sum (a(0)=a(1)=0 by convention). Also n XOR (n shift 1).
  • A038555 (program): Derivative of n in base 3.
  • A038556 (program): Periodic derivative of n.
  • A038558 (program): Smallest number with derivative n.
  • A038559 (program): a(n) = 2*A040027(n-1) + Bell(n), where Bell = A000110.
  • A038560 (program): Binomial recurrence coefficients.
  • A038561 (program): Left-hand border of triangle A046937.
  • A038566 (program): Numerators in canonical bijection from positive integers to positive rationals <= 1: arrange fractions by increasing denominator then by increasing numerator.
  • A038567 (program): Denominators in canonical bijection from positive integers to positive rationals <= 1.
  • A038570 (program): Second derivative of n.
  • A038571 (program): Number of times n must be differentiated to reach 0.
  • A038572 (program): a(n) = n rotated one binary place to the right.
  • A038573 (program): a(n) = 2^A000120(n) - 1.
  • A038574 (program): Write n in ternary, sort digits into increasing order.
  • A038576 (program): CONTINUANT transform of {phi(n)}, 1, 1, 2, 2, 4, 2, .. (A002088).
  • A038577 (program): Number of self-avoiding walks of length n from origin in strip Z X {0,1}.
  • A038580 (program): Primes with indices that are primes with prime indices.
  • A038585 (program): Write n in binary, delete 0’s.
  • A038586 (program): Write n in ternary then sort the digits.
  • A038587 (program): Sizes of successive clusters in hexagonal lattice A_2 centered at deep hole.
  • A038589 (program): Sizes of successive clusters in hexagonal lattice A_2 centered at lattice point.
  • A038590 (program): Sizes of clusters in hexagonal lattice A_2 centered at lattice point.
  • A038599 (program): Numbers k such that k^3 - 2 is prime.
  • A038600 (program): Primes of the form n^3 - 2.
  • A038602 (program): One half of convolution of central binomial coefficients A000984(n) with A000984(n+2), n >= 0.
  • A038603 (program): Primes not containing the digit ‘1’.
  • A038604 (program): Primes not containing the digit ‘2’.
  • A038605 (program): a(n) = floor( prime(n)/n ).
  • A038608 (program): a(n) = n*(-1)^n.
  • A038609 (program): Numbers that are the sum of 2 different primes.
  • A038610 (program): Least common multiple of integers less than and prime to n.
  • A038611 (program): Primes not containing the digit ‘3’.
  • A038612 (program): Primes not containing the digit ‘4’.
  • A038613 (program): Primes not containing the digit ‘5’.
  • A038614 (program): Primes not containing the digit ‘6’.
  • A038615 (program): Primes not containing the digit ‘7’.
  • A038616 (program): Primes not containing digit ‘8’.
  • A038617 (program): Primes not containing the digit ‘9’.
  • A038618 (program): Primes not containing the decimal digit 0, a.k.a. zeroless or zerofree primes.
  • A038622 (program): Triangular array that counts rooted polyominoes.
  • A038629 (program): Convolution of Catalan numbers A000108 with Catalan numbers but C(0)=1 replaced by 3.
  • A038663 (program): [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +…, F_n=Fibonacci numbers.
  • A038665 (program): Convolution of A007054 (super ballot numbers) with A000984 (central binomial coefficients).
  • A038668 (program): a(n)=[ n/3 ] + [ n/4 ] + [ n/7 ] + [ n/11 ] + [ n/18 ] + [ n/29 ] + [ n/47 ] + [ n/76 ] + [ n/123 ] + [ n/199 ]… (using Lucas numbers A000204).
  • A038669 (program): [ n/2 ]+[ n/3 ]+[ n/4 ]+[ n/7 ]+[ n/11 ]+[ n/18 ]+[ n/29 ]+[ n/47 ]+[ n/76 ]+[ n/123 ]+[ n/199 ]+… (using Lucas numbers A000032).
  • A038671 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x5^2 = n.
  • A038674 (program): A finite series from the lyrics of La Farolera, a Latin American traditional children’s song.
  • A038675 (program): Triangle read by rows: T(n,k)=A(n,k)*binomial(n+k-1,n), where A(n,k) are the Eulerian numbers (A008292).
  • A038679 (program): Convolution of A007054 (Super ballot numbers) with A000302 (powers of 4).
  • A038683 (program): Seventh powers ending nontrivially in a nonzero seventh power.
  • A038685 (program): Ninth powers ending nontrivially in a nonzero ninth power.
  • A038686 (program): Tenth powers ending nontrivially in a nonzero tenth power.
  • A038687 (program): Concatenate i >= 1 and j >= 1, then sort.
  • A038694 (program): Smallest odd number with n prime factors all of different number of decimal digits.
  • A038697 (program): Convolution of A000917 with A000984 (central binomial coefficients).
  • A038698 (program): Surfeit of 4k-1 primes over 4k+1 primes, beginning with prime 2.
  • A038699 (program): Smallest prime of form n*2^m-1, m >= 0, or 0 if no such prime exists.
  • A038700 (program): Smallest prime == -1 (mod n).
  • A038702 (program): Prime(n)^2 mod prime(n-1).
  • A038707 (program): a(n) = floor(n*(n+1/2)/2).
  • A038709 (program): a(n) = floor(n*(n+1/2)/4).
  • A038712 (program): Let k be the exponent of highest power of 2 dividing n (A007814); a(n) = 2^(k+1)-1.
  • A038713 (program): a(n) = n XOR (n-1), i.e., nim-sum of sequential pairs, written in binary.
  • A038714 (program): Pronic numbers repeated 4 times; a(n) = floor(n/4) * ceiling((n+1)/4).
  • A038715 (program): a(n) = floor(n/4)*ceiling((n+2)/4).
  • A038716 (program): a(n) = floor(n/4)*ceiling((n+3)/4).
  • A038718 (program): Number of permutations P of {1,2,…,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,…,n-1.
  • A038719 (program): Triangle T(n,k) (0 <= k <= n) giving number of chains of length k in partially ordered set formed from subsets of n-set by inclusion.
  • A038720 (program): a(n) = (n+3)*n!/2.
  • A038721 (program): k=2 column of A038719.
  • A038722 (program): Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,2,3,4,… .
  • A038723 (program): a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=4.
  • A038725 (program): a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=2.
  • A038730 (program): Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i).
  • A038731 (program): Number of columns in all directed column-convex polyominoes of area n+1.
  • A038732 (program): T(n,n-3), array T as in A038730.
  • A038733 (program): T(n,n-4), array T as in A038730.
  • A038734 (program): T(n,n-5), array T as in A038730.
  • A038735 (program): T(n,n-6), array T as in A038730.
  • A038736 (program): T(3*n + 1, n + 1), array T as in A038792.
  • A038737 (program): T(n,n-2), array T as in A038792.
  • A038738 (program): Path-counting array T(i,j) obtained from array t in A038792 by T(i,j)=t(2i+1,j).
  • A038739 (program): T(n,n-2), array T as in A038738.
  • A038740 (program): T(n,n-3), array T as in A038738.
  • A038741 (program): T(n,n-4), array T as in A038738.
  • A038742 (program): T(n,n-5), array T as in A038738.
  • A038743 (program): T(n,n-6), array T as in A038738.
  • A038744 (program): T(2n,n), array T as in A038738.
  • A038753 (program): Nonprime partition numbers.
  • A038754 (program): a(2n) = 3^n, a(2n+1) = 2*3^n.
  • A038758 (program): Number of ways of covering a 2n X 2n lattice by 2n^2 dominoes with exactly 4 horizontal (or vertical) dominoes.
  • A038759 (program): a(n) = ceiling(sqrt(n))*floor(sqrt(n)).
  • A038760 (program): a(n) = n - floor(sqrt(n)) * ceiling(sqrt(n)).
  • A038761 (program): a(n) = 6*a(n-1)-a(n-2), n >= 2, a(0)=1, a(1)=9.
  • A038762 (program): a(n) = 6*a(n-1) - a(n-2) for n >= 2, with a(0)=3, a(1)=13.
  • A038763 (program): Triangular matrix arising in enumeration of catafusenes, read by rows.
  • A038764 (program): a(n) = (9*n^2 + 3*n + 2)/2.
  • A038765 (program): Next-to-last diagonal of A024462.
  • A038779 (program): An intermediate sequence for nonisomorphic circulant directed p^2-graphs, indexed by odd primes p.
  • A038780 (program): An intermediate sequence for counting nonisomorphic circulant directed p^2-graphs, indexed by odd primes p.
  • A038783 (program): An intermediate sequence for nonisomorphic circulant undirected p^2-graphs, indexed by odd primes p.
  • A038784 (program): An intermediate sequence for nonisomorphic circulant undirected p^2-graphs, indexed by odd primes p.
  • A038788 (program): Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.
  • A038791 (program): An intermediate sequence for nonisomorphic circulant p^2-tournaments, indexed by odd primes p.
  • A038792 (program): Rectangular array defined by T(i,1) = T(1,j) = 1 for i >= 1 and j >= 1; T(i,j) = max(T(i-1,j) + T(i-1,j-1), T(i-1,j-1) + T(i,j-1)) for i >= 2, j >= 2, read by antidiagonals.
  • A038793 (program): T(n,n-3), array T as in A038792.
  • A038794 (program): T(n,n-4), array T as in A038792.
  • A038795 (program): T(n,n-5), array T as in A038792.
  • A038796 (program): T(n,n-6), array T as in A038792.
  • A038797 (program): T(n+4,n), array T as in A038792.
  • A038798 (program): T(2n+5,n), array T as in A038792.
  • A038799 (program): T(2n+6,n), array T as in A038792.
  • A038800 (program): Number of primes between 10n and 10n+9.
  • A038801 (program): Number of primes less than 10n.
  • A038802 (program): Factor 2n+1 = (2^m1)*(3^m2)*(5^m3)*…; a(n) = number of initial zero exponents.
  • A038806 (program): Convolution of A008549 with A000302 (powers of 4).
  • A038809 (program): a(n) is the number of ways to write n in bases 2-10 such that the digit k-1 appears in the representation in base k.
  • A038812 (program): Number of primes less than 1000n.
  • A038822 (program): Number of primes between 100n and 100n+99.
  • A038835 (program): Partial sums of A008443.
  • A038836 (program): Convolution of Catalan numbers {1,2,5,14,…} with A002802 (5-fold convoluted central binomial coefficients).
  • A038838 (program): Numbers that are divisible by the square of an odd prime.
  • A038845 (program): 3-fold convolution of A000302 (powers of 4).
  • A038846 (program): 4-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^4.
  • A038865 (program): (n+3)^3 - n^3.
  • A038866 (program): (n+4)^3 - n^3.
  • A038867 (program): (n+5)^3 - n^3.
  • A038869 (program): Primes p such that both p-2 and 2p-1 are prime.
  • A038872 (program): Primes congruent to {0, 1, 4} mod 5.
  • A038873 (program): Primes p such that 2 is a square mod p; or, primes congruent to {1, 2, 7} mod 8.
  • A038874 (program): Primes p such that 3 is a square mod p.
  • A038875 (program): Primes p with legendre(3,p) = -1.
  • A038876 (program): Primes p such that 6 is a square mod p.
  • A038877 (program): Primes p such that 6 is not a square mod p.
  • A038893 (program): Odd primes p such that 21 is a square mod p.
  • A038901 (program): Primes p such that 29 is a square mod p.
  • A038902 (program): Primes p such that 29 is not a square mod p.
  • A038920 (program): Primes p such that 41 is not a square mod p.
  • A038989 (program): Expansion of (1 - x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
  • A038990 (program): Expansion of (1-x-x^2+2*x^3) / ((1-x)*(1+x)*(1-3*x+x^2)).
  • A038991 (program): Number of sublattices of index n in generic 4-dimensional lattice.
  • A038992 (program): Sublattices of index n in generic 5-dimensional lattice.
  • A038993 (program): Sublattices of index n in generic 6-dimensional lattice.
  • A039000 (program): Numbers whose base-3 representation has the same number of 0’s and 1’s.
  • A039001 (program): Numbers whose base-3 representation has the same number of 1’s and 2’s.
  • A039004 (program): Numbers whose base-4 representation has the same number of 1’s and 2’s.
  • A039006 (program): Numbers whose base-4 representation has the same number of 2’s and 3’s.
  • A039007 (program): Numbers whose base-5 representation has the same number of 0’s and 1’s.
  • A039008 (program): Numbers whose base-5 representation has the same number of 0’s and 2’s.
  • A039009 (program): Numbers whose base-5 representation has the same number of 0’s and 3’s.
  • A039010 (program): Numbers whose base-5 representation has the same number of 1’s and 2’s.
  • A039011 (program): Numbers whose base-5 representation has the same number of 1’s and 3’s.
  • A039012 (program): Numbers whose base-5 representation has the same number of 1’s and 4’s.
  • A039013 (program): Numbers whose base-5 representation has the same number of 2’s and 3’s.
  • A039014 (program): Numbers whose base-5 representation has the same number of 2’s and 4’s.
  • A039015 (program): Numbers whose base-5 representation has the same number of 3’s and 4’s.
  • A039016 (program): Numbers whose base-6 representation has the same number of 0’s and 1’s.
  • A039020 (program): Numbers whose base-6 representation has the same number of 1’s and 2’s.
  • A039021 (program): Numbers whose base-6 representation has the same number of 1’s and 3’s.
  • A039022 (program): Numbers whose base-6 representation has the same number of 1’s and 4’s.
  • A039024 (program): Numbers whose base-6 representation has the same number of 2’s and 3’s.
  • A039025 (program): Numbers whose base-6 representation has the same number of 2’s and 4’s.
  • A039027 (program): Numbers whose base-6 representation has the same number of 3’s and 4’s.
  • A039112 (program): Numbers whose base-10 representation has the same number of 0’s and 1’s.
  • A039156 (program): Numbers whose base-11 representation has the same number of 0’s and 1’s.
  • A039163 (program): Numbers whose base-11 representation has the same number of 0’s and 8’s.
  • A039164 (program): Numbers whose base-11 representation has the same number of 0’s and 9’s.
  • A039206 (program): Numbers whose base-11 representation has the same number of 7’s and 10’s.
  • A039207 (program): Numbers whose base-11 representation has the same number of 8’s and 9’s.
  • A039208 (program): Numbers whose base-11 representation has the same number of 8’s and 10’s.
  • A039209 (program): Numbers whose base-11 representation has the same number of 9’s and 10’s.
  • A039210 (program): Numbers whose base-12 representation has the same number of 0’s and 1’s.
  • A039218 (program): Numbers whose base-12 representation has the same number of 0’s and 9’s.
  • A039265 (program): Numbers whose base-12 representation has the same number of 7’s and 8’s.
  • A039267 (program): Numbers whose base-12 representation has the same number of 7’s and 10’s.
  • A039269 (program): Numbers whose base-12 representation has the same number of 8’s and 9’s.
  • A039271 (program): Numbers whose base-12 representation has the same number of 8’s and 11’s.
  • A039272 (program): Numbers whose base-12 representation has the same number of 9’s and 10’s.
  • A039274 (program): Numbers whose base-12 representation has the same number of 10’s and 11’s.
  • A039276 (program): Numbers whose base-3 representation has the same nonzero number of 0’s and 2’s.
  • A039277 (program): Numbers whose base-4 representation has the same nonzero number of 0’s and 1’s.
  • A039280 (program): Numbers whose base-4 representation has the same nonzero number of 1’s and 2’s.
  • A039283 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 1’s.
  • A039284 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 2’s.
  • A039285 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 3’s.
  • A039286 (program): Numbers whose base-5 representation has the same nonzero number of 0’s and 4’s.
  • A039287 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 2’s.
  • A039288 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 3’s.
  • A039289 (program): Numbers whose base-5 representation has the same nonzero number of 1’s and 4’s.
  • A039290 (program): Numbers whose base-5 representation has the same nonzero number of 2’s and 3’s.
  • A039291 (program): Numbers whose base-5 representation has the same nonzero number of 2’s and 4’s.
  • A039292 (program): Numbers whose base-5 representation has the same nonzero number of 3’s and 4’s.
  • A039297 (program): Numbers whose base-6 representation has the same nonzero number of 0’s and 5’s.
  • A039298 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 2’s.
  • A039299 (program): Numbers whose base-6 representation has the same nonzero number of 1’s and 3’s.
  • A039300 (program): Number of distinct quadratic residues mod 3^n.
  • A039301 (program): Number of distinct quadratic residues mod 4^n.
  • A039302 (program): Number of distinct quadratic residues mod 5^n.
  • A039304 (program): Number of distinct quadratic residues mod 7^n.
  • A039305 (program): Number of distinct quadratic residues mod 8^n.
  • A039306 (program): Number of distinct quadratic residues mod 9^n.
  • A039307 (program): Numbers whose base-6 representation has the same nonzero number of 4’s and 5’s.
  • A039564 (program): Numbers whose base-5 representation has the same number of 0’s, 1’s and 3’s.
  • A039569 (program): Numbers whose base-5 representation has the same number of 1’s, 2’s and 3’s.
  • A039571 (program): Numbers whose base-5 representation has the same number of 1’s, 3’s and 4’s.
  • A039592 (program): Numbers whose base-6 representation has the same number of 3’s, 4’s and 5’s.
  • A039593 (program): Number of unitary divisors of central binomial coefficients.
  • A039597 (program): Triangle read by rows: T(n,k) = number of 2 X inf arrays [ n, n1, n2, …; k, k1, k2,… ] with n>=n1>n2>…>=0, k>=k1>k2…>=0, n>k, n1>k1, …; n >= 1, k >= 0. Note that once ni or ki = 0, the strict inequalities become equalities (constant 0 thereafter).
  • A039598 (program): Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan’s triangle.
  • A039599 (program): Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
  • A039619 (program): Second column of Jabotinsky-triangle A038455 related to A006963.
  • A039623 (program): a(n) = n^2*(n^2+3)/4.
  • A039634 (program): Fixed point of “n -> n/2 or (n-1)/2 until result is prime”.
  • A039635 (program): Fixed point of “n -> n/2 or (n+1)/2 until result is prime”.
  • A039636 (program): Number of steps to fixed point of “n -> n/2 or (n-1)/2 until result is prime”.
  • A039637 (program): Number of steps to fixed point of “n -> n/2 or (n+1)/2 until result is prime”.
  • A039638 (program): Fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)-1.
  • A039639 (program): Fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)+1.
  • A039640 (program): Fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)-1.
  • A039641 (program): Fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)+1.
  • A039642 (program): Number of steps to fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)-1.
  • A039643 (program): Number of steps to fixed point of “k -> k/2 or (k-1)/2 until result is prime”, starting with prime(n)+1.
  • A039644 (program): Number of steps to fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)-1.
  • A039645 (program): Number of steps to fixed point of “k -> k/2 or (k+1)/2 until result is prime”, starting with prime(n)+1.
  • A039647 (program): Related to A000032 (Lucas numbers): (n-1)!*L(n).
  • A039649 (program): a(n) = phi(n)+1.
  • A039650 (program): Prime reached by iterating f(x) = phi(x)+1 on n.
  • A039651 (program): Number of iterations of f(x) = phi(x)+1 on n required to reach a prime.
  • A039653 (program): a(0) = 0; for n > 0, a(n) = sigma(n)-1.
  • A039654 (program): a(n) = prime reached by iterating f(x) = sigma(x)-1 starting at n, or -1 if no prime is ever reached.
  • A039658 (program): Related to enumeration of edge-rooted catafusenes.
  • A039660 (program): Related to enumeration of edge-rooted catafusenes.
  • A039685 (program): Numbers m such that m^2 ends in 444.
  • A039689 (program): Numbers k such that phi(k) + 1 is not a prime.
  • A039696 (program): If n = Product (p_j^k_j) then a(n) = Product (p_j) + Product (k_j).
  • A039697 (program): a(n) = Sum(p_j) * Sum(k_j) where n = Product(p_j^k_j).
  • A039698 (program): Numbers k such that phi(k) + 1 is prime.
  • A039701 (program): a(n) = n-th prime modulo 3.
  • A039702 (program): a(n) = n-th prime modulo 4.
  • A039703 (program): a(n) = n-th prime modulo 5.
  • A039704 (program): a(n) = n-th prime modulo 6.
  • A039705 (program): a(n) = n-th prime modulo 7.
  • A039706 (program): a(n) = n-th prime modulo 8.
  • A039708 (program): a(n) = min{m: Sum_{x=0..m} binomial(n,x) >= 0.95*2^n}.
  • A039709 (program): a(n) = n-th prime modulo 11.
  • A039710 (program): a(n) = n-th prime modulo 12.
  • A039711 (program): Primes mod 13.
  • A039712 (program): a(n) = n-th prime modulo 14.
  • A039713 (program): a(n) = n-th prime modulo 15.
  • A039714 (program): a(n) = n-th prime modulo 16.
  • A039715 (program): Primes modulo 17.
  • A039716 (program): a(n) = prime(n)!.
  • A039717 (program): Row sums of convolution triangle A030523.
  • A039720 (program): Period of n-countdown club-passing juggling pattern.
  • A039721 (program): a(1) = 1, a(m+1) = 2*Sum_{k=1..floor((m+1)/2)} a(m+1-k).
  • A039722 (program): a(1) = 1, a(m+1) = 2*Sum_{k=1..floor((m+1)/2)} a(k).
  • A039724 (program): a(n) is the negabinary expansion of n, that is, the expansion of n in base -2.
  • A039725 (program): Even abundant numbers divided by 2.
  • A039727 (program): [ Even numbers in the sequence generated by b(n)=|b(n-1)+2b(n-2)-n| ], divided by 2.
  • A039731 (program): a(n)=MAX{p(n) mod q, where prime q < p(n)=n-th prime}.
  • A039732 (program): a(n)=(1/2)*s(n+1), s=A039731.
  • A039733 (program): a(n)=k such that prime(k) is the prime q<prime(n) for which (prime(n) mod q) is maximal.
  • A039734 (program): a(n)=the prime q<prime(n) for which (prime(n) mod q) is maximal.
  • A039736 (program): a(n) = number of primes q<p having (p mod q) = 2, where p = n-th prime.
  • A039737 (program): a(n)=number of primes q<p having (p mod q)=3, where p=n-th prime.
  • A039739 (program): a(n)=2*q-prime(n), where q is the prime < p(n) for which (prime(n) mod q) is maximal.
  • A039745 (program): Diameter of symmetric group S_n when generated by (1,2) and (1,2,3,…,n).
  • A039746 (program): Row sums of triangle A049375.
  • A039769 (program): Composite integers k such that gcd(phi(k), k - 1) > 1.
  • A039770 (program): Numbers k such that phi(k) is a perfect square.
  • A039772 (program): Even numbers k such that phi(k) and k-1 are distinct and have a common factor > 1.
  • A039787 (program): Primes p such that p-1 is squarefree.
  • A039790 (program): Prime numbers prefixed with a ‘1’.
  • A039819 (program): Number of divisors of n-th refactorable number (A033950(n)).
  • A039823 (program): a(n) = ceiling( (n^2 + n + 2)/4 ).
  • A039824 (program): Number of different coefficient values in expansion of Product (1+q^1+q^3…+q^(2i-1)), i=1 to n.
  • A039825 (program): a(n) = floor((n^2 + n + 8) / 4).
  • A039827 (program): Number of different coefficient values in expansion of Product (1+q^i+q^(2i)), i=1 to n.
  • A039830 (program): Number of different coefficient values in expansion of Product (1-q^1+q^2-..+(-q)^i), i=1 to n.
  • A039834 (program): a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1) = 1; or Fibonacci numbers (A000045) extended to negative indices.
  • A039835 (program): Indices of triangular numbers which are also heptagonal.
  • A039897 (program): Number of partitions satisfying 0 < cn(2,5) + cn(3,5).
  • A039899 (program): Number of partitions satisfying 0 < cn(0,5) + cn(2,5) + cn(3,5).
  • A039900 (program): Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).
  • A039905 (program): Number of partitions with at most one part divisible by 5.
  • A039912 (program): Triangle related to number of compositions of n into relatively prime summands.
  • A039913 (program): Triangular “Fibonacci array”.
  • A039914 (program): Smallest k>1 such that k(p-1)-1 is divisible by p^2, p=n-th prime.
  • A039915 (program): Smallest k such that k(p-1)-1 is positive and divisible by p where p = n-th prime.
  • A039916 (program): Concatenation of the decimal digits of Pi-3.
  • A039918 (program): Partial sums of decimal digits of Pi (ignoring the initial 3).
  • A039919 (program): Related to enumeration of edge-rooted catafusenes.
  • A039920 (program): Concatenation of the first n decimal digits of e-2.
  • A039936 (program): Smallest k for which k, 2k, … nk all contain the digit 5.
  • A039941 (program): Alternately add and multiply.
  • A039948 (program): A triangle related to A000045 (Fibonacci numbers).
  • A039949 (program): Primes of the form 30n - 13.
  • A039955 (program): Squarefree numbers congruent to 1 (mod 4).
  • A039956 (program): Even squarefree numbers.
  • A039957 (program): Squarefree numbers congruent to 3 mod 4.
  • A039960 (program): For n >= 2, a(n) = largest value of k such that n^k is <= n! (a(0) = a(1) = 1 by convention).
  • A039961 (program): Triangle of coefficients in a Fibonacci-like sequence of polynomials.
  • A039963 (program): The period-doubling sequence A035263 repeated.
  • A039964 (program): Motzkin numbers A001006 read mod 3.
  • A039965 (program): An example of a d-perfect sequence.
  • A039966 (program): a(0) = 1; thereafter a(3n+2) = 0, a(3n) = a(3n+1) = a(n).
  • A039968 (program): An example of a d-perfect sequence.
  • A039969 (program): An example of a d-perfect sequence: a(n) = Catalan(n) mod 3.
  • A039970 (program): An example of a d-perfect sequence: a(2*n) = 0, a(2*n+1) = Catalan(n) mod 3.
  • A039971 (program): An example of a d-perfect sequence.
  • A039972 (program): An example of a d-perfect sequence: a(n) = A007317(n) mod 3.
  • A039973 (program): An example of a d-perfect sequence: a(2*n) = 0, a(2*n-1) = A039965(n).
  • A039974 (program): An example of a d-perfect sequence.
  • A039975 (program): An example of a d-perfect sequence: a(n) = A006318(n-1) mod 3.
  • A039976 (program): An example of a d-perfect sequence.
  • A039977 (program): An example of a d-perfect sequence.
  • A039978 (program): An example of a d-perfect sequence.
  • A039979 (program): An example of a d-perfect sequence.
  • A039980 (program): An example of a d-perfect sequence.
  • A039981 (program): An example of a d-perfect sequence.
  • A039982 (program): Let phi denote the morphism 0 -> 11, 1 -> 10. This sequence is the limit S(oo) where S(0) = 1; S(n+1) = 1.phi(S(n)).
  • A039983 (program): An example of a d-perfect sequence.
  • A039984 (program): An example of a d-perfect sequence.
  • A039985 (program): An example of a d-perfect sequence.
  • A039991 (program): Triangle of coefficients of cos(x)^n in polynomial for cos(nx).
  • A040000 (program): a(0)=1; a(n)=2 for n >= 1.
  • A040001 (program): 1 followed by {1, 2} repeated.
  • A040002 (program): Continued fraction for sqrt(5).
  • A040003 (program): Continued fraction for sqrt(6).
  • A040005 (program): Continued fraction for sqrt(8).
  • A040006 (program): Continued fraction for sqrt(10).
  • A040007 (program): Continued fraction for sqrt(11).
  • A040008 (program): Continued fraction for sqrt(12).
  • A040011 (program): Continued fraction for sqrt(15).
  • A040012 (program): Continued fraction for sqrt(17).
  • A040013 (program): Continued fraction for sqrt(18).
  • A040015 (program): Continued fraction for sqrt(20).
  • A040019 (program): Continued fraction for sqrt(24).
  • A040020 (program): Continued fraction for sqrt(26).
  • A040021 (program): Continued fraction for sqrt(27).
  • A040022 (program): Continued fraction for sqrt(28).
  • A040024 (program): Continued fraction for sqrt(30).
  • A040027 (program): The Gould numbers.
  • A040029 (program): Continued fraction for sqrt(35).
  • A040030 (program): Continued fraction for sqrt(37).
  • A040031 (program): Continued fraction for sqrt(38).
  • A040032 (program): Continued fraction for sqrt(39).
  • A040033 (program): Continued fraction for sqrt(40).
  • A040035 (program): Continued fraction for sqrt(42).
  • A040037 (program): Continued fraction for sqrt(44).
  • A040039 (program): First differences of A033485; also A033485 with terms repeated.
  • A040040 (program): Average of twin prime pairs (A014574), divided by 2. Equivalently, 2*a(n)-1 and 2*a(n)+1 are primes.
  • A040041 (program): Continued fraction for sqrt(48).
  • A040042 (program): Continued fraction for sqrt(50) = 5*sqrt(2).
  • A040043 (program): Continued fraction for sqrt(51).
  • A040048 (program): Continued fraction for sqrt(56).
  • A040051 (program): Parity of partition function A000041.
  • A040052 (program): Continued fraction for sqrt(60).
  • A040053 (program): a(n) is 1 if and only if Ramanujan’s tau(n) > 0.
  • A040055 (program): Continued fraction for sqrt(63).
  • A040056 (program): Continued fraction for sqrt(65).
  • A040057 (program): Continued fraction for sqrt(66).
  • A040059 (program): Continued fraction for sqrt(68).
  • A040063 (program): Continued fraction for sqrt(72).
  • A040071 (program): Continued fraction for sqrt(80).
  • A040072 (program): Continued fraction for sqrt(82).
  • A040073 (program): Continued fraction for sqrt(83).
  • A040074 (program): Continued fraction for sqrt(84).
  • A040075 (program): 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
  • A040077 (program): Continued fraction for sqrt(87).
  • A040080 (program): Continued fraction for sqrt(90).
  • A040081 (program): Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists.
  • A040090 (program): Continued fraction for sqrt(101).
  • A040091 (program): Continued fraction for sqrt(102).
  • A040093 (program): Continued fraction for sqrt(104).
  • A040094 (program): Continued fraction for sqrt(105).
  • A040099 (program): Continued fraction for sqrt(110).
  • A040104 (program): First ten consecutive primes which are emirps.
  • A040109 (program): Continued fraction for sqrt(120).
  • A040110 (program): Continued fraction for sqrt(122).
  • A040111 (program): Continued fraction for sqrt(123).
  • A040116 (program): Primes p such that x^4 = 9 has a solution mod p.
  • A040117 (program): Primes congruent to 5 (mod 12). Also primes p such that x^4 = 9 has no solution mod p.
  • A040118 (program): Continued fraction for sqrt(130).
  • A040120 (program): Continued fraction for sqrt(132).
  • A040131 (program): Continued fraction for sqrt(143).
  • A040132 (program): Continued fraction for sqrt(145).
  • A040133 (program): Continued fraction for sqrt(146).
  • A040134 (program): Continued fraction for sqrt(147).
  • A040135 (program): Continued fraction for sqrt(148).
  • A040137 (program): Continued fraction for sqrt(150).
  • A040139 (program): Continued fraction for sqrt(152).
  • A040142 (program): Continued fraction for sqrt(155).
  • A040143 (program): Continued fraction for sqrt(156).
  • A040151 (program): Continued fraction for sqrt(164).
  • A040155 (program): Continued fraction for sqrt(168).
  • A040156 (program): Continued fraction for sqrt(170).
  • A040157 (program): Continued fraction for sqrt(171).
  • A040163 (program): a(n) is the absolute value of (the first digit of n minus the last digit of n).
  • A040164 (program): |First digit - last digit| for n-th prime.
  • A040166 (program): Continued fraction for sqrt(180).
  • A040168 (program): Continued fraction for sqrt(182).
  • A040181 (program): Continued fraction for sqrt(195).
  • A040182 (program): Continued fraction for sqrt(197).
  • A040183 (program): Continued fraction for sqrt(198).
  • A040185 (program): Continued fraction for sqrt(200).
  • A040188 (program): Continued fraction for sqrt(203).
  • A040189 (program): Continued fraction for sqrt(204).
  • A040192 (program): Continued fraction for sqrt(207).
  • A040193 (program): Continued fraction for sqrt(208).
  • A040195 (program): Continued fraction for sqrt(210).
  • A040200 (program): Continued fraction for sqrt(215).
  • A040201 (program): Continued fraction for sqrt(216).
  • A040203 (program): Continued fraction for sqrt(218).
  • A040204 (program): Continued fraction for sqrt(219).
  • A040205 (program): Continued fraction for sqrt(220).
  • A040206 (program): Continued fraction for sqrt(221).
  • A040207 (program): Continued fraction for sqrt(222).
  • A040208 (program): Continued fraction for sqrt(223).
  • A040209 (program): Continued fraction for sqrt(224).
  • A040210 (program): Continued fraction for sqrt(226).
  • A040211 (program): Continued fraction for sqrt(227).
  • A040212 (program): Continued fraction for sqrt(228).
  • A040213 (program): Continued fraction for sqrt(229).
  • A040214 (program): Continued fraction for sqrt(230).
  • A040215 (program): Continued fraction for sqrt(231).
  • A040216 (program): Continued fraction for sqrt(232).
  • A040219 (program): Continued fraction for sqrt(235).
  • A040221 (program): Continued fraction for sqrt(237).
  • A040222 (program): Continued fraction for sqrt(238).
  • A040224 (program): Continued fraction for sqrt(240).
  • A040227 (program): Continued fraction for sqrt(243).
  • A040229 (program): Continued fraction for sqrt(245).
  • A040232 (program): Continued fraction for sqrt(248).
  • A040236 (program): Continued fraction for sqrt(252).
  • A040238 (program): Continued fraction for sqrt(254).
  • A040239 (program): Continued fraction for sqrt(255).
  • A040240 (program): Continued fraction for sqrt(257).
  • A040241 (program): Continued fraction for sqrt(258).
  • A040243 (program): Continued fraction for sqrt(260).
  • A040247 (program): Continued fraction for sqrt(264).
  • A040249 (program): Continued fraction for sqrt(266).
  • A040250 (program): Continued fraction for sqrt(267).
  • A040252 (program): Continued fraction for sqrt(269).
  • A040253 (program): Continued fraction for sqrt(270).
  • A040255 (program): Continued fraction for sqrt(272).
  • A040256 (program): Continued fraction for sqrt(273).
  • A040258 (program): Continued fraction for sqrt(275).
  • A040259 (program): Continued fraction for sqrt(276).
  • A040261 (program): Continued fraction for sqrt(278).
  • A040262 (program): Continued fraction for sqrt(279).
  • A040263 (program): Continued fraction for sqrt(280).
  • A040265 (program): Continued fraction for sqrt(282).
  • A040268 (program): Continued fraction for sqrt(285).
  • A040270 (program): Continued fraction for sqrt(287).
  • A040271 (program): Continued fraction for sqrt(288).
  • A040272 (program): Continued fraction for sqrt(290).
  • A040273 (program): Continued fraction for sqrt(291).
  • A040275 (program): Continued fraction for sqrt(293).
  • A040276 (program): Continued fraction for sqrt(294).
  • A040278 (program): Continued fraction for sqrt(296).
  • A040281 (program): Continued fraction for sqrt(299).
  • A040282 (program): Continued fraction for sqrt(300).
  • A040285 (program): Continued fraction for sqrt(303).
  • A040287 (program): Continued fraction for sqrt(305).
  • A040288 (program): Continued fraction for sqrt(306).
  • A040290 (program): Continued fraction for sqrt(308).
  • A040294 (program): Continued fraction for sqrt(312).
  • A040296 (program): Continued fraction for sqrt(314).
  • A040297 (program): Continued fraction for sqrt(315).
  • A040298 (program): Continued fraction for sqrt(316).
  • A040300 (program): Continued fraction for sqrt(318).
  • A040302 (program): Continued fraction for sqrt(320).
  • A040303 (program): Continued fraction for sqrt(321).
  • A040304 (program): Continued fraction for sqrt(322).
  • A040305 (program): Continued fraction for sqrt(323).
  • A040306 (program): Continued fraction for sqrt(325).
  • A040307 (program): Continued fraction for sqrt(326).
  • A040308 (program): Continued fraction for sqrt(327).
  • A040309 (program): Continued fraction for sqrt(328).
  • A040311 (program): Continued fraction for sqrt(330).
  • A040313 (program): Continued fraction for sqrt(332).
  • A040314 (program): Continued fraction for sqrt(333).
  • A040316 (program): Continued fraction for sqrt(335).
  • A040317 (program): Continued fraction for sqrt(336).
  • A040319 (program): Continued fraction for sqrt(338).
  • A040323 (program): Continued fraction for sqrt(342).
  • A040327 (program): Continued fraction for sqrt(346).
  • A040329 (program): Continued fraction for sqrt(348).
  • A040331 (program): Continued fraction for sqrt(350).
  • A040335 (program): Continued fraction for sqrt(354).
  • A040338 (program): Continued fraction for sqrt(357).
  • A040340 (program): Continued fraction for sqrt(359).
  • A040341 (program): Continued fraction for sqrt(360).
  • A040342 (program): Continued fraction for sqrt(362).
  • A040343 (program): Continued fraction for sqrt(363).
  • A040345 (program): Continued fraction for sqrt(365).
  • A040348 (program): Continued fraction for sqrt(368).
  • A040350 (program): Continued fraction for sqrt(370).
  • A040351 (program): Continued fraction for sqrt(371).
  • A040353 (program): Continued fraction for sqrt(373).
  • A040354 (program): Continued fraction for sqrt(374).
  • A040357 (program): Continued fraction for sqrt(377).
  • A040360 (program): Continued fraction for sqrt(380).
  • A040361 (program): Continued fraction for sqrt(381).
  • A040363 (program): Continued fraction for sqrt(383).
  • A040364 (program): Continued fraction for sqrt(384).
  • A040367 (program): Continued fraction for sqrt(387).
  • A040369 (program): Continued fraction for sqrt(389).
  • A040370 (program): Continued fraction for sqrt(390).
  • A040372 (program): Continued fraction for sqrt(392).
  • A040375 (program): Continued fraction for sqrt(395).
  • A040376 (program): Continued fraction for sqrt(396).
  • A040378 (program): Continued fraction for sqrt(398).
  • A040379 (program): Continued fraction for sqrt(399).
  • A040380 (program): Continued fraction for sqrt(401).
  • A040381 (program): Continued fraction for sqrt(402).
  • A040383 (program): Continued fraction for sqrt(404).
  • A040384 (program): Continued fraction for sqrt(405).
  • A040386 (program): Continued fraction for sqrt(407).
  • A040387 (program): Continued fraction for sqrt(408).
  • A040389 (program): Continued fraction for sqrt(410).
  • A040395 (program): Continued fraction for sqrt(416).
  • A040397 (program): Continued fraction for sqrt(418).
  • A040399 (program): Continued fraction for sqrt(420).
  • A040402 (program): Continued fraction for sqrt(423).
  • A040404 (program): Continued fraction for sqrt(425).
  • A040406 (program): Continued fraction for sqrt(427).
  • A040413 (program): Continued fraction for sqrt(434).
  • A040414 (program): Continued fraction for sqrt(435).
  • A040416 (program): Continued fraction for sqrt(437).
  • A040417 (program): Continued fraction for sqrt(438).
  • A040418 (program): Continued fraction for sqrt(439).
  • A040419 (program): Continued fraction for sqrt(440).
  • A040420 (program): Continued fraction for sqrt(442).
  • A040421 (program): Continued fraction for sqrt(443).
  • A040422 (program): Continued fraction for sqrt(444).
  • A040423 (program): Continued fraction for sqrt(445).
  • A040425 (program): Continued fraction for sqrt(447).
  • A040426 (program): Continued fraction for sqrt(448).
  • A040429 (program): Continued fraction for sqrt(451).
  • A040431 (program): Continued fraction for sqrt(453).
  • A040433 (program): Continued fraction for sqrt(455).
  • A040434 (program): Continued fraction for sqrt(456).
  • A040436 (program): Continued fraction for sqrt(458).
  • A040437 (program): Continued fraction for sqrt(459).
  • A040440 (program): Continued fraction for sqrt(462).
  • A040446 (program): Continued fraction for sqrt(468).
  • A040447 (program): Continued fraction for sqrt(469).
  • A040448 (program): Continued fraction for sqrt(470).
  • A040451 (program): Continued fraction for sqrt(473).
  • A040458 (program): Continued fraction for sqrt(480).
  • A040460 (program): Continued fraction for sqrt(482).
  • A040461 (program): Continued fraction for sqrt(483).
  • A040462 (program): Continued fraction for sqrt(485).
  • A040463 (program): Continued fraction for sqrt(486).
  • A040465 (program): Continued fraction for sqrt(488).
  • A040469 (program): Continued fraction for sqrt(492).
  • A040472 (program): Continued fraction for sqrt(495).
  • A040475 (program): Continued fraction for sqrt(498).
  • A040476 (program): Continued fraction for sqrt(499).
  • A040480 (program): Continued fraction for sqrt(503).
  • A040481 (program): Continued fraction for sqrt(504).
  • A040482 (program): Continued fraction for sqrt(505).
  • A040483 (program): Continued fraction for sqrt(506).
  • A040484 (program): Continued fraction for sqrt(507).
  • A040487 (program): Continued fraction for sqrt(510).
  • A040491 (program): Continued fraction for sqrt(514).
  • A040495 (program): Continued fraction for sqrt(518).
  • A040497 (program): Continued fraction for sqrt(520).
  • A040502 (program): Continued fraction for sqrt(525).
  • A040504 (program): Continued fraction for sqrt(527).
  • A040505 (program): Continued fraction for sqrt(528).
  • A040506 (program): Continued fraction for sqrt(530).
  • A040507 (program): Continued fraction for sqrt(531).
  • A040509 (program): Continued fraction for sqrt(533).
  • A040515 (program): Continued fraction for sqrt(539).
  • A040520 (program): Continued fraction for sqrt(544).
  • A040521 (program): Continued fraction for sqrt(545).
  • A040522 (program): Continued fraction for sqrt(546).
  • A040527 (program): Continued fraction for sqrt(551).
  • A040528 (program): Continued fraction for sqrt(552).
  • A040531 (program): Continued fraction for sqrt(555).
  • A040533 (program): Continued fraction for sqrt(557).
  • A040534 (program): Continued fraction for sqrt(558).
  • A040536 (program): Continued fraction for sqrt(560).
  • A040539 (program): Continued fraction for sqrt(563).
  • A040540 (program): Continued fraction for sqrt(564).
  • A040543 (program): Continued fraction for sqrt(567).
  • A040544 (program): Continued fraction for sqrt(568).
  • A040546 (program): Continued fraction for sqrt(570).
  • A040548 (program): Continued fraction for sqrt(572).
  • A040549 (program): Continued fraction for sqrt(573).
  • A040550 (program): Continued fraction for sqrt(574).
  • A040551 (program): Continued fraction for sqrt(575).
  • A040552 (program): Continued fraction for sqrt(577).
  • A040553 (program): Continued fraction for sqrt(578).
  • A040554 (program): Continued fraction for sqrt(579).
  • A040555 (program): Continued fraction for sqrt(580).
  • A040557 (program): Continued fraction for sqrt(582).
  • A040559 (program): Continued fraction for sqrt(584).
  • A040563 (program): Continued fraction for sqrt(588).
  • A040565 (program): Continued fraction for sqrt(590).
  • A040567 (program): Continued fraction for sqrt(592).
  • A040575 (program): Continued fraction for sqrt(600).
  • A040577 (program): Continued fraction for sqrt(602).
  • A040583 (program): Continued fraction for sqrt(608).
  • A040587 (program): Continued fraction for sqrt(612).
  • A040590 (program): Continued fraction for sqrt(615).
  • A040593 (program): Continued fraction for sqrt(618).
  • A040595 (program): Continued fraction for sqrt(620).
  • A040596 (program): Continued fraction for sqrt(621).
  • A040598 (program): Continued fraction for sqrt(623).
  • A040599 (program): Continued fraction for sqrt(624).
  • A040600 (program): Continued fraction for sqrt(626).
  • A040601 (program): Continued fraction for sqrt(627).
  • A040603 (program): Continued fraction for sqrt(629).
  • A040604 (program): Continued fraction for sqrt(630).
  • A040606 (program): Continued fraction for sqrt(632).
  • A040609 (program): Continued fraction for sqrt(635).
  • A040616 (program): Continued fraction for sqrt(642).
  • A040619 (program): Continued fraction for sqrt(645).
  • A040620 (program): Continued fraction for sqrt(646).
  • A040622 (program): Continued fraction for sqrt(648).
  • A040624 (program): Continued fraction for sqrt(650).
  • A040625 (program): Continued fraction for sqrt(651).
  • A040630 (program): Continued fraction for sqrt(656).
  • A040632 (program): Continued fraction for sqrt(658).
  • A040633 (program): Continued fraction for sqrt(659).
  • A040634 (program): Continued fraction for sqrt(660).
  • A040637 (program): Continued fraction for sqrt(663).
  • A040646 (program): Continued fraction for sqrt(672).
  • A040648 (program): Continued fraction for sqrt(674).
  • A040649 (program): Continued fraction for sqrt(675).
  • A040650 (program): Continued fraction for sqrt(677).
  • A040651 (program): Continued fraction for sqrt(678).
  • A040653 (program): Continued fraction for sqrt(680).
  • A040657 (program): Continued fraction for sqrt(684).
  • A040662 (program): Continued fraction for sqrt(689).
  • A040663 (program): Continued fraction for sqrt(690).
  • A040668 (program): Continued fraction for sqrt(695).
  • A040669 (program): Continued fraction for sqrt(696).
  • A040670 (program): Continued fraction for sqrt(697).
  • A040674 (program): Continued fraction for sqrt(701).
  • A040675 (program): Continued fraction for sqrt(702).
  • A040677 (program): Continued fraction for sqrt(704).
  • A040679 (program): Continued fraction for sqrt(706).
  • A040680 (program): Continued fraction for sqrt(707).
  • A040681 (program): Continued fraction for sqrt(708).
  • A040683 (program): Continued fraction for sqrt(710).
  • A040684 (program): Continued fraction for sqrt(711).
  • A040685 (program): Continued fraction for sqrt(712).
  • A040693 (program): Continued fraction for sqrt(720).
  • A040696 (program): Continued fraction for sqrt(723).
  • A040698 (program): Continued fraction for sqrt(725).
  • A040699 (program): Continued fraction for sqrt(726).
  • A040700 (program): Continued fraction for sqrt(727).
  • A040701 (program): Continued fraction for sqrt(728).
  • A040702 (program): Continued fraction for sqrt(730).
  • A040703 (program): Continued fraction for sqrt(731).
  • A040704 (program): Continued fraction for sqrt(732).
  • A040705 (program): Continued fraction for sqrt(733).
  • A040707 (program): Continued fraction for sqrt(735).
  • A040710 (program): Continued fraction for sqrt(738).
  • A040712 (program): Continued fraction for sqrt(740).
  • A040713 (program): Continued fraction for sqrt(741).
  • A040719 (program): Continued fraction for sqrt(747).
  • A040724 (program): Continued fraction for sqrt(752).
  • A040727 (program): Continued fraction for sqrt(755).
  • A040728 (program): Continued fraction for sqrt(756).
  • A040731 (program): Continued fraction for sqrt(759).
  • A040733 (program): Continued fraction for sqrt(761).
  • A040734 (program): Continued fraction for sqrt(762).
  • A040737 (program): Continued fraction for sqrt(765).
  • A040740 (program): Continued fraction for sqrt(768).
  • A040742 (program): Continued fraction for sqrt(770).
  • A040748 (program): Continued fraction for sqrt(776).
  • A040749 (program): Continued fraction for sqrt(777).
  • A040752 (program): Continued fraction for sqrt(780).
  • A040754 (program): Continued fraction for sqrt(782).
  • A040755 (program): Continued fraction for sqrt(783).
  • A040756 (program): Continued fraction for sqrt(785).
  • A040757 (program): Continued fraction for sqrt(786).
  • A040759 (program): Continued fraction for sqrt(788).
  • A040762 (program): Continued fraction for sqrt(791).
  • A040763 (program): Continued fraction for sqrt(792).
  • A040764 (program): Continued fraction for sqrt(793).
  • A040766 (program): Continued fraction for sqrt(795).
  • A040769 (program): Continued fraction for sqrt(798).
  • A040770 (program): Continued fraction for sqrt(799).
  • A040771 (program): Continued fraction for sqrt(800).
  • A040774 (program): Continued fraction for sqrt(803).
  • A040783 (program): Continued fraction for sqrt(812).
  • A040784 (program): Continued fraction for sqrt(813).
  • A040787 (program): Continued fraction for sqrt(816).
  • A040788 (program): Continued fraction for sqrt(817).
  • A040789 (program): Continued fraction for sqrt(818).
  • A040790 (program): Continued fraction for sqrt(819).
  • A040793 (program): Continued fraction for sqrt(822).
  • A040799 (program): Continued fraction for sqrt(828).
  • A040808 (program): Continued fraction for sqrt(837).
  • A040810 (program): Continued fraction for sqrt(839).
  • A040811 (program): Continued fraction for sqrt(840).
  • A040812 (program): Continued fraction for sqrt(842).
  • A040813 (program): Continued fraction for sqrt(843).
  • A040815 (program): Continued fraction for sqrt(845).
  • A040820 (program): Continued fraction for sqrt(850).
  • A040825 (program): Continued fraction for sqrt(855).
  • A040828 (program): Continued fraction for sqrt(858).
  • A040830 (program): Continued fraction for sqrt(860).
  • A040836 (program): Continued fraction for sqrt(866).
  • A040837 (program): Continued fraction for sqrt(867).
  • A040840 (program): Continued fraction for sqrt(870).
  • A040844 (program): Continued fraction for sqrt(874).
  • A040846 (program): Continued fraction for sqrt(876).
  • A040850 (program): Continued fraction for sqrt(880).
  • A040854 (program): Continued fraction for sqrt(884).
  • A040855 (program): Continued fraction for sqrt(885).
  • A040858 (program): Continued fraction for sqrt(888).
  • A040860 (program): Continued fraction for sqrt(890).
  • A040864 (program): Continued fraction for sqrt(894).
  • A040865 (program): Continued fraction for sqrt(895).
  • A040866 (program): Continued fraction for sqrt(896).
  • A040867 (program): Continued fraction for sqrt(897).
  • A040868 (program): Continued fraction for sqrt(898).
  • A040869 (program): Continued fraction for sqrt(899).
  • A040870 (program): Continued fraction for sqrt(901).
  • A040871 (program): Continued fraction for sqrt(902).
  • A040872 (program): Continued fraction for sqrt(903).
  • A040873 (program): Continued fraction for sqrt(904).
  • A040874 (program): Continued fraction for sqrt(905).
  • A040875 (program): Continued fraction for sqrt(906).
  • A040877 (program): Continued fraction for sqrt(908).
  • A040879 (program): Continued fraction for sqrt(910).
  • A040881 (program): Continued fraction for sqrt(912).
  • A040883 (program): Continued fraction for sqrt(914).
  • A040884 (program): Continued fraction for sqrt(915).
  • A040887 (program): Continued fraction for sqrt(918).
  • A040889 (program): Continued fraction for sqrt(920).
  • A040892 (program): Continued fraction for sqrt(923).
  • A040893 (program): Continued fraction for sqrt(924).
  • A040894 (program): Continued fraction for sqrt(925).
  • A040899 (program): Continued fraction for sqrt(930).
  • A040904 (program): Continued fraction for sqrt(935).
  • A040905 (program): Continued fraction for sqrt(936).
  • A040909 (program): Continued fraction for sqrt(940).
  • A040912 (program): Continued fraction for sqrt(943).
  • A040917 (program): Continued fraction for sqrt(948).
  • A040921 (program): Continued fraction for sqrt(952).
  • A040926 (program): Continued fraction for sqrt(957).
  • A040928 (program): Continued fraction for sqrt(959).
  • A040929 (program): Continued fraction for sqrt(960).
  • A040930 (program): Continued fraction for sqrt(962).
  • A040931 (program): Continued fraction for sqrt(963).
  • A040933 (program): Continued fraction for sqrt(965).
  • A040936 (program): Continued fraction for sqrt(968).
  • A040941 (program): Continued fraction for sqrt(973).
  • A040943 (program): Continued fraction for sqrt(975).
  • A040950 (program): Continued fraction for sqrt(982).
  • A040953 (program): Continued fraction for sqrt(985).
  • A040954 (program): Continued fraction for sqrt(986).
  • A040955 (program): Continued fraction for sqrt(987).
  • A040958 (program): Continued fraction for sqrt(990).
  • A040960 (program): Continued fraction for sqrt(992).
  • A040961 (program): Continued fraction for sqrt(993).
  • A040962 (program): Continued fraction for sqrt(994).
  • A040976 (program): a(n) = prime(n) - 2.
  • A040977 (program): a(n) = binomial(n+5,5)*(n+3)/3.
  • A040997 (program): Absolute value of first digit of n minus sum of other digits of n.
  • A041000 (program): If decimal expansion of n-th prime is x1 x2 … xk, sort the xi into nonincreasing order, y1 y2 … yk; then a(n) = |y1-y2-y3…-yk|.
  • A041001 (program): Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).
  • A041005 (program): Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.
  • A041006 (program): Numerators of continued fraction convergents to sqrt(6).
  • A041007 (program): Denominators of continued fraction convergents to sqrt(6).
  • A041008 (program): Numerators of continued fraction convergents to sqrt(7).
  • A041009 (program): Denominators of continued fraction convergents to sqrt(7).
  • A041010 (program): Numerators of continued fraction convergents to sqrt(8).
  • A041011 (program): Denominators of continued fraction convergents to sqrt(8).
  • A041014 (program): Numerators of continued fraction convergents to sqrt(11).
  • A041015 (program): Denominators of continued fraction convergents to sqrt(11).
  • A041016 (program): Numerators of continued fraction convergents to sqrt(12).
  • A041017 (program): Denominators of continued fraction convergents to sqrt(12).
  • A041018 (program): Numerators of continued fraction convergents to sqrt(13).
  • A041019 (program): Denominators of continued fraction convergents to sqrt(13).
  • A041020 (program): Numerators of continued fraction convergents to sqrt(14).
  • A041021 (program): Denominators of continued fraction convergents to sqrt(14).
  • A041022 (program): Numerators of continued fraction convergents to sqrt(15).
  • A041023 (program): Denominators of continued fraction convergents to sqrt(15).
  • A041024 (program): Numerators of continued fraction convergents to sqrt(17).
  • A041025 (program): Denominators of continued fraction convergents to sqrt(17).
  • A041026 (program): Numerators of continued fraction convergents to sqrt(18).
  • A041027 (program): Denominators of continued fraction convergents to sqrt(18).
  • A041028 (program): Numerators of continued fraction convergents to sqrt(19).
  • A041029 (program): Denominators of continued fraction convergents to sqrt(19).
  • A041030 (program): Numerators of continued fraction convergents to sqrt(20).
  • A041031 (program): Denominators of continued fraction convergents to sqrt(20).
  • A041032 (program): Numerators of continued fraction convergents to sqrt(21).
  • A041033 (program): Denominators of continued fraction convergents to sqrt(21).
  • A041034 (program): Numerators of continued fraction convergents to sqrt(22).
  • A041035 (program): Denominators of continued fraction convergents to sqrt(22).
  • A041036 (program): Numerators of continued fraction convergents to sqrt(23).
  • A041037 (program): Denominators of continued fraction convergents to sqrt(23).
  • A041038 (program): Numerators of continued fraction convergents to sqrt(24).
  • A041039 (program): Denominators of continued fraction convergents to sqrt(24).
  • A041040 (program): Numerators of continued fraction convergents to sqrt(26).
  • A041041 (program): Denominators of continued fraction convergents to sqrt(26).
  • A041042 (program): Numerators of continued fraction convergents to sqrt(27).
  • A041043 (program): Denominators of continued fraction convergents to sqrt(27).
  • A041044 (program): Numerators of continued fraction convergents to sqrt(28).
  • A041045 (program): Denominators of continued fraction convergents to sqrt(28).
  • A041046 (program): Numerators of continued fraction convergents to sqrt(29).
  • A041047 (program): Denominators of continued fraction convergents to sqrt(29).
  • A041048 (program): Numerators of continued fraction convergents to sqrt(30).
  • A041049 (program): Denominators of continued fraction convergents to sqrt(30).
  • A041050 (program): Numerators of continued fraction convergents to sqrt(31).
  • A041051 (program): Denominators of continued fraction convergents to sqrt(31).
  • A041052 (program): Numerators of continued fraction convergents to sqrt(32).
  • A041053 (program): Denominators of continued fraction convergents to sqrt(32).
  • A041054 (program): Numerators of continued fraction convergents to sqrt(33).
  • A041055 (program): Denominators of continued fraction convergents to sqrt(33).
  • A041056 (program): Numerators of continued fraction convergents to sqrt(34).
  • A041057 (program): Denominators of continued fraction convergents to sqrt(34).
  • A041058 (program): Numerators of continued fraction convergents to sqrt(35).
  • A041059 (program): Denominators of continued fraction convergents to sqrt(35).
  • A041060 (program): Numerators of continued fraction convergents to sqrt(37).
  • A041061 (program): Denominators of continued fraction convergents to sqrt(37).
  • A041062 (program): Numerators of continued fraction convergents to sqrt(38).
  • A041063 (program): Denominators of continued fraction convergents to sqrt(38).
  • A041064 (program): Numerators of continued fraction convergents to sqrt(39).
  • A041065 (program): Denominators of continued fraction convergents to sqrt(39).
  • A041066 (program): Numerators of continued fraction convergents to sqrt(40).
  • A041067 (program): Denominators of continued fraction convergents to sqrt(40).
  • A041068 (program): Numerators of continued fraction convergents to sqrt(41).
  • A041069 (program): Denominators of continued fraction convergents to sqrt(41).
  • A041070 (program): Numerators of continued fraction convergents to sqrt(42).
  • A041071 (program): Denominators of continued fraction convergents to sqrt(42).
  • A041074 (program): Numerators of continued fraction convergents to sqrt(44).
  • A041075 (program): Denominators of continued fraction convergents to sqrt(44).
  • A041076 (program): Numerators of continued fraction convergents to sqrt(45).
  • A041077 (program): Denominators of continued fraction convergents to sqrt(45).
  • A041080 (program): Numerators of continued fraction convergents to sqrt(47).
  • A041081 (program): Denominators of continued fraction convergents to sqrt(47).
  • A041082 (program): Numerators of continued fraction convergents to sqrt(48).
  • A041083 (program): Denominators of continued fraction convergents to sqrt(48).
  • A041084 (program): Numerators of continued fraction convergents to sqrt(50).
  • A041085 (program): Denominators of continued fraction convergents to sqrt(50).
  • A041086 (program): Numerators of continued fraction convergents to sqrt(51).
  • A041087 (program): Denominators of continued fraction convergents to sqrt(51).
  • A041088 (program): Numerators of continued fraction convergents to sqrt(52).
  • A041089 (program): Denominators of continued fraction convergents to sqrt(52).
  • A041090 (program): Numerators of continued fraction convergents to sqrt(53).
  • A041091 (program): Denominators of continued fraction convergents to sqrt(53).
  • A041092 (program): Numerators of continued fraction convergents to sqrt(54).
  • A041093 (program): Denominators of continued fraction convergents to sqrt(54).
  • A041094 (program): Numerators of continued fraction convergents to sqrt(55).
  • A041095 (program): Denominators of continued fraction convergents to sqrt(55).
  • A041096 (program): Numerators of continued fraction convergents to sqrt(56).
  • A041097 (program): Denominators of continued fraction convergents to sqrt(56).
  • A041098 (program): Numerators of continued fraction convergents to sqrt(57).
  • A041099 (program): Denominators of continued fraction convergents to sqrt(57).
  • A041100 (program): Numerators of continued fraction convergents to sqrt(58).
  • A041101 (program): Denominators of continued fraction convergents to sqrt(58).
  • A041102 (program): Numerators of continued fraction convergents to sqrt(59).
  • A041103 (program): Denominators of continued fraction convergents to sqrt(59).
  • A041104 (program): Numerators of continued fraction convergents to sqrt(60).
  • A041105 (program): Denominators of continued fraction convergents to sqrt(60).
  • A041108 (program): Numerators of continued fraction convergents to sqrt(62).
  • A041109 (program): Denominators of continued fraction convergents to sqrt(62).
  • A041110 (program): Numerators of continued fraction convergents to sqrt(63).
  • A041111 (program): Denominators of continued fraction convergents to sqrt(63).
  • A041112 (program): Numerators of continued fraction convergents to sqrt(65).
  • A041113 (program): Denominators of continued fraction convergents to sqrt(65).
  • A041114 (program): Numerators of continued fraction convergents to sqrt(66).
  • A041115 (program): Denominators of continued fraction convergents to sqrt(66).
  • A041118 (program): Numerators of continued fraction convergents to sqrt(68).
  • A041119 (program): Denominators of continued fraction convergents to sqrt(68).
  • A041120 (program): Numerators of continued fraction convergents to sqrt(69).
  • A041121 (program): Denominators of continued fraction convergents to sqrt(69).
  • A041122 (program): Numerators of continued fraction convergents to sqrt(70).
  • A041123 (program): Denominators of continued fraction convergents to sqrt(70).
  • A041124 (program): Numerators of continued fraction convergents to sqrt(71).
  • A041125 (program): Denominators of continued fraction convergents to sqrt(71).
  • A041126 (program): Numerators of continued fraction convergents to sqrt(72).
  • A041127 (program): Denominators of continued fraction convergents to sqrt(72).
  • A041130 (program): Numerators of continued fraction convergents to sqrt(74).
  • A041131 (program): Denominators of continued fraction convergents to sqrt(74).
  • A041132 (program): Numerators of continued fraction convergents to sqrt(75).
  • A041133 (program): Denominators of continued fraction convergents to sqrt(75).
  • A041136 (program): Numerators of continued fraction convergents to sqrt(77).
  • A041137 (program): Denominators of continued fraction convergents to sqrt(77).
  • A041138 (program): Numerators of continued fraction convergents to sqrt(78).
  • A041139 (program): Denominators of continued fraction convergents to sqrt(78).
  • A041140 (program): Numerators of continued fraction convergents to sqrt(79).
  • A041141 (program): Denominators of continued fraction convergents to sqrt(79).
  • A041142 (program): Numerators of continued fraction convergents to sqrt(80).
  • A041143 (program): Denominators of continued fraction convergents to sqrt(80).
  • A041144 (program): Numerators of continued fraction convergents to sqrt(82).
  • A041145 (program): Denominators of continued fraction convergents to sqrt(82).
  • A041146 (program): Numerators of continued fraction convergents to sqrt(83).
  • A041147 (program): Denominators of continued fraction convergents to sqrt(83).
  • A041148 (program): Numerators of continued fraction convergents to sqrt(84).
  • A041149 (program): Denominators of continued fraction convergents to sqrt(84).
  • A041150 (program): Numerators of continued fraction convergents to sqrt(85).
  • A041151 (program): Denominators of continued fraction convergents to sqrt(85).
  • A041154 (program): Numerators of continued fraction convergents to sqrt(87).
  • A041155 (program): Denominators of continued fraction convergents to sqrt(87).
  • A041156 (program): Numerators of continued fraction convergents to sqrt(88).
  • A041157 (program): Denominators of continued fraction convergents to sqrt(88).
  • A041158 (program): Numerators of continued fraction convergents to sqrt(89).
  • A041159 (program): Denominators of continued fraction convergents to sqrt(89).
  • A041160 (program): Numerators of continued fraction convergents to sqrt(90).
  • A041161 (program): Denominators of continued fraction convergents to sqrt(90).
  • A041162 (program): Numerators of continued fraction convergents to sqrt(91).
  • A041163 (program): Denominators of continued fraction convergents to sqrt(91).
  • A041164 (program): Numerators of continued fraction convergents to sqrt(92).
  • A041165 (program): Denominators of continued fraction convergents to sqrt(92).
  • A041166 (program): Numerators of continued fraction convergents to sqrt(93).
  • A041167 (program): Denominators of continued fraction convergents to sqrt(93).
  • A041170 (program): Numerators of continued fraction convergents to sqrt(95).
  • A041171 (program): Denominators of continued fraction convergents to sqrt(95).
  • A041172 (program): Numerators of continued fraction convergents to sqrt(96).
  • A041173 (program): Denominators of continued fraction convergents to sqrt(96).
  • A041176 (program): Numerators of continued fraction convergents to sqrt(98).
  • A041177 (program): Denominators of continued fraction convergents to sqrt(98).
  • A041178 (program): Numerators of continued fraction convergents to sqrt(99).
  • A041179 (program): Denominators of continued fraction convergents to sqrt(99).
  • A041180 (program): Numerators of continued fraction convergents to sqrt(101).
  • A041181 (program): Denominators of continued fraction convergents to sqrt(101).
  • A041182 (program): Numerators of continued fraction convergents to sqrt(102).
  • A041183 (program): Denominators of continued fraction convergents to sqrt(102).
  • A041186 (program): Numerators of continued fraction convergents to sqrt(104).
  • A041187 (program): Denominators of continued fraction convergents to sqrt(104).
  • A041188 (program): Numerators of continued fraction convergents to sqrt(105).
  • A041189 (program): Denominators of continued fraction convergents to sqrt(105).
  • A041192 (program): Numerators of continued fraction convergents to sqrt(107).
  • A041193 (program): Denominators of continued fraction convergents to sqrt(107).
  • A041194 (program): Numerators of continued fraction convergents to sqrt(108).
  • A041195 (program): Denominators of continued fraction convergents to sqrt(108).
  • A041198 (program): Numerators of continued fraction convergents to sqrt(110).
  • A041199 (program): Denominators of continued fraction convergents to sqrt(110).
  • A041200 (program): Numerators of continued fraction convergents to sqrt(111).
  • A041201 (program): Denominators of continued fraction convergents to sqrt(111).
  • A041202 (program): Numerators of continued fraction convergents to sqrt(112).
  • A041203 (program): Denominators of continued fraction convergents to sqrt(112).
  • A041204 (program): Numerators of continued fraction convergents to sqrt(113).
  • A041205 (program): Denominators of continued fraction convergents to sqrt(113).
  • A041206 (program): Numerators of continued fraction convergents to sqrt(114).
  • A041207 (program): Denominators of continued fraction convergents to sqrt(114).
  • A041208 (program): Numerators of continued fraction convergents to sqrt(115).
  • A041209 (program): Denominators of continued fraction convergents to sqrt(115).
  • A041212 (program): Numerators of continued fraction convergents to sqrt(117).
  • A041213 (program): Denominators of continued fraction convergents to sqrt(117).
  • A041214 (program): Numerators of continued fraction convergents to sqrt(118).
  • A041215 (program): Denominators of continued fraction convergents to sqrt(118).
  • A041216 (program): Numerators of continued fraction convergents to sqrt(119).
  • A041217 (program): Denominators of continued fraction convergents to sqrt(119).
  • A041218 (program): Numerators of continued fraction convergents to sqrt(120).
  • A041219 (program): Denominators of continued fraction convergents to sqrt(120).
  • A041220 (program): Numerators of continued fraction convergents to sqrt(122).
  • A041221 (program): Denominators of continued fraction convergents to sqrt(122).
  • A041222 (program): Numerators of continued fraction convergents to sqrt(123).
  • A041223 (program): Denominators of continued fraction convergents to sqrt(123).
  • A041226 (program): Numerators of continued fraction convergents to sqrt(125).
  • A041227 (program): Denominators of continued fraction convergents to sqrt(125).
  • A041228 (program): Numerators of continued fraction convergents to sqrt(126).
  • A041229 (program): Denominators of continued fraction convergents to sqrt(126).
  • A041232 (program): Numerators of continued fraction convergents to sqrt(128).
  • A041233 (program): Denominators of continued fraction convergents to sqrt(128).
  • A041236 (program): Numerators of continued fraction convergents to sqrt(130).
  • A041237 (program): Denominators of continued fraction convergents to sqrt(130).
  • A041238 (program): Numerators of continued fraction convergents to sqrt(131).
  • A041239 (program): Denominators of continued fraction convergents to sqrt(131).
  • A041240 (program): Numerators of continued fraction convergents to sqrt(132).
  • A041241 (program): Denominators of continued fraction convergents to sqrt(132).
  • A041246 (program): Numerators of continued fraction convergents to sqrt(135).
  • A041247 (program): Denominators of continued fraction convergents to sqrt(135).
  • A041248 (program): Numerators of continued fraction convergents to sqrt(136).
  • A041249 (program): Denominators of continued fraction convergents to sqrt(136).
  • A041250 (program): Numerators of continued fraction convergents to sqrt(137).
  • A041251 (program): Denominators of continued fraction convergents to sqrt(137).
  • A041252 (program): Numerators of continued fraction convergents to sqrt(138).
  • A041253 (program): Denominators of continued fraction convergents to sqrt(138).
  • A041256 (program): Numerators of continued fraction convergents to sqrt(140).
  • A041257 (program): Denominators of continued fraction convergents to sqrt(140).
  • A041258 (program): Numerators of continued fraction convergents to sqrt(141).
  • A041259 (program): Denominators of continued fraction convergents to sqrt(141).
  • A041260 (program): Numerators of continued fraction convergents to sqrt(142).
  • A041261 (program): Denominators of continued fraction convergents to sqrt(142).
  • A041262 (program): Numerators of continued fraction convergents to sqrt(143).
  • A041263 (program): Denominators of continued fraction convergents to sqrt(143).
  • A041264 (program): Numerators of continued fraction convergents to sqrt(145).
  • A041265 (program): Denominators of continued fraction convergents to sqrt(145).
  • A041266 (program): Numerators of continued fraction convergents to sqrt(146).
  • A041267 (program): Denominators of continued fraction convergents to sqrt(146).
  • A041268 (program): Numerators of continued fraction convergents to sqrt(147).
  • A041269 (program): Denominators of continued fraction convergents to sqrt(147).
  • A041270 (program): Numerators of continued fraction convergents to sqrt(148).
  • A041271 (program): Denominators of continued fraction convergents to sqrt(148).
  • A041274 (program): Numerators of continued fraction convergents to sqrt(150).
  • A041275 (program): Denominators of continued fraction convergents to sqrt(150).
  • A041278 (program): Numerators of continued fraction convergents to sqrt(152).
  • A041279 (program): Denominators of continued fraction convergents to sqrt(152).
  • A041280 (program): Numerators of continued fraction convergents to sqrt(153).
  • A041281 (program): Denominators of continued fraction convergents to sqrt(153).
  • A041284 (program): Numerators of continued fraction convergents to sqrt(155).
  • A041285 (program): Denominators of continued fraction convergents to sqrt(155).
  • A041286 (program): Numerators of continued fraction convergents to sqrt(156).
  • A041287 (program): Denominators of continued fraction convergents to sqrt(156).
  • A041290 (program): Numerators of continued fraction convergents to sqrt(158).
  • A041291 (program): Denominators of continued fraction convergents to sqrt(158).
  • A041292 (program): Numerators of continued fraction convergents to sqrt(159).
  • A041293 (program): Denominators of continued fraction convergents to sqrt(159).
  • A041294 (program): Numerators of continued fraction convergents to sqrt(160).
  • A041295 (program): Denominators of continued fraction convergents to sqrt(160).
  • A041298 (program): Numerators of continued fraction convergents to sqrt(162).
  • A041302 (program): Numerators of continued fraction convergents to sqrt(164).
  • A041303 (program): Denominators of continued fraction convergents to sqrt(164).
  • A041304 (program): Numerators of continued fraction convergents to sqrt(165).
  • A041305 (program): Denominators of continued fraction convergents to sqrt(165).
  • A041308 (program): Numerators of continued fraction convergents to sqrt(167).
  • A041309 (program): Denominators of continued fraction convergents to sqrt(167).
  • A041310 (program): Numerators of continued fraction convergents to sqrt(168).
  • A041311 (program): Denominators of continued fraction convergents to sqrt(168).
  • A041312 (program): Numerators of continued fraction convergents to sqrt(170).
  • A041313 (program): Denominators of continued fraction convergents to sqrt(170).
  • A041314 (program): Numerators of continued fraction convergents to sqrt(171).
  • A041315 (program): Denominators of continued fraction convergents to sqrt(171).
  • A041318 (program): Numerators of continued fraction convergents to sqrt(173).
  • A041319 (program): Denominators of continued fraction convergents to sqrt(173).
  • A041320 (program): Numerators of continued fraction convergents to sqrt(174).
  • A041321 (program): Denominators of continued fraction convergents to sqrt(174).
  • A041322 (program): Numerators of continued fraction convergents to sqrt(175).
  • A041323 (program): Denominators of continued fraction convergents to sqrt(175).
  • A041324 (program): Numerators of continued fraction convergents to sqrt(176).
  • A041325 (program): Denominators of continued fraction convergents to sqrt(176).
  • A041326 (program): Numerators of continued fraction convergents to sqrt(177).
  • A041327 (program): Denominators of continued fraction convergents to sqrt(177).
  • A041328 (program): Numerators of continued fraction convergents to sqrt(178).
  • A041329 (program): Denominators of continued fraction convergents to sqrt(178).
  • A041332 (program): Numerators of continued fraction convergents to sqrt(180).
  • A041333 (program): Denominators of continued fraction convergents to sqrt(180).
  • A041336 (program): Numerators of continued fraction convergents to sqrt(182).
  • A041337 (program): Denominators of continued fraction convergents to sqrt(182).
  • A041338 (program): Numerators of continued fraction convergents to sqrt(183).
  • A041339 (program): Denominators of continued fraction convergents to sqrt(183).
  • A041342 (program): Numerators of continued fraction convergents to sqrt(185).
  • A041343 (program): Denominators of continued fraction convergents to sqrt(185).
  • A041346 (program): Numerators of continued fraction convergents to sqrt(187).
  • A041347 (program): Denominators of continued fraction convergents to sqrt(187).
  • A041348 (program): Numerators of continued fraction convergents to sqrt(188).
  • A041349 (program): Denominators of continued fraction convergents to sqrt(188).
  • A041350 (program): Numerators of continued fraction convergents to sqrt(189).
  • A041351 (program): Denominators of continued fraction convergents to sqrt(189).
  • A041356 (program): Numerators of continued fraction convergents to sqrt(192).
  • A041357 (program): Denominators of continued fraction convergents to sqrt(192).
  • A041360 (program): Numerators of continued fraction convergents to sqrt(194).
  • A041361 (program): Denominators of continued fraction convergents to sqrt(194).
  • A041362 (program): Numerators of continued fraction convergents to sqrt(195).
  • A041363 (program): Denominators of continued fraction convergents to sqrt(195).
  • A041364 (program): Numerators of continued fraction convergents to sqrt(197).
  • A041365 (program): Denominators of continued fraction convergents to sqrt(197).
  • A041366 (program): Numerators of continued fraction convergents to sqrt(198).
  • A041367 (program): Denominators of continued fraction convergents to sqrt(198).
  • A041370 (program): Numerators of continued fraction convergents to sqrt(200).
  • A041371 (program): Denominators of continued fraction convergents to sqrt(200).
  • A041376 (program): Numerators of continued fraction convergents to sqrt(203).
  • A041377 (program): Denominators of continued fraction convergents to sqrt(203).
  • A041378 (program): Numerators of continued fraction convergents to sqrt(204).
  • A041379 (program): Denominators of continued fraction convergents to sqrt(204).
  • A041384 (program): Numerators of continued fraction convergents to sqrt(207).
  • A041385 (program): Denominators of continued fraction convergents to sqrt(207).
  • A041386 (program): Numerators of continued fraction convergents to sqrt(208).
  • A041387 (program): Denominators of continued fraction convergents to sqrt(208).
  • A041390 (program): Numerators of continued fraction convergents to sqrt(210).
  • A041391 (program): Denominators of continued fraction convergents to sqrt(210).
  • A041400 (program): Numerators of continued fraction convergents to sqrt(215).
  • A041401 (program): Denominators of continued fraction convergents to sqrt(215).
  • A041402 (program): Numerators of continued fraction convergents to sqrt(216).
  • A041403 (program): Denominators of continued fraction convergents to sqrt(216).
  • A041406 (program): Numerators of continued fraction convergents to sqrt(218).
  • A041407 (program): Denominators of continued fraction convergents to sqrt(218).
  • A041408 (program): Numerators of continued fraction convergents to sqrt(219).
  • A041409 (program): Denominators of continued fraction convergents to sqrt(219).
  • A041410 (program): Numerators of continued fraction convergents to sqrt(220).
  • A041411 (program): Denominators of continued fraction convergents to sqrt(220).
  • A041412 (program): Numerators of continued fraction convergents to sqrt(221).
  • A041413 (program): Denominators of continued fraction convergents to sqrt(221).
  • A041414 (program): Numerators of continued fraction convergents to sqrt(222).
  • A041415 (program): Denominators of continued fraction convergents to sqrt(222).
  • A041416 (program): Numerators of continued fraction convergents to sqrt(223).
  • A041417 (program): Denominators of continued fraction convergents to sqrt(223).
  • A041418 (program): Numerators of continued fraction convergents to sqrt(224).
  • A041419 (program): Denominators of continued fraction convergents to sqrt(224).
  • A041420 (program): Numerators of continued fraction convergents to sqrt(226).
  • A041421 (program): Denominators of continued fraction convergents to sqrt(226).
  • A041422 (program): Numerators of continued fraction convergents to sqrt(227).
  • A041423 (program): Denominators of continued fraction convergents to sqrt(227).
  • A041424 (program): Numerators of continued fraction convergents to sqrt(228).
  • A041425 (program): Denominators of continued fraction convergents to sqrt(228).
  • A041426 (program): Numerators of continued fraction convergents to sqrt(229).
  • A041427 (program): Denominators of continued fraction convergents to sqrt(229).
  • A041428 (program): Numerators of continued fraction convergents to sqrt(230).
  • A041429 (program): Denominators of continued fraction convergents to sqrt(230).
  • A041430 (program): Numerators of continued fraction convergents to sqrt(231).
  • A041431 (program): Denominators of continued fraction convergents to sqrt(231).
  • A041432 (program): Numerators of continued fraction convergents to sqrt(232).
  • A041433 (program): Denominators of continued fraction convergents to sqrt(232).
  • A041438 (program): Numerators of continued fraction convergents to sqrt(235).
  • A041439 (program): Denominators of continued fraction convergents to sqrt(235).
  • A041442 (program): Numerators of continued fraction convergents to sqrt(237).
  • A041443 (program): Denominators of continued fraction convergents to sqrt(237).
  • A041444 (program): Numerators of continued fraction convergents to sqrt(238).
  • A041445 (program): Denominators of continued fraction convergents to sqrt(238).
  • A041448 (program): Numerators of continued fraction convergents to sqrt(240).
  • A041449 (program): Denominators of continued fraction convergents to sqrt(240).
  • A041454 (program): Numerators of continued fraction convergents to sqrt(243).
  • A041455 (program): Denominators of continued fraction convergents to sqrt(243).
  • A041458 (program): Numerators of continued fraction convergents to sqrt(245).
  • A041459 (program): Denominators of continued fraction convergents to sqrt(245).
  • A041464 (program): Numerators of continued fraction convergents to sqrt(248).
  • A041465 (program): Denominators of continued fraction convergents to sqrt(248).
  • A041472 (program): Numerators of continued fraction convergents to sqrt(252).
  • A041473 (program): Denominators of continued fraction convergents to sqrt(252).
  • A041476 (program): Numerators of continued fraction convergents to sqrt(254).
  • A041477 (program): Denominators of continued fraction convergents to sqrt(254).
  • A041478 (program): Numerators of continued fraction convergents to sqrt(255).
  • A041479 (program): Denominators of continued fraction convergents to sqrt(255).
  • A041480 (program): Numerators of continued fraction convergents to sqrt(257).
  • A041481 (program): Denominators of continued fraction convergents to sqrt(257).
  • A041482 (program): Numerators of continued fraction convergents to sqrt(258).
  • A041483 (program): Denominators of continued fraction convergents to sqrt(258).
  • A041486 (program): Numerators of continued fraction convergents to sqrt(260).
  • A041487 (program): Denominators of continued fraction convergents to sqrt(260).
  • A041494 (program): Numerators of continued fraction convergents to sqrt(264).
  • A041495 (program): Denominators of continued fraction convergents to sqrt(264).
  • A041498 (program): Numerators of continued fraction convergents to sqrt(266).
  • A041499 (program): Denominators of continued fraction convergents to sqrt(266).
  • A041500 (program): Numerators of continued fraction convergents to sqrt(267).
  • A041501 (program): Denominators of continued fraction convergents to sqrt(267).
  • A041504 (program): Numerators of continued fraction convergents to sqrt(269).
  • A041505 (program): Denominators of continued fraction convergents to sqrt(269).
  • A041506 (program): Numerators of continued fraction convergents to sqrt(270).
  • A041507 (program): Denominators of continued fraction convergents to sqrt(270).
  • A041510 (program): Numerators of continued fraction convergents to sqrt(272).
  • A041511 (program): Denominators of continued fraction convergents to sqrt(272).
  • A041512 (program): Numerators of continued fraction convergents to sqrt(273).
  • A041513 (program): Denominators of continued fraction convergents to sqrt(273).
  • A041516 (program): Numerators of continued fraction convergents to sqrt(275).
  • A041517 (program): Denominators of continued fraction convergents to sqrt(275).
  • A041518 (program): Numerators of continued fraction convergents to sqrt(276).
  • A041519 (program): Denominators of continued fraction convergents to sqrt(276).
  • A041522 (program): Numerators of continued fraction convergents to sqrt(278).
  • A041523 (program): Denominators of continued fraction convergents to sqrt(278).
  • A041524 (program): Numerators of continued fraction convergents to sqrt(279).
  • A041525 (program): Denominators of continued fraction convergents to sqrt(279).
  • A041526 (program): Numerators of continued fraction convergents to sqrt(280).
  • A041527 (program): Denominators of continued fraction convergents to sqrt(280).
  • A041530 (program): Numerators of continued fraction convergents to sqrt(282).
  • A041531 (program): Denominators of continued fraction convergents to sqrt(282).
  • A041536 (program): Numerators of continued fraction convergents to sqrt(285).
  • A041537 (program): Denominators of continued fraction convergents to sqrt(285).
  • A041540 (program): Numerators of continued fraction convergents to sqrt(287).
  • A041541 (program): Denominators of continued fraction convergents to sqrt(287).
  • A041542 (program): Numerators of continued fraction convergents to sqrt(288).
  • A041543 (program): Denominators of continued fraction convergents to sqrt(288).
  • A041544 (program): Numerators of continued fraction convergents to sqrt(290).
  • A041545 (program): Denominators of continued fraction convergents to sqrt(290).
  • A041546 (program): Numerators of continued fraction convergents to sqrt(291).
  • A041547 (program): Denominators of continued fraction convergents to sqrt(291).
  • A041550 (program): Numerators of continued fraction convergents to sqrt(293).
  • A041551 (program): Denominators of continued fraction convergents to sqrt(293).
  • A041552 (program): Numerators of continued fraction convergents to sqrt(294).
  • A041553 (program): Denominators of continued fraction convergents to sqrt(294).
  • A041556 (program): Numerators of continued fraction convergents to sqrt(296).
  • A041557 (program): Denominators of continued fraction convergents to sqrt(296).
  • A041562 (program): Numerators of continued fraction convergents to sqrt(299).
  • A041563 (program): Denominators of continued fraction convergents to sqrt(299).
  • A041564 (program): Numerators of continued fraction convergents to sqrt(300).
  • A041565 (program): Denominators of continued fraction convergents to sqrt(300).
  • A041570 (program): Numerators of continued fraction convergents to sqrt(303).
  • A041571 (program): Denominators of continued fraction convergents to sqrt(303).
  • A041574 (program): Numerators of continued fraction convergents to sqrt(305).
  • A041575 (program): Denominators of continued fraction convergents to sqrt(305).
  • A041576 (program): Numerators of continued fraction convergents to sqrt(306).
  • A041577 (program): Denominators of continued fraction convergents to sqrt(306).
  • A041580 (program): Numerators of continued fraction convergents to sqrt(308).
  • A041581 (program): Denominators of continued fraction convergents to sqrt(308).
  • A041588 (program): Numerators of continued fraction convergents to sqrt(312).
  • A041589 (program): Denominators of continued fraction convergents to sqrt(312).
  • A041592 (program): Numerators of continued fraction convergents to sqrt(314).
  • A041593 (program): Denominators of continued fraction convergents to sqrt(314).
  • A041594 (program): Numerators of continued fraction convergents to sqrt(315).
  • A041595 (program): Denominators of continued fraction convergents to sqrt(315).
  • A041596 (program): Numerators of continued fraction convergents to sqrt(316).
  • A041597 (program): Denominators of continued fraction convergents to sqrt(316).
  • A041600 (program): Numerators of continued fraction convergents to sqrt(318).
  • A041601 (program): Denominators of continued fraction convergents to sqrt(318).
  • A041604 (program): Numerators of continued fraction convergents to sqrt(320).
  • A041605 (program): Denominators of continued fraction convergents to sqrt(320).
  • A041606 (program): Numerators of continued fraction convergents to sqrt(321).
  • A041607 (program): Denominators of continued fraction convergents to sqrt(321).
  • A041608 (program): Numerators of continued fraction convergents to sqrt(322).
  • A041609 (program): Denominators of continued fraction convergents to sqrt(322).
  • A041610 (program): Numerators of continued fraction convergents to sqrt(323).
  • A041611 (program): Denominators of continued fraction convergents to sqrt(323).
  • A041612 (program): Numerators of continued fraction convergents to sqrt(325).
  • A041613 (program): Denominators of continued fraction convergents to sqrt(325).
  • A041614 (program): Numerators of continued fraction convergents to sqrt(326).
  • A041615 (program): Denominators of continued fraction convergents to sqrt(326).
  • A041616 (program): Numerators of continued fraction convergents to sqrt(327).
  • A041617 (program): Denominators of continued fraction convergents to sqrt(327).
  • A041618 (program): Numerators of continued fraction convergents to sqrt(328).
  • A041619 (program): Denominators of continued fraction convergents to sqrt(328).
  • A041622 (program): Numerators of continued fraction convergents to sqrt(330).
  • A041623 (program): Denominators of continued fraction convergents to sqrt(330).
  • A041626 (program): Numerators of continued fraction convergents to sqrt(332).
  • A041627 (program): Denominators of continued fraction convergents to sqrt(332).
  • A041628 (program): Numerators of continued fraction convergents to sqrt(333).
  • A041629 (program): Denominators of continued fraction convergents to sqrt(333).
  • A041632 (program): Numerators of continued fraction convergents to sqrt(335).
  • A041633 (program): Denominators of continued fraction convergents to sqrt(335).
  • A041634 (program): Numerators of continued fraction convergents to sqrt(336).
  • A041635 (program): Denominators of continued fraction convergents to sqrt(336).
  • A041638 (program): Numerators of continued fraction convergents to sqrt(338).
  • A041639 (program): Denominators of continued fraction convergents to sqrt(338).
  • A041646 (program): Numerators of continued fraction convergents to sqrt(342).
  • A041647 (program): Denominators of continued fraction convergents to sqrt(342).
  • A041654 (program): Numerators of continued fraction convergents to sqrt(346).
  • A041655 (program): Denominators of continued fraction convergents to sqrt(346).
  • A041658 (program): Numerators of continued fraction convergents to sqrt(348).
  • A041659 (program): Denominators of continued fraction convergents to sqrt(348).
  • A041662 (program): Numerators of continued fraction convergents to sqrt(350).
  • A041663 (program): Denominators of continued fraction convergents to sqrt(350).
  • A041670 (program): Numerators of continued fraction convergents to sqrt(354).
  • A041671 (program): Denominators of continued fraction convergents to sqrt(354).
  • A041676 (program): Numerators of continued fraction convergents to sqrt(357).
  • A041677 (program): Denominators of continued fraction convergents to sqrt(357).
  • A041680 (program): Numerators of continued fraction convergents to sqrt(359).
  • A041681 (program): Denominators of continued fraction convergents to sqrt(359).
  • A041682 (program): Numerators of continued fraction convergents to sqrt(360).
  • A041683 (program): Denominators of continued fraction convergents to sqrt(360).
  • A041684 (program): Numerators of continued fraction convergents to sqrt(362).
  • A041685 (program): Denominators of continued fraction convergents to sqrt(362).
  • A041686 (program): Numerators of continued fraction convergents to sqrt(363).
  • A041687 (program): Denominators of continued fraction convergents to sqrt(363).
  • A041690 (program): Numerators of continued fraction convergents to sqrt(365).
  • A041691 (program): Denominators of continued fraction convergents to sqrt(365).
  • A041696 (program): Numerators of continued fraction convergents to sqrt(368).
  • A041697 (program): Denominators of continued fraction convergents to sqrt(368).
  • A041700 (program): Numerators of continued fraction convergents to sqrt(370).
  • A041701 (program): Denominators of continued fraction convergents to sqrt(370).
  • A041702 (program): Numerators of continued fraction convergents to sqrt(371).
  • A041703 (program): Denominators of continued fraction convergents to sqrt(371).
  • A041706 (program): Numerators of continued fraction convergents to sqrt(373).
  • A041707 (program): Denominators of continued fraction convergents to sqrt(373).
  • A041708 (program): Numerators of continued fraction convergents to sqrt(374).
  • A041709 (program): Denominators of continued fraction convergents to sqrt(374).
  • A041714 (program): Numerators of continued fraction convergents to sqrt(377).
  • A041715 (program): Denominators of continued fraction convergents to sqrt(377).
  • A041720 (program): Numerators of continued fraction convergents to sqrt(380).
  • A041721 (program): Denominators of continued fraction convergents to sqrt(380).
  • A041722 (program): Numerators of continued fraction convergents to sqrt(381).
  • A041723 (program): Denominators of continued fraction convergents to sqrt(381).
  • A041726 (program): Numerators of continued fraction convergents to sqrt(383).
  • A041727 (program): Denominators of continued fraction convergents to sqrt(383).
  • A041728 (program): Numerators of continued fraction convergents to sqrt(384).
  • A041729 (program): Denominators of continued fraction convergents to sqrt(384).
  • A041734 (program): Numerators of continued fraction convergents to sqrt(387).
  • A041735 (program): Denominators of continued fraction convergents to sqrt(387).
  • A041738 (program): Numerators of continued fraction convergents to sqrt(389).
  • A041739 (program): Denominators of continued fraction convergents to sqrt(389).
  • A041740 (program): Numerators of continued fraction convergents to sqrt(390).
  • A041741 (program): Denominators of continued fraction convergents to sqrt(390).
  • A041744 (program): Numerators of continued fraction convergents to sqrt(392).
  • A041745 (program): Denominators of continued fraction convergents to sqrt(392).
  • A041750 (program): Numerators of continued fraction convergents to sqrt(395).
  • A041751 (program): Denominators of continued fraction convergents to sqrt(395).
  • A041752 (program): Numerators of continued fraction convergents to sqrt(396).
  • A041753 (program): Denominators of continued fraction convergents to sqrt(396).
  • A041756 (program): Numerators of continued fraction convergents to sqrt(398).
  • A041757 (program): Denominators of continued fraction convergents to sqrt(398).
  • A041758 (program): Numerators of continued fraction convergents to sqrt(399).
  • A041759 (program): Denominators of continued fraction convergents to sqrt(399).
  • A041760 (program): Numerators of continued fraction convergents to sqrt(401).
  • A041761 (program): Denominators of continued fraction convergents to sqrt(401).
  • A041762 (program): Numerators of continued fraction convergents to sqrt(402).
  • A041763 (program): Denominators of continued fraction convergents to sqrt(402).
  • A041766 (program): Numerators of continued fraction convergents to sqrt(404).
  • A041767 (program): Denominators of continued fraction convergents to sqrt(404).
  • A041768 (program): Numerators of continued fraction convergents to sqrt(405).
  • A041769 (program): Denominators of continued fraction convergents to sqrt(405).
  • A041772 (program): Numerators of continued fraction convergents to sqrt(407).
  • A041773 (program): Denominators of continued fraction convergents to sqrt(407).
  • A041774 (program): Numerators of continued fraction convergents to sqrt(408).
  • A041775 (program): Denominators of continued fraction convergents to sqrt(408).
  • A041778 (program): Numerators of continued fraction convergents to sqrt(410).
  • A041779 (program): Denominators of continued fraction convergents to sqrt(410).
  • A041790 (program): Numerators of continued fraction convergents to sqrt(416).
  • A041791 (program): Denominators of continued fraction convergents to sqrt(416).
  • A041794 (program): Numerators of continued fraction convergents to sqrt(418).
  • A041795 (program): Denominators of continued fraction convergents to sqrt(418).
  • A041798 (program): Numerators of continued fraction convergents to sqrt(420).
  • A041799 (program): Denominators of continued fraction convergents to sqrt(420).
  • A041804 (program): Numerators of continued fraction convergents to sqrt(423).
  • A041805 (program): Denominators of continued fraction convergents to sqrt(423).
  • A041808 (program): Numerators of continued fraction convergents to sqrt(425).
  • A041809 (program): Denominators of continued fraction convergents to sqrt(425).
  • A041812 (program): Numerators of continued fraction convergents to sqrt(427).
  • A041813 (program): Denominators of continued fraction convergents to sqrt(427).
  • A041826 (program): Numerators of continued fraction convergents to sqrt(434).
  • A041827 (program): Denominators of continued fraction convergents to sqrt(434).
  • A041828 (program): Numerators of continued fraction convergents to sqrt(435).
  • A041829 (program): Denominators of continued fraction convergents to sqrt(435).
  • A041832 (program): Numerators of continued fraction convergents to sqrt(437).
  • A041833 (program): Denominators of continued fraction convergents to sqrt(437).
  • A041834 (program): Numerators of continued fraction convergents to sqrt(438).
  • A041835 (program): Denominators of continued fraction convergents to sqrt(438).
  • A041836 (program): Numerators of continued fraction convergents to sqrt(439).
  • A041837 (program): Denominators of continued fraction convergents to sqrt(439).
  • A041838 (program): Numerators of continued fraction convergents to sqrt(440).
  • A041839 (program): Denominators of continued fraction convergents to sqrt(440).
  • A041840 (program): Numerators of continued fraction convergents to sqrt(442).
  • A041841 (program): Denominators of continued fraction convergents to sqrt(442).
  • A041842 (program): Numerators of continued fraction convergents to sqrt(443).
  • A041843 (program): Denominators of continued fraction convergents to sqrt(443).
  • A041844 (program): Numerators of continued fraction convergents to sqrt(444).
  • A041845 (program): Denominators of continued fraction convergents to sqrt(444).
  • A041846 (program): Numerators of continued fraction convergents to sqrt(445).
  • A041847 (program): Denominators of continued fraction convergents to sqrt(445).
  • A041850 (program): Numerators of continued fraction convergents to sqrt(447).
  • A041851 (program): Denominators of continued fraction convergents to sqrt(447).
  • A041852 (program): Numerators of continued fraction convergents to sqrt(448).
  • A041853 (program): Denominators of continued fraction convergents to sqrt(448).
  • A041858 (program): Numerators of continued fraction convergents to sqrt(451).
  • A041859 (program): Denominators of continued fraction convergents to sqrt(451).
  • A041862 (program): Numerators of continued fraction convergents to sqrt(453).
  • A041863 (program): Denominators of continued fraction convergents to sqrt(453).
  • A041866 (program): Numerators of continued fraction convergents to sqrt(455).
  • A041867 (program): Denominators of continued fraction convergents to sqrt(455).
  • A041868 (program): Numerators of continued fraction convergents to sqrt(456).
  • A041869 (program): Denominators of continued fraction convergents to sqrt(456).
  • A041872 (program): Numerators of continued fraction convergents to sqrt(458).
  • A041873 (program): Denominators of continued fraction convergents to sqrt(458).
  • A041874 (program): Numerators of continued fraction convergents to sqrt(459).
  • A041875 (program): Denominators of continued fraction convergents to sqrt(459).
  • A041880 (program): Numerators of continued fraction convergents to sqrt(462).
  • A041881 (program): Denominators of continued fraction convergents to sqrt(462).
  • A041892 (program): Numerators of continued fraction convergents to sqrt(468).
  • A041893 (program): Denominators of continued fraction convergents to sqrt(468).
  • A041894 (program): Numerators of continued fraction convergents to sqrt(469).
  • A041895 (program): Denominators of continued fraction convergents to sqrt(469).
  • A041896 (program): Numerators of continued fraction convergents to sqrt(470).
  • A041897 (program): Denominators of continued fraction convergents to sqrt(470).
  • A041902 (program): Numerators of continued fraction convergents to sqrt(473).
  • A041903 (program): Denominators of continued fraction convergents to sqrt(473).
  • A041916 (program): Numerators of continued fraction convergents to sqrt(480).
  • A041917 (program): Denominators of continued fraction convergents to sqrt(480).
  • A041920 (program): Numerators of continued fraction convergents to sqrt(482).
  • A041921 (program): Denominators of continued fraction convergents to sqrt(482).
  • A041922 (program): Numerators of continued fraction convergents to sqrt(483).
  • A041923 (program): Denominators of continued fraction convergents to sqrt(483).
  • A041924 (program): Numerators of continued fraction convergents to sqrt(485).
  • A041925 (program): Denominators of continued fraction convergents to sqrt(485).
  • A041926 (program): Numerators of continued fraction convergents to sqrt(486).
  • A041927 (program): Denominators of continued fraction convergents to sqrt(486).
  • A041930 (program): Numerators of continued fraction convergents to sqrt(488).
  • A041931 (program): Denominators of continued fraction convergents to sqrt(488).
  • A041938 (program): Numerators of continued fraction convergents to sqrt(492).
  • A041939 (program): Denominators of continued fraction convergents to sqrt(492).
  • A041944 (program): Numerators of continued fraction convergents to sqrt(495).
  • A041945 (program): Denominators of continued fraction convergents to sqrt(495).
  • A041950 (program): Numerators of continued fraction convergents to sqrt(498).
  • A041951 (program): Denominators of continued fraction convergents to sqrt(498).
  • A041952 (program): Numerators of continued fraction convergents to sqrt(499).
  • A041953 (program): Denominators of continued fraction convergents to sqrt(499).
  • A041960 (program): Numerators of continued fraction convergents to sqrt(503).
  • A041961 (program): Denominators of continued fraction convergents to sqrt(503).
  • A041962 (program): Numerators of continued fraction convergents to sqrt(504).
  • A041963 (program): Denominators of continued fraction convergents to sqrt(504).
  • A041964 (program): Numerators of continued fraction convergents to sqrt(505).
  • A041965 (program): Denominators of continued fraction convergents to sqrt(505).
  • A041966 (program): Numerators of continued fraction convergents to sqrt(506).
  • A041967 (program): Denominators of continued fraction convergents to sqrt(506).
  • A041968 (program): Numerators of continued fraction convergents to sqrt(507).
  • A041969 (program): Denominators of continued fraction convergents to sqrt(507).
  • A041974 (program): Numerators of continued fraction convergents to sqrt(510).
  • A041975 (program): Denominators of continued fraction convergents to sqrt(510).
  • A041982 (program): Numerators of continued fraction convergents to sqrt(514).
  • A041983 (program): Denominators of continued fraction convergents to sqrt(514).
  • A041990 (program): Numerators of continued fraction convergents to sqrt(518).
  • A041991 (program): Denominators of continued fraction convergents to sqrt(518).
  • A041994 (program): Numerators of continued fraction convergents to sqrt(520).
  • A041995 (program): Denominators of continued fraction convergents to sqrt(520).
  • A042004 (program): Numerators of continued fraction convergents to sqrt(525).
  • A042005 (program): Denominators of continued fraction convergents to sqrt(525).
  • A042008 (program): Numerators of continued fraction convergents to sqrt(527).
  • A042009 (program): Denominators of continued fraction convergents to sqrt(527).
  • A042010 (program): Numerators of continued fraction convergents to sqrt(528).
  • A042011 (program): Denominators of continued fraction convergents to sqrt(528).
  • A042012 (program): Numerators of continued fraction convergents to sqrt(530).
  • A042013 (program): Denominators of continued fraction convergents to sqrt(530).
  • A042014 (program): Numerators of continued fraction convergents to sqrt(531).
  • A042015 (program): Denominators of continued fraction convergents to sqrt(531).
  • A042018 (program): Numerators of continued fraction convergents to sqrt(533).
  • A042019 (program): Denominators of continued fraction convergents to sqrt(533).
  • A042030 (program): Numerators of continued fraction convergents to sqrt(539).
  • A042031 (program): Denominators of continued fraction convergents to sqrt(539).
  • A042040 (program): Numerators of continued fraction convergents to sqrt(544).
  • A042041 (program): Denominators of continued fraction convergents to sqrt(544).
  • A042042 (program): Numerators of continued fraction convergents to sqrt(545).
  • A042043 (program): Denominators of continued fraction convergents to sqrt(545).
  • A042044 (program): Numerators of continued fraction convergents to sqrt(546).
  • A042045 (program): Denominators of continued fraction convergents to sqrt(546).
  • A042054 (program): Numerators of continued fraction convergents to sqrt(551).
  • A042055 (program): Denominators of continued fraction convergents to sqrt(551).
  • A042056 (program): Numerators of continued fraction convergents to sqrt(552).
  • A042057 (program): Denominators of continued fraction convergents to sqrt(552).
  • A042062 (program): Numerators of continued fraction convergents to sqrt(555).
  • A042063 (program): Denominators of continued fraction convergents to sqrt(555).
  • A042066 (program): Numerators of continued fraction convergents to sqrt(557).
  • A042067 (program): Denominators of continued fraction convergents to sqrt(557).
  • A042068 (program): Numerators of continued fraction convergents to sqrt(558).
  • A042069 (program): Denominators of continued fraction convergents to sqrt(558).
  • A042072 (program): Numerators of continued fraction convergents to sqrt(560).
  • A042073 (program): Denominators of continued fraction convergents to sqrt(560).
  • A042078 (program): Numerators of continued fraction convergents to sqrt(563).
  • A042079 (program): Denominators of continued fraction convergents to sqrt(563).
  • A042080 (program): Numerators of continued fraction convergents to sqrt(564).
  • A042081 (program): Denominators of continued fraction convergents to sqrt(564).
  • A042086 (program): Numerators of continued fraction convergents to sqrt(567).
  • A042087 (program): Denominators of continued fraction convergents to sqrt(567).
  • A042088 (program): Numerators of continued fraction convergents to sqrt(568).
  • A042089 (program): Denominators of continued fraction convergents to sqrt(568).
  • A042092 (program): Numerators of continued fraction convergents to sqrt(570).
  • A042093 (program): Denominators of continued fraction convergents to sqrt(570).
  • A042096 (program): Numerators of continued fraction convergents to sqrt(572).
  • A042097 (program): Denominators of continued fraction convergents to sqrt(572).
  • A042098 (program): Numerators of continued fraction convergents to sqrt(573).
  • A042099 (program): Denominators of continued fraction convergents to sqrt(573).
  • A042100 (program): Numerators of continued fraction convergents to sqrt(574).
  • A042101 (program): Denominators of continued fraction convergents to sqrt(574).
  • A042102 (program): Numerators of continued fraction convergents to sqrt(575).
  • A042103 (program): Denominators of continued fraction convergents to sqrt(575).
  • A042104 (program): Numerators of continued fraction convergents to sqrt(577).
  • A042105 (program): Denominators of continued fraction convergents to sqrt(577).
  • A042106 (program): Numerators of continued fraction convergents to sqrt(578).
  • A042107 (program): Denominators of continued fraction convergents to sqrt(578).
  • A042108 (program): Numerators of continued fraction convergents to sqrt(579).
  • A042109 (program): Denominators of continued fraction convergents to sqrt(579).
  • A042110 (program): Numerators of continued fraction convergents to sqrt(580).
  • A042111 (program): Denominators of continued fraction convergents to sqrt(580).
  • A042114 (program): Numerators of continued fraction convergents to sqrt(582).
  • A042115 (program): Denominators of continued fraction convergents to sqrt(582).
  • A042118 (program): Numerators of continued fraction convergents to sqrt(584).
  • A042119 (program): Denominators of continued fraction convergents to sqrt(584).
  • A042126 (program): Numerators of continued fraction convergents to sqrt(588).
  • A042127 (program): Denominators of continued fraction convergents to sqrt(588).
  • A042130 (program): Numerators of continued fraction convergents to sqrt(590).
  • A042131 (program): Denominators of continued fraction convergents to sqrt(590).
  • A042134 (program): Numerators of continued fraction convergents to sqrt(592).
  • A042135 (program): Denominators of continued fraction convergents to sqrt(592).
  • A042150 (program): Numerators of continued fraction convergents to sqrt(600).
  • A042151 (program): Denominators of continued fraction convergents to sqrt(600).
  • A042154 (program): Numerators of continued fraction convergents to sqrt(602).
  • A042155 (program): Denominators of continued fraction convergents to sqrt(602).
  • A042166 (program): Numerators of continued fraction convergents to sqrt(608).
  • A042167 (program): Denominators of continued fraction convergents to sqrt(608).
  • A042174 (program): Numerators of continued fraction convergents to sqrt(612).
  • A042175 (program): Denominators of continued fraction convergents to sqrt(612).
  • A042180 (program): Numerators of continued fraction convergents to sqrt(615).
  • A042181 (program): Denominators of continued fraction convergents to sqrt(615).
  • A042186 (program): Numerators of continued fraction convergents to sqrt(618).
  • A042187 (program): Denominators of continued fraction convergents to sqrt(618).
  • A042190 (program): Numerators of continued fraction convergents to sqrt(620).
  • A042191 (program): Denominators of continued fraction convergents to sqrt(620).
  • A042192 (program): Numerators of continued fraction convergents to sqrt(621).
  • A042193 (program): Denominators of continued fraction convergents to sqrt(621).
  • A042196 (program): Numerators of continued fraction convergents to sqrt(623).
  • A042197 (program): Denominators of continued fraction convergents to sqrt(623).
  • A042198 (program): Numerators of continued fraction convergents to sqrt(624).
  • A042199 (program): Denominators of continued fraction convergents to sqrt(624).
  • A042200 (program): Numerators of continued fraction convergents to sqrt(626).
  • A042201 (program): Denominators of continued fraction convergents to sqrt(626).
  • A042202 (program): Numerators of continued fraction convergents to sqrt(627).
  • A042203 (program): Denominators of continued fraction convergents to sqrt(627).
  • A042206 (program): Numerators of continued fraction convergents to sqrt(629).
  • A042207 (program): Denominators of continued fraction convergents to sqrt(629).
  • A042208 (program): Numerators of continued fraction convergents to sqrt(630).
  • A042209 (program): Denominators of continued fraction convergents to sqrt(630).
  • A042212 (program): Numerators of continued fraction convergents to sqrt(632).
  • A042213 (program): Denominators of continued fraction convergents to sqrt(632).
  • A042218 (program): Numerators of continued fraction convergents to sqrt(635).
  • A042219 (program): Denominators of continued fraction convergents to sqrt(635).
  • A042232 (program): Numerators of continued fraction convergents to sqrt(642).
  • A042233 (program): Denominators of continued fraction convergents to sqrt(642).
  • A042238 (program): Numerators of continued fraction convergents to sqrt(645).
  • A042239 (program): Denominators of continued fraction convergents to sqrt(645).
  • A042240 (program): Numerators of continued fraction convergents to sqrt(646).
  • A042241 (program): Denominators of continued fraction convergents to sqrt(646).
  • A042244 (program): Numerators of continued fraction convergents to sqrt(648).
  • A042245 (program): Denominators of continued fraction convergents to sqrt(648).
  • A042248 (program): Numerators of continued fraction convergents to sqrt(650).
  • A042249 (program): Denominators of continued fraction convergents to sqrt(650).
  • A042250 (program): Numerators of continued fraction convergents to sqrt(651).
  • A042251 (program): Denominators of continued fraction convergents to sqrt(651).
  • A042260 (program): Numerators of continued fraction convergents to sqrt(656).
  • A042261 (program): Denominators of continued fraction convergents to sqrt(656).
  • A042264 (program): Numerators of continued fraction convergents to sqrt(658).
  • A042265 (program): Denominators of continued fraction convergents to sqrt(658).
  • A042266 (program): Numerators of continued fraction convergents to sqrt(659).
  • A042267 (program): Denominators of continued fraction convergents to sqrt(659).
  • A042268 (program): Numerators of continued fraction convergents to sqrt(660).
  • A042269 (program): Denominators of continued fraction convergents to sqrt(660).
  • A042274 (program): Numerators of continued fraction convergents to sqrt(663).
  • A042275 (program): Denominators of continued fraction convergents to sqrt(663).
  • A042292 (program): Numerators of continued fraction convergents to sqrt(672).
  • A042293 (program): Denominators of continued fraction convergents to sqrt(672).
  • A042296 (program): Numerators of continued fraction convergents to sqrt(674).
  • A042297 (program): Denominators of continued fraction convergents to sqrt(674).
  • A042298 (program): Numerators of continued fraction convergents to sqrt(675).
  • A042299 (program): Denominators of continued fraction convergents to sqrt(675).
  • A042300 (program): Numerators of continued fraction convergents to sqrt(677).
  • A042301 (program): Denominators of continued fraction convergents to sqrt(677).
  • A042302 (program): Numerators of continued fraction convergents to sqrt(678).
  • A042303 (program): Denominators of continued fraction convergents to sqrt(678).
  • A042306 (program): Numerators of continued fraction convergents to sqrt(680).
  • A042307 (program): Denominators of continued fraction convergents to sqrt(680).
  • A042314 (program): Numerators of continued fraction convergents to sqrt(684).
  • A042315 (program): Denominators of continued fraction convergents to sqrt(684).
  • A042324 (program): Numerators of continued fraction convergents to sqrt(689).
  • A042325 (program): Denominators of continued fraction convergents to sqrt(689).
  • A042326 (program): Numerators of continued fraction convergents to sqrt(690).
  • A042327 (program): Denominators of continued fraction convergents to sqrt(690).
  • A042336 (program): Numerators of continued fraction convergents to sqrt(695).
  • A042337 (program): Denominators of continued fraction convergents to sqrt(695).
  • A042338 (program): Numerators of continued fraction convergents to sqrt(696).
  • A042339 (program): Denominators of continued fraction convergents to sqrt(696).
  • A042340 (program): Numerators of continued fraction convergents to sqrt(697).
  • A042341 (program): Denominators of continued fraction convergents to sqrt(697).
  • A042348 (program): Numerators of continued fraction convergents to sqrt(701).
  • A042349 (program): Denominators of continued fraction convergents to sqrt(701).
  • A042350 (program): Numerators of continued fraction convergents to sqrt(702).
  • A042351 (program): Denominators of continued fraction convergents to sqrt(702).
  • A042354 (program): Numerators of continued fraction convergents to sqrt(704).
  • A042355 (program): Denominators of continued fraction convergents to sqrt(704).
  • A042358 (program): Numerators of continued fraction convergents to sqrt(706).
  • A042359 (program): Denominators of continued fraction convergents to sqrt(706).
  • A042360 (program): Numerators of continued fraction convergents to sqrt(707).
  • A042361 (program): Denominators of continued fraction convergents to sqrt(707).
  • A042362 (program): Numerators of continued fraction convergents to sqrt(708).
  • A042363 (program): Denominators of continued fraction convergents to sqrt(708).
  • A042366 (program): Numerators of continued fraction convergents to sqrt(710).
  • A042367 (program): Denominators of continued fraction convergents to sqrt(710).
  • A042368 (program): Numerators of continued fraction convergents to sqrt(711).
  • A042369 (program): Denominators of continued fraction convergents to sqrt(711).
  • A042370 (program): Numerators of continued fraction convergents to sqrt(712).
  • A042371 (program): Denominators of continued fraction convergents to sqrt(712).
  • A042386 (program): Numerators of continued fraction convergents to sqrt(720).
  • A042387 (program): Denominators of continued fraction convergents to sqrt(720).
  • A042392 (program): Numerators of continued fraction convergents to sqrt(723).
  • A042393 (program): Denominators of continued fraction convergents to sqrt(723).
  • A042396 (program): Numerators of continued fraction convergents to sqrt(725).
  • A042397 (program): Denominators of continued fraction convergents to sqrt(725).
  • A042398 (program): Numerators of continued fraction convergents to sqrt(726).
  • A042399 (program): Denominators of continued fraction convergents to sqrt(726).
  • A042400 (program): Numerators of continued fraction convergents to sqrt(727).
  • A042401 (program): Denominators of continued fraction convergents to sqrt(727).
  • A042402 (program): Numerators of continued fraction convergents to sqrt(728).
  • A042403 (program): Denominators of continued fraction convergents to sqrt(728).
  • A042404 (program): Numerators of continued fraction convergents to sqrt(730).
  • A042405 (program): Denominators of continued fraction convergents to sqrt(730).
  • A042406 (program): Numerators of continued fraction convergents to sqrt(731).
  • A042407 (program): Denominators of continued fraction convergents to sqrt(731).
  • A042408 (program): Numerators of continued fraction convergents to sqrt(732).
  • A042409 (program): Denominators of continued fraction convergents to sqrt(732).
  • A042410 (program): Numerators of continued fraction convergents to sqrt(733).
  • A042411 (program): Denominators of continued fraction convergents to sqrt(733).
  • A042414 (program): Numerators of continued fraction convergents to sqrt(735).
  • A042415 (program): Denominators of continued fraction convergents to sqrt(735).
  • A042420 (program): Numerators of continued fraction convergents to sqrt(738).
  • A042421 (program): Denominators of continued fraction convergents to sqrt(738).
  • A042424 (program): Numerators of continued fraction convergents to sqrt(740).
  • A042425 (program): Denominators of continued fraction convergents to sqrt(740).
  • A042426 (program): Numerators of continued fraction convergents to sqrt(741).
  • A042427 (program): Denominators of continued fraction convergents to sqrt(741).
  • A042438 (program): Numerators of continued fraction convergents to sqrt(747).
  • A042439 (program): Denominators of continued fraction convergents to sqrt(747).
  • A042448 (program): Numerators of continued fraction convergents to sqrt(752).
  • A042449 (program): Denominators of continued fraction convergents to sqrt(752).
  • A042454 (program): Numerators of continued fraction convergents to sqrt(755).
  • A042455 (program): Denominators of continued fraction convergents to sqrt(755).
  • A042456 (program): Numerators of continued fraction convergents to sqrt(756).
  • A042457 (program): Denominators of continued fraction convergents to sqrt(756).
  • A042462 (program): Numerators of continued fraction convergents to sqrt(759).
  • A042463 (program): Denominators of continued fraction convergents to sqrt(759).
  • A042466 (program): Numerators of continued fraction convergents to sqrt(761).
  • A042467 (program): Denominators of continued fraction convergents to sqrt(761).
  • A042468 (program): Numerators of continued fraction convergents to sqrt(762).
  • A042469 (program): Denominators of continued fraction convergents to sqrt(762).
  • A042474 (program): Numerators of continued fraction convergents to sqrt(765).
  • A042475 (program): Denominators of continued fraction convergents to sqrt(765).
  • A042480 (program): Numerators of continued fraction convergents to sqrt(768).
  • A042481 (program): Denominators of continued fraction convergents to sqrt(768).
  • A042484 (program): Numerators of continued fraction convergents to sqrt(770).
  • A042485 (program): Denominators of continued fraction convergents to sqrt(770).
  • A042496 (program): Numerators of continued fraction convergents to sqrt(776).
  • A042497 (program): Denominators of continued fraction convergents to sqrt(776).
  • A042498 (program): Numerators of continued fraction convergents to sqrt(777).
  • A042499 (program): Denominators of continued fraction convergents to sqrt(777).
  • A042504 (program): Numerators of continued fraction convergents to sqrt(780).
  • A042505 (program): Denominators of continued fraction convergents to sqrt(780).
  • A042508 (program): Numerators of continued fraction convergents to sqrt(782).
  • A042509 (program): Denominators of continued fraction convergents to sqrt(782).
  • A042510 (program): Numerators of continued fraction convergents to sqrt(783).
  • A042511 (program): Denominators of continued fraction convergents to sqrt(783).
  • A042512 (program): Numerators of continued fraction convergents to sqrt(785).
  • A042513 (program): Denominators of continued fraction convergents to sqrt(785).
  • A042514 (program): Numerators of continued fraction convergents to sqrt(786).
  • A042515 (program): Denominators of continued fraction convergents to sqrt(786).
  • A042518 (program): Numerators of continued fraction convergents to sqrt(788).
  • A042519 (program): Denominators of continued fraction convergents to sqrt(788).
  • A042524 (program): Numerators of continued fraction convergents to sqrt(791).
  • A042525 (program): Denominators of continued fraction convergents to sqrt(791).
  • A042526 (program): Numerators of continued fraction convergents to sqrt(792).
  • A042527 (program): Denominators of continued fraction convergents to sqrt(792).
  • A042528 (program): Numerators of continued fraction convergents to sqrt(793).
  • A042529 (program): Denominators of continued fraction convergents to sqrt(793).
  • A042532 (program): Numerators of continued fraction convergents to sqrt(795).
  • A042533 (program): Denominators of continued fraction convergents to sqrt(795).
  • A042538 (program): Numerators of continued fraction convergents to sqrt(798).
  • A042539 (program): Denominators of continued fraction convergents to sqrt(798).
  • A042540 (program): Numerators of continued fraction convergents to sqrt(799).
  • A042541 (program): Denominators of continued fraction convergents to sqrt(799).
  • A042542 (program): Numerators of continued fraction convergents to sqrt(800).
  • A042543 (program): Denominators of continued fraction convergents to sqrt(800).
  • A042548 (program): Numerators of continued fraction convergents to sqrt(803).
  • A042549 (program): Denominators of continued fraction convergents to sqrt(803).
  • A042566 (program): Numerators of continued fraction convergents to sqrt(812).
  • A042567 (program): Denominators of continued fraction convergents to sqrt(812).
  • A042568 (program): Numerators of continued fraction convergents to sqrt(813).
  • A042569 (program): Denominators of continued fraction convergents to sqrt(813).
  • A042574 (program): Numerators of continued fraction convergents to sqrt(816).
  • A042575 (program): Denominators of continued fraction convergents to sqrt(816).
  • A042576 (program): Numerators of continued fraction convergents to sqrt(817).
  • A042577 (program): Denominators of continued fraction convergents to sqrt(817).
  • A042578 (program): Numerators of continued fraction convergents to sqrt(818).
  • A042579 (program): Denominators of continued fraction convergents to sqrt(818).
  • A042580 (program): Numerators of continued fraction convergents to sqrt(819).
  • A042581 (program): Denominators of continued fraction convergents to sqrt(819).
  • A042586 (program): Numerators of continued fraction convergents to sqrt(822).
  • A042587 (program): Denominators of continued fraction convergents to sqrt(822).
  • A042598 (program): Numerators of continued fraction convergents to sqrt(828).
  • A042599 (program): Denominators of continued fraction convergents to sqrt(828).
  • A042616 (program): Numerators of continued fraction convergents to sqrt(837).
  • A042617 (program): Denominators of continued fraction convergents to sqrt(837).
  • A042620 (program): Numerators of continued fraction convergents to sqrt(839).
  • A042621 (program): Denominators of continued fraction convergents to sqrt(839).
  • A042622 (program): Numerators of continued fraction convergents to sqrt(840).
  • A042623 (program): Denominators of continued fraction convergents to sqrt(840).
  • A042624 (program): Numerators of continued fraction convergents to sqrt(842).
  • A042625 (program): Denominators of continued fraction convergents to sqrt(842).
  • A042626 (program): Numerators of continued fraction convergents to sqrt(843).
  • A042627 (program): Denominators of continued fraction convergents to sqrt(843).
  • A042630 (program): Numerators of continued fraction convergents to sqrt(845).
  • A042631 (program): Denominators of continued fraction convergents to sqrt(845).
  • A042640 (program): Numerators of continued fraction convergents to sqrt(850).
  • A042641 (program): Denominators of continued fraction convergents to sqrt(850).
  • A042650 (program): Numerators of continued fraction convergents to sqrt(855).
  • A042651 (program): Denominators of continued fraction convergents to sqrt(855).
  • A042656 (program): Numerators of continued fraction convergents to sqrt(858).
  • A042657 (program): Denominators of continued fraction convergents to sqrt(858).
  • A042660 (program): Numerators of continued fraction convergents to sqrt(860).
  • A042661 (program): Denominators of continued fraction convergents to sqrt(860).
  • A042672 (program): Numerators of continued fraction convergents to sqrt(866).
  • A042673 (program): Denominators of continued fraction convergents to sqrt(866).
  • A042674 (program): Numerators of continued fraction convergents to sqrt(867).
  • A042675 (program): Denominators of continued fraction convergents to sqrt(867).
  • A042680 (program): Numerators of continued fraction convergents to sqrt(870).
  • A042681 (program): Denominators of continued fraction convergents to sqrt(870).
  • A042688 (program): Numerators of continued fraction convergents to sqrt(874).
  • A042689 (program): Denominators of continued fraction convergents to sqrt(874).
  • A042692 (program): Numerators of continued fraction convergents to sqrt(876).
  • A042693 (program): Denominators of continued fraction convergents to sqrt(876).
  • A042700 (program): Numerators of continued fraction convergents to sqrt(880).
  • A042701 (program): Denominators of continued fraction convergents to sqrt(880).
  • A042708 (program): Numerators of continued fraction convergents to sqrt(884).
  • A042709 (program): Denominators of continued fraction convergents to sqrt(884).
  • A042710 (program): Numerators of continued fraction convergents to sqrt(885).
  • A042711 (program): Denominators of continued fraction convergents to sqrt(885).
  • A042716 (program): Numerators of continued fraction convergents to sqrt(888).
  • A042717 (program): Denominators of continued fraction convergents to sqrt(888).
  • A042720 (program): Numerators of continued fraction convergents to sqrt(890).
  • A042721 (program): Denominators of continued fraction convergents to sqrt(890).
  • A042728 (program): Numerators of continued fraction convergents to sqrt(894).
  • A042729 (program): Denominators of continued fraction convergents to sqrt(894).
  • A042730 (program): Numerators of continued fraction convergents to sqrt(895).
  • A042731 (program): Denominators of continued fraction convergents to sqrt(895).
  • A042732 (program): Numerators of continued fraction convergents to sqrt(896).
  • A042733 (program): Denominators of continued fraction convergents to sqrt(896).
  • A042734 (program): Numerators of continued fraction convergents to sqrt(897).
  • A042735 (program): Denominators of continued fraction convergents to sqrt(897).
  • A042736 (program): Numerators of continued fraction convergents to sqrt(898).
  • A042737 (program): Denominators of continued fraction convergents to sqrt(898).
  • A042738 (program): Numerators of continued fraction convergents to sqrt(899).
  • A042739 (program): Denominators of continued fraction convergents to sqrt(899).
  • A042740 (program): Numerators of continued fraction convergents to sqrt(901).
  • A042741 (program): Denominators of continued fraction convergents to sqrt(901).
  • A042742 (program): Numerators of continued fraction convergents to sqrt(902).
  • A042743 (program): Denominators of continued fraction convergents to sqrt(902).
  • A042744 (program): Numerators of continued fraction convergents to sqrt(903).
  • A042745 (program): Denominators of continued fraction convergents to sqrt(903).
  • A042746 (program): Numerators of continued fraction convergents to sqrt(904).
  • A042747 (program): Denominators of continued fraction convergents to sqrt(904).
  • A042748 (program): Numerators of continued fraction convergents to sqrt(905).
  • A042749 (program): Denominators of continued fraction convergents to sqrt(905).
  • A042750 (program): Numerators of continued fraction convergents to sqrt(906).
  • A042751 (program): Denominators of continued fraction convergents to sqrt(906).
  • A042754 (program): Numerators of continued fraction convergents to sqrt(908).
  • A042755 (program): Denominators of continued fraction convergents to sqrt(908).
  • A042758 (program): Numerators of continued fraction convergents to sqrt(910).
  • A042759 (program): Denominators of continued fraction convergents to sqrt(910).
  • A042762 (program): Numerators of continued fraction convergents to sqrt(912).
  • A042763 (program): Denominators of continued fraction convergents to sqrt(912).
  • A042766 (program): Numerators of continued fraction convergents to sqrt(914).
  • A042767 (program): Denominators of continued fraction convergents to sqrt(914).
  • A042768 (program): Numerators of continued fraction convergents to sqrt(915).
  • A042769 (program): Denominators of continued fraction convergents to sqrt(915).
  • A042774 (program): Numerators of continued fraction convergents to sqrt(918).
  • A042775 (program): Denominators of continued fraction convergents to sqrt(918).
  • A042778 (program): Numerators of continued fraction convergents to sqrt(920).
  • A042779 (program): Denominators of continued fraction convergents to sqrt(920).
  • A042784 (program): Numerators of continued fraction convergents to sqrt(923).
  • A042785 (program): Denominators of continued fraction convergents to sqrt(923).
  • A042786 (program): Numerators of continued fraction convergents to sqrt(924).
  • A042787 (program): Denominators of continued fraction convergents to sqrt(924).
  • A042788 (program): Numerators of continued fraction convergents to sqrt(925).
  • A042789 (program): Denominators of continued fraction convergents to sqrt(925).
  • A042798 (program): Numerators of continued fraction convergents to sqrt(930).
  • A042799 (program): Denominators of continued fraction convergents to sqrt(930).
  • A042808 (program): Numerators of continued fraction convergents to sqrt(935).
  • A042809 (program): Denominators of continued fraction convergents to sqrt(935).
  • A042810 (program): Numerators of continued fraction convergents to sqrt(936).
  • A042811 (program): Denominators of continued fraction convergents to sqrt(936).
  • A042818 (program): Numerators of continued fraction convergents to sqrt(940).
  • A042819 (program): Denominators of continued fraction convergents to sqrt(940).
  • A042824 (program): Numerators of continued fraction convergents to sqrt(943).
  • A042825 (program): Denominators of continued fraction convergents to sqrt(943).
  • A042834 (program): Numerators of continued fraction convergents to sqrt(948).
  • A042835 (program): Denominators of continued fraction convergents to sqrt(948).
  • A042842 (program): Numerators of continued fraction convergents to sqrt(952).
  • A042843 (program): Denominators of continued fraction convergents to sqrt(952).
  • A042852 (program): Numerators of continued fraction convergents to sqrt(957).
  • A042853 (program): Denominators of continued fraction convergents to sqrt(957).
  • A042856 (program): Numerators of continued fraction convergents to sqrt(959).
  • A042857 (program): Denominators of continued fraction convergents to sqrt(959).
  • A042858 (program): Numerators of continued fraction convergents to sqrt(960).
  • A042859 (program): Denominators of continued fraction convergents to sqrt(960).
  • A042860 (program): Numerators of continued fraction convergents to sqrt(962).
  • A042861 (program): Denominators of continued fraction convergents to sqrt(962).
  • A042862 (program): Numerators of continued fraction convergents to sqrt(963).
  • A042863 (program): Denominators of continued fraction convergents to sqrt(963).
  • A042866 (program): Numerators of continued fraction convergents to sqrt(965).
  • A042867 (program): Denominators of continued fraction convergents to sqrt(965).
  • A042872 (program): Numerators of continued fraction convergents to sqrt(968).
  • A042873 (program): Denominators of continued fraction convergents to sqrt(968).
  • A042882 (program): Numerators of continued fraction convergents to sqrt(973).
  • A042883 (program): Denominators of continued fraction convergents to sqrt(973).
  • A042886 (program): Numerators of continued fraction convergents to sqrt(975).
  • A042887 (program): Denominators of continued fraction convergents to sqrt(975).
  • A042900 (program): Numerators of continued fraction convergents to sqrt(982).
  • A042901 (program): Denominators of continued fraction convergents to sqrt(982).
  • A042906 (program): Numerators of continued fraction convergents to sqrt(985).
  • A042907 (program): Denominators of continued fraction convergents to sqrt(985).
  • A042908 (program): Numerators of continued fraction convergents to sqrt(986).
  • A042909 (program): Denominators of continued fraction convergents to sqrt(986).
  • A042910 (program): Numerators of continued fraction convergents to sqrt(987).
  • A042911 (program): Denominators of continued fraction convergents to sqrt(987).
  • A042916 (program): Numerators of continued fraction convergents to sqrt(990).
  • A042917 (program): Denominators of continued fraction convergents to sqrt(990).
  • A042920 (program): Numerators of continued fraction convergents to sqrt(992).
  • A042921 (program): Denominators of continued fraction convergents to sqrt(992).
  • A042922 (program): Numerators of continued fraction convergents to sqrt(993).
  • A042923 (program): Denominators of continued fraction convergents to sqrt(993).
  • A042924 (program): Numerators of continued fraction convergents to sqrt(994).
  • A042925 (program): Denominators of continued fraction convergents to sqrt(994).
  • A042939 (program): Absolute values between digits of primes.
  • A042940 (program): Convolution of Catalan numbers A000108(n+1), n >= 0, with A038846.
  • A042941 (program): Convolution of Catalan numbers A000108 with A038845.
  • A042948 (program): Numbers congruent to 0 or 1 (mod 4).
  • A042950 (program): Row sums of the Lucas triangle A029635.
  • A042951 (program): The sequence e when b=[ 0,1,1,1,1,… ].
  • A042962 (program): The sequence e when b=[ 1,0,1,0,1,0,1,0,… ].
  • A042963 (program): Numbers congruent to 1 or 2 mod 4.
  • A042964 (program): Numbers that are congruent to {2, 3} mod 4.
  • A042965 (program): Nonnegative integers not congruent to 2 mod 4.
  • A042968 (program): Numbers not divisible by 4.
  • A042970 (program): a(n) = binomial(n, floor(n/2)) mod n.
  • A042971 (program): a(n) = (C(2n, n)/2 - (2^(n-1) + ((n+1) mod 2)*C(n-1, n/2-1)))/2.
  • A042974 (program): n 1’s followed by a 2.
  • A042984 (program): Number of n-dimensional partitions of 6.
  • A042985 (program): Convolution of A000108 (Catalan numbers) with A038846.
  • A042986 (program): Primes congruent to {0, 1, 2, 3} mod 5.
  • A042987 (program): Primes congruent to {2, 3, 5, 7} mod 8.
  • A042988 (program): Primes not congruent to -1 (mod 7).
  • A042989 (program): Primes congruent to {0, 2, 3, 4, 5} mod 7.
  • A042990 (program): Primes not congruent to 4 (mod 7).
  • A042991 (program): Primes congruent to {0, 2, 3, 4} (mod 5).
  • A042992 (program): Primes congruent to {0, 2, 3, 5, 6} (mod 7).
  • A042993 (program): Primes congruent to {0, 2, 3} mod 5.
  • A042994 (program): Primes congruent to {0, 1, 2, 3, 5} (mod 7).
  • A042995 (program): Primes congruent to {0, 2, 3, 5} (mod 7).
  • A042996 (program): Numbers k such that binomial(k, floor(k/2)) is divisible by k.
  • A042997 (program): Primes congruent to {2, 3, 4, 5, 6} (mod 7).
  • A042998 (program): Primes congruent to {1, 2, 3, 5} (mod 8).
  • A042999 (program): Primes congruent to {2, 3, 5} (mod 8).
  • A043000 (program): Number of digits in all base-b representations of n, for 2 <= b <= n.
  • A043001 (program): Base-3 palindromes that start with 1.
  • A043002 (program): Base-3 palindromes that start with 2.
  • A043003 (program): Base-4 palindromes that start with 1.
  • A043004 (program): Base-4 palindromes that start with 2.
  • A043005 (program): Base-4 palindromes that start with 3.
  • A043006 (program): Base-5 palindromes that start with 1.
  • A043007 (program): Base-5 palindromes that start with 2.
  • A043008 (program): Base-5 palindromes that start with 3.
  • A043009 (program): Base-5 palindromes that start with 4.
  • A043010 (program): Base-6 palindromes that start with 1.
  • A043011 (program): Base-6 palindromes that start with 2.
  • A043012 (program): Base-6 palindromes that start with 3.
  • A043013 (program): Base-6 palindromes that start with 4.
  • A043014 (program): Base-6 palindromes that start with 5.
  • A043036 (program): Base 10 palindromes that start with 1.
  • A043037 (program): Base-10 palindromes that start with 2.
  • A043038 (program): Base-10 palindromes that starts with 3.
  • A043039 (program): Palindromes that start with 4.
  • A043040 (program): Numbers that are palindromic and divisible by 5.
  • A043041 (program): Base-10 palindromes that start with 6.
  • A043042 (program): Base-10 palindromes that start with 7.
  • A043043 (program): Base 10 palindromes that start with 8.
  • A043044 (program): Palindromes that start with 9.
  • A043045 (program): a(n)=(s(n)+2)/3, where s(n)=n-th base 3 palindrome that starts with 1.
  • A043046 (program): a(n) = (s(n)+1)/3, where s(n) = n-th base 3 palindrome that starts with 2.
  • A043047 (program): a(n) = (s(n)+3)/4, where s(n) is the n-th base-4 palindrome that starts with 1 (A043003).
  • A043048 (program): a(n)=(s(n)+2)/4, where s(n)=n-th base 4 palindrome that starts with 2.
  • A043049 (program): a(n)=(s(n)+1)/4, where s(n)=n-th base 4 palindrome that starts with 3.
  • A043050 (program): a(n)=(s(n)+4)/5, where s(n)=n-th base 5 palindrome that starts with 1.
  • A043051 (program): a(n)=(s(n)+3)/5, where s(n)=n-th base 5 palindrome that starts with 2.
  • A043052 (program): a(n)=(s(n)+2)/5, where s(n)=n-th base 5 palindrome that starts with 3.
  • A043053 (program): a(n)=(s(n)+1)/5, where s(n)=n-th base 5 palindrome that starts with 4.
  • A043054 (program): a(n)=(s(n)+5)/6, where s(n)=n-th base 6 palindrome that starts with 1.
  • A043055 (program): a(n)=(s(n)+4)/6, where s(n)=n-th base 6 palindrome that starts with 2.
  • A043056 (program): a(n)=(s(n)+3)/6, where s(n)=n-th base 6 palindrome that starts with 3.
  • A043057 (program): a(n)=(s(n)+2)/6, where s(n)=n-th base 6 palindrome that starts with 4.
  • A043058 (program): a(n)=(s(n)+1)/6, where s(n)=n-th base 6 palindrome that starts with 5.
  • A043080 (program): a(n)=(s(n)+9)/10, where s(n)=n-th base 10 palindrome that starts with 1.
  • A043081 (program): a(n)=(s(n)+8)/10, where s(n)=n-th base 10 palindrome that starts with 2.
  • A043082 (program): (s(n)+7)/10, where s(n)=n-th base 10 palindrome that starts with 3.
  • A043083 (program): a(n)=(s(n)+6)/10, where s(n)=n-th base 10 palindrome that starts with 4.
  • A043084 (program): a(n)=(s(n)+5)/10, where s(n)=n-th base 10 palindrome that starts with 5.
  • A043085 (program): a(n)=(s(n)+4)/10, where s(n)=n-th base 10 palindrome that starts with 6.
  • A043086 (program): a(n)=(s(n)+3)/10, where s(n)=n-th base 10 palindrome that starts with 7.
  • A043087 (program): (s(n)+2)/10, where s(n)=n-th base 10 palindrome that starts with 8.
  • A043088 (program): (s(n)+1)/10, where s(n)=n-th base 10 palindrome that starts with 9.
  • A043089 (program): Every string of 2 consecutive base-3 digits contains exactly 2 distinct numbers.
  • A043090 (program): Every string of 2 consecutive base 4 digits contains exactly 2 distinct numbers.
  • A043091 (program): Every string of 2 consecutive base 5 digits contains exactly 2 distinct numbers.
  • A043092 (program): Numbers in which every string of 2 consecutive base 6 digits contains exactly 2 distinct numbers.
  • A043093 (program): Every string of 2 consecutive base 7 digits contains exactly 2 distinct numbers.
  • A043094 (program): Every string of 2 consecutive base 8 digits contains exactly 2 distinct numbers.
  • A043119 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-6 representation of k but not of k-1.
  • A043134 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-7 representation of k but not of k-1.
  • A043155 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-8 representation of k but not of k-1.
  • A043220 (program): Numbers k such that 0 and 5 occur juxtaposed in the base-10 representation of k but not of k-1.
  • A043261 (program): Sum of the binary digits of the n-th base-2 palindrome.
  • A043262 (program): Sum of digits of n-th base 3 palindrome.
  • A043263 (program): Sum of the digits of the n-th base 4 palindrome.
  • A043264 (program): Sum of the digits of the n-th base 5 palindrome.
  • A043265 (program): Sum of the digits of the n-th base 6 palindrome.
  • A043266 (program): Sum of the digits of the n-th base 7 palindrome.
  • A043267 (program): Sum of the digits of the n-th base 8 palindrome.
  • A043268 (program): Sum of digits of n-th base 9 palindrome.
  • A043269 (program): Sum of the digits of n-th base 10 palindrome.
  • A043276 (program): a(n) = maximal run length in base-2 representation of n.
  • A043279 (program): Maximal run length in base 5 representation of n.
  • A043280 (program): Maximal run length in base 6 representation of n.
  • A043282 (program): Maximal run length in base 8 representation of n.
  • A043285 (program): Maximal run length in base 11 representation of n.
  • A043286 (program): Maximal run length in base 12 representation of n.
  • A043291 (program): Every run length in base 2 is 2.
  • A043294 (program): Sum of digits of binomial(2n,n).
  • A043296 (program): Sum of digits of denominator of Bernoulli number B(2n).
  • A043299 (program): Numerator of L(n) = (Sum_{k=1..n} k^n)/(Sum_{k=1..n-1} k^n).
  • A043300 (program): Denominator of L(n) = (Sum_{k=1..n} k^n)/(Sum_{k=1..n-1} k^n).
  • A043301 (program): a(n) = 2^n*Sum_{k=0..n} (n+k)!/((n-k)!*k!*4^k).
  • A043302 (program): Triangular table of 2^n *(n+k)! / ((n-k)! * k! * 4^k).
  • A043303 (program): Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
  • A043306 (program): Sum of all digits in all base-b representations for n, for 2 <= b <= n.
  • A043313 (program): a(n)=A033007(n)/10.
  • A043314 (program): a(n)=A033008(n)/11.
  • A043316 (program): a(n)=s(n)/13, where s=A033010.
  • A043321 (program): Numbers having one 0 in base 3.
  • A043322 (program): Numbers having two 0’s in base 3.
  • A043323 (program): Numbers having three 0’s in base 3.
  • A043324 (program): Numbers having four 0’s in base 3.
  • A043326 (program): Numbers k such that k is a product of two different primes and k-2 is prime.
  • A043333 (program): Numbers having one 0 in base 4.
  • A043336 (program): Numbers having four 0’s in base 4.
  • A043340 (program): Numbers having four 1’s in base 4.
  • A043344 (program): Numbers having four 2’s in base 4.
  • A043348 (program): Numbers having four 3’s in base 4.
  • A043349 (program): Numbers having one 0 in base 5.
  • A043352 (program): Numbers having four 0’s in base 5.
  • A043356 (program): Numbers having four 1’s in base 5.
  • A043360 (program): Numbers having four 2’s in base 5.
  • A043364 (program): Numbers having four 3’s in base 5.
  • A043368 (program): Numbers having four 4’s in base 5.
  • A043369 (program): Numbers having one 0 in base 6.
  • A043370 (program): Numbers having two 0’s in base 6.
  • A043371 (program): Numbers having three 0’s in base 6.
  • A043372 (program): Numbers having four 0’s in base 6.
  • A043373 (program): Numbers having one 1 in base 6.
  • A043374 (program): Numbers having two 1’s in base 6.
  • A043375 (program): Numbers having three 1’s in base 6.
  • A043376 (program): Numbers having four 1’s in base 6.
  • A043377 (program): Numbers having one 2 in base 6.
  • A043378 (program): Numbers having two 2’s in base 6.
  • A043379 (program): Numbers having three 2’s in base 6.
  • A043380 (program): Numbers having four 2’s in base 6.
  • A043381 (program): Numbers having one 3 in base 6.
  • A043382 (program): Numbers having two 3’s in base 6.
  • A043383 (program): Numbers having three 3’s in base 6.
  • A043384 (program): Numbers having four 3’s in base 6.
  • A043385 (program): Numbers having one 4 in base 6.
  • A043386 (program): Numbers having two 4’s in base 6.
  • A043387 (program): Numbers having three 4’s in base 6.
  • A043388 (program): Numbers having four 4’s in base 6.
  • A043389 (program): Numbers having one 5 in base 6.
  • A043390 (program): Numbers having two 5’s in base 6.
  • A043391 (program): Numbers having three 5’s in base 6.
  • A043392 (program): Numbers having four 5’s in base 6.
  • A043393 (program): Numbers having one 0 in base 7.
  • A043394 (program): Numbers having two 0’s in base 7.
  • A043395 (program): Numbers having three 0’s in base 7.
  • A043396 (program): Numbers having four 0’s in base 7.
  • A043397 (program): Numbers having one 1 in base 7.
  • A043398 (program): Numbers having two 1’s in base 7.
  • A043399 (program): Numbers having three 1’s in base 7.
  • A043400 (program): Numbers having four 1’s in base 7.
  • A043401 (program): Numbers having one 2 in base 7.
  • A043402 (program): Numbers having two 2’s in base 7.
  • A043403 (program): Numbers having three 2’s in base 7.
  • A043404 (program): Numbers having four 2’s in base 7.
  • A043405 (program): Numbers having one 3 in base 7.
  • A043406 (program): Numbers having two 3’s in base 7.
  • A043407 (program): Numbers having three 3’s in base 7.
  • A043408 (program): Numbers having four 3’s in base 7.
  • A043409 (program): Numbers having one 4 in base 7.
  • A043410 (program): Numbers having two 4’s in base 7.
  • A043411 (program): Numbers having three 4’s in base 7.
  • A043412 (program): Numbers having four 4’s in base 7.
  • A043413 (program): Numbers having one 5 in base 7.
  • A043414 (program): Numbers having two 5’s in base 7.
  • A043415 (program): Numbers having three 5’s in base 7.
  • A043416 (program): Numbers having four 5’s in base 7.
  • A043417 (program): Numbers having one 6 in base 7.
  • A043418 (program): Numbers having two 6’s in base 7.
  • A043419 (program): Numbers having three 6’s in base 7.
  • A043420 (program): Numbers having four 6’s in base 7.
  • A043421 (program): Numbers having one 0 in base 8.
  • A043422 (program): Numbers having two 0’s in base 8.
  • A043423 (program): Numbers having three 0’s in base 8.
  • A043424 (program): Numbers having four 0’s in base 8.
  • A043425 (program): Numbers having one 1 in base 8.
  • A043426 (program): Numbers having two 1’s in base 8.
  • A043427 (program): Numbers having three 1’s in base 8.
  • A043428 (program): Numbers having four 1’s in base 8.
  • A043429 (program): Numbers having one 2 in base 8.
  • A043430 (program): Numbers having two 2’s in base 8.
  • A043431 (program): Numbers having three 2’s in base 8.
  • A043432 (program): Numbers having four 2’s in base 8.
  • A043433 (program): Numbers having one 3 in base 8.
  • A043434 (program): Numbers having two 3’s in base 8.
  • A043435 (program): Numbers having three 3’s in base 8.
  • A043436 (program): Numbers having four 3’s in base 8.
  • A043437 (program): Numbers having one 4 in base 8.
  • A043438 (program): Numbers having two 4’s in base 8.
  • A043439 (program): Numbers having three 4’s in base 8.
  • A043440 (program): Numbers having four 4’s in base 8.
  • A043441 (program): Numbers having one 5 in base 8.
  • A043442 (program): Numbers having two 5’s in base 8.
  • A043443 (program): Numbers having three 5’s in base 8.
  • A043444 (program): Numbers having four 5’s in base 8.
  • A043445 (program): Numbers having one 6 in base 8.
  • A043446 (program): Numbers having two 6’s in base 8.
  • A043447 (program): Numbers having three 6’s in base 8.
  • A043448 (program): Numbers having four 6’s in base 8.
  • A043449 (program): Numbers having one 7 in base 8.
  • A043450 (program): Numbers having two 7’s in base 8.
  • A043451 (program): Numbers having three 7’s in base 8.
  • A043452 (program): Numbers having four 7’s in base 8.
  • A043453 (program): Numbers having one 0 in base 9.
  • A043454 (program): Numbers having two 0’s in base 9.
  • A043455 (program): Numbers having three 0’s in base 9.
  • A043456 (program): Numbers having four 0’s in base 9.
  • A043457 (program): Numbers having one 1 in base 9.
  • A043458 (program): Numbers having two 1’s in base 9.
  • A043459 (program): Numbers having three 1’s in base 9.
  • A043460 (program): Numbers having four 1’s in base 9.
  • A043461 (program): Numbers having one 2 in base 9.
  • A043462 (program): Numbers having two 2’s in base 9.
  • A043463 (program): Numbers having three 2’s in base 9.
  • A043464 (program): Numbers having four 2’s in base 9.
  • A043465 (program): Numbers having one 3 in base 9.
  • A043466 (program): Numbers having two 3’s in base 9.
  • A043467 (program): Numbers having three 3’s in base 9.
  • A043468 (program): Numbers having four 3’s in base 9.
  • A043469 (program): Numbers having one 4 in base 9.
  • A043470 (program): Numbers having two 4’s in base 9.
  • A043471 (program): Numbers having three 4’s in base 9.
  • A043472 (program): Numbers having four 4’s in base 9.
  • A043473 (program): Numbers having one 5 in base 9.
  • A043474 (program): Numbers having two 5’s in base 9.
  • A043475 (program): Numbers having three 5’s in base 9.
  • A043476 (program): Numbers having four 5’s in base 9.
  • A043477 (program): Numbers having one 6 in base 9.
  • A043478 (program): Numbers having two 6’s in base 9.
  • A043479 (program): Numbers having three 6’s in base 9.
  • A043480 (program): Numbers having four 6’s in base 9.
  • A043481 (program): Numbers having one 7 in base 9.
  • A043482 (program): Numbers having two 7’s in base 9.
  • A043483 (program): Numbers having three 7’s in base 9.
  • A043484 (program): Numbers having four 7’s in base 9.
  • A043485 (program): Numbers having one 8 in base 9.
  • A043486 (program): Numbers having two 8’s in base 9.
  • A043487 (program): Numbers having three 8’s in base 9.
  • A043488 (program): Numbers having four 8’s in base 9.
  • A043489 (program): Numbers having one 0 in base 10.
  • A043490 (program): Numbers having two 0’s in base 10.
  • A043491 (program): Numbers having three 0’s in base 10.
  • A043492 (program): Numbers having four 0’s in base 10.
  • A043493 (program): Numbers that contain a single 1.
  • A043494 (program): Numbers having two 1’s in base 10.
  • A043495 (program): Numbers having three 1’s in base 10.
  • A043496 (program): Numbers having four 1’s in base 10.
  • A043497 (program): Numbers having one 2 in base 10.
  • A043498 (program): Numbers having two 2’s in base 10.
  • A043499 (program): Numbers having three 2’s in base 10.
  • A043500 (program): Numbers having four 2’s in base 10.
  • A043501 (program): Numbers having one 3 in base 10.
  • A043502 (program): Numbers having two 3’s in base 10.
  • A043503 (program): Numbers having three 3’s in base 10.
  • A043504 (program): Numbers having four 3’s in base 10.
  • A043505 (program): Numbers having one 4 in base 10.
  • A043506 (program): Numbers having two 4’s in base 10.
  • A043507 (program): Numbers having three 4’s in base 10.
  • A043508 (program): Numbers having four 4’s in base 10.
  • A043509 (program): Numbers having exactly one 5 in base 10.
  • A043510 (program): Numbers having two 5’s in base 10.
  • A043511 (program): Numbers having three 5’s in base 10.
  • A043512 (program): Numbers having four 5’s in base 10.
  • A043513 (program): Numbers having one 6 in base 10.
  • A043514 (program): Numbers having two 6’s in base 10.
  • A043515 (program): Numbers having three 6’s in base 10.
  • A043516 (program): Numbers having four 6’s in base 10.
  • A043517 (program): Numbers having one 7 in base 10.
  • A043518 (program): Numbers having two 7’s in base 10.
  • A043519 (program): Numbers having three 7’s in base 10.
  • A043520 (program): Numbers having four 7’s in base 10.
  • A043521 (program): Numbers having one 8 in base 10.
  • A043522 (program): Numbers having two 8’s in base 10.
  • A043523 (program): Numbers having three 8’s in base 10.
  • A043524 (program): Numbers having four 8’s in base 10.
  • A043525 (program): Numbers having one 9 in base 10.
  • A043526 (program): Numbers having two 9’s in base 10.
  • A043527 (program): Numbers having three 9’s in base 10.
  • A043528 (program): Numbers having four 9’s in base 10.
  • A043529 (program): Number of distinct base-2 digits of n.
  • A043537 (program): Number of distinct base-10 digits of n.
  • A043538 (program): Number of distinct base-11 digits of n.
  • A043540 (program): Number of distinct base-13 digits of n.
  • A043543 (program): Number of distinct base-16 digits of n.
  • A043545 (program): (Maximal base-2 digit of n) - (minimal base-2 digit of n).
  • A043547 (program): Odd numbers interspersed with double the previous odd number.
  • A043548 (program): Least separator of first n Egyptian fractions; i.e., least k for which the integers floor(k/m) for m=1,2,…,n are distinct.
  • A043553 (program): Row sums of convolution triangle A030524.
  • A043555 (program): Number of runs in base-3 representation of n.
  • A043556 (program): Number of runs in base-4 representation of n.
  • A043557 (program): Number of runs in base-5 representation of n.
  • A043558 (program): Number of runs in base-6 representation of n.
  • A043560 (program): Number of runs in base-8 representation of n.
  • A043563 (program): Number of runs in base-11 representation of n.
  • A043564 (program): Number of runs in base-12 representation of n.
  • A043565 (program): Number of runs in base-13 representation of n.
  • A043566 (program): Number of runs in base-14 representation of n.
  • A043569 (program): Numbers whose base-2 representation has exactly 2 runs.
  • A043570 (program): Numbers whose base-2 representation has exactly 3 runs.
  • A043571 (program): Numbers whose base-2 representation has exactly 4 runs.
  • A043572 (program): Numbers whose base-2 representation has exactly 5 runs.
  • A043573 (program): Numbers whose base-2 representation has exactly 6 runs.
  • A043574 (program): Numbers whose base-2 representation has exactly 7 runs.
  • A043575 (program): Numbers whose base-2 representation has exactly 8 runs.
  • A043576 (program): Numbers whose base-2 representation has exactly 9 runs.
  • A043577 (program): Numbers whose base-2 representation has exactly 10 runs.
  • A043578 (program): Numbers whose base-2 representation has exactly 11 runs.
  • A043579 (program): Numbers whose base-2 representation has exactly 12 runs.
  • A043580 (program): Numbers whose base-2 representation has exactly 13 runs.
  • A043581 (program): Numbers whose base-2 representation has exactly 14 runs.
  • A043582 (program): Numbers whose base-3 representation has exactly 2 runs.
  • A043583 (program): Numbers whose base-3 representation has exactly 3 runs.
  • A043584 (program): Numbers whose base-3 representation has exactly 4 runs.
  • A043585 (program): Numbers whose base-3 representation has exactly 5 runs.
  • A043586 (program): Numbers whose base-3 representation has exactly 6 runs.
  • A043587 (program): Numbers whose base-3 representation has exactly 7 runs.
  • A043588 (program): Numbers whose base-3 representation has exactly 8 runs.
  • A043589 (program): Numbers whose base-3 representation has exactly 9 runs.
  • A043590 (program): Numbers whose base-3 representation has exactly 10 runs.
  • A043591 (program): Numbers whose base-3 representation has exactly 11 runs.
  • A043592 (program): Numbers whose base-3 representation has exactly 12 runs.
  • A043593 (program): Numbers whose base-4 representation has exactly 2 runs.
  • A043594 (program): Numbers whose base-4 representation has exactly 3 runs.
  • A043595 (program): Numbers whose base-4 representation has exactly 4 runs.
  • A043596 (program): Numbers whose base-4 representation has exactly 5 runs.
  • A043597 (program): Numbers whose base-4 representation has exactly 6 runs.
  • A043598 (program): Numbers whose base-4 representation has exactly 7 runs.
  • A043599 (program): Numbers whose base-4 representation has exactly 8 runs.
  • A043600 (program): Numbers whose base-4 representation has exactly 9 runs.
  • A043601 (program): Numbers whose base-4 representation has exactly 10 runs.
  • A043602 (program): Numbers whose base-5 representation has exactly 2 runs.
  • A043603 (program): Numbers whose base-5 representation has exactly 3 runs.
  • A043604 (program): Numbers whose base-5 representation has exactly 4 runs.
  • A043605 (program): Numbers whose base-5 representation has exactly 5 runs.
  • A043606 (program): Numbers whose base-5 representation has exactly 6 runs.
  • A043607 (program): Numbers whose base-5 representation has exactly 7 runs.
  • A043608 (program): Numbers whose base-5 representation has exactly 8 runs.
  • A043609 (program): Numbers whose base-5 representation has exactly 9 runs.
  • A043610 (program): Numbers whose base-6 representation has exactly 2 runs.
  • A043611 (program): Numbers whose base-6 representation has exactly 3 runs.
  • A043612 (program): Numbers whose base-6 representation has exactly 4 runs.
  • A043613 (program): Numbers whose base-6 representation has exactly 5 runs.
  • A043614 (program): Numbers whose base-6 representation has exactly 6 runs.
  • A043615 (program): Numbers whose base-6 representation has exactly 7 runs.
  • A043616 (program): Numbers whose base-6 representation has exactly 8 runs.
  • A043620 (program): Numbers whose base-7 representation has exactly 5 runs.
  • A043621 (program): Numbers whose base-7 representation has exactly 6 runs.
  • A043622 (program): Numbers whose base-7 representation has exactly 7 runs.
  • A043623 (program): Numbers whose base-7 representation has exactly 8 runs.
  • A043624 (program): Numbers whose base-8 representation has exactly 2 runs.
  • A043625 (program): Numbers whose base-8 representation has exactly 3 runs.
  • A043626 (program): Numbers whose base-8 representation has exactly 4 runs.
  • A043627 (program): Numbers whose base-8 representation has exactly 5 runs.
  • A043628 (program): Numbers whose base-8 representation has exactly 6 runs.
  • A043629 (program): Numbers whose base-8 representation has exactly 7 runs.
  • A043630 (program): Numbers whose base-8 representation has exactly 8 runs.
  • A043632 (program): Numbers whose base-9 representation has exactly 3 runs.
  • A043633 (program): Numbers whose base-9 representation has exactly 4 runs.
  • A043634 (program): Numbers whose base-9 representation has exactly 5 runs.
  • A043635 (program): Numbers whose base-9 representation has exactly 6 runs.
  • A043636 (program): Numbers whose base-9 representation has exactly 7 runs.
  • A043637 (program): Numbers whose base-9 representation has exactly 8 runs.
  • A043639 (program): Numbers whose base-10 representation has exactly 3 runs.
  • A043640 (program): Numbers whose base-10 representation has exactly 4 runs.
  • A043641 (program): Numbers whose base-10 representation has exactly 5 runs.
  • A043642 (program): Numbers whose base-10 representation has exactly 6 runs.
  • A043643 (program): Numbers whose base-10 representation has exactly 7 runs.
  • A043644 (program): Numbers whose base-10 representation has exactly 8 runs.
  • A043645 (program): Numbers whose base-11 representation has exactly 2 runs.
  • A043647 (program): Numbers whose base-11 representation has exactly 4 runs.
  • A043648 (program): Numbers whose base-11 representation has exactly 5 runs.
  • A043649 (program): Numbers whose base-11 representation has exactly 6 runs.
  • A043650 (program): Numbers whose base-11 representation has exactly 7 runs.
  • A043651 (program): Numbers whose base-12 representation has exactly 2 runs.
  • A043652 (program): Numbers whose base-12 representation has exactly 3 runs.
  • A043653 (program): Numbers whose base-12 representation has exactly 4 runs.
  • A043654 (program): Numbers whose base-12 representation has exactly 5 runs.
  • A043655 (program): Numbers whose base-12 representation has exactly 6 runs.
  • A043656 (program): Numbers whose base-12 representation has exactly 7 runs.
  • A043657 (program): Numbers whose base-13 representation has exactly 2 runs.
  • A043659 (program): Numbers whose base-13 representation has exactly 4 runs.
  • A043661 (program): Numbers whose base-13 representation has exactly 6 runs.
  • A043662 (program): Numbers whose base-13 representation has exactly 7 runs.
  • A043663 (program): Numbers whose base-14 representation has exactly 2 runs.
  • A043665 (program): Numbers whose base-14 representation has exactly 4 runs.
  • A043667 (program): Numbers whose base-14 representation has exactly 6 runs.
  • A043668 (program): Numbers whose base-14 representation has exactly 7 runs.
  • A043669 (program): Numbers whose base-15 representation has exactly 2 runs.
  • A043671 (program): Numbers whose base-15 representation has exactly 4 runs.
  • A043672 (program): Numbers whose base-15 representation has exactly 5 runs.
  • A043673 (program): Numbers whose base-15 representation has exactly 6 runs.
  • A043674 (program): Numbers whose base-15 representation has exactly 7 runs.
  • A043675 (program): Numbers whose base-16 representation has exactly 2 runs.
  • A043677 (program): Numbers whose base-16 representation has exactly 4 runs.
  • A043678 (program): Numbers whose base-16 representation has exactly 5 runs.
  • A043679 (program): Numbers whose base-16 representation has exactly 6 runs.
  • A043680 (program): Numbers whose base-16 representation has exactly 7 runs.
  • A043682 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 4 runs).
  • A043683 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 6 runs).
  • A043684 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 8 runs).
  • A043685 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 10 runs).
  • A043686 (program): a(n) = (1/2)*(n-th number whose base-2 representation has exactly 12 runs).
  • A043687 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 3 runs.
  • A043688 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 5 runs.
  • A043689 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 7 runs.
  • A043690 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 9 runs.
  • A043691 (program): a(n) = (s(n)-1)/2, where s(n) is the n-th number whose base-2 representation has exactly 11 runs.
  • A043692 (program): Numbers whose base-3 representation has an even number of runs.
  • A043693 (program): Numbers whose base-4 representation has an even number of runs.
  • A043694 (program): Numbers whose base-5 representation has an even number of runs.
  • A043695 (program): Numbers whose base-6 representation has an even number of runs.
  • A043697 (program): Numbers whose base-8 representation has an even number of runs.
  • A043698 (program): Numbers whose base-9 representation has an even number of runs.
  • A043699 (program): a(n)= A000129(n)*A000129(2*n) where A000129(n) are the Pell numbers.
  • A043700 (program): Numbers whose base-11 representation has an even number of runs.
  • A043701 (program): Numbers whose base-12 representation has an even number of runs.
  • A043702 (program): Numbers whose base-13 representation has an even number of runs.
  • A043703 (program): Numbers whose base-14 representation has an even number of runs.
  • A043704 (program): Numbers whose base-15 representation has an even number of runs.
  • A043705 (program): Numbers whose base-16 representation has an even number of runs.
  • A043706 (program): Numbers whose base-3 representation has an odd number of runs.
  • A043707 (program): Numbers whose base-4 representation has an odd number of runs.
  • A043708 (program): Numbers whose base-5 representation has an odd number of runs.
  • A043709 (program): Numbers whose base-6 representation has an odd number of runs.
  • A043711 (program): Numbers whose base-8 representation has an odd number of runs.
  • A043721 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 3.
  • A043722 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 3.
  • A043723 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 3.
  • A043724 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 4.
  • A043725 (program): Numbers n such that number of runs in base 2 representation of n is congruent to 1 mod 4.
  • A043726 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 4.
  • A043727 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 4.
  • A043728 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 5.
  • A043729 (program): Numbers n such that number of runs in base 2 representation of n is congruent to 1 mod 5.
  • A043730 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 5.
  • A043731 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 5.
  • A043732 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 5.
  • A043733 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 6.
  • A043734 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 6.
  • A043735 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 6.
  • A043736 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 6.
  • A043737 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 6.
  • A043738 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 6.
  • A043739 (program): Number of runs in the base 2 representation of n is congruent to 0 mod 7.
  • A043740 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 7.
  • A043741 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 7.
  • A043742 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 7.
  • A043743 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 7.
  • A043744 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 7.
  • A043745 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 7.
  • A043746 (program): Number of runs in the base 2 representation of n is congruent to 0 mod 8.
  • A043747 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 8.
  • A043748 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 8.
  • A043749 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 8.
  • A043750 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 8.
  • A043751 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 8.
  • A043752 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 8.
  • A043753 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 8.
  • A043755 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 9.
  • A043756 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 9.
  • A043757 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 9.
  • A043758 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 9.
  • A043759 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 9.
  • A043760 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 9.
  • A043761 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 9.
  • A043762 (program): Number of runs in the base 2 representation of n is congruent to 8 mod 9.
  • A043763 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 0 mod 10.
  • A043764 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 1 mod 10.
  • A043765 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 2 mod 10.
  • A043766 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 3 mod 10.
  • A043767 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 4 mod 10.
  • A043768 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 5 mod 10.
  • A043769 (program): Numbers n such that number of runs in the base 2 representation of n is congruent to 6 mod 10.
  • A043770 (program): Number of runs in the base 2 representation of n is congruent to 7 mod 10.
  • A043771 (program): Number of runs in the base 2 representation of n is congruent to 8 mod 10.
  • A043773 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 3.
  • A043774 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 3.
  • A043775 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 3.
  • A043776 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 4.
  • A043777 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 4.
  • A043778 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 4.
  • A043779 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 4.
  • A043780 (program): Number of runs in the base 3 representation of n is congruent to 0 mod 5.
  • A043781 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 1 mod 5.
  • A043782 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 5.
  • A043783 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 5.
  • A043784 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 5.
  • A043785 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 6.
  • A043787 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 6.
  • A043788 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 6.
  • A043789 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 6.
  • A043790 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 6.
  • A043791 (program): Numbers whose number of runs in base 3 is congruent to 0 (mod 7).
  • A043793 (program): Numbers whose number of runs in base 3 is congruent to 2 (mod 7).
  • A043794 (program): Numbers whose number of runs in base 3 is congruent to 3 (mod 7).
  • A043795 (program): Numbers whose number of runs in base 3 is congruent to 4 (mod 7).
  • A043796 (program): Numbers whose number of runs in base 3 is congruent to 5 (mod 7).
  • A043797 (program): Numbers whose number of runs in base 3 is congruent to 6 (mod 7).
  • A043798 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 8.
  • A043800 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 8.
  • A043801 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 8.
  • A043802 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 8.
  • A043803 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 8.
  • A043804 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 8.
  • A043805 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 8.
  • A043806 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 9.
  • A043808 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 9.
  • A043809 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 9.
  • A043810 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 9.
  • A043811 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 9.
  • A043812 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 9.
  • A043813 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 9.
  • A043814 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 8 mod 9.
  • A043815 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 0 mod 10.
  • A043817 (program): Numbers n such that number of runs in base 3 representation of n is congruent to 2 mod 10.
  • A043818 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 3 mod 10.
  • A043819 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 4 mod 10.
  • A043820 (program): Number of runs in the base 3 representation of n is congruent to 5 mod 10.
  • A043821 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 6 mod 10.
  • A043822 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 7 mod 10.
  • A043823 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 8 mod 10.
  • A043824 (program): Numbers n such that number of runs in the base 3 representation of n is congruent to 9 mod 10.
  • A043825 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 3.
  • A043826 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 3.
  • A043827 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 3.
  • A043828 (program): Number of runs in the base 4 representation of n is congruent to 0 mod 4.
  • A043829 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 4.
  • A043830 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 4.
  • A043831 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 4.
  • A043832 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 5.
  • A043833 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 5.
  • A043834 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 5.
  • A043835 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 5.
  • A043836 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 5.
  • A043837 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 6.
  • A043838 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 1 mod 6.
  • A043839 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 6.
  • A043840 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 6.
  • A043841 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 6.
  • A043842 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 6.
  • A043843 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 7.
  • A043845 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 7.
  • A043846 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 7.
  • A043847 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 7.
  • A043848 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 7.
  • A043849 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 7.
  • A043850 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 8.
  • A043852 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 8.
  • A043853 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 8.
  • A043854 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 8.
  • A043855 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 8.
  • A043856 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 8.
  • A043857 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 7 mod 8.
  • A043858 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 9.
  • A043861 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 9.
  • A043862 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 9.
  • A043863 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 9.
  • A043864 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 9.
  • A043865 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 7 mod 9.
  • A043866 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 8 mod 9.
  • A043867 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 0 mod 10.
  • A043869 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 2 mod 10.
  • A043870 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 3 mod 10.
  • A043871 (program): Number of runs in the base 4 representation of n is congruent to 4 mod 10.
  • A043872 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 5 mod 10.
  • A043873 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 6 mod 10.
  • A043874 (program): Numbers k such that the number of runs in the base-4 representation of k is congruent to 7 (mod 10).
  • A043875 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 8 mod 10.
  • A043876 (program): Numbers n such that number of runs in the base 4 representation of n is congruent to 9 mod 10.
  • A043914 (program): Numbers k such that 0 and 4 occur juxtaposed in the base-7 representation of k but not of k+1.
  • A043953 (program): Numbers k such that 3 and 7 occur juxtaposed in the base-8 representation of k but not of k+1.
  • A044030 (program): Numbers k such that 4 and 9 occur juxtaposed in the base-10 representation of k but not of k+1.
  • A044042 (program): Primes congruent to {1, 2, 3, 4, 5} (mod 7).
  • A044051 (program): a(n) = (s(n)+1)/2, where s=A006995 (base-2 palindromes).
  • A044052 (program): Numbers n such that string 0,0 occurs in the base 3 representation of n but not of n-1.
  • A044057 (program): Numbers n such that string 1,2 occurs in the base 3 representation of n but not of n-1.
  • A044061 (program): Numbers n such that string 0,0 occurs in the base 4 representation of n but not of n-1.
  • A044077 (program): Numbers n such that string 0,0 occurs in the base 5 representation of n but not of n-1.
  • A044089 (program): Numbers n such that string 2,2 occurs in the base 5 representation of n but not of n-1.
  • A044095 (program): Numbers n such that string 3,3 occurs in the base 5 representation of n but not of n-1.
  • A044096 (program): Numbers n such that string 3,4 occurs in the base 5 representation of n but not of n-1.
  • A044102 (program): Multiples of 36.
  • A044103 (program): Numbers n such that string 0,1 occurs in the base 6 representation of n but not of n-1.
  • A044104 (program): Numbers n such that string 0,2 occurs in the base 6 representation of n but not of n-1.
  • A044105 (program): Numbers n such that string 0,3 occurs in the base 6 representation of n but not of n-1.
  • A044106 (program): Numbers n such that string 0,4 occurs in the base 6 representation of n but not of n-1.
  • A044107 (program): Numbers n such that string 0,5 occurs in the base 6 representation of n but not of n-1.
  • A044114 (program): Numbers n such that string 2,0 occurs in the base 6 representation of n but not of n-1.
  • A044131 (program): Numbers n such that string 4,5 occurs in the base 6 representation of n but not of n-1.
  • A044138 (program): Numbers n such that string 0,0 occurs in the base 7 representation of n but not of n-1.
  • A044139 (program): Numbers n such that string 0,1 occurs in the base 7 representation of n but not of n-1.
  • A044140 (program): Numbers k such that substring “02” occurs in the base-7 representation of k but not of k-1.
  • A044141 (program): Numbers n such that string 0,3 occurs in the base 7 representation of n but not of n-1.
  • A044142 (program): Numbers n such that string 0,4 occurs in the base 7 representation of n but not of n-1.
  • A044143 (program): Numbers n such that string 0,5 occurs in the base 7 representation of n but not of n-1.
  • A044144 (program): Numbers n such that string 0,6 occurs in the base 7 representation of n but not of n-1.
  • A044146 (program): Numbers n such that string 1,1 occurs in the base 7 representation of n but not of n-1.
  • A044154 (program): Numbers n such that string 2,2 occurs in the base 7 representation of n but not of n-1.
  • A044162 (program): Numbers n such that string 3,3 occurs in the base 7 representation of n but not of n-1.
  • A044170 (program): Numbers n such that string 4,4 occurs in the base 7 representation of n but not of n-1.
  • A044175 (program): Numbers n such that string 5,2 occurs in the base 7 representation of n but not of n-1.
  • A044176 (program): Numbers n such that string 5,3 occurs in the base 7 representation of n but not of n-1.
  • A044177 (program): Numbers n such that string 5,4 occurs in the base 7 representation of n but not of n-1.
  • A044178 (program): Numbers n such that string 5,5 occurs in the base 7 representation of n but not of n-1.
  • A044179 (program): Numbers n such that string 5,6 occurs in the base 7 representation of n but not of n-1.
  • A044180 (program): Numbers n such that string 6,0 occurs in the base 7 representation of n but not of n-1.
  • A044181 (program): Numbers n such that string 6,1 occurs in the base 7 representation of n but not of n-1.
  • A044182 (program): Numbers n such that string 6,2 occurs in the base 7 representation of n but not of n-1.
  • A044183 (program): Numbers n such that string 6,3 occurs in the base 7 representation of n but not of n-1.
  • A044184 (program): Numbers n such that string 6,4 occurs in the base 7 representation of n but not of n-1.
  • A044185 (program): Numbers n such that string 6,5 occurs in the base 7 representation of n but not of n-1.
  • A044186 (program): Numbers n such that string 6,6 occurs in the base 7 representation of n but not of n-1.
  • A044187 (program): Numbers n such that string 0,0 occurs in the base 8 representation of n but not of n-1.
  • A044188 (program): Numbers n such that string 0,1 occurs in the base 8 representation of n but not of n-1.
  • A044189 (program): Numbers n such that string 0,2 occurs in the base 8 representation of n but not of n-1.
  • A044190 (program): Numbers n such that string 0,3 occurs in the base 8 representation of n but not of n-1.
  • A044191 (program): Numbers n such that string 0,4 occurs in the base 8 representation of n but not of n-1.
  • A044192 (program): Numbers n such that string 0,5 occurs in the base 8 representation of n but not of n-1.
  • A044193 (program): Numbers n such that string 0,6 occurs in the base 8 representation of n but not of n-1.
  • A044194 (program): Numbers n such that string 0,7 occurs in the base 8 representation of n but not of n-1.
  • A044219 (program): Numbers n such that string 4,0 occurs in the base 8 representation of n but not of n-1.
  • A044224 (program): Numbers n such that string 4,5 occurs in the base 8 representation of n but not of n-1.
  • A044225 (program): Numbers n such that string 4,6 occurs in the base 8 representation of n but not of n-1.
  • A044226 (program): Numbers n such that string 4,7 occurs in the base 8 representation of n but not of n-1.
  • A044227 (program): Numbers n such that string 5,0 occurs in the base 8 representation of n but not of n-1.
  • A044228 (program): Numbers n such that string 5,1 occurs in the base 8 representation of n but not of n-1.
  • A044229 (program): Numbers n such that string 5,2 occurs in the base 8 representation of n but not of n-1.
  • A044230 (program): Numbers n such that string 5,3 occurs in the base 8 representation of n but not of n-1.
  • A044231 (program): Numbers n such that string 5,4 occurs in the base 8 representation of n but not of n-1.
  • A044232 (program): Numbers n such that string 5,5 occurs in the base 8 representation of n but not of n-1.
  • A044233 (program): Numbers n such that string 5,6 occurs in the base 8 representation of n but not of n-1.
  • A044235 (program): Numbers n such that string 6,0 occurs in the base 8 representation of n but not of n-1.
  • A044236 (program): Numbers n such that string 6,1 occurs in the base 8 representation of n but not of n-1.
  • A044237 (program): Numbers n such that string 6,2 occurs in the base 8 representation of n but not of n-1.
  • A044238 (program): Numbers n such that string 6,3 occurs in the base 8 representation of n but not of n-1.
  • A044239 (program): Numbers n such that string 6,4 occurs in the base 8 representation of n but not of n-1.
  • A044240 (program): Numbers n such that string 6,5 occurs in the base 8 representation of n but not of n-1.
  • A044241 (program): Numbers n such that string 6,6 occurs in the base 8 representation of n but not of n-1.
  • A044242 (program): Numbers n such that string 6,7 occurs in the base 8 representation of n but not of n-1.
  • A044243 (program): Numbers n such that string 7,0 occurs in the base 8 representation of n but not of n-1.
  • A044244 (program): Numbers n such that string 7,1 occurs in the base 8 representation of n but not of n-1.
  • A044245 (program): Numbers n such that string 7,2 occurs in the base 8 representation of n but not of n-1.
  • A044246 (program): Numbers n such that string 7,3 occurs in the base 8 representation of n but not of n-1.
  • A044248 (program): Numbers n such that string 7,5 occurs in the base 8 representation of n but not of n-1.
  • A044249 (program): Numbers n such that string 7,6 occurs in the base 8 representation of n but not of n-1.
  • A044251 (program): Numbers n such that string 0,0 occurs in the base 9 representation of n but not of n-1.
  • A044252 (program): Numbers n such that string 0,1 occurs in the base 9 representation of n but not of n-1.
  • A044253 (program): Numbers n such that string 0,2 occurs in the base 9 representation of n but not of n-1.
  • A044254 (program): Numbers n such that string 0,3 occurs in the base 9 representation of n but not of n-1.
  • A044255 (program): Numbers n such that string 0,4 occurs in the base 9 representation of n but not of n-1.
  • A044256 (program): Numbers n such that string 0,5 occurs in the base 9 representation of n but not of n-1.
  • A044257 (program): Numbers n such that string 0,6 occurs in the base 9 representation of n but not of n-1.
  • A044258 (program): Numbers n such that string 0,7 occurs in the base 9 representation of n but not of n-1.
  • A044259 (program): Numbers n such that string 0,8 occurs in the base 9 representation of n but not of n-1.
  • A044261 (program): Numbers n such that string 1,1 occurs in the base 9 representation of n but not of n-1.
  • A044271 (program): Numbers n such that string 2,2 occurs in the base 9 representation of n but not of n-1.
  • A044286 (program): Numbers n such that string 3,8 occurs in the base 9 representation of n but not of n-1.
  • A044287 (program): Numbers n such that string 4,0 occurs in the base 9 representation of n but not of n-1.
  • A044288 (program): Numbers n such that string 4,1 occurs in the base 9 representation of n but not of n-1.
  • A044289 (program): Numbers n such that string 4,2 occurs in the base 9 representation of n but not of n-1.
  • A044290 (program): Numbers n such that string 4,3 occurs in the base 9 representation of n but not of n-1.
  • A044291 (program): Numbers n such that string 4,4 occurs in the base 9 representation of n but not of n-1.
  • A044292 (program): Numbers n such that string 4,5 occurs in the base 9 representation of n but not of n-1.
  • A044293 (program): Numbers n such that string 4,6 occurs in the base 9 representation of n but not of n-1.
  • A044294 (program): Numbers n such that string 4,7 occurs in the base 9 representation of n but not of n-1.
  • A044295 (program): Numbers n such that string 4,8 occurs in the base 9 representation of n but not of n-1.
  • A044296 (program): Numbers n such that string 5,0 occurs in the base 9 representation of n but not of n-1.
  • A044297 (program): Numbers n such that string 5,1 occurs in the base 9 representation of n but not of n-1.
  • A044298 (program): Numbers n such that string 5,2 occurs in the base 9 representation of n but not of n-1.
  • A044299 (program): Numbers n such that string 5,3 occurs in the base 9 representation of n but not of n-1.
  • A044300 (program): Numbers n such that string 5,4 occurs in the base 9 representation of n but not of n-1.
  • A044301 (program): Numbers n such that string 5,5 occurs in the base 9 representation of n but not of n-1.
  • A044302 (program): Numbers n such that string 5,6 occurs in the base 9 representation of n but not of n-1.
  • A044303 (program): Numbers n such that string 5,7 occurs in the base 9 representation of n but not of n-1.
  • A044304 (program): Numbers n such that string 5,8 occurs in the base 9 representation of n but not of n-1.
  • A044306 (program): Numbers n such that string 6,1 occurs in the base 9 representation of n but not of n-1.
  • A044307 (program): Numbers n such that string 6,2 occurs in the base 9 representation of n but not of n-1.
  • A044308 (program): Numbers n such that string 6,3 occurs in the base 9 representation of n but not of n-1.
  • A044309 (program): Numbers n such that string 6,4 occurs in the base 9 representation of n but not of n-1.
  • A044310 (program): Numbers n such that string 6,5 occurs in the base 9 representation of n but not of n-1.
  • A044311 (program): Numbers n such that string 6,6 occurs in the base 9 representation of n but not of n-1.
  • A044313 (program): Numbers n such that string 6,8 occurs in the base 9 representation of n but not of n-1.
  • A044314 (program): Numbers n such that string 7,0 occurs in the base 9 representation of n but not of n-1.
  • A044315 (program): Numbers n such that string 7,1 occurs in the base 9 representation of n but not of n-1.
  • A044317 (program): Numbers n such that string 7,3 occurs in the base 9 representation of n but not of n-1.
  • A044318 (program): Numbers n such that string 7,4 occurs in the base 9 representation of n but not of n-1.
  • A044319 (program): Numbers n such that string 7,5 occurs in the base 9 representation of n but not of n-1.
  • A044320 (program): Numbers n such that string 7,6 occurs in the base 9 representation of n but not of n-1.
  • A044321 (program): Numbers n such that string 7,7 occurs in the base 9 representation of n but not of n-1.
  • A044322 (program): Numbers n such that the string 7,8 occurs in the base 9 representation of n but not of n-1.
  • A044323 (program): Numbers n such that string 8,0 occurs in the base 9 representation of n but not of n-1.
  • A044324 (program): Numbers n such that string 8,1 occurs in the base 9 representation of n but not of n-1.
  • A044325 (program): Numbers n such that string 8,2 occurs in the base 9 representation of n but not of n-1.
  • A044326 (program): Numbers n such that string 8,3 occurs in the base 9 representation of n but not of n-1.
  • A044327 (program): Numbers n such that string 8,4 occurs in the base 9 representation of n but not of n-1.
  • A044328 (program): Numbers n such that string 8,5 occurs in the base 9 representation of n but not of n-1.
  • A044329 (program): Numbers n such that string 8,6 occurs in the base 9 representation of n but not of n-1.
  • A044331 (program): Numbers n such that string 8,8 occurs in the base 9 representation of n but not of n-1.
  • A044332 (program): Numbers n such that string 0,0 occurs in the base 10 representation of n but not of n-1.
  • A044333 (program): Numbers n such that string 0,1 occurs in the base 10 representation of n but not of n-1.
  • A044334 (program): Numbers n such that string 0,2 occurs in the base 10 representation of n but not of n-1.
  • A044335 (program): Numbers n such that string 0,3 occurs in the base 10 representation of n but not of n-1.
  • A044336 (program): Numbers n such that string 0,4 occurs in the base 10 representation of n but not of n-1.
  • A044337 (program): Numbers n such that string 0,5 occurs in the base 10 representation of n but not of n-1.
  • A044338 (program): Numbers n such that string 0,6 occurs in the base 10 representation of n but not of n-1.
  • A044339 (program): Numbers n such that string 0,7 occurs in the base 10 representation of n but not of n-1.
  • A044340 (program): Numbers n such that string 0,8 occurs in the base 10 representation of n but not of n-1.
  • A044341 (program): Numbers n such that string 0,9 occurs in the base 10 representation of n but not of n-1.
  • A044352 (program): Numbers n such that string 2,0 occurs in the base 10 representation of n but not of n-1.
  • A044367 (program): Numbers n such that string 3,5 occurs in the base 10 representation of n but not of n-1.
  • A044368 (program): Numbers n such that string 3,6 occurs in the base 10 representation of n but not of n-1.
  • A044369 (program): Numbers n such that string 3,7 occurs in the base 10 representation of n but not of n-1.
  • A044370 (program): Numbers n such that string 3,8 occurs in the base 10 representation of n but not of n-1.
  • A044371 (program): Numbers n such that string 3,9 occurs in the base 10 representation of n but not of n-1.
  • A044372 (program): Numbers n such that string 4,0 occurs in the base 10 representation of n but not of n-1.
  • A044373 (program): Numbers n such that string 4,1 occurs in the base 10 representation of n but not of n-1.
  • A044374 (program): Numbers n such that string 4,2 occurs in the base 10 representation of n but not of n-1.
  • A044375 (program): Numbers n such that string 4,3 occurs in the base 10 representation of n but not of n-1.
  • A044376 (program): Numbers n such that string 4,4 occurs in the base 10 representation of n but not of n-1.
  • A044378 (program): Numbers n such that string 4,6 occurs in the base 10 representation of n but not of n-1.
  • A044379 (program): Numbers n such that string 4,7 occurs in the base 10 representation of n but not of n-1.
  • A044380 (program): Numbers n such that string 4,8 occurs in the base 10 representation of n but not of n-1.
  • A044381 (program): Numbers n such that string 4,9 occurs in the base 10 representation of n but not of n-1.
  • A044382 (program): Numbers n such that string 5,0 occurs in the base 10 representation of n but not of n-1.
  • A044383 (program): Numbers n such that string 5,1 occurs in the base 10 representation of n but not of n-1.
  • A044384 (program): Numbers n such that string 5,2 occurs in the base 10 representation of n but not of n-1.
  • A044385 (program): Numbers n such that string 5,3 occurs in the base 10 representation of n but not of n-1.
  • A044386 (program): Numbers n such that string 5,4 occurs in the base 10 representation of n but not of n-1.
  • A044387 (program): Numbers n such that string 5,5 occurs in the base 10 representation of n but not of n-1.
  • A044388 (program): Numbers n such that string 5,6 occurs in the base 10 representation of n but not of n-1.
  • A044389 (program): Numbers n such that string 5,7 occurs in the base 10 representation of n but not of n-1.
  • A044390 (program): Numbers n such that string 5,8 occurs in the base 10 representation of n but not of n-1.
  • A044391 (program): Numbers n such that string 5,9 occurs in the base 10 representation of n but not of n-1.
  • A044392 (program): Numbers n such that string 6,0 occurs in the base 10 representation of n but not of n-1.
  • A044393 (program): Numbers n such that string 6,1 occurs in the base 10 representation of n but not of n-1.
  • A044394 (program): Numbers n such that string 6,2 occurs in the base 10 representation of n but not of n-1.
  • A044395 (program): Numbers n such that string 6,3 occurs in the base 10 representation of n but not of n-1.
  • A044396 (program): Numbers n such that string 6,4 occurs in the base 10 representation of n but not of n-1.
  • A044397 (program): Numbers n such that string 6,5 occurs in the base 10 representation of n but not of n-1.
  • A044398 (program): Numbers n such that string 6,6 occurs in the base 10 representation of n but not of n-1.
  • A044399 (program): Numbers n such that string 6,7 occurs in the base 10 representation of n but not of n-1.
  • A044400 (program): Numbers n such that string 6,8 occurs in the base 10 representation of n but not of n-1.
  • A044401 (program): Numbers n such that string 6,9 occurs in the base 10 representation of n but not of n-1.
  • A044402 (program): Numbers n such that string 7,0 occurs in the base 10 representation of n but not of n-1.
  • A044403 (program): Numbers n such that string 7,1 occurs in the base 10 representation of n but not of n-1.
  • A044404 (program): Numbers n such that string 7,2 occurs in the base 10 representation of n but not of n-1.
  • A044405 (program): Numbers n such that string 7,3 occurs in the base 10 representation of n but not of n-1.
  • A044406 (program): Numbers n such that string 7,4 occurs in the base 10 representation of n but not of n-1.
  • A044407 (program): Numbers n such that string 7,5 occurs in the base 10 representation of n but not of n-1.
  • A044408 (program): Numbers n such that string 7,6 occurs in the base 10 representation of n but not of n-1.
  • A044409 (program): Numbers n such that string 7,7 occurs in the base 10 representation of n but not of n-1.
  • A044410 (program): Numbers n such that string 7,8 occurs in the base 10 representation of n but not of n-1.
  • A044411 (program): Numbers n such that string 7,9 occurs in the base 10 representation of n but not of n-1.
  • A044412 (program): Numbers n such that string 8,0 occurs in the base 10 representation of n but not of n-1.
  • A044413 (program): Numbers n such that string 8,1 occurs in the base 10 representation of n but not of n-1.
  • A044414 (program): Numbers n such that string 8,2 occurs in the base 10 representation of n but not of n-1.
  • A044415 (program): Numbers n such that string 8,3 occurs in the base 10 representation of n but not of n-1.
  • A044416 (program): Numbers n such that string ‘84’ occurs in the base 10 representation of n but not of n-1.
  • A044417 (program): Numbers n such that string 8,5 occurs in the base 10 representation of n but not of n-1.
  • A044418 (program): Numbers n such that string 8,6 occurs in the base 10 representation of n but not of n-1.
  • A044419 (program): Numbers n such that string 8,7 occurs in the base 10 representation of n but not of n-1.
  • A044420 (program): Numbers n such that string 8,8 occurs in the base 10 representation of n but not of n-1.
  • A044421 (program): Numbers n such that string 8,9 occurs in the base 10 representation of n but not of n-1.
  • A044422 (program): Numbers n such that string 9,0 occurs in the base 10 representation of n but not of n-1.
  • A044423 (program): Numbers n such that string 9,1 occurs in the base 10 representation of n but not of n-1.
  • A044424 (program): Numbers n such that string 9,2 occurs in the base 10 representation of n but not of n-1.
  • A044425 (program): Numbers n such that string 9,3 occurs in the base 10 representation of n but not of n-1.
  • A044426 (program): Numbers n such that string 9,4 occurs in the base 10 representation of n but not of n-1.
  • A044427 (program): Numbers n such that string 9,5 occurs in the base 10 representation of n but not of n-1.
  • A044428 (program): Numbers n such that string 9,6 occurs in the base 10 representation of n but not of n-1.
  • A044429 (program): Numbers n such that string 9,7 occurs in the base 10 representation of n but not of n-1.
  • A044430 (program): Numbers n such that string 9,8 occurs in the base 10 representation of n but not of n-1.
  • A044431 (program): Numbers n such that string 9,9 occurs in the base 10 representation of n but not of n-1.
  • A044432 (program): a(n) is the number whose base-2 representation is d(0)d(1)…d(n), where d=A005614 (the infinite Fibonacci word).
  • A044436 (program): Numbers n such that string 1,0 occurs in the base 3 representation of n but not of n+1.
  • A044438 (program): Numbers n such that string 1,2 occurs in the base 3 representation of n but not of n+1.
  • A044441 (program): Numbers n such that string 2,2 occurs in the base 3 representation of n but not of n+1.
  • A044457 (program): Numbers n such that string 3,3 occurs in the base 4 representation of n but not of n+1.
  • A044463 (program): Numbers n such that string 1,0 occurs in the base 5 representation of n but not of n+1.
  • A044470 (program): Numbers n such that string 2,2 occurs in the base 5 representation of n but not of n+1.
  • A044476 (program): Numbers n such that string 3,3 occurs in the base 5 representation of n but not of n+1.
  • A044484 (program): Numbers n such that string 0,1 occurs in the base 6 representation of n but not of n+1.
  • A044485 (program): Numbers n such that string 0,2 occurs in the base 6 representation of n but not of n+1.
  • A044486 (program): Numbers n such that string 0,3 occurs in the base 6 representation of n but not of n+1.
  • A044487 (program): Numbers n such that string 0,4 occurs in the base 6 representation of n but not of n+1.
  • A044488 (program): Numbers n such that string 0,5 occurs in the base 6 representation of n but not of n+1.
  • A044489 (program): Numbers n such that string 1,0 occurs in the base 6 representation of n but not of n+1.
  • A044494 (program): Numbers n such that string 1,5 occurs in the base 6 representation of n but not of n+1.
  • A044506 (program): Numbers n such that string 3,5 occurs in the base 6 representation of n but not of n+1.
  • A044518 (program): Numbers k such that the string 5,5 occurs in the base-6 representation of k but not of k+1.
  • A044520 (program): Numbers n such that string 0,1 occurs in the base 7 representation of n but not of n+1.
  • A044521 (program): Numbers n such that string 0,2 occurs in the base 7 representation of n but not of n+1.
  • A044522 (program): Numbers n such that string 0,3 occurs in the base 7 representation of n but not of n+1.
  • A044523 (program): Numbers n such that string 0,4 occurs in the base 7 representation of n but not of n+1.
  • A044525 (program): Numbers n such that string 0,6 occurs in the base 7 representation of n but not of n+1.
  • A044526 (program): Numbers n such that string 1,0 occurs in the base 7 representation of n but not of n+1.
  • A044527 (program): Numbers n such that string 1,1 occurs in the base 7 representation of n but not of n+1.
  • A044535 (program): Numbers n such that string 2,2 occurs in the base 7 representation of n but not of n+1.
  • A044543 (program): Numbers n such that string 3,3 occurs in the base 7 representation of n but not of n+1.
  • A044551 (program): Numbers n such that string 4,4 occurs in the base 7 representation of n but not of n+1.
  • A044556 (program): Numbers n such that string 5,2 occurs in the base 7 representation of n but not of n+1.
  • A044557 (program): Numbers n such that string 5,3 occurs in the base 7 representation of n but not of n+1.
  • A044558 (program): Numbers n such that string 5,4 occurs in the base 7 representation of n but not of n+1.
  • A044559 (program): Numbers n such that string 5,5 occurs in the base 7 representation of n but not of n+1.
  • A044560 (program): Numbers n such that string 5,6 occurs in the base 7 representation of n but not of n+1.
  • A044561 (program): Numbers n such that string 6,0 occurs in the base 7 representation of n but not of n+1.
  • A044562 (program): Numbers n such that string 6,1 occurs in the base 7 representation of n but not of n+1.
  • A044563 (program): Numbers n such that string 6,2 occurs in the base 7 representation of n but not of n+1.
  • A044564 (program): Numbers n such that string 6,3 occurs in the base 7 representation of n but not of n+1.
  • A044565 (program): Numbers n such that string 6,4 occurs in the base 7 representation of n but not of n+1.
  • A044566 (program): Numbers n such that string 6,5 occurs in the base 7 representation of n but not of n+1.
  • A044568 (program): Numbers n such that string 0,0 occurs in the base 8 representation of n but not of n+1.
  • A044569 (program): Numbers n such that string 0,1 occurs in the base 8 representation of n but not of n+1.
  • A044570 (program): Numbers n such that string 0,2 occurs in the base 8 representation of n but not of n+1.
  • A044571 (program): Numbers n such that string 0,3 occurs in the base 8 representation of n but not of n+1.
  • A044573 (program): Numbers n such that string 0,5 occurs in the base 8 representation of n but not of n+1.
  • A044574 (program): Numbers n such that string 0,6 occurs in the base 8 representation of n but not of n+1.
  • A044575 (program): Numbers n such that string 0,7 occurs in the base 8 representation of n but not of n+1.
  • A044576 (program): Numbers n such that string 1,0 occurs in the base 8 representation of n but not of n+1.
  • A044599 (program): Numbers n such that string 3,7 occurs in the base 8 representation of n but not of n+1.
  • A044605 (program): Numbers n such that string 4,5 occurs in the base 8 representation of n but not of n+1.
  • A044606 (program): Numbers n such that string 4,6 occurs in the base 8 representation of n but not of n+1.
  • A044607 (program): Numbers n such that string 4,7 occurs in the base 8 representation of n but not of n+1.
  • A044608 (program): Numbers n such that string 5,0 occurs in the base 8 representation of n but not of n+1.
  • A044609 (program): Numbers n such that string 5,1 occurs in the base 8 representation of n but not of n+1.
  • A044610 (program): Numbers n such that string 5,2 occurs in the base 8 representation of n but not of n+1.
  • A044611 (program): Numbers n such that string 5,3 occurs in the base 8 representation of n but not of n+1.
  • A044612 (program): Numbers n such that string 5,4 occurs in the base 8 representation of n but not of n+1.
  • A044613 (program): Numbers n such that string 5,5 occurs in the base 8 representation of n but not of n+1.
  • A044614 (program): Numbers n such that string 5,6 occurs in the base 8 representation of n but not of n+1.
  • A044615 (program): Numbers n such that string 5,7 occurs in the base 8 representation of n but not of n+1.
  • A044616 (program): Numbers n such that string 6,0 occurs in the base 8 representation of n but not of n+1.
  • A044617 (program): Numbers n such that string 6,1 occurs in the base 8 representation of n but not of n+1.
  • A044618 (program): Numbers n such that string 6,2 occurs in the base 8 representation of n but not of n+1.
  • A044619 (program): Numbers n such that string 6,3 occurs in the base 8 representation of n but not of n+1.
  • A044620 (program): Numbers n such that string 6,4 occurs in the base 8 representation of n but not of n+1.
  • A044621 (program): Numbers n such that string 6,5 occurs in the base 8 representation of n but not of n+1.
  • A044622 (program): Numbers n such that string 6,6 occurs in the base 8 representation of n but not of n+1.
  • A044623 (program): Numbers n such that string 6,7 occurs in the base 8 representation of n but not of n+1.
  • A044624 (program): Numbers n such that string 7,0 occurs in the base 8 representation of n but not of n+1.
  • A044625 (program): Numbers n such that string 7,1 occurs in the base 8 representation of n but not of n+1.
  • A044626 (program): Numbers n such that string 7,2 occurs in the base 8 representation of n but not of n+1.
  • A044627 (program): Numbers n such that string 7,3 occurs in the base 8 representation of n but not of n+1.
  • A044628 (program): Numbers n such that string 7,4 occurs in the base 8 representation of n but not of n+1.
  • A044629 (program): Numbers n such that string 7,5 occurs in the base 8 representation of n but not of n+1.
  • A044630 (program): Numbers n such that string 7,6 occurs in the base 8 representation of n but not of n+1.
  • A044632 (program): Numbers n such that string 0,0 occurs in the base 9 representation of n but not of n+1.
  • A044633 (program): Numbers n such that string 0,1 occurs in the base 9 representation of n but not of n+1.
  • A044634 (program): Numbers n such that string 0,2 occurs in the base 9 representation of n but not of n+1.
  • A044635 (program): Numbers n such that string 0,3 occurs in the base 9 representation of n but not of n+1.
  • A044638 (program): Numbers n such that string 0,6 occurs in the base 9 representation of n but not of n+1.
  • A044639 (program): Numbers n such that string 0,7 occurs in the base 9 representation of n but not of n+1.
  • A044640 (program): Numbers n such that string 0,8 occurs in the base 9 representation of n but not of n+1.
  • A044641 (program): Numbers n such that string 1,0 occurs in the base 9 representation of n but not of n+1.
  • A044652 (program): Numbers n such that string 2,2 occurs in the base 9 representation of n but not of n+1.
  • A044667 (program): Numbers n such that string 3,8 occurs in the base 9 representation of n but not of n+1.
  • A044668 (program): Numbers n such that string 4,0 occurs in the base 9 representation of n but not of n+1.
  • A044670 (program): Numbers n such that string 4,2 occurs in the base 9 representation of n but not of n+1.
  • A044671 (program): Numbers n such that string 4,3 occurs in the base 9 representation of n but not of n+1.
  • A044672 (program): Numbers n such that string 4,4 occurs in the base 9 representation of n but not of n+1.
  • A044673 (program): Numbers n such that string 4,5 occurs in the base 9 representation of n but not of n+1.
  • A044674 (program): Numbers n such that string 4,6 occurs in the base 9 representation of n but not of n+1.
  • A044675 (program): Numbers n such that string 4,7 occurs in the base 9 representation of n but not of n+1.
  • A044676 (program): Numbers n such that string 4,8 occurs in the base 9 representation of n but not of n+1.
  • A044677 (program): Numbers n such that string 5,0 occurs in the base 9 representation of n but not of n+1.
  • A044678 (program): Numbers n such that string 5,1 occurs in the base 9 representation of n but not of n+1.
  • A044679 (program): Numbers n such that string 5,2 occurs in the base 9 representation of n but not of n+1.
  • A044680 (program): Numbers n such that string 5,3 occurs in the base 9 representation of n but not of n+1.
  • A044681 (program): Numbers n such that string 5,4 occurs in the base 9 representation of n but not of n+1.
  • A044683 (program): Numbers n such that string 5,6 occurs in the base 9 representation of n but not of n+1.
  • A044684 (program): Numbers n such that string 5,7 occurs in the base 9 representation of n but not of n+1.
  • A044685 (program): Numbers n such that string 5,8 occurs in the base 9 representation of n but not of n+1.
  • A044686 (program): Numbers n such that string 6,0 occurs in the base 9 representation of n but not of n+1.
  • A044687 (program): Numbers n such that string 6,1 occurs in the base 9 representation of n but not of n+1.
  • A044688 (program): Numbers n such that string 6,2 occurs in the base 9 representation of n but not of n+1.
  • A044689 (program): Numbers n such that string 6,3 occurs in the base 9 representation of n but not of n+1.
  • A044690 (program): Numbers n such that string 6,4 occurs in the base 9 representation of n but not of n+1.
  • A044691 (program): Numbers n such that string 6,5 occurs in the base 9 representation of n but not of n+1.
  • A044692 (program): Numbers n such that string 6,6 occurs in the base 9 representation of n but not of n+1.
  • A044693 (program): Numbers n such that string 6,7 occurs in the base 9 representation of n but not of n+1.
  • A044694 (program): Numbers n such that string 6,8 occurs in the base 9 representation of n but not of n+1.
  • A044695 (program): Numbers n such that string 7,0 occurs in the base 9 representation of n but not of n+1.
  • A044696 (program): Numbers n such that string 7,1 occurs in the base 9 representation of n but not of n+1.
  • A044697 (program): Numbers n such that string 7,2 occurs in the base 9 representation of n but not of n+1.
  • A044698 (program): Numbers n such that string 7,3 occurs in the base 9 representation of n but not of n+1.
  • A044699 (program): Numbers n such that string 7,4 occurs in the base 9 representation of n but not of n+1.
  • A044700 (program): Numbers n such that string 7,5 occurs in the base 9 representation of n but not of n+1.
  • A044701 (program): Numbers n such that string 7,6 occurs in the base 9 representation of n but not of n+1.
  • A044702 (program): Numbers n such that string 7,7 occurs in the base 9 representation of n but not of n+1.
  • A044703 (program): Numbers n such that string 7,8 occurs in the base 9 representation of n but not of n+1.
  • A044704 (program): Numbers n such that string 8,0 occurs in the base 9 representation of n but not of n+1.
  • A044705 (program): Numbers n such that string 8,1 occurs in the base 9 representation of n but not of n+1.
  • A044706 (program): Numbers n such that string 8,2 occurs in the base 9 representation of n but not of n+1.
  • A044707 (program): Numbers n such that string 8,3 occurs in the base 9 representation of n but not of n+1.
  • A044708 (program): Numbers n such that string 8,4 occurs in the base 9 representation of n but not of n+1.
  • A044710 (program): Numbers n such that string 8,6 occurs in the base 9 representation of n but not of n+1.
  • A044711 (program): Numbers n such that string 8,7 occurs in the base 9 representation of n but not of n+1.
  • A044712 (program): Numbers n such that string 8,8 occurs in the base 9 representation of n but not of n+1.
  • A044713 (program): Numbers n such that string 0,0 occurs in the base 10 representation of n but not of n+1.
  • A044714 (program): Numbers n such that string 0,1 occurs in the base 10 representation of n but not of n+1.
  • A044715 (program): Numbers n such that string 0,2 occurs in the base 10 representation of n but not of n+1.
  • A044716 (program): Numbers n such that string 0,3 occurs in the base 10 representation of n but not of n+1.
  • A044717 (program): Numbers n such that string 0,4 occurs in the base 10 representation of n but not of n+1.
  • A044718 (program): Numbers n such that string 0,5 occurs in the base 10 representation of n but not of n+1.
  • A044719 (program): Numbers n such that string 0,6 occurs in the base 10 representation of n but not of n+1.
  • A044720 (program): Numbers n such that string 0,7 occurs in the base 10 representation of n but not of n+1.
  • A044721 (program): Numbers n such that string 0,8 occurs in the base 10 representation of n but not of n+1.
  • A044722 (program): Numbers n such that string 0,9 occurs in the base 10 representation of n but not of n+1.
  • A044723 (program): Numbers n such that string 1,0 occurs in the base 10 representation of n but not of n+1.
  • A044732 (program): Numbers n such that string 1,9 occurs in the base 10 representation of n but not of n+1.
  • A044748 (program): Numbers n such that string 3,5 occurs in the base 10 representation of n but not of n+1.
  • A044749 (program): Numbers n such that string 3,6 occurs in the base 10 representation of n but not of n+1.
  • A044750 (program): Numbers n such that string 3,7 occurs in the base 10 representation of n but not of n+1.
  • A044751 (program): Numbers n such that string 3,8 occurs in the base 10 representation of n but not of n+1.
  • A044752 (program): Numbers n such that string 3,9 occurs in the base 10 representation of n but not of n+1.
  • A044753 (program): Numbers n such that string 4,0 occurs in the base 10 representation of n but not of n+1.
  • A044754 (program): Numbers n such that string 4,1 occurs in the base 10 representation of n but not of n+1.
  • A044755 (program): Numbers n such that string 4,2 occurs in the base 10 representation of n but not of n+1.
  • A044756 (program): Numbers n such that string 4,3 occurs in the base 10 representation of n but not of n+1.
  • A044757 (program): Numbers n such that string 4,4 occurs in the base 10 representation of n but not of n+1.
  • A044758 (program): Numbers n such that string 4,5 occurs in the base 10 representation of n but not of n+1.
  • A044759 (program): Numbers n such that string 4,6 occurs in the base 10 representation of n but not of n+1.
  • A044760 (program): Numbers n such that string 4,7 occurs in the base 10 representation of n but not of n+1.
  • A044761 (program): Numbers n such that string 4,8 occurs in the base 10 representation of n but not of n+1.
  • A044763 (program): Numbers n such that string 5,0 occurs in the base 10 representation of n but not of n+1.
  • A044764 (program): Numbers n such that string 5,1 occurs in the base 10 representation of n but not of n+1.
  • A044765 (program): Numbers n such that string 5,2 occurs in the base 10 representation of n but not of n+1.
  • A044766 (program): Numbers n such that string 5,3 occurs in the base 10 representation of n but not of n+1.
  • A044767 (program): Numbers n such that string 5,4 occurs in the base 10 representation of n but not of n+1.
  • A044768 (program): Numbers n such that string 5,5 occurs in the base 10 representation of n but not of n+1.
  • A044769 (program): Numbers n such that string 5,6 occurs in the base 10 representation of n but not of n+1.
  • A044770 (program): Numbers n such that string 5,7 occurs in the base 10 representation of n but not of n+1.
  • A044771 (program): Numbers n such that string 5,8 occurs in the base 10 representation of n but not of n+1.
  • A044772 (program): Numbers n such that string 5,9 occurs in the base 10 representation of n but not of n+1.
  • A044773 (program): Numbers n such that string 6,0 occurs in the base 10 representation of n but not of n+1.
  • A044774 (program): Numbers n such that string 6,1 occurs in the base 10 representation of n but not of n+1.
  • A044775 (program): Numbers n such that string 6,2 occurs in the base 10 representation of n but not of n+1.
  • A044776 (program): Numbers n such that string 6,3 occurs in the base 10 representation of n but not of n+1.
  • A044777 (program): Numbers n such that string 6,4 occurs in the base 10 representation of n but not of n+1.
  • A044778 (program): Numbers n such that string 6,5 occurs in the base 10 representation of n but not of n+1.
  • A044779 (program): Numbers n such that string 6,6 occurs in the base 10 representation of n but not of n+1.
  • A044780 (program): Numbers n such that string 6,7 occurs in the base 10 representation of n but not of n+1.
  • A044781 (program): Numbers n such that string 6,8 occurs in the base 10 representation of n but not of n+1.
  • A044782 (program): Numbers n such that string 6,9 occurs in the base 10 representation of n but not of n+1.
  • A044784 (program): Numbers n such that string 7,1 occurs in the base 10 representation of n but not of n+1.
  • A044785 (program): Numbers n such that string 7,2 occurs in the base 10 representation of n but not of n+1.
  • A044786 (program): Numbers n such that string 7,3 occurs in the base 10 representation of n but not of n+1.
  • A044787 (program): Numbers n such that string 7,4 occurs in the base 10 representation of n but not of n+1.
  • A044788 (program): Numbers n such that string 7,5 occurs in the base 10 representation of n but not of n+1.
  • A044789 (program): Numbers n such that string 7,6 occurs in the base 10 representation of n but not of n+1.
  • A044790 (program): Numbers n such that string 7,7 occurs in the base 10 representation of n but not of n+1.
  • A044791 (program): Numbers n such that string 7,8 occurs in the base 10 representation of n but not of n+1.
  • A044792 (program): Numbers n such that string 7,9 occurs in the base 10 representation of n but not of n+1.
  • A044793 (program): Numbers n such that string 8,0 occurs in the base 10 representation of n but not of n+1.
  • A044794 (program): Numbers n such that string 8,1 occurs in the base 10 representation of n but not of n+1.
  • A044795 (program): Numbers n such that string 8,2 occurs in the base 10 representation of n but not of n+1.
  • A044796 (program): Numbers n such that string 8,3 occurs in the base 10 representation of n but not of n+1.
  • A044797 (program): Numbers n such that string 8,4 occurs in the base 10 representation of n but not of n+1.
  • A044798 (program): Numbers n such that string 8,5 occurs in the base 10 representation of n but not of n+1.
  • A044799 (program): Numbers n such that string 8,6 occurs in the base 10 representation of n but not of n+1.
  • A044800 (program): Numbers n such that string 8,7 occurs in the base 10 representation of n but not of n+1.
  • A044801 (program): Numbers n such that string 8,8 occurs in the base 10 representation of n but not of n+1.
  • A044802 (program): Numbers n such that string 8,9 occurs in the base 10 representation of n but not of n+1.
  • A044803 (program): Numbers n such that string 9,0 occurs in the base 10 representation of n but not of n+1.
  • A044804 (program): Numbers m such that string 9,1 occurs in the base 10 representation of m but not of m+1.
  • A044805 (program): Numbers n such that string 9,2 occurs in the base 10 representation of n but not of n+1.
  • A044806 (program): Numbers k such that the digit string 9,3 occurs in the base-10 representation of k but not of k+1.
  • A044807 (program): Numbers n such that string 9,4 occurs in the base 10 representation of n but not of n+1.
  • A044808 (program): Numbers n such that string 9,5 occurs in the base 10 representation of n but not of n+1.
  • A044809 (program): Numbers n such that string 9,6 occurs in the base 10 representation of n but not of n+1.
  • A044810 (program): Numbers n such that string 9,7 occurs in the base 10 representation of n but not of n+1.
  • A044811 (program): Numbers n such that string 9,8 occurs in the base 10 representation of n but not of n+1.
  • A044812 (program): Numbers n such that string 9,9 occurs in the base 10 representation of n but not of n+1.
  • A044819 (program): Positive integers having distinct base-8 run lengths.
  • A044833 (program): Positive integers having more base-7 runs of even length than odd.
  • A044834 (program): Positive integers having more base-8 runs of even length than odd.
  • A044835 (program): Positive integers having more base-9 runs of even length than odd.
  • A044837 (program): Positive integers having more base-11 runs of even length than odd.
  • A044838 (program): Positive integers having more base-12 runs of even length than odd.
  • A044839 (program): Positive integers having more base-13 runs of even length than odd.
  • A044840 (program): Positive integers having more base-14 runs of even length than odd.
  • A044842 (program): Positive integers having more base-16 runs of even length than odd.
  • A044847 (program): Positive integers having no fewer base-6 runs of even length than odd.
  • A044849 (program): Positive integers having no fewer base-8 runs of even length than odd.
  • A044862 (program): Positive integers having the same number of base-6 runs of odd length as even.
  • A044864 (program): Positive integers having the same number of base-8 runs of odd length as even.
  • A044873 (program): Numbers having, in base 2, (sum of even run lengths)=(sum of odd run lengths).
  • A044875 (program): Numbers having, in base 4, (sum of even run lengths)=(sum of odd run lengths).
  • A044877 (program): Numbers having, in base 6, (sum of even run lengths)=(sum of odd run lengths).
  • A044879 (program): Numbers having, in base 8, (sum of even run lengths)=(sum of odd run lengths).
  • A044909 (program): Numbers whose base-8 run lengths alternate: odd, even, odd, …
  • A044910 (program): Numbers whose base-9 run lengths alternate: odd, even, odd, …
  • A044911 (program): Numbers whose base-10 run lengths alternate: odd, even, odd, …
  • A044912 (program): Numbers whose base-11 run lengths alternate: odd, even, odd, …
  • A044913 (program): Numbers whose base-12 run lengths alternate: odd, even, odd, …
  • A044916 (program): Numbers whose base-15 run lengths alternate: odd, even, odd, …
  • A044917 (program): Numbers whose base-16 run lengths alternate: odd, even, odd, …
  • A044918 (program): Positive integers whose base-2 run lengths form a palindrome.
  • A044924 (program): a(n) = so - se, where so(se) = sum of odd(even) base-2 run lengths of n.
  • A044932 (program): a(n)=so-se, where so(se)=sum of odd(even) base 10 run lengths of n.
  • A044933 (program): Number of runs of even length in the base-2 representation of n.
  • A044936 (program): Number of runs of even length in base-5 representation of n.
  • A044937 (program): Number of runs of even length in base-6 representation of n.
  • A044939 (program): Number of runs of even length in base-8 representation of n.
  • A044942 (program): Number of runs of odd length in the base-2 representation of n.
  • A044943 (program): Runs of odd length in the base 3 representation of n.
  • A044944 (program): Runs of odd length in the base 4 representation of n.
  • A044945 (program): Runs of odd length in the base 5 representation of n.
  • A044946 (program): Runs of odd length in the base 6 representation of n.
  • A044948 (program): Runs of odd length in the base 8 representation of n.
  • A044950 (program): Runs of odd length in the base 10 representation of n.
  • A044951 (program): Numbers having a different number of ones and zeros in base 2.
  • A044966 (program): Numbers having no 0’s and one 1 in base 3.
  • A044967 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
  • A044968 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
  • A044969 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 0 and 4, respectively.
  • A044970 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
  • A044971 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
  • A044972 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
  • A044973 (program): Numbers whose base-3 representation includes one 0 and three 1’s.
  • A044974 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 1 and 4, respectively.
  • A044975 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
  • A044976 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
  • A044977 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
  • A044978 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
  • A044979 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 2 and 4, respectively.
  • A044980 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
  • A044981 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
  • A044982 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
  • A044983 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
  • A044984 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 3 and 4, respectively.
  • A044985 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 0, respectively.
  • A044986 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 1, respectively.
  • A044987 (program): Numbers k whose base-3 representation has four 0’s and two 1’s.
  • A044988 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 3, respectively.
  • A044989 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 1’s are 4 and 4, respectively.
  • A044990 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
  • A044991 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
  • A044992 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 3, respectively.
  • A044993 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 0 and 4, respectively.
  • A044994 (program): Numbers n with property that in base-3 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
  • A044996 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 2, respectively.
  • A044997 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 3, respectively.
  • A044998 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 1 and 4, respectively.
  • A044999 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
  • A045000 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 1, respectively.
  • A045001 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 2, respectively.
  • A045002 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 3, respectively.
  • A045003 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 2 and 4, respectively.
  • A045004 (program): In base 3 the numbers of 0’s and 2’s are 3 and 0, respectively.
  • A045005 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 1, respectively.
  • A045006 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 2, respectively.
  • A045007 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 3, respectively.
  • A045008 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 3 and 4, respectively.
  • A045009 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 0, respectively.
  • A045010 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 1, respectively.
  • A045011 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 2, respectively.
  • A045012 (program): Numbers n with property that in base 3 representation the numbers of 0’s and 2’s are 4 and 3, respectively.
  • A045014 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 1, respectively.
  • A045015 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
  • A045016 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
  • A045017 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 0 and 4, respectively.
  • A045018 (program): Numbers n with property that in base-4 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
  • A045019 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
  • A045020 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
  • A045021 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 3, respectively.
  • A045022 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 1 and 4, respectively.
  • A045023 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
  • A045024 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
  • A045025 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
  • A045026 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
  • A045027 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 2 and 4, respectively.
  • A045028 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
  • A045029 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
  • A045030 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
  • A045031 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
  • A045032 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 3 and 4, respectively.
  • A045033 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 0, respectively.
  • A045034 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 1, respectively.
  • A045035 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 2, respectively.
  • A045036 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 3, respectively.
  • A045037 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 1’s are 4 and 4, respectively.
  • A045038 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
  • A045039 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
  • A045042 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
  • A045047 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
  • A045052 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 3 and 0, respectively.
  • A045057 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 4 and 0, respectively.
  • A045061 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 2’s are 4 and 4, respectively.
  • A045062 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 1, respectively.
  • A045063 (program): Numbers k such that in base 4 representation the numbers of 0’s and 3’s are 0 and 2, respectively.
  • A045064 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 3, respectively.
  • A045065 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 0 and 4, respectively.
  • A045066 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 0, respectively.
  • A045067 (program): Numbers with the property that in base-4 representation the numbers of 0’s and 3’s are 1 and 1, respectively.
  • A045068 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 2, respectively.
  • A045069 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 3, respectively.
  • A045070 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 1 and 4, respectively.
  • A045071 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 0, respectively.
  • A045072 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 1, respectively.
  • A045073 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 2, respectively.
  • A045074 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 3, respectively.
  • A045075 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 2 and 4, respectively.
  • A045076 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 0, respectively.
  • A045077 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 1, respectively.
  • A045078 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 2, respectively.
  • A045079 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 3, respectively.
  • A045080 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 3 and 4, respectively.
  • A045081 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 0, respectively.
  • A045082 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 1, respectively.
  • A045083 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 2, respectively.
  • A045084 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 3, respectively.
  • A045085 (program): Numbers n with property that in base 4 representation the numbers of 0’s and 3’s are 4 and 4, respectively.
  • A045086 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 1, respectively.
  • A045087 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 2, respectively.
  • A045088 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 3, respectively.
  • A045089 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 0 and 4, respectively.
  • A045090 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 0, respectively.
  • A045091 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 1, respectively.
  • A045092 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 2, respectively.
  • A045093 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 3, respectively.
  • A045094 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 1 and 4, respectively.
  • A045095 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 0, respectively.
  • A045096 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 1, respectively.
  • A045097 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 2, respectively.
  • A045098 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 3, respectively.
  • A045099 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 2 and 4, respectively.
  • A045100 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 0, respectively.
  • A045101 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 1, respectively.
  • A045102 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 2, respectively.
  • A045103 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 3, respectively.
  • A045104 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 3 and 4, respectively.
  • A045105 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 0, respectively.
  • A045106 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 1, respectively.
  • A045107 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 2, respectively.
  • A045108 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 3, respectively.
  • A045109 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 2’s are 4 and 4, respectively.
  • A045110 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 1, respectively.
  • A045111 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 2, respectively.
  • A045112 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 3, respectively.
  • A045113 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 0 and 4, respectively.
  • A045114 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 1 and 0, respectively.
  • A045119 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 2 and 0, respectively.
  • A045121 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 2 and 2, respectively.
  • A045124 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 3 and 0, respectively.
  • A045128 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 3 and 4, respectively.
  • A045129 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 0, respectively.
  • A045132 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 3, respectively.
  • A045133 (program): Numbers n with property that in base 4 representation the numbers of 1’s and 3’s are 4 and 4, respectively.
  • A045134 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 1, respectively.
  • A045135 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 2, respectively.
  • A045136 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 3, respectively.
  • A045137 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 0 and 4, respectively.
  • A045138 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 0, respectively.
  • A045139 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 1, respectively.
  • A045140 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 2, respectively.
  • A045141 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 3, respectively.
  • A045142 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 1 and 4, respectively.
  • A045143 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 0, respectively.
  • A045144 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 1, respectively.
  • A045145 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 2, respectively.
  • A045146 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 3, respectively.
  • A045147 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 2 and 4, respectively.
  • A045148 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 0, respectively.
  • A045149 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 1, respectively.
  • A045150 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 2, respectively.
  • A045151 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 3, respectively.
  • A045152 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 3 and 4, respectively.
  • A045153 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 0, respectively.
  • A045154 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 1, respectively.
  • A045155 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 2, respectively.
  • A045156 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 3, respectively.
  • A045157 (program): Numbers n with property that in base 4 representation the numbers of 2’s and 3’s are 4 and 4, respectively.
  • A045158 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 1, respectively.
  • A045159 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 2, respectively.
  • A045160 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 0 and 3, respectively.
  • A045161 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 0, respectively.
  • A045162 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 1, respectively.
  • A045163 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 2, respectively.
  • A045164 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 1 and 3, respectively.
  • A045165 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 0, respectively.
  • A045166 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 1, respectively.
  • A045167 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 2, respectively.
  • A045168 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 2 and 3, respectively.
  • A045169 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 0, respectively.
  • A045170 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 1, respectively.
  • A045171 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 2, respectively.
  • A045172 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 1’s are 3 and 3, respectively.
  • A045173 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 1, respectively.
  • A045174 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 2, respectively.
  • A045175 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 0 and 3, respectively.
  • A045176 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 0, respectively.
  • A045177 (program): Numbers k with property that in base 5-representation the numbers of 0’s and 2’s are 1 and 1, respectively.
  • A045178 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 2, respectively.
  • A045179 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 1 and 3, respectively.
  • A045180 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 0, respectively.
  • A045181 (program): Numbers whose base-5 representation contains two 0’s and one 2.
  • A045182 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 2, respectively.
  • A045183 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 2 and 3, respectively.
  • A045184 (program): Numbers whose base-5 representation contains three 0’s and no 2’s.
  • A045185 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 3 and 1, respectively.
  • A045186 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 2’s are 3 and 2, respectively.
  • A045188 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 1, respectively.
  • A045189 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 2, respectively.
  • A045190 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 0 and 3, respectively.
  • A045191 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 0, respectively.
  • A045192 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 1, respectively.
  • A045193 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 2, respectively.
  • A045194 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 1 and 3, respectively.
  • A045195 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 0, respectively.
  • A045196 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 1, respectively.
  • A045197 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 2, respectively.
  • A045198 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 2 and 3, respectively.
  • A045199 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 0, respectively.
  • A045200 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 1, respectively.
  • A045201 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 2, respectively.
  • A045202 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 3’s are 3 and 3, respectively.
  • A045203 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 1, respectively.
  • A045204 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 2, respectively.
  • A045205 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 0 and 3, respectively.
  • A045206 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 0, respectively.
  • A045207 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 1, respectively.
  • A045208 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 2, respectively.
  • A045209 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 1 and 3, respectively.
  • A045210 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 0, respectively.
  • A045211 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 1, respectively.
  • A045212 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 2, respectively.
  • A045213 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 2 and 3, respectively.
  • A045214 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 0, respectively.
  • A045215 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 1, respectively.
  • A045216 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 2, respectively.
  • A045217 (program): Numbers n with property that in base 5 representation the numbers of 0’s and 4’s are 3 and 3, respectively.
  • A045218 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 1, respectively.
  • A045219 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 2, respectively.
  • A045220 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 0 and 3, respectively.
  • A045221 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 0, respectively.
  • A045222 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 1, respectively.
  • A045223 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 2, respectively.
  • A045224 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 1 and 3, respectively.
  • A045225 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 0, respectively.
  • A045226 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 1, respectively.
  • A045227 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 2, respectively.
  • A045228 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 2 and 3, respectively.
  • A045229 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 0, respectively.
  • A045230 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 1, respectively.
  • A045231 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 2’s are 3 and 2, respectively.
  • A045233 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 1, respectively.
  • A045234 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 2, respectively.
  • A045235 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 0 and 3, respectively.
  • A045236 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 0, respectively.
  • A045237 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 1, respectively.
  • A045238 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 2, respectively.
  • A045239 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 1 and 3, respectively.
  • A045240 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 0, respectively.
  • A045241 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 1, respectively.
  • A045242 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 2, respectively.
  • A045243 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 2 and 3, respectively.
  • A045244 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 0, respectively.
  • A045245 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 1, respectively.
  • A045246 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 2, respectively.
  • A045247 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 3’s are 3 and 3, respectively.
  • A045248 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 1, respectively.
  • A045249 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 2, respectively.
  • A045250 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 0 and 3, respectively.
  • A045251 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 0, respectively.
  • A045252 (program): Numbers whose base-5 expansion contains exactly one 1 and one 4.
  • A045253 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 2, respectively.
  • A045254 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 1 and 3, respectively.
  • A045255 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 0, respectively.
  • A045256 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 1, respectively.
  • A045257 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 2, respectively.
  • A045258 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 2 and 3, respectively.
  • A045259 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 0, respectively.
  • A045260 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 1, respectively.
  • A045261 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 2, respectively.
  • A045262 (program): Numbers n with property that in base 5 representation the numbers of 1’s and 4’s are 3 and 3, respectively.
  • A045263 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 1, respectively.
  • A045264 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 2, respectively.
  • A045265 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 0 and 3, respectively.
  • A045266 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 0, respectively.
  • A045267 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 1, respectively.
  • A045268 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 2, respectively.
  • A045269 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 1 and 3, respectively.
  • A045270 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 0, respectively.
  • A045271 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 1, respectively.
  • A045272 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 2, respectively.
  • A045273 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 2 and 3, respectively.
  • A045274 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 0, respectively.
  • A045275 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 1, respectively.
  • A045276 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 2, respectively.
  • A045277 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 3’s are 3 and 3, respectively.
  • A045278 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 1, respectively.
  • A045279 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 2, respectively.
  • A045280 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 0 and 3, respectively.
  • A045281 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 0, respectively.
  • A045282 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 1, respectively.
  • A045283 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 2, respectively.
  • A045284 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 1 and 3, respectively.
  • A045285 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 0, respectively.
  • A045286 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 1, respectively.
  • A045287 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 2, respectively.
  • A045288 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 2 and 3, respectively.
  • A045289 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 0, respectively.
  • A045290 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 1, respectively.
  • A045291 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 2, respectively.
  • A045292 (program): Numbers n with property that in base 5 representation the numbers of 2’s and 4’s are 3 and 3, respectively.
  • A045293 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 1, respectively.
  • A045294 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 2, respectively.
  • A045295 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 0 and 3, respectively.
  • A045296 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 0, respectively.
  • A045297 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 1, respectively.
  • A045298 (program): Numbers having one 3 and two 4’s in base 5.
  • A045299 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 1 and 3, respectively.
  • A045300 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 0, respectively.
  • A045301 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 1, respectively.
  • A045302 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 2, respectively.
  • A045303 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 2 and 3, respectively.
  • A045304 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 0, respectively.
  • A045305 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 1, respectively.
  • A045306 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 2, respectively.
  • A045307 (program): Numbers n with property that in base 5 representation the numbers of 3’s and 4’s are 3 and 3, respectively.
  • A045308 (program): Primes congruent to {2, 3, 4, 5} (mod 7).
  • A045309 (program): Primes congruent to {0, 2} mod 3.
  • A045311 (program): Primes congruent to {1, 2, 3, 5, 6} (mod 7).
  • A045312 (program): Primes congruent to {2, 3, 5, 6} (mod 7).
  • A045313 (program): Primes congruent to {1, 2, 3, 5} (mod 7).
  • A045314 (program): Primes congruent to {2, 3, 5} (mod 7).
  • A045319 (program): Primes congruent to {1, 2, 3, 4} (mod 5).
  • A045320 (program): Primes not congruent to 5 (mod 7).
  • A045321 (program): Primes congruent to {1, 2, 3} (mod 5).
  • A045322 (program): Primes congruent to {0, 2, 3, 4, 6} (mod 7).
  • A045323 (program): Primes congruent to {1, 2, 3, 7} (mod 8).
  • A045324 (program): Primes congruent to {0, 1, 2, 3, 4} (mod 7).
  • A045325 (program): Primes congruent to {0, 2, 3, 4} (mod 7).
  • A045326 (program): Primes congruent to {2, 3} mod 4.
  • A045327 (program): Primes congruent to {2, 3, 4} mod 5.
  • A045328 (program): Primes congruent to {0, 1, 2, 3, 6} (mod 7).
  • A045329 (program): Primes congruent to {0, 2, 3, 6} (mod 7).
  • A045331 (program): Primes congruent to {1, 2, 3} mod 6; or, -3 is a square mod p.
  • A045332 (program): Primes congruent to {0, 1, 2, 3} (mod 7).
  • A045333 (program): Primes congruent to {0, 2, 3} (mod 7).
  • A045334 (program): Primes congruent to {1, 2, 3, 4, 6} (mod 7).
  • A045335 (program): Primes congruent to {2, 3, 4, 6} (mod 7).
  • A045337 (program): Primes congruent to {1, 2, 3, 4} (mod 7).
  • A045338 (program): Primes congruent to {2, 3, 4} mod 7.
  • A045339 (program): Primes congruent to {2, 3} mod 8.
  • A045340 (program): Primes congruent to {1, 2, 3, 6} mod 7.
  • A045341 (program): Primes congruent to {2, 3, 6} mod 7.
  • A045342 (program): Primes congruent to {1, 2, 3} mod 7.
  • A045343 (program): Primes congruent to {2, 3} mod 7.
  • A045344 (program): Primes congruent to {1, 2} mod 3.
  • A045346 (program): Primes congruent to {0, 1, 2, 4, 5, 6} mod 7.
  • A045347 (program): Primes congruent to {0, 2, 4, 5, 6} mod 7.
  • A045348 (program): Primes congruent to {0, 1, 2, 4} mod 5.
  • A045349 (program): Primes congruent to {0, 1, 2} mod 5.
  • A045350 (program): Primes congruent to {0, 1, 2, 4, 5} mod 7.
  • A045351 (program): Primes congruent to {0, 2, 4, 5} mod 7.
  • A045352 (program): Primes congruent to {1, 2, 5, 7} mod 8.
  • A045353 (program): Primes congruent to {0, 1, 2, 5, 6} mod 7.
  • A045354 (program): Primes congruent to {0, 2, 5, 6} mod 7.
  • A045355 (program): Primes congruent to {2, 5, 7} mod 8.
  • A045356 (program): Primes congruent to {0, 2, 4} mod 5.
  • A045357 (program): Primes congruent to {0, 2} mod 5.
  • A045358 (program): Primes congruent to {0, 1, 2, 5} mod 7.
  • A045359 (program): Primes congruent to {0, 2, 5} mod 7.
  • A045360 (program): Primes congruent to {1, 2, 4, 5, 6} mod 7.
  • A045361 (program): Primes congruent to {2, 4, 5, 6} mod 7.
  • A045362 (program): Primes congruent to {1, 2, 4, 5} mod 7.
  • A045363 (program): Primes congruent to {2, 4, 5} mod 7.
  • A045364 (program): Primes congruent to {1, 2, 5, 6} mod 7.
  • A045365 (program): Primes congruent to {2, 5, 6} mod 7.
  • A045366 (program): Primes congruent to {2, 5} mod 8.
  • A045367 (program): Primes congruent to {1, 2, 5} mod 7.
  • A045368 (program): Primes congruent to {2, 5} mod 7.
  • A045369 (program): Primes congruent to {0, 1, 2, 4, 6} mod 7.
  • A045370 (program): Primes congruent to {0, 2, 4, 6} mod 7.
  • A045371 (program): Primes congruent to {1, 2, 4} mod 5.
  • A045372 (program): Primes congruent to {1, 2} mod 5.
  • A045373 (program): Primes congruent to {0, 1, 2, 4} mod 7.
  • A045374 (program): Primes congruent to {0, 2, 4} mod 7.
  • A045375 (program): Primes congruent to {1, 2} mod 6.
  • A045376 (program): Primes congruent to {0, 1, 2, 6} mod 7.
  • A045377 (program): Primes congruent to {0, 2, 6} mod 7.
  • A045378 (program): Primes congruent to {2, 4} mod 5.
  • A045379 (program): E.g.f.: exp(4*z + exp(z) - 1).
  • A045380 (program): Primes congruent to 2 mod 5.
  • A045381 (program): Primes congruent to {0, 1, 2} mod 7.
  • A045382 (program): Primes congruent to {2, 7} mod 8.
  • A045383 (program): Primes congruent to {0, 2} mod 7.
  • A045384 (program): Primes congruent to {1, 2, 4, 6} mod 7.
  • A045385 (program): Primes congruent to {2, 4, 6} mod 7.
  • A045386 (program): Primes congruent to {1, 2, 4} mod 7.
  • A045387 (program): Primes congruent to {2, 4} mod 7.
  • A045388 (program): Primes congruent to {1, 2, 6} mod 7.
  • A045389 (program): Primes congruent to {2, 6} mod 7.
  • A045390 (program): Primes congruent to {1, 2} mod 8.
  • A045391 (program): Primes congruent to {1, 2} mod 7.
  • A045392 (program): Primes congruent to 2 mod 7.
  • A045393 (program): Primes congruent to {0, 1, 3, 4, 5, 6} mod 7.
  • A045394 (program): Primes congruent to {0, 3, 4, 5, 6} mod 7.
  • A045395 (program): Primes congruent to {3, 5, 7} mod 8.
  • A045396 (program): Primes congruent to {0, 1, 3, 4, 5} mod 7.
  • A045397 (program): Primes congruent to {0, 3, 4, 5} mod 7.
  • A045398 (program): Primes congruent to {0, 1, 3, 5, 6} mod 7.
  • A045399 (program): Primes congruent to {0, 3, 5, 6} mod 7.
  • A045400 (program): Primes congruent to {0, 1, 3, 5} mod 7.
  • A045401 (program): Primes congruent to {0, 3, 5} mod 7.
  • A045402 (program): Primes congruent to {1, 3, 4, 5, 6} mod 7.
  • A045403 (program): Primes congruent to {1, 3, 5} mod 8.
  • A045404 (program): Primes congruent to {3, 4, 5, 6} mod 7.
  • A045405 (program): Primes congruent to {0, 1, 3, 4} mod 5.
  • A045406 (program): A diagonal of A008296.
  • A045407 (program): Primes congruent to {0, 1, 3} mod 5.
  • A045408 (program): Primes congruent to {1, 3, 4, 5} mod 7.
  • A045409 (program): Primes congruent to {3, 4, 5} mod 7.
  • A045410 (program): Primes congruent to {3, 5} mod 6.
  • A045411 (program): Primes congruent to {1, 3, 5, 6} mod 7.
  • A045412 (program): a(1)=3; for n > 1, a(n) = a(n-1) + 1 if n is already in the sequence, a(n) = a(n-1) + 3 otherwise.
  • A045413 (program): Primes congruent to {0, 3, 4} mod 5.
  • A045414 (program): Primes congruent to {0, 3} mod 5.
  • A045415 (program): Primes congruent to {1, 3, 5} mod 7.
  • A045416 (program): Primes congruent to {3, 5} mod 7.
  • A045417 (program): Primes congruent to {0, 1, 3, 4, 6} mod 7.
  • A045418 (program): Primes congruent to {0, 3, 4, 6} mod 7.
  • A045419 (program): Primes congruent to {1, 3, 7} mod 8.
  • A045420 (program): Primes congruent to {0, 1, 3, 4} mod 7.
  • A045421 (program): Primes congruent to {0, 3, 4} mod 7.
  • A045422 (program): Primes congruent to {0, 1, 3, 6} mod 7.
  • A045423 (program): Primes congruent to {0, 3, 6} mod 7.
  • A045424 (program): Primes congruent to {0, 1, 3} mod 7.
  • A045425 (program): Primes congruent to {0, 3} mod 7.
  • A045426 (program): Primes congruent to {1, 3, 4, 6} mod 7.
  • A045427 (program): Primes congruent to {3, 4, 6} mod 7.
  • A045428 (program): Primes congruent to {1, 3, 4} mod 5.
  • A045429 (program): Primes congruent to {1, 3} mod 5.
  • A045430 (program): Number of dominoes with n spots (in standard set).
  • A045431 (program): Primes congruent to {1, 3, 4} mod 7.
  • A045432 (program): Primes congruent to {3, 4} mod 7.
  • A045433 (program): Primes congruent to {1, 3, 6} mod 7.
  • A045434 (program): Primes congruent to {3, 6} mod 7.
  • A045435 (program): Primes congruent to {3, 4} mod 5.
  • A045436 (program): Primes congruent to {1, 3} mod 7.
  • A045437 (program): Primes congruent to 3 mod 7.
  • A045438 (program): Primes congruent to {0, 1, 4, 5, 6} mod 7.
  • A045439 (program): Primes congruent to {0, 4, 5, 6} mod 7.
  • A045440 (program): Primes congruent to {0, 1, 4, 5} mod 7.
  • A045441 (program): Primes congruent to {0, 4, 5} mod 7.
  • A045442 (program): Primes congruent to {1, 5, 7} mod 8.
  • A045443 (program): Primes congruent to {0, 1, 5, 6} mod 7.
  • A045444 (program): Primes congruent to {0, 5, 6} mod 7.
  • A045445 (program): Number of nonisomorphic systems of catafusenes for the unsymmetrical schemes (group C_s) with two appendages (see references for precise definition).
  • A045446 (program): Primes congruent to {0, 1, 5} mod 7.
  • A045447 (program): Primes congruent to {0, 5} mod 7.
  • A045448 (program): Primes congruent to {1, 4, 5, 6} mod 7.
  • A045449 (program): Primes congruent to {4, 5, 6} mod 7.
  • A045451 (program): Primes congruent to {1, 4, 5} mod 7.
  • A045452 (program): Primes congruent to {4, 5} mod 7.
  • A045453 (program): Primes congruent to {0, 1} mod 5.
  • A045454 (program): Primes congruent to {1, 5, 6} mod 7.
  • A045455 (program): Primes congruent to {5, 6} mod 7.
  • A045456 (program): Primes congruent to {1, 5} mod 7.
  • A045457 (program): Primes congruent to {0, 4} mod 5.
  • A045458 (program): Primes congruent to 5 mod 7.
  • A045459 (program): Primes congruent to {0, 1, 4, 6} mod 7.
  • A045460 (program): Primes congruent to {0, 4, 6} mod 7.
  • A045461 (program): Primes congruent to {0, 1, 4} mod 7.
  • A045462 (program): Primes congruent to {0, 4} mod 7.
  • A045463 (program): Primes congruent to {0, 1, 6} mod 7.
  • A045464 (program): Primes congruent to {0, 6} mod 7.
  • A045465 (program): Primes congruent to {0, 1} mod 7.
  • A045466 (program): Primes congruent to {1, 4, 6} mod 7.
  • A045467 (program): Primes congruent to {4, 6} mod 7.
  • A045468 (program): Primes congruent to {1, 4} mod 5.
  • A045469 (program): Primes congruent to {1, 4} mod 7.
  • A045471 (program): Primes congruent to 4 mod 7.
  • A045472 (program): Primes congruent to {1, 6} mod 7.
  • A045473 (program): Primes congruent to 6 mod 7.
  • A045479 (program): McKay-Thompson series of class 2B for the Monster group with a(0) = -8.
  • A045481 (program): McKay-Thompson series of class 3B for the Monster group with a(0) = -3.
  • A045483 (program): McKay-Thompson series of class 5B for the Monster group with a(0) = 1.
  • A045485 (program): McKay-Thompson series of class 6B for Monster with a(0) = 7.
  • A045487 (program): McKay-Thompson series of class 6D for Monster with a(0) = 1.
  • A045488 (program): McKay-Thompson series of class 6E for the Monster group with a(0) = 1.
  • A045492 (program): Convolution of A000108 (Catalan numbers) with A020920.
  • A045499 (program): Fourth-from-right diagonal of triangle A121207.
  • A045500 (program): Fifth-from-right diagonal of triangle A121207.
  • A045501 (program): Third-from-right diagonal of triangle A121207.
  • A045502 (program): Numbers k such that 2*k+1 and 3*k+1 are squares.
  • A045503 (program): If decimal expansion of n is ab…d, a(n) = a^a + b^b +…+ d^d.
  • A045505 (program): Convolution of A000108 (Catalan numbers) with A040075.
  • A045506 (program): Inscribe 2 spheres of curvature 2 inside sphere of curvature -1, continue to inscribe spheres where possible; sequence gives list of curvatures.
  • A045507 (program): Concatenate powers of 2.
  • A045508 (program): Concatenate factorials.
  • A045512 (program): If decimal expansion of n is ab…d, a(n) = a^a + b^b + … + d^d (ignoring any 0’s).
  • A045520 (program): Numbers k such that k! has initial digit ‘1’.
  • A045530 (program): Convolution of A000108 (Catalan numbers) with A020922.
  • A045531 (program): Number of sticky functions: endofunctions of [n] having a fixed point.
  • A045532 (program): Concatenate n with n-th prime.
  • A045533 (program): Concatenate the n-th and (n+1)st prime.
  • A045534 (program): Number of squarefree self-avoiding walks in 2 dimensions.
  • A045539 (program): Multiply by 5 and reverse.
  • A045543 (program): 6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
  • A045544 (program): Odd values of n for which a regular n-gon can be constructed by compass and straightedge.
  • A045545 (program): a(0) = 1; a(n) = Sum_{0 <= k < n and gcd(k,n) = 1} a(k).
  • A045546 (program): Numbers k such that k^2 + k - 1 is prime.
  • A045547 (program): Numbers whose factorial has ‘2’ as its final nonzero digit.
  • A045548 (program): Numbers whose factorial has ‘4’ as its final nonzero digit.
  • A045549 (program): Numbers whose factorial has ‘6’ as its final nonzero digit.
  • A045550 (program): Numbers whose factorial has ‘8’ as its final nonzero digit.
  • A045572 (program): Numbers that are odd but not divisible by 5.
  • A045618 (program): Partial sums of A000337(n+4), n >= 0.
  • A045621 (program): a(n) = 2^n - binomial(n, floor(n/2)).
  • A045622 (program): Convolution of A000108 (Catalan numbers) with A045543.
  • A045623 (program): Number of 1’s in all compositions of n+1.
  • A045624 (program): Row sums of convolution triangle A030526.
  • A045626 (program): Bends in loxodromic sequence of spheres in which each 5 consecutive spheres are in mutual contact.
  • A045634 (program): Number of ways in which n can be partitioned as a sum of a square and cube.
  • A045635 (program): Catafusenes (see references for precise definition).
  • A045637 (program): Primes of the form p^2 + 4, where p is prime.
  • A045638 (program): Palindromic and divisible by 3.
  • A045639 (program): Palindromic and divisible by 4.
  • A045641 (program): Palindromic and divisible by 6.
  • A045642 (program): Palindromic and divisible by 7.
  • A045643 (program): Palindromic and divisible by 8.
  • A045644 (program): Palindromic and divisible by 9.
  • A045650 (program): Numbers that cannot be expressed as k + floor(log(k)) where k is an integer.
  • A045654 (program): Number of 2n-bead balanced binary strings, rotationally equivalent to complement.
  • A045661 (program): a(n) = Product_{d|n} (n/d + d).
  • A045663 (program): Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement.
  • A045664 (program): Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reversed complement.
  • A045670 (program): Digital sum (in base 10) of numbers in base 3 of the alternate number system.
  • A045671 (program): Extension of Beatty sequence; complement of A045672.
  • A045672 (program): Extension of Beatty sequence; complement of A045671 (apart from the initial 0).
  • A045674 (program): Number of 2n-bead balanced binary necklaces which are equivalent to their reverse, complement and reversed complement.
  • A045678 (program): Number of 2n-bead balanced binary necklaces which are equivalent to their reversed complement, but not equivalent to their reverse and complement.
  • A045681 (program): Extension of Beatty sequence; complement of A045682.
  • A045682 (program): Extension of Beatty sequence; complement of A045681.
  • A045690 (program): Number of binary words of length n (beginning with 0) whose autocorrelation function is the indicator of a singleton.
  • A045691 (program): Number of binary words of length n with autocorrelation function 2^(n-1)+1.
  • A045694 (program): Number of ternary words of length n (beginning with 0) with autocorrelation function 2^(n-1).
  • A045698 (program): Number of ways n can be written as the sum of two squares of primes.
  • A045707 (program): Primes with first digit 1.
  • A045708 (program): Primes with first digit 2.
  • A045709 (program): Primes with first digit 3.
  • A045710 (program): Primes with first digit 4.
  • A045711 (program): Primes with first digit 5.
  • A045712 (program): Primes with first digit 6.
  • A045713 (program): Primes with first digit 7.
  • A045714 (program): Primes with first digit 8.
  • A045715 (program): Primes with first digit 9.
  • A045716 (program): a(n) is the binary order (A029837) of the n-th primorial number, A002110(n).
  • A045717 (program): For each prime p take the sum of nonprimes < p.
  • A045718 (program): Nearest neighbors of primes.
  • A045720 (program): 3-fold convolution of A001700(n), n >= 0.
  • A045721 (program): a(n) = binomial(3*n+1,n).
  • A045722 (program): Number of border edges in all noncrossing rooted trees on n nodes.
  • A045723 (program): Number of configurations, excluding reflections and black-white interchanges, of n black and n white beads on a string.
  • A045724 (program): Convolution of Catalan numbers A000108 with A020918.
  • A045726 (program): Fibonacci numbers having initial digit ‘2’.
  • A045727 (program): Fibonacci numbers having initial digit ‘3’.
  • A045728 (program): Fibonacci numbers having initial digit ‘4’.
  • A045729 (program): Fibonacci numbers having initial digit ‘5’.
  • A045730 (program): Fibonacci numbers having initial digit ‘6’.
  • A045731 (program): Fibonacci numbers having initial digit ‘7’.
  • A045732 (program): Fibonacci numbers having initial digit ‘8’.
  • A045733 (program): Fibonacci numbers having initial digit ‘9’.
  • A045737 (program): Number of nonroot branch nodes in all noncrossing rooted trees on n nodes on a circle.
  • A045738 (program): Number of branches in all noncrossing rooted trees on n nodes on a circle.
  • A045739 (program): Number of edges in all noncrossing forests on n nodes on a circle.
  • A045740 (program): Number of components in all forests on nodes on a circle.
  • A045741 (program): Number of edges in all noncrossing connected graphs on n nodes on a circle.
  • A045742 (program): Number of interior faces in all noncrossing connected graphs on n nodes on a circle.
  • A045743 (program): Number of noncrossing connected graphs on n nodes on a circle having no triangular faces.
  • A045745 (program): Numbers n such that sum of proper divisors s(n) is a triangular number T(k).
  • A045746 (program): Numbers whose sum of divisors is a triangular number.
  • A045747 (program): Number of prime factors of n!!!! (A007662), with multiplicity.
  • A045748 (program): a(n) is the number consisting of the last n digits (although any leading 0’s among those last n digits are omitted) of Sum_{j=1..k} j! for all sufficiently large k.
  • A045749 (program): Extension of Beatty sequence; complement of A045750.
  • A045750 (program): Extension of Beatty sequence, complement of A045749.
  • A045751 (program): Numbers k such that 4*k + 1 is not prime.
  • A045752 (program): 4n-1 is composite.
  • A045753 (program): Numbers n such that 4n-1 and 4n+1 are both primes.
  • A045754 (program): 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).
  • A045755 (program): 8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).
  • A045756 (program): Expansion of e.g.f. (1-9*x)^(-1/9), 9-factorial numbers.
  • A045757 (program): 10-factorial numbers.
  • A045763 (program): Number of numbers “unrelated to n”: m < n such that m is neither a divisor of n nor relatively prime to n.
  • A045766 (program): Number of prime factors of double factorials n!! (A006882), with multiplicity.
  • A045767 (program): Number of prime factors of triple factorials n!!! (A007661), with multiplicity.
  • A045771 (program): Number of similar sublattices of index n^2 in root lattice D_4.
  • A045774 (program): Extension of Beatty sequence; complement of A045775.
  • A045775 (program): Extension of Beatty sequence; complement of A045774.
  • A045778 (program): Number of factorizations of n into distinct factors greater than 1.
  • A045784 (program): Squares with initial digit ‘1’.
  • A045785 (program): Squares with initial digit ‘2’.
  • A045786 (program): Squares with initial digit ‘3’.
  • A045787 (program): Squares with initial digit ‘4’.
  • A045788 (program): Squares with initial digit ‘5’.
  • A045789 (program): Squares with initial digit ‘6’.
  • A045791 (program): Squares with initial digit ‘7’.
  • A045792 (program): Squares with initial digit ‘8’.
  • A045793 (program): Squares with initial digit ‘9’.
  • A045794 (program): Consider all quadruples {a,b,c,d} which reach {k,k,k,k} in n steps under map {a,b,c,d}->{|a-b|,|b-c|,|c-d|,|d-a|}; look at max{a,b,c,d}; sequence gives minimal value of this.
  • A045797 (program): Evenish numbers (prime to 10 and 10’s digit is even).
  • A045798 (program): Oddish numbers (prime to 10 and 10’s digit is odd).
  • A045800 (program): 0-ish numbers (end in 01, 07, 43, 49).
  • A045801 (program): 1-ish numbers (end in 11, 39, 73, 77).
  • A045802 (program): 2-ish numbers (end in 03, 21, 29, 47).
  • A045803 (program): 3-ish numbers (end in 17, 19, 31, 33).
  • A045804 (program): 4-ish numbers (end in 09, 41, 63, 87).
  • A045805 (program): 5-ish numbers (end in 51, 57, 93, 99).
  • A045806 (program): 6-ish numbers (end in 23, 27, 61, 89).
  • A045807 (program): 7-ish numbers (end in 53, 71, 79, 97).
  • A045808 (program): 8-ish numbers (end in 67, 69, 81, 83).
  • A045809 (program): 9-ish numbers (end in 13, 37, 59, 91).
  • A045819 (program): Theta series of E_8 lattice with respect to midpoint of edge.
  • A045821 (program): Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.
  • A045823 (program): a(n) = sigma_3(2*n+1).
  • A045825 (program): a(n) = A004017(n)/2.
  • A045826 (program): a(n) = A005887(n) / 2.
  • A045827 (program): a(n) = A005872(n)/6.
  • A045828 (program): One fourth of theta series of cubic lattice with respect to face.
  • A045829 (program): Catafusenes (see reference for precise definition).
  • A045831 (program): Number of 4-core partitions of n.
  • A045833 (program): Expansion of eta(q^9)^3 / eta(q^3) in powers of q.
  • A045834 (program): Half of theta series of cubic lattice with respect to edge.
  • A045836 (program): Half of Theta series of b.c.c. lattice with respect to long edge.
  • A045839 (program): a(n) = A005929(n)/2.
  • A045844 (program): a(n+1) = a(n) + largest digit of a(n); a(0) = 1.
  • A045848 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x6^2 = n.
  • A045849 (program): Number of nonnegative solutions of x1^2 + x2^2 + … + x7^2 = n.
  • A045855 (program): Numbers whose square has initial digit ‘1’.
  • A045856 (program): Numbers whose square has initial digit ‘2’.
  • A045857 (program): Numbers whose square has initial digit ‘3’.
  • A045858 (program): Numbers whose square has initial digit ‘4’.
  • A045859 (program): Numbers whose square has initial digit ‘5’.
  • A045860 (program): Numbers whose square has initial digit ‘6’.
  • A045861 (program): Numbers whose square has initial digit ‘7’.
  • A045862 (program): Numbers whose square has initial digit ‘8’.
  • A045863 (program): Numbers whose square has initial digit ‘9’.
  • A045868 (program): Expansion of g.f.: ((1 - x - sqrt(1-6*x+5*x^2))/(2*x))^2.
  • A045873 (program): a(n) = A006496(n)/2.
  • A045883 (program): a(n) = ((3*n+1)*2^n - (-1)^n)/9.
  • A045889 (program): Partial sums of A045618.
  • A045890 (program): Catafusenes (see reference for precise definition).
  • A045891 (program): First differences of A045623.
  • A045894 (program): 4-fold convolution of A001700(n), n >= 0.
  • A045895 (program): Period length of pairs (a,b) where a has period 2n-2 and b has period n.
  • A045896 (program): Denominator of n/((n+1)*(n+2)) = A026741/A045896.
  • A045899 (program): Numbers k such that k+1 and 3*k+1 are perfect squares.
  • A045901 (program): Group the natural numbers into blocks: B_1 = 1, B_2 = 2,3,4, B_3 = 5,6,7,8,9, …, each block ending in a square. Permute each block B_k by beginning with the central term, followed by the transposed symmetric pairs from B_k.
  • A045902 (program): Catafusenes (see reference for precise definition).
  • A045917 (program): From Goldbach problem: number of decompositions of 2n into unordered sums of two primes.
  • A045919 (program): Partial sum of Goldbach numbers A045917.
  • A045920 (program): Numbers n such that factorizations of n and n+1 have the same number of primes (including multiplicities).
  • A045922 (program): Partial sums of Goldbach numbers A002375.
  • A045925 (program): a(n) = n*Fibonacci(n).
  • A045926 (program): All digits even and nonzero.
  • A045927 (program): Digits even, nonzero and nondecreasing.
  • A045928 (program): The generalized Connell sequence C_{3,2}.
  • A045929 (program): Generalized Connell sequence C_{5,3}.
  • A045930 (program): The generalized Connell sequence C_{3,5}.
  • A045939 (program): Numbers n such that factorizations of n through n+2 have the same number of primes (including multiplicities).
  • A045943 (program): Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.
  • A045944 (program): Rhombic matchstick numbers: a(n) = n*(3*n+2).
  • A045945 (program): Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).
  • A045946 (program): Star of David matchstick numbers: 6*n*(3*n+1).
  • A045947 (program): Triangles in open triangular matchstick arrangement (triangle minus one side) of side n.
  • A045948 (program): a(n) = A003418(n)/A034386(n).
  • A045949 (program): Number of equilateral triangles formed out of matches that can be found in a hexagonal chunk of side length n in hexagonal array of matchsticks.
  • A045950 (program): Triangles in Star of David matchstick arrangement of side n.
  • A045952 (program): a(n) = 2^(2*n-1)*binomial(2*n,n) + 2^(4*n-1).
  • A045965 (program): a(1)=2; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^e_i.
  • A045966 (program): a(1)=3; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^e_i.
  • A045967 (program): a(1)=4; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+1}.
  • A045968 (program): a(1)=5; for n >= 2, if n = Product p_i^e_i, then a(n) = Product p_{i+3}^e_i.
  • A045969 (program): a(1)=6; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^e_i * Product p_{i+2}^e_i.
  • A045970 (program): a(1)=7; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+4}^e_i.
  • A045971 (program): a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.
  • A045972 (program): a(1)=9; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^{e_i+1}.
  • A045991 (program): a(n) = n^3 - n^2.
  • A045992 (program): a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,…,n to 1,…,n.
  • A045993 (program): Expansion of (1-x)/(1 - 10*x + 18*x^2 - 8*x^3).
  • A045994 (program): a(0)=1, a(n) = M(n) + Sum_{k=1..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).
  • A045995 (program): Rows of Fibonacci-Pascal triangle.
  • A045997 (program): Number of iterations required to reach stationary value when applying repeatedly applying d, the number of divisors function, to n!.
  • A046021 (program): Least inverse of the Kempner function A002034.
  • A046022 (program): Primes together with 1 and 4.
  • A046023 (program): Number of ways to color edges of a tetrahedron using <= n colors.
  • A046027 (program): Smallest multiple prime factor of the n-th nonsquarefree number (A013929).
  • A046028 (program): Largest multiple prime factor of the n-th nonsquarefree number (A013929).
  • A046030 (program): Digits are squares.
  • A046031 (program): Digits are cubes.
  • A046032 (program): a(n) = (n!)^2 - 1.
  • A046033 (program): a(n) = (n!)^3 - 1.
  • A046034 (program): Numbers whose digits are primes.
  • A046037 (program): Numbers n for which floor((3/2)^n) is composite.
  • A046052 (program): Number of prime factors of Fermat number F(n).
  • A046059 (program): Orders of finite groups having the incrementally largest numbers of nonisomorphic forms A046058.
  • A046062 (program): Primes of the form n*phi(n)+1 where phi(n) is the Euler function.
  • A046065 (program): a(n) = n^(n+2) - (n+2)^n.
  • A046072 (program): Decompose multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} x C_{k_2} x … x C_{k_m}, where k_i divides k_j for i < j; then a(n) = m.
  • A046073 (program): Number of squares in multiplicative group modulo n.
  • A046078 (program): Primes of the form n*phi(n)-1 where phi is the Euler function (in order of appearance).
  • A046079 (program): Number of Pythagorean triangles with leg n.
  • A046080 (program): a(n) is the number of integer-sided right triangles with hypotenuse n.
  • A046081 (program): Number of integer-sided right triangles with n as a hypotenuse or leg.
  • A046088 (program): Row sums of convolution triangle A030527.
  • A046090 (program): Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives X+1 values.
  • A046092 (program): 4 times triangular numbers: a(n) = 2*n*(n+1).
  • A046095 (program): Decimal expansion of Calabi’s constant.
  • A046098 (program): Numbers n such that central binomial coefficient C(n, floor(n/2)) is squarefree.
  • A046099 (program): Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.
  • A046100 (program): Biquadratefree numbers.
  • A046101 (program): Biquadrateful numbers.
  • A046109 (program): Number of lattice points (x,y) on the circumference of a circle of radius n with center at (0,0).
  • A046110 (program): Number of lattice points on circumference of a circle of radius (2n+1)/2 with center at (1/2,0).
  • A046111 (program): Number of lattice points on circumference of a circle of radius 1/3,2/3,4/3,5/3,… with center at (1/3,0).
  • A046117 (program): Primes p such that p-6 is also prime. (Upper of a pair of sexy primes.)
  • A046126 (program): Denominators q[ n ] of convergents to Stern’s non-simple continued fraction for Pi/2.
  • A046127 (program): Maximal number of regions into which space can be divided by n spheres.
  • A046132 (program): Larger member p+4 of cousin primes (p, p+4).
  • A046133 (program): p and p+12 are both prime.
  • A046138 (program): Primes p such that p+6 and p+8 are also primes.
  • A046142 (program): Haüy rhombic dodecahedral numbers.
  • A046143 (program): Triangle of gcd( 2^p-1, 2^q-1 ) = 2^gcd(p,q) - 1.
  • A046151 (program): a(n) = n*phi(n) - 1.
  • A046152 (program): a(n) = n*phi(n) + 1.
  • A046160 (program): Bends of spheres in Soddy’s bowl of integers.
  • A046161 (program): a(n) = denominator of binomial(2n,n)/4^n.
  • A046162 (program): Reduced numerators of (n-1)^2/(n^2 + n + 1).
  • A046163 (program): Reduced denominators of (n-1)^2/(n^2 + n + 1).
  • A046166 (program): Number of minimal covers on n objects with 5 members.
  • A046167 (program): Number of minimal covers on n objects with 6 members.
  • A046172 (program): Indices of pentagonal numbers (A000326) that are also squares (A000290).
  • A046173 (program): Indices of square numbers that are also pentagonal.
  • A046174 (program): Indices of pentagonal numbers which are also triangular.
  • A046175 (program): Indices of triangular numbers which are also pentagonal.
  • A046176 (program): Indices of square numbers that are also hexagonal.
  • A046177 (program): Squares (A000290) which are also hexagonal numbers (A000384).
  • A046178 (program): Indices of pentagonal numbers that are also hexagonal.
  • A046179 (program): Indices of hexagonal numbers that are also pentagonal.
  • A046180 (program): Hexagonal pentagonal numbers.
  • A046181 (program): Indices of octagonal numbers which are also triangular.
  • A046182 (program): Indices of triangular numbers which are also octagonal.
  • A046183 (program): Octagonal triangular numbers.
  • A046184 (program): Indices of octagonal numbers which are also squares.
  • A046187 (program): Indices of pentagonal numbers which are also octagonal.
  • A046188 (program): Indices of octagonal numbers which are also pentagonal.
  • A046189 (program): Octagonal pentagonal numbers.
  • A046190 (program): Indices of octagonal numbers which are also hexagonal numbers.
  • A046191 (program): Indices of hexagonal numbers which are also octagonal.
  • A046192 (program): Octagonal hexagonal numbers.
  • A046193 (program): Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).
  • A046194 (program): Heptagonal triangular numbers.
  • A046195 (program): Indices of heptagonal numbers (A000566) which are also squares (A000290).
  • A046196 (program): Indices of square numbers which are also heptagonal.
  • A046198 (program): Indices of heptagonal numbers (A000566) which are also pentagonal.
  • A046199 (program): Indices of pentagonal numbers that are also heptagonal.
  • A046200 (program): Odd numbers in the triangle of denominators in Leibniz’s Harmonic Triangle.
  • A046203 (program): Even numbers in the triangle of denominators in Leibniz’s Harmonic Triangle.
  • A046205 (program): In Leibniz’s Harmonic Triangle, write numerator first and then denominator of each element.
  • A046206 (program): In Leibniz’s Harmonic Triangle, write denominator first and then numerator of each element.
  • A046207 (program): Numbers to the right of the central elements in the triangle of denominators in Leibniz’s Harmonic Triangle.
  • A046208 (program): In Leibniz’s Harmonic Triangle, write the numerator first and then the denominator of each element to the right of the central elements.
  • A046212 (program): First numerator and then denominator of central elements of Leibniz’s Harmonic Triangle.
  • A046217 (program): First numerator and then denominator of 1/2-Pascal triangle (by row) excluding 1’s and 2’s.
  • A046219 (program): Denominators of elements of 1/2-Pascal triangle (by row).
  • A046224 (program): Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
  • A046231 (program): Numbers whose cube is palindromic in base 4.
  • A046232 (program): Cubes which are palindromes in base 4.
  • A046233 (program): Numbers whose cube is palindromic in base 5.
  • A046234 (program): Cubes which are palindromes in base 5.
  • A046236 (program): Cubes which are palindromes in base 6.
  • A046301 (program): Product of 3 successive primes.
  • A046302 (program): Product of 4 successive primes.
  • A046303 (program): Product of 5 successive primes.
  • A046304 (program): Divisible by at least 5 primes (counted with multiplicity).
  • A046305 (program): Divisible by at least 6 primes (counted with multiplicity).
  • A046306 (program): Numbers that are divisible by exactly 6 primes with multiplicity.
  • A046307 (program): Numbers that are divisible by at least 7 primes (counted with multiplicity).
  • A046308 (program): Numbers that are divisible by exactly 7 primes counting multiplicity.
  • A046309 (program): Numbers that are divisible by at least 8 primes (counted with multiplicity).
  • A046310 (program): Numbers that are divisible by exactly 8 primes counting multiplicity.
  • A046311 (program): Numbers that are divisible by at least 9 primes (counted with multiplicity).
  • A046312 (program): Numbers that are divisible by exactly 9 primes with multiplicity.
  • A046313 (program): Numbers that are divisible by at least 10 primes (counted with multiplicity).
  • A046314 (program): Numbers that are divisible by exactly 10 primes with multiplicity.
  • A046315 (program): Odd semiprimes: odd numbers divisible by exactly 2 primes (counted with multiplicity).
  • A046316 (program): Numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.
  • A046317 (program): Odd numbers divisible by exactly 4 primes (counted with multiplicity).
  • A046318 (program): Odd numbers divisible by exactly 5 primes (counted with multiplicity).
  • A046319 (program): Odd numbers divisible by exactly 6 primes (counted with multiplicity).
  • A046320 (program): Odd numbers divisible by exactly 7 primes (counted with multiplicity).
  • A046321 (program): Odd numbers divisible by exactly 8 primes (counted with multiplicity).
  • A046322 (program): Odd numbers divisible by exactly 9 primes (counted with multiplicity).
  • A046323 (program): Odd numbers divisible by exactly 10 primes (counted with multiplicity).
  • A046324 (program): Product of 6 successive primes.
  • A046325 (program): Product of 7 successive primes.
  • A046326 (program): Product of 8 successive primes.
  • A046327 (program): Numbers that are the product of 9 successive primes.
  • A046337 (program): Odd numbers with an even number of prime factors (counted with multiplicity).
  • A046339 (program): Composite numbers with an odd number of prime factors (counted with multiplicity).
  • A046340 (program): Odd composite numbers with an odd number of prime factors (counted with multiplicity).
  • A046343 (program): Sum of the prime factors of the composite numbers (counted with multiplicity).
  • A046344 (program): Sum of the prime factors of the odd composite numbers (counted with multiplicity).
  • A046345 (program): Sum of the prime factors of the palindromic composite numbers (counted with multiplicity).
  • A046363 (program): Composite numbers whose sum of prime factors (with multiplicity) is prime.
  • A046364 (program): Odd numbers whose sum of prime factors is prime (counted with multiplicity).
  • A046386 (program): Products of four distinct primes.
  • A046387 (program): Products of 5 distinct primes.
  • A046388 (program): Odd numbers of the form p*q where p and q are distinct primes.
  • A046389 (program): Products of exactly three distinct odd primes.
  • A046390 (program): Squarefree odd numbers with exactly 4 distinct prime factors.
  • A046431 (program): Sum of digits of a(n) raised to its digits powers is prime.
  • A046445 (program): Smallest composite with n prime factors that are distinct in length.
  • A046470 (program): Even numbers with an odd number of prime factors (counted with multiplicity).
  • A046489 (program): Sum of the first n palindromes (A002113).
  • A046510 (program): Numbers with multiplicative persistence value 1.
  • A046520 (program): a(n) = (sum of divisors of n) - phi(n) - (number of divisors of n).
  • A046521 (program): Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down.
  • A046522 (program): a(n) = 2*floor(sqrt(n)) - d(n), where d(n) is the number of divisors of n (A000005).
  • A046523 (program): Smallest number with same prime signature as n.
  • A046527 (program): A triangle related to A000108 (Catalan) and A000302 (powers of 4).
  • A046540 (program): Denominators of the 1/3-Pascal triangle (by row).
  • A046569 (program): Denominators of the 1/4-Pascal triangle (by row).
  • A046595 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 1’s.
  • A046596 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 2’s.
  • A046597 (program): Denominators of the 1/4-Pascal triangle (by row), excluding 4’s.
  • A046607 (program): Denominators of the 1/5-Pascal triangle (by row).
  • A046630 (program): Number of cubic residues mod 2^n.
  • A046631 (program): Number of cubic residues mod 3^n.
  • A046632 (program): Number of cubic residues mod 4^n.
  • A046633 (program): Number of cubic residues mod 5^n.
  • A046635 (program): Number of cubic residues mod 7^n.
  • A046636 (program): Number of cubic residues mod 8^n.
  • A046637 (program): Number of cubic residues mod 9^n.
  • A046640 (program): a(n) = A045763(n) + 1.
  • A046642 (program): Numbers k such that k and number of divisors d(k) are relatively prime.
  • A046643 (program): From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.
  • A046644 (program): From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
  • A046645 (program): a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).
  • A046646 (program): Number of certain rooted planar maps.
  • A046649 (program): a(n) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 4 edges which are invariant under a rotation of a 1/2 turn. (Column 2 of A091665.)
  • A046657 (program): a(n) = A002088(n)/2.
  • A046658 (program): Triangle related to A001700 and A000302 (powers of 4).
  • A046660 (program): Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
  • A046662 (program): Sum of mistyped version of binomial coefficients.
  • A046665 (program): Largest prime divisor of n - smallest prime divisor of n (a(1)=0).
  • A046666 (program): a(n) = n - (smallest prime dividing n).
  • A046667 (program): a(n) = A046666(n)/2.
  • A046668 (program): Numbers n such that partition function p(n) divides n!.
  • A046669 (program): Partial sums of A020639.
  • A046670 (program): Partial sums of A006530.
  • A046671 (program): Nim-values G(3,n) for Sylver coinage.
  • A046672 (program): Expansion of 1/(1-2*x-3*x^2+2*x^3).
  • A046673 (program): a(n) = (2n)!*Sum_{i=1..n} 1/i.
  • A046674 (program): a(n) = A046673(n)/2.
  • A046675 (program): Expansion of Product_{i>0} (1-x^{p_i}), where p_i are the primes.
  • A046682 (program): Number of cycle types of conjugacy classes of all even permutations of n elements.
  • A046684 (program): Numbers k such that k and sum of squares of divisors of k are relatively prime.
  • A046686 (program): Numbers k such that k and sum of cubes of divisors of k are relatively prime.
  • A046687 (program): Numbers k such that k and sum of 4th powers of divisors of k are relatively prime.
  • A046688 (program): Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).
  • A046691 (program): a(n) = (n^2 + 5*n - 2)/2.
  • A046692 (program): Dirichlet inverse of sigma function (A000203).
  • A046698 (program): a(0) = 0, a(1) = 1, a(n) = a(a(n-1)) + a(a(n-2)) if n > 1.
  • A046699 (program): a(1) = a(2) = 1, a(n) = a(n - a(n-1)) + a(n-1 - a(n-2)) if n > 2.
  • A046704 (program): Additive primes: sum of digits is a prime.
  • A046706 (program): a(n) = (1/2)*(n+1)!*Sum_{k=0..floor(n/2)} n^(2k+1)/(2k+1)!.
  • A046707 (program): a(n) = n!*Sum_{k=0..n/2} n^(2k)/(2k)!.
  • A046711 (program): From the Bruck-Ryser theorem: numbers n == 1 or 2 (mod 4) which are also the sum of 2 squares.
  • A046714 (program): Convolution of A000108 (Catalan) with A000351 (powers of 5).
  • A046715 (program): Secondary root edges in doubly rooted tree maps with n edges.
  • A046717 (program): a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.
  • A046718 (program): Number of permutations of [ n ] with exactly one 132-pattern and two 123-patterns.
  • A046727 (program): Related to Pythagorean triples: alternate terms of A001652 and A046090.
  • A046729 (program): Expansion of 4x/((1+x)(1-6x+x^2)).
  • A046736 (program): Number of ways to place non-intersecting diagonals in convex n-gon so as to create no triangles.
  • A046748 (program): Row sums of triangle A046521.
  • A046757 (program): Triangle of coefficients of certain polynomials (exponents in decreasing order).
  • A046790 (program): Positive numbers divisible by 8 or by the square of an odd prime.
  • A046792 (program): Triangle of numbers where k-th row contains (ij)!/(i!j!) with i+j = k+1, 1 <= i <= k.
  • A046804 (program): Primes p modulo t where t = terminal digit of p.
  • A046814 (program): Row sums of triangle A046527.
  • A046818 (program): Number of 1’s in binary expansion of 3n+1.
  • A046819 (program): Number of 1’s in binary expansion of 3n+2.
  • A046820 (program): Number of 1’s in binary expansion of 5n.
  • A046821 (program): Number of 1’s in binary expansion of 5n+1.
  • A046822 (program): Number of 1’s in binary expansion of 5n+2.
  • A046823 (program): Number of 1’s in binary expansion of 5n+3.
  • A046824 (program): Number of 1’s in binary expansion of 5n+4.
  • A046825 (program): Numerator of Sum_{k=0..n} 1/binomial(n,k).
  • A046826 (program): Denominator of Sum_{k=0..n} 1/binomial(n,k).
  • A046840 (program): Number of divisors divides sum of 4th powers of divisors.
  • A046841 (program): Sum of divisors divides sum of cubes of divisors.
  • A046854 (program): Triangle T(n, k) = binomial(floor((n+k)/2), k), n>=0, n >= k >= 0.
  • A046855 (program): a(n) = Sum_{i=0..n} binomial(2^n-1, i).
  • A046864 (program): Smallest number whose digits sum to n-th prime.
  • A046868 (program): Numbers n such that prime(n)^2 > prime(n-1)*prime(n+1).
  • A046869 (program): Good primes (version 1): prime(n)^2 > prime(n-1)*prime(n+1).
  • A046877 (program): a(n) = a(n-2) + a(n-3).
  • A046878 (program): Numerator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 0.
  • A046879 (program): Denominator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 1.
  • A046885 (program): Row sums of triangle A046658.
  • A046886 (program): Number of divisors d of 2n satisfying (d+1) = prime or number of prime factors of the denominator of the even Bernoulli numbers.
  • A046895 (program): Sizes of successive clusters in Z^4 lattice.
  • A046897 (program): Sum of divisors of n that are not divisible by 4.
  • A046898 (program): Partial sums of A046897.
  • A046899 (program): Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.
  • A046901 (program): a(n) = a(n-1) - n if a(n-1) > n, else a(n) = a(n-1) + n.
  • A046902 (program): Clark’s triangle: left border = 0 1 1 1…, right border = multiples of 6; other entries = sum of 2 entries above.
  • A046913 (program): Sum of divisors of n not congruent to 0 mod 3.
  • A046914 (program): Sum of aliquot factors (divisors excluding the number itself) of 10^n.
  • A046915 (program): Sum of divisors of 10^n.
  • A046916 (program): a(n) = n*2^n + 2*n^2 + 1.
  • A046920 (program): Number of ways to express n as p+2a^2; p = 1 or prime, a >= 0.
  • A046921 (program): Number of ways to express 2n+1 as p+2a^2; p = 1 or prime, a >= 0.
  • A046922 (program): Number of ways to express n as p+2a^2; p prime, a >= 0.
  • A046923 (program): Number of ways to express 2n+1 as p+2a^2; p prime, a >= 0.
  • A046924 (program): Number of ways to express n as p+2q; p, q = 1 or prime.
  • A046925 (program): Number of ways to express 2n+1 as p+2q; p, q = 1 or prime.
  • A046926 (program): Number of ways to express n as p+2q; p, q primes.
  • A046927 (program): Number of ways to express 2n+1 as p+2q where p and q are primes.
  • A046930 (program): Size of sea of composite numbers surrounding n-th prime.
  • A046933 (program): Number of composites between successive primes.
  • A046934 (program): Same rule as Aitken triangle (A011971) except a(0,0)=1, a(1,0)=0.
  • A046935 (program): Sequence formed from rows of triangle A046934.
  • A046948 (program): Sizes of successive balls in E_8 lattice.
  • A046949 (program): Sizes of successive balls in D_4 lattice.
  • A046951 (program): a(n) is the number of squares dividing n.
  • A046953 (program): Numbers k such that 6*k - 1 is composite.
  • A046954 (program): Numbers k such that 6*k + 1 is nonprime.
  • A046968 (program): Numerators of coefficients in Stirling’s expansion for log(Gamma(z)).
  • A046969 (program): Denominators of coefficients in Stirling’s expansion for log(Gamma(z)).
  • A046970 (program): Dirichlet inverse of the Jordan function J_2 (A007434).
  • A046971 (program): Maximal value of number of unitary divisors (see A034444) for integers in binary order range of n.
  • A046974 (program): Partial sums of digits of decimal expansion of Pi.
  • A046975 (program): Partial sums of digits of decimal expansion of e.
  • A046976 (program): Numerators of Taylor series for sec(x) = 1/cos(x).
  • A046977 (program): Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).
  • A046978 (program): Numerators of Taylor series for exp(x)*sin(x).
  • A046979 (program): Denominators of Taylor series for exp(x)*sin(x).
  • A046980 (program): Numerators of Taylor series for exp(x)*cos(x).
  • A046981 (program): Denominators of Taylor series for exp(x)*cos(x).
  • A046982 (program): Numerators of Taylor series for tan(x + Pi/4).
  • A046983 (program): Denominators of Taylor series for tan(x + Pi/4).
  • A046984 (program): Number of ways to tile a 4 X 3n rectangle with right trominoes.
  • A046988 (program): Numerators of zeta(2*n)/Pi^(2*n).
  • A046990 (program): Numerators of Taylor series for log(1/cos(x)). Also from log(cos(x)).
  • A046991 (program): Denominators of Taylor series for log(1/cos(x)). Also from log(cos(x)).
  • A046992 (program): a(n) = Sum_{k=1..n} pi(k) (cf. A000720).
  • A046993 (program): Partial products of pi(n), A000720.
  • A046994 (program): Number of Greek-key tours on a 3 X n board; i.e., self-avoiding walks on a 3 X n grid starting in the top left corner.
  • A046998 (program): a(n) = 1 - (7/6)*n + (2/3)*n^3 + (1/2)*n^4.
  • A047002 (program): T(n,n), array T given by A047000.
  • A047006 (program): T(n,n+1), array T given by A047000.
  • A047007 (program): T(n,n+2), array T given by A047000.
  • A047008 (program): T(n,n+3), array T given by A047000.
  • A047009 (program): T(2n,n), array T given by A047000.
  • A047053 (program): a(n) = 4^n * n!.
  • A047055 (program): Quintuple factorial numbers: a(n) = Product_{k=0..n-1} (5*k + 2).
  • A047056 (program): Quintuple factorial numbers: Product_{k=0..n-1} (5*k+3).
  • A047058 (program): a(n) = 6^n * n!.
  • A047073 (program): a(n) = Sum_{j=0..n} A047072(j, n-j).
  • A047074 (program): a(n) = Sum_{i=0..floor(n/2)} T(i,n-i), array T as in A047072.
  • A047075 (program): All differences C(j)-C(i), j>i, of Catalan numbers A000108.
  • A047081 (program): a(n) = Sum_{k=0..n} T(n, k), array T as in A047080.
  • A047084 (program): a(n) = Sum_{i=0..n} A047080(i,n-i).
  • A047085 (program): a(n) = T(2*n, n), array T as in A047080.
  • A047086 (program): a(n) = T(2*n+1, n), array T as in A047080.
  • A047098 (program): a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).
  • A047099 (program): a(n) = A047098(n)/2.
  • A047160 (program): For n >= 2, a(n) = smallest number m >= 0 such that n-m and n+m are both primes, or -1 if no such m exists.
  • A047161 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= n/2.
  • A047162 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= n/2.
  • A047163 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= n/2.
  • A047164 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= n/2.
  • A047165 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= n/2.
  • A047166 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= n/2.
  • A047167 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= n/2.
  • A047168 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= n/2.
  • A047169 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= n/2.
  • A047170 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 5/6 of the elements are <= n/2.
  • A047171 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-1)/2.
  • A047172 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-1)/2.
  • A047173 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-1)/2.
  • A047174 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-1)/2.
  • A047175 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-1)/2.
  • A047176 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-1)/2.
  • A047177 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-1)/2.
  • A047178 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-1)/2.
  • A047179 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= (n-1)/2.
  • A047180 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-1)/2.
  • A047182 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-2)/2.
  • A047183 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-2)/2.
  • A047184 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-2)/2.
  • A047185 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-2)/2.
  • A047186 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-2)/2.
  • A047187 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-2)/2.
  • A047188 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-2)/2.
  • A047189 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-2)/2.
  • A047190 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 4/5 of the elements are <= (n-2)/2.
  • A047191 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-2)/2.
  • A047193 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= n/3.
  • A047201 (program): Numbers not divisible by 5.
  • A047202 (program): Numbers that are congruent to {2, 3, 4} mod 5.
  • A047203 (program): Numbers that are congruent to {0, 2, 3, 4} mod 5.
  • A047204 (program): Numbers that are congruent to {3, 4} mod 5.
  • A047205 (program): Numbers that are congruent to {0, 3, 4} mod 5.
  • A047206 (program): Numbers that are congruent to {1, 3, 4} mod 5.
  • A047207 (program): Numbers that are congruent to {0, 1, 3, 4} mod 5.
  • A047208 (program): Numbers that are congruent to {0, 4} mod 5.
  • A047209 (program): Numbers that are congruent to {1, 4} mod 5.
  • A047210 (program): Largest square modulo n.
  • A047211 (program): Numbers that are congruent to {2, 4} mod 5.
  • A047212 (program): Numbers that are congruent to {0, 2, 4} mod 5.
  • A047213 (program): Largest 4th power modulo n.
  • A047214 (program): Largest 6th power modulo n.
  • A047215 (program): Numbers that are congruent to {0, 2} mod 5.
  • A047216 (program): Numbers that are congruent to {1, 2} mod 5.
  • A047217 (program): Numbers that are congruent to {0, 1, 2} mod 5.
  • A047218 (program): Numbers that are congruent to {0, 3} mod 5.
  • A047219 (program): Numbers that are congruent to {1, 3} mod 5.
  • A047220 (program): Numbers that are congruent to {0, 1, 3} mod 5.
  • A047221 (program): Numbers that are congruent to {2, 3} mod 5.
  • A047222 (program): Numbers that are congruent to {0, 2, 3} mod 5.
  • A047223 (program): Numbers that are congruent to {1, 2, 3} mod 5.
  • A047225 (program): Numbers that are congruent to {0, 1} mod 6.
  • A047226 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 6; a(n)=floor(6(n-1)/5).
  • A047227 (program): Numbers that are congruent to {1, 2, 3, 4} mod 6.
  • A047228 (program): Numbers that are congruent to {2, 3, 4} mod 6.
  • A047229 (program): Numbers that are congruent to {0, 2, 3, 4} mod 6.
  • A047230 (program): Numbers that are congruent to {3, 4} mod 6.
  • A047231 (program): Numbers that are congruent to {0, 3, 4} mod 6.
  • A047233 (program): Numbers that are congruent to {0, 4} mod 6.
  • A047234 (program): Numbers that are congruent to {0, 1, 4} mod 6.
  • A047235 (program): Numbers that are congruent to {2, 4} mod 6.
  • A047236 (program): Numbers that are congruent to {1, 2, 4} mod 6.
  • A047237 (program): Numbers that are congruent to {0, 1, 2, 4} mod 6.
  • A047238 (program): Numbers that are congruent to {0, 2} mod 6.
  • A047239 (program): Numbers that are congruent to {1, 2} (mod 6).
  • A047240 (program): Numbers that are congruent to {0, 1, 2} mod 6.
  • A047241 (program): Numbers that are congruent to {1, 3} mod 6.
  • A047242 (program): Numbers that are congruent to {0, 1, 3} mod 6.
  • A047243 (program): Numbers that are congruent to {2, 3} mod 6.
  • A047244 (program): Numbers that are congruent to {0, 2, 3} mod 6.
  • A047245 (program): Numbers that are congruent to {1, 2, 3} mod 6.
  • A047246 (program): Numbers that are congruent to {0, 1, 2, 3} mod 6.
  • A047247 (program): Numbers that are congruent to {2, 3, 4, 5} (mod 6).
  • A047248 (program): Numbers that are congruent to {0, 2, 3, 4, 5} (mod 6).
  • A047249 (program): Numbers that are congruent to {3, 4, 5} mod 6.
  • A047250 (program): Numbers that are congruent to {0, 3, 4, 5} (mod 6).
  • A047251 (program): Numbers that are congruent to {1, 3, 4, 5} (mod 6).
  • A047252 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 6.
  • A047253 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.
  • A047254 (program): Numbers that are congruent to {2, 3, 5} mod 6.
  • A047255 (program): Numbers that are congruent to {1, 2, 3, 5} mod 6.
  • A047256 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 6.
  • A047257 (program): Numbers that are congruent to {4, 5} mod 6.
  • A047258 (program): Numbers that are congruent to {0, 4, 5} mod 6.
  • A047259 (program): Numbers that are congruent to {1, 4, 5} mod 6.
  • A047260 (program): Numbers that are congruent to {0, 1, 4, 5} mod 6.
  • A047261 (program): Numbers that are congruent to {2, 4, 5} mod 6.
  • A047262 (program): Numbers that are congruent to {0, 2, 4, 5} mod 6.
  • A047263 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 6.
  • A047264 (program): Numbers that are congruent to 0 or 5 mod 6.
  • A047266 (program): Numbers that are congruent to {0, 1, 5} mod 6.
  • A047267 (program): Numbers that are congruent to {0, 2, 5} mod 6.
  • A047268 (program): Numbers that are congruent to {1, 2, 5} mod 6.
  • A047269 (program): Numbers that are congruent to {0, 1, 2, 5} mod 6.
  • A047270 (program): Numbers that are congruent to {3, 5} mod 6.
  • A047271 (program): Numbers that are congruent to {0, 3, 5} mod 6.
  • A047273 (program): Numbers that are congruent to {0, 1, 3, 5} mod 6.
  • A047274 (program): Numbers that are congruent to {0, 1} mod 7.
  • A047275 (program): Numbers that are congruent to {0, 1, 6} mod 7.
  • A047276 (program): Numbers that are congruent to {2, 6} mod 7.
  • A047277 (program): Numbers that are congruent to {0, 2, 6} mod 7.
  • A047278 (program): Numbers that are congruent to {1, 2, 6} mod 7.
  • A047279 (program): Numbers that are congruent to {0, 1, 2, 6} mod 7.
  • A047280 (program): Numbers that are congruent to {3, 6} mod 7.
  • A047281 (program): Numbers that are congruent to {0, 3, 6} mod 7.
  • A047282 (program): Numbers that are congruent to {1, 3, 6} mod 7.
  • A047283 (program): Numbers that are congruent to {0, 1, 3, 6} mod 7.
  • A047284 (program): Numbers that are congruent to {2, 3, 6} mod 7.
  • A047285 (program): Numbers that are congruent to {0, 2, 3, 6} mod 7.
  • A047286 (program): Numbers that are congruent to {1, 2, 3, 6} mod 7.
  • A047287 (program): Numbers that are congruent to {0, 1, 2, 3, 6} mod 7.
  • A047288 (program): Numbers that are congruent to {4, 6} mod 7.
  • A047289 (program): Numbers that are congruent to {0, 4, 6} mod 7.
  • A047290 (program): Numbers that are congruent to {1, 4, 6} mod 7.
  • A047291 (program): Numbers that are congruent to {0, 1, 4, 6} mod 7.
  • A047292 (program): Numbers that are congruent to {2, 4, 6} mod 7.
  • A047293 (program): Numbers that are congruent to {0, 2, 4, 6} mod 7.
  • A047294 (program): Numbers that are congruent to {1, 2, 4, 6} mod 7.
  • A047295 (program): Numbers that are congruent to {0, 1, 2, 4, 6} mod 7.
  • A047296 (program): Numbers that are congruent to {3, 4, 6} mod 7.
  • A047297 (program): Numbers that are congruent to {0, 3, 4, 6} mod 7.
  • A047298 (program): Numbers that are congruent to {1, 3, 4, 6} mod 7.
  • A047299 (program): Numbers that are congruent to {0, 1, 3, 4, 6} mod 7.
  • A047300 (program): Numbers that are congruent to {2, 3, 4, 6} mod 7.
  • A047301 (program): Numbers that are congruent to {0, 2, 3, 4, 6} mod 7.
  • A047302 (program): Numbers that are congruent to {1, 2, 3, 4, 6} mod 7.
  • A047303 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 7.
  • A047304 (program): Numbers not divisible by 7.
  • A047305 (program): Numbers that are congruent to {2, 3, 4, 5, 6} mod 7.
  • A047306 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.
  • A047307 (program): Numbers that are congruent to {3, 4, 5, 6} mod 7.
  • A047308 (program): Numbers that are congruent to {0, 3, 4, 5, 6} mod 7.
  • A047309 (program): Numbers that are congruent to {1, 3, 4, 5, 6} mod 7.
  • A047310 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 7.
  • A047311 (program): Numbers that are congruent to {4, 5, 6} mod 7.
  • A047312 (program): Numbers that are congruent to {0, 4, 5, 6} mod 7.
  • A047313 (program): Numbers that are congruent to {1, 4, 5, 6} mod 7.
  • A047314 (program): Numbers that are congruent to {0, 1, 4, 5, 6} mod 7.
  • A047315 (program): Numbers that are congruent to {2, 4, 5, 6} mod 7.
  • A047316 (program): Numbers that are congruent to {0, 2, 4, 5, 6} mod 7.
  • A047317 (program): Numbers that are congruent to {1, 2, 4, 5, 6} mod 7.
  • A047318 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
  • A047319 (program): Numbers that are congruent to {5, 6} mod 7.
  • A047320 (program): Numbers that are congruent to {0, 5, 6} mod 7.
  • A047321 (program): Numbers that are congruent to {1, 5, 6} mod 7.
  • A047322 (program): Numbers that are congruent to {0, 1, 5, 6} mod 7.
  • A047323 (program): Numbers that are congruent to {2, 5, 6} mod 7.
  • A047324 (program): Numbers that are congruent to {0, 2, 5, 6} mod 7.
  • A047325 (program): Numbers that are congruent to {1, 2, 5, 6} mod 7.
  • A047326 (program): Numbers that are congruent to {0, 1, 2, 5, 6} mod 7.
  • A047327 (program): Numbers that are congruent to {3, 5, 6} mod 7.
  • A047328 (program): Numbers that are congruent to {0, 3, 5, 6} mod 7.
  • A047329 (program): Numbers that are congruent to {1, 3, 5, 6} mod 7.
  • A047330 (program): Numbers that are congruent to {0, 1, 3, 5, 6} mod 7.
  • A047331 (program): Numbers that are congruent to {2, 3, 5, 6} mod 7.
  • A047332 (program): Numbers that are congruent to {0, 2, 3, 5, 6} mod 7.
  • A047335 (program): Numbers that are congruent to {0, 6} mod 7.
  • A047336 (program): Numbers that are congruent to {1, 6} mod 7.
  • A047337 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 7.
  • A047338 (program): Numbers that are congruent to {1, 2, 3, 4} mod 7.
  • A047339 (program): Numbers that are congruent to {2, 3, 4} mod 7.
  • A047340 (program): Numbers that are congruent to {0, 2, 3, 4} mod 7.
  • A047341 (program): Numbers that are congruent to {3, 4} mod 7.
  • A047342 (program): Numbers that are congruent to {0, 3, 4} mod 7.
  • A047343 (program): Numbers that are congruent to {1, 3, 4} mod 7.
  • A047344 (program): Numbers that are congruent to {0, 1, 3, 4} mod 7.
  • A047345 (program): Numbers that are congruent to {0, 4} mod 7.
  • A047346 (program): Numbers that are congruent to {1, 4} mod 7.
  • A047347 (program): Numbers that are congruent to {0, 1, 4} mod 7.
  • A047348 (program): Numbers that are congruent to {2, 4} mod 7.
  • A047349 (program): Numbers that are congruent to {0, 2, 4} mod 7.
  • A047350 (program): Numbers that are congruent to {1, 2, 4} mod 7.
  • A047351 (program): Numbers that are congruent to {0, 1, 2, 4} mod 7.
  • A047352 (program): Numbers that are congruent to {0, 2} mod 7.
  • A047353 (program): Numbers that are congruent to {1, 2} mod 7.
  • A047354 (program): Numbers that are congruent to {0, 1, 2} mod 7.
  • A047355 (program): Numbers that are congruent to {0, 3} mod 7.
  • A047356 (program): Numbers that are congruent to {1, 3} mod 7.
  • A047357 (program): Numbers that are congruent to {0, 1, 3} mod 7.
  • A047358 (program): Numbers that are congruent to {2, 3} mod 7.
  • A047359 (program): Numbers that are congruent to {0, 2, 3} mod 7.
  • A047360 (program): Numbers that are congruent to {1, 2, 3} mod 7.
  • A047361 (program): Numbers that are congruent to {0, 1, 2, 3} mod 7.
  • A047362 (program): Numbers that are congruent to {2, 3, 4, 5} mod 7.
  • A047363 (program): Numbers that are congruent to {0, 2, 3, 4, 5} mod 7.
  • A047364 (program): Numbers that are congruent to {3, 4, 5} mod 7.
  • A047365 (program): Numbers that are congruent to {0, 3, 4, 5} mod 7.
  • A047366 (program): Numbers that are congruent to {1, 3, 4, 5} mod 7.
  • A047367 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 7.
  • A047368 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).
  • A047369 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 7.
  • A047370 (program): Numbers that are congruent to {2, 3, 5} mod 7.
  • A047371 (program): Numbers that are congruent to {0, 2, 3, 5} mod 7.
  • A047372 (program): Numbers that are congruent to {1, 2, 3, 5} mod 7.
  • A047373 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 7.
  • A047374 (program): Numbers that are congruent to {4, 5} mod 7.
  • A047375 (program): Numbers that are congruent to {0, 4, 5} mod 7.
  • A047376 (program): Numbers that are congruent to {1, 4, 5} mod 7.
  • A047377 (program): Numbers that are congruent to {0, 1, 4, 5} mod 7.
  • A047378 (program): Numbers that are congruent to {2, 4, 5} mod 7.
  • A047379 (program): Numbers that are congruent to {0, 2, 4, 5} mod 7.
  • A047380 (program): Numbers that are congruent to {1, 2, 4, 5} mod 7.
  • A047381 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 7.
  • A047382 (program): Numbers that are congruent to {0, 5} mod 7.
  • A047383 (program): Numbers that are congruent to {1, 5} mod 7.
  • A047384 (program): Numbers that are congruent to {0, 1, 5} mod 7.
  • A047385 (program): Numbers that are congruent to {2, 5} mod 7.
  • A047386 (program): Numbers that are congruent to {0, 2, 5} mod 7.
  • A047387 (program): Numbers that are congruent to {1, 2, 5} mod 7.
  • A047388 (program): Numbers that are congruent to {0, 1, 2, 5} mod 7.
  • A047389 (program): Numbers that are congruent to {3, 5} mod 7.
  • A047390 (program): Numbers that are congruent to {0, 3, 5} mod 7.
  • A047391 (program): Numbers that are congruent to {1, 3, 5} mod 7.
  • A047392 (program): Numbers that are congruent to {0, 1, 3, 5} mod 7.
  • A047393 (program): Numbers that are congruent to {0, 1} mod 8.
  • A047394 (program): Numbers that are congruent to {0, 1, 6} mod 8.
  • A047395 (program): Numbers that are congruent to {0, 2, 6} mod 8.
  • A047396 (program): Numbers that are congruent to {1, 2, 6} mod 8.
  • A047397 (program): Numbers that are congruent to {0, 1, 2, 6} mod 8.
  • A047398 (program): Numbers that are congruent to {3, 6} mod 8.
  • A047399 (program): Numbers that are congruent to {0, 3, 6} mod 8.
  • A047400 (program): Numbers that are congruent to {1, 3, 6} mod 8.
  • A047401 (program): Numbers that are congruent to {0, 1, 3, 6} mod 8.
  • A047402 (program): Numbers that are congruent to {2, 3, 6} mod 8.
  • A047403 (program): Numbers that are congruent to {0, 2, 3, 6} mod 8.
  • A047404 (program): Numbers that are congruent to {1, 2, 3, 6} mod 8.
  • A047405 (program): Numbers that are congruent to {0, 1, 2, 3, 6} mod 8.
  • A047406 (program): Numbers that are congruent to {4, 6} mod 8.
  • A047407 (program): Numbers that are congruent to {0, 4, 6} mod 8.
  • A047408 (program): Numbers that are congruent to {1, 4, 6} mod 8.
  • A047409 (program): Numbers that are congruent to {0, 1, 4, 6} mod 8.
  • A047410 (program): Numbers that are congruent to {2, 4, 6} mod 8.
  • A047411 (program): Numbers that are congruent to {1, 2, 4, 6} mod 8.
  • A047412 (program): Numbers that are congruent to {0, 1, 2, 4, 6} mod 8.
  • A047413 (program): Numbers that are congruent to {3, 4, 6} mod 8.
  • A047414 (program): Numbers that are congruent to {0, 3, 4, 6} mod 8.
  • A047415 (program): Numbers that are congruent to {1, 3, 4, 6} mod 8.
  • A047416 (program): Numbers that are congruent to {0, 1, 3, 4, 6} mod 8.
  • A047417 (program): Numbers that are congruent to {2, 3, 4, 6} mod 8.
  • A047418 (program): Numbers that are congruent to {0, 2, 3, 4, 6} mod 8.
  • A047419 (program): Numbers that are congruent to {1, 2, 3, 4, 6} mod 8.
  • A047420 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 8.
  • A047421 (program): Floor(8n/7).
  • A047422 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 6} mod 8.
  • A047423 (program): Numbers that are congruent to {2, 3, 4, 5, 6} mod 8.
  • A047424 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 8.
  • A047425 (program): Numbers that are congruent to {3, 4, 5, 6} mod 8.
  • A047426 (program): Numbers that are congruent to {0, 3, 4, 5, 6} mod 8.
  • A047427 (program): Numbers that are congruent to {1, 3, 4, 5, 6} mod 8.
  • A047428 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 8.
  • A047429 (program): Numbers that are congruent to {4, 5, 6} mod 8.
  • A047430 (program): Numbers that are congruent to {0, 4, 5, 6} mod 8.
  • A047431 (program): Numbers that are congruent to {1, 4, 5, 6} mod 8.
  • A047432 (program): Numbers that are congruent to {0, 1, 4, 5, 6} mod 8.
  • A047433 (program): Numbers that are congruent to {2, 4, 5, 6} mod 8.
  • A047434 (program): Numbers that are congruent to {0, 2, 4, 5, 6} mod 8.
  • A047435 (program): Numbers that are congruent to {1, 2, 4, 5, 6} mod 8.
  • A047436 (program): Numbers that are congruent to {5, 6} mod 8.
  • A047437 (program): Numbers that are congruent to {0, 5, 6} mod 8.
  • A047438 (program): Numbers that are congruent to {1, 5, 6} mod 8.
  • A047439 (program): Numbers that are congruent to {0, 1, 5, 6} mod 8.
  • A047440 (program): Numbers that are congruent to {2, 5, 6} mod 8.
  • A047441 (program): Numbers that are congruent to {0, 2, 5, 6} mod 8.
  • A047442 (program): Numbers that are congruent to {0, 1, 2, 5, 6} mod 8.
  • A047443 (program): Numbers that are congruent to {3, 5, 6} mod 8.
  • A047444 (program): Numbers that are congruent to {0, 3, 5, 6} mod 8.
  • A047445 (program): Numbers that are congruent to {1, 3, 5, 6} mod 8.
  • A047446 (program): Numbers that are congruent to {0, 1, 3, 5, 6} mod 8.
  • A047447 (program): Numbers that are congruent to {2, 3, 5, 6} mod 8.
  • A047448 (program): Numbers that are congruent to {0, 2, 3, 5, 6} mod 8.
  • A047449 (program): Numbers that are primitively represented by x^2 + y^2 + z^2.
  • A047450 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.
  • A047451 (program): Numbers that are congruent to {0, 6} mod 8.
  • A047452 (program): Numbers that are congruent to {1, 6} mod 8.
  • A047453 (program): Numbers that are congruent to {0, 1, 2, 3, 4} mod 8.
  • A047454 (program): Numbers that are congruent to {1, 2, 3, 4} mod 8.
  • A047455 (program): Numbers that are congruent to {2, 3, 4} mod 8.
  • A047456 (program): Numbers that are congruent to {0, 2, 3, 4} mod 8.
  • A047457 (program): Numbers that are congruent to {3, 4} mod 8.
  • A047458 (program): Numbers that are congruent to {0, 3, 4} mod 8.
  • A047459 (program): Numbers that are congruent to {1, 3, 4} mod 8.
  • A047460 (program): Numbers that are congruent to {0, 1, 3, 4} mod 8.
  • A047461 (program): Numbers that are congruent to {1, 4} mod 8.
  • A047462 (program): Numbers that are congruent to {0, 1, 4} mod 8.
  • A047463 (program): Numbers that are congruent to {2, 4} mod 8.
  • A047464 (program): Numbers that are congruent to {0, 2, 4} mod 8.
  • A047465 (program): Numbers that are congruent to {1, 2, 4} mod 8.
  • A047466 (program): Numbers that are congruent to {0, 1, 2, 4} mod 8.
  • A047467 (program): Numbers that are congruent to {0, 2} mod 8.
  • A047468 (program): Numbers that are congruent to {1, 2} mod 8.
  • A047469 (program): Numbers that are congruent to {0, 1, 2} mod 8.
  • A047470 (program): Numbers that are congruent to {0, 3} mod 8.
  • A047471 (program): Numbers that are congruent to {1, 3} mod 8.
  • A047472 (program): Numbers that are congruent to {0, 1, 3} (mod 8).
  • A047473 (program): Numbers that are congruent to {2, 3} mod 8.
  • A047474 (program): Numbers that are congruent to {0, 2, 3} mod 8.
  • A047475 (program): Numbers that are congruent to {1, 2, 3} mod 8.
  • A047476 (program): Numbers that are congruent to {0, 1, 2, 3} mod 8.
  • A047477 (program): Numbers that are congruent to {0, 5, 7} mod 8.
  • A047478 (program): Numbers that are congruent to {1, 5, 7} mod 8.
  • A047479 (program): Numbers that are congruent to {0, 1, 5, 7} mod 8.
  • A047480 (program): Numbers that are congruent to {2, 5, 7} mod 8.
  • A047481 (program): Numbers that are congruent to {0, 2, 5, 7} mod 8.
  • A047482 (program): Numbers that are congruent to {1, 2, 5, 7} mod 8.
  • A047483 (program): Numbers that are congruent to {0, 1, 2, 5, 7} mod 8.
  • A047484 (program): Numbers that are congruent to {3, 5, 7} mod 8.
  • A047485 (program): Numbers that are congruent to {0, 3, 5, 7} mod 8.
  • A047486 (program): Numbers that are congruent to {0, 1, 3, 5, 7} mod 8.
  • A047487 (program): Numbers that are congruent to {2, 3, 5, 7} mod 8.
  • A047488 (program): Numbers that are congruent to {0, 2, 3, 5, 7} mod 8.
  • A047489 (program): Numbers that are congruent to {1, 2, 3, 5, 7} mod 8.
  • A047490 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 7} mod 8.
  • A047491 (program): Numbers that are congruent to {4, 5, 7} mod 8.
  • A047492 (program): Numbers that are congruent to {0, 4, 5, 7} mod 8.
  • A047493 (program): Numbers that are congruent to {1, 4, 5, 7} mod 8.
  • A047494 (program): Numbers that are congruent to {0, 1, 4, 5, 7} mod 8.
  • A047495 (program): Numbers that are congruent to {2, 4, 5, 7} mod 8.
  • A047496 (program): Numbers that are congruent to {0, 2, 4, 5, 7} mod 8.
  • A047497 (program): Numbers that are congruent to {1, 2, 4, 5, 7} mod 8.
  • A047498 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 7} mod 8.
  • A047499 (program): Numbers that are congruent to {3, 4, 5, 7} mod 8.
  • A047500 (program): Numbers that are congruent to {0, 3, 4, 5, 7} mod 8.
  • A047501 (program): Numbers that are congruent to {1, 3, 4, 5, 7} mod 8.
  • A047502 (program): Numbers that are congruent to {2, 3, 4, 5, 7} mod 8.
  • A047503 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 7} mod 8.
  • A047504 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 7} mod 8.
  • A047505 (program): Numbers that are congruent to {0, 1, 2, 3, 6, 7} mod 8.
  • A047506 (program): Numbers that are congruent to {4, 6, 7} mod 8.
  • A047507 (program): Numbers that are congruent to {0, 4, 6, 7} mod 8.
  • A047508 (program): Numbers that are congruent to {1, 4, 6, 7} mod 8.
  • A047509 (program): Numbers that are congruent to {0, 1, 4, 6, 7} mod 8.
  • A047510 (program): Numbers that are congruent to {2, 4, 6, 7} mod 8.
  • A047511 (program): Numbers that are congruent to {0, 2, 4, 6, 7} mod 8.
  • A047512 (program): Numbers that are congruent to {1, 2, 4, 6, 7} mod 8.
  • A047513 (program): Numbers that are congruent to {0, 1, 2, 4, 6, 7} mod 8.
  • A047514 (program): Numbers that are congruent to {3, 4, 6, 7} mod 8.
  • A047515 (program): Numbers that are congruent to {0, 3, 4, 6, 7} mod 8.
  • A047516 (program): Numbers that are congruent to {1, 3, 4, 6, 7} mod 8.
  • A047517 (program): Numbers that are congruent to {0, 1, 3, 4, 6, 7} mod 8.
  • A047518 (program): Numbers that are congruent to {2, 3, 4, 6, 7} mod 8.
  • A047519 (program): Numbers that are congruent to {1, 2, 3, 4, 6, 7} mod 8.
  • A047520 (program): a(n) = 2*a(n-1) + n^2, a(0) = 0.
  • A047521 (program): Numbers that are congruent to {0, 7} mod 8.
  • A047522 (program): Numbers that are congruent to {1, 7} mod 8.
  • A047523 (program): Numbers that are congruent to {0, 1, 7} mod 8.
  • A047524 (program): Numbers that are congruent to {2, 7} mod 8.
  • A047525 (program): Numbers that are congruent to {0, 2, 7} mod 8.
  • A047526 (program): Numbers that are congruent to {1, 2, 7} mod 8.
  • A047527 (program): Numbers that are congruent to {0, 1, 2, 7} mod 8.
  • A047528 (program): Numbers that are congruent to {0, 3, 7} mod 8.
  • A047529 (program): Numbers that are congruent to {1, 3, 7} mod 8.
  • A047530 (program): Numbers that are congruent to {0, 1, 3, 7} mod 8.
  • A047531 (program): Numbers that are congruent to {2, 3, 7} mod 8.
  • A047532 (program): Numbers that are congruent to {0, 2, 3, 7} mod 8.
  • A047533 (program): Numbers that are congruent to {1, 2, 3, 7} mod 8.
  • A047534 (program): Numbers that are congruent to {0, 1, 2, 3, 7} mod 8.
  • A047535 (program): Numbers that are congruent to {4, 7} mod 8.
  • A047536 (program): Numbers that are congruent to {0, 4, 7} mod 8.
  • A047537 (program): Numbers that are congruent to {1, 4, 7} mod 8.
  • A047538 (program): Numbers that are congruent to {0, 1, 4, 7} mod 8.
  • A047539 (program): Numbers that are congruent to {2, 4, 7} mod 8.
  • A047540 (program): Numbers that are congruent to {0, 2, 4, 7} mod 8.
  • A047541 (program): Numbers that are congruent to {1, 2, 4, 7} mod 8.
  • A047542 (program): Numbers that are congruent to {0, 1, 2, 4, 7} mod 8.
  • A047543 (program): Numbers that are congruent to {3, 4, 7} mod 8.
  • A047544 (program): Numbers that are congruent to {1, 3, 4, 7} mod 8.
  • A047545 (program): Numbers that are congruent to {0, 1, 3, 4, 7} mod 8.
  • A047546 (program): Numbers that are congruent to {2, 3, 4, 7} mod 8.
  • A047547 (program): Numbers that are congruent to {0, 2, 3, 4, 7} mod 8.
  • A047548 (program): Numbers that are congruent to {1, 2, 3, 4, 7} mod 8.
  • A047549 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8.
  • A047550 (program): Numbers that are congruent to {5, 7} mod 8.
  • A047551 (program): Numbers that are congruent to {0, 1, 6, 7} mod 8.
  • A047552 (program): Numbers that are congruent to {2, 6, 7} mod 8.
  • A047553 (program): Numbers that are congruent to {0, 2, 6, 7} mod 8.
  • A047554 (program): Numbers that are congruent to {1, 2, 6, 7} mod 8.
  • A047555 (program): Numbers that are congruent to {0, 1, 2, 6, 7} mod 8.
  • A047556 (program): Numbers that are congruent to {3, 6, 7} mod 8.
  • A047557 (program): Numbers that are congruent to {0, 3, 6, 7} mod 8.
  • A047558 (program): Numbers that are congruent to {1, 3, 6, 7} mod 8.
  • A047559 (program): Numbers that are congruent to {0, 1, 3, 6, 7} mod 8.
  • A047560 (program): Numbers that are congruent to {0, 2, 3, 6, 7} mod 8.
  • A047561 (program): Numbers that are congruent to {1, 2, 3, 6, 7} mod 8.
  • A047562 (program): Numbers that are congruent to {3, 4, 5, 6, 7} mod 8.
  • A047563 (program): Numbers that are congruent to {0, 3, 4, 5, 6, 7} mod 8.
  • A047564 (program): Numbers that are congruent to {1, 3, 4, 5, 6, 7} mod 8.
  • A047565 (program): Numbers that are congruent to {0, 1, 3, 4, 5, 6, 7} mod 8.
  • A047566 (program): Numbers that are congruent to {4, 5, 6, 7} mod 8.
  • A047567 (program): Numbers that are congruent to {0, 4, 5, 6, 7} mod 8.
  • A047568 (program): Numbers that are congruent to {1, 4, 5, 6, 7} mod 8.
  • A047569 (program): Numbers that are congruent to {0, 1, 4, 5, 6, 7} mod 8.
  • A047570 (program): Numbers that are congruent to {2, 4, 5, 6, 7} mod 8.
  • A047571 (program): Numbers that are congruent to {0, 2, 4, 5, 6, 7} mod 8.
  • A047572 (program): Numbers that are congruent to {1, 2, 4, 5, 6, 7} mod 8.
  • A047573 (program): Numbers that are congruent to {0, 1, 2, 4, 5, 6, 7} mod 8.
  • A047574 (program): Numbers that are congruent to {5, 6, 7} mod 8.
  • A047575 (program): Numbers that are congruent to {0, 5, 6, 7} mod 8.
  • A047576 (program): Numbers that are congruent to {1, 5, 6, 7} mod 8.
  • A047577 (program): Numbers that are congruent to {0, 1, 5, 6, 7} mod 8.
  • A047578 (program): Numbers that are congruent to {2, 5, 6, 7} mod 8.
  • A047579 (program): Numbers that are congruent to {0, 2, 5, 6, 7} mod 8.
  • A047580 (program): Numbers that are congruent to {1, 2, 5, 6, 7} mod 8.
  • A047581 (program): Numbers that are congruent to {0, 1, 2, 5, 6, 7} mod 8.
  • A047582 (program): Numbers that are congruent to {3, 5, 6, 7} mod 8.
  • A047583 (program): Numbers that are congruent to {0, 3, 5, 6, 7} mod 8.
  • A047584 (program): Numbers that are congruent to {1, 3, 5, 6, 7} mod 8.
  • A047585 (program): Numbers that are congruent to {0, 1, 3, 5, 6, 7} mod 8.
  • A047586 (program): Numbers that are congruent to {2, 3, 5, 6, 7} mod 8.
  • A047587 (program): Numbers that are congruent to {0, 2, 3, 5, 6, 7} mod 8.
  • A047588 (program): Numbers that are congruent to {0, 1, 2, 3, 5, 6, 7} mod 8.
  • A047589 (program): Numbers that are congruent to {6, 7} mod 8.
  • A047590 (program): Numbers that are congruent to {0, 6, 7} mod 8.
  • A047591 (program): Numbers that are congruent to {1, 6, 7} mod 8.
  • A047592 (program): Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.
  • A047593 (program): Numbers that are congruent to {2, 3, 4, 5, 6, 7} mod 8.
  • A047594 (program): Numbers that are congruent to {0, 2, 3, 4, 5, 6, 7} mod 8.
  • A047595 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5, 7} mod 8.
  • A047596 (program): Numbers that are congruent to {2, 3, 4, 5} mod 8.
  • A047597 (program): Numbers that are congruent to {0, 2, 3, 4, 5} mod 8.
  • A047598 (program): Numbers that are congruent to {3, 4, 5} mod 8.
  • A047599 (program): Numbers that are congruent to {0, 3, 4, 5} mod 8.
  • A047600 (program): Numbers that are congruent to {1, 3, 4, 5} mod 8.
  • A047601 (program): Numbers that are congruent to {0, 1, 3, 4, 5} mod 8.
  • A047602 (program): Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 8.
  • A047603 (program): Numbers that are congruent to {1, 2, 3, 4, 5} mod 8.
  • A047604 (program): Numbers that are congruent to {2, 3, 5} mod 8.
  • A047605 (program): Numbers that are congruent to {0, 2, 3, 5} mod 8.
  • A047606 (program): Numbers that are congruent to {1, 2, 3, 5} mod 8.
  • A047607 (program): Numbers that are congruent to {0, 1, 2, 3, 5} mod 8.
  • A047608 (program): Numbers that are congruent to {4, 5} mod 8.
  • A047609 (program): Numbers that are congruent to {0, 4, 5} mod 8.
  • A047610 (program): Positive integers that are congruent to {1, 4, 5} mod 8.
  • A047611 (program): Numbers that are congruent to {2, 4, 5} mod 8.
  • A047612 (program): Numbers that are congruent to {0, 2, 4, 5} mod 8.
  • A047613 (program): Numbers that are congruent to {1, 2, 4, 5} mod 8.
  • A047614 (program): Numbers that are congruent to {0, 1, 2, 4, 5} mod 8.
  • A047615 (program): Numbers that are congruent to {0, 5} mod 8.
  • A047616 (program): Numbers that are congruent to {0, 1, 5} mod 8.
  • A047617 (program): Numbers that are congruent to {2, 5} mod 8.
  • A047618 (program): Numbers that are congruent to {0, 2, 5} mod 8.
  • A047619 (program): Numbers that are congruent to {1, 2, 5} mod 8.
  • A047620 (program): Numbers that are congruent to {0, 1, 2, 5} mod 8.
  • A047621 (program): Numbers that are congruent to {3, 5} mod 8.
  • A047622 (program): Numbers that are congruent to {0, 3, 5} mod 8.
  • A047623 (program): Numbers that are congruent to {1, 3, 5} mod 8.
  • A047624 (program): Numbers that are congruent to {0, 1, 3, 5} mod 8.
  • A047656 (program): a(n) = 3^((n^2-n)/2).
  • A047657 (program): Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+2).
  • A047661 (program): Row 5 of square array defined in A047662.
  • A047662 (program): Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k)=a(n-1,k-1)+a(n-1,k)+a(n,k-1)+1.
  • A047663 (program): Row 6 of square array defined in A047662.
  • A047664 (program): Row 7 of square array defined in A047662.
  • A047665 (program): Expansion of (1/sqrt(1-6*x+x^2)-1/(1-x))/2.
  • A047666 (program): Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).
  • A047667 (program): Row 3 of array in A047666.
  • A047668 (program): Row 4 of array in A047666.
  • A047669 (program): Row 5 of array in A047666.
  • A047670 (program): Row 6 of array in A047666.
  • A047671 (program): Square array a(n,k) read by antidiagonals: a(n,1)=1, a(1,k)=1, a(n,k) = 1 + a(n-1,k-1) + a(n-1,k) + a(n,k-1).
  • A047672 (program): Row 3 of square array defined in A047671.
  • A047673 (program): Row 4 of square array defined in A047671.
  • A047674 (program): Row 5 of square array defined in A047671.
  • A047677 (program): Row 2 of square array defined in A047675: 2*n!*(n+1)!.
  • A047679 (program): Denominators in full Stern-Brocot tree.
  • A047690 (program): Denominators of coefficients in Taylor series for exp(cos(x)-1).
  • A047700 (program): Numbers that are the sum of 5 positive squares.
  • A047701 (program): All positive numbers that are not the sum of 5 nonzero squares.
  • A047732 (program): First differences are A005563.
  • A047743 (program): A discrete analog of Li(n): floor ( Sum_{k=2..n} 1/log_2 (k) ).
  • A047744 (program): A discrete analog of Li(n): round ( Sum_{k=2..n} 1/log_2 (k) ).
  • A047745 (program): A discrete analog of Li(n): ceiling ( Sum_{k=2..n} 1/log_2 (k) ).
  • A047749 (program): If n = 2*m then a(n) = binomial(3*m, m)/(2*m+1), if n=2*m+1 then a(n) = binomial(3*m+1, m+1)/(2*m+1).
  • A047750 (program): If n mod 2 = 0 then m := n/2 and a(n) = (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!); otherwise m := (n-1)/2, a(n) = 6*(3*m+2)!/(m!*(2*m+3)!).
  • A047755 (program): a(n) = A047752(12n+5).
  • A047768 (program): a(n) = A047766(6n+2).
  • A047778 (program): Concatenation of first n numbers in binary, converted to base 10.
  • A047780 (program): Number of inequivalent ways to color faces of a cube using at most n colors.
  • A047781 (program): a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.
  • A047786 (program): a(n) = (9*n^4 + 4*n^3 - n)/2.
  • A047788 (program): Numerators of Glaisher’s I-numbers.
  • A047789 (program): Denominators of Glaisher’s I-numbers.
  • A047790 (program): a(n) = Fibonacci(2*n)-2^n+1.
  • A047791 (program): Numbers n such that n plus digit sum of n (A007953) equals a prime.
  • A047808 (program): a(n) counts different values of i^2 + j^2 <= n^2 or number of distances from the origin to all integer points inside a circle of radius n.
  • A047809 (program): a(n) counts different values of i^2+j^2+k^2 <= n^2 or number of distances from the origin to all integer points inside a sphere of radius n.
  • A047819 (program): a(n) = Product_{i=1..n} ((i+3)*(i+4)*(i+5))/(i*(i+1)*(i+2)).
  • A047820 (program): Composite numbers that become prime after exactly 1 iteration of f(k) = sum of distinct prime factors of k.
  • A047821 (program): Becomes prime after exactly 2 iterations of f(x) = sum of prime factors of x.
  • A047822 (program): Becomes prime after exactly 3 iterations of f(x) = sum of prime factors of x.
  • A047823 (program): Becomes prime after exactly 4 iterations of f(x) = sum of prime factors of x.
  • A047824 (program): Becomes prime after exactly 5 iterations of f(x) = sum of prime factors of x.
  • A047831 (program): a(n) = Product_{i=1..n} ((i+5)*(i+6)*(i+7)*(i+8)*(i+9))/(i*(i+1)*(i+2)*(i+3)*(i+4)).
  • A047835 (program): a(n) = Product_{i=1..n} ((i+4)*(i+5)*(i+6)*(i+7))/(i*(i+1)*(i+2)*(i+3)).
  • A047836 (program): “Nullwertzahlen” (or “inverse prime numbers”): n=p1*p2*p3*p4*p5*…*pk, where pi are primes with p1 <= p2 <= p3 <= p4 …; then p1 = 2 and p1*p2*…*pi >= p(i+1) for all i < k.
  • A047838 (program): a(n) = floor(n^2/2) - 1.
  • A047839 (program): a(n) = n + floor( sqrt(2*n) ).
  • A047845 (program): (n-1)/2, where n runs through odd nonprimes (A014076).
  • A047846 (program): Number of successive odd nonprimes (A014076).
  • A047847 (program): Numbers n such that n + (n+1) and (n+2) + (n+3) are both prime.
  • A047848 (program): Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is (k+2)^(n-1), for n=1,2,3,…; k=0,1,2,…
  • A047849 (program): a(n) = (4^n + 2)/3.
  • A047850 (program): a(n) = (5^n + 3)/4.
  • A047851 (program): a(n) = T(3,n), array T given by A047848.
  • A047852 (program): a(n) = T(4,n), array T given by A047848.
  • A047853 (program): a(n) = T(5,n), array T given by A047848.
  • A047854 (program): a(n) = T(6,n), array T given by A047848.
  • A047855 (program): a(n) = T(7, n), array T given by A047848.
  • A047856 (program): a(n) = T(8,n), array T given by A047848.
  • A047857 (program): a(n) = T(0,n) + T(1,n-1) + … + T(n,0), array T given by A047848.
  • A047858 (program): Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is k+n, for n=1,2,3,…; k=0,1,2,…
  • A047859 (program): a(n) = T(2, n), array T given by A047858.
  • A047860 (program): a(n) = T(3,n), array T given by A047858.
  • A047861 (program): a(n) = T(4,n), array T given by A047858.
  • A047862 (program): a(n) = T(5,n), array T given by A047858.
  • A047863 (program): Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.
  • A047865 (program): Number of derangements of n where minimal cycle size is at least 4.
  • A047866 (program): a(n) = ceiling(n*(n+1)*(n+2)/8).
  • A047872 (program): a(n) = floor(abs(B(2*n + 2)/B(2*n))) where B(n) is the n-th Bernoulli number.
  • A047878 (program): a(n) is the least number of knight’s moves from corner (0,0) to n-th diagonal of unbounded chessboard.
  • A047883 (program): Squares on unbounded chessboard for which the least number of knight’s moves from corner (0,0) is n.
  • A047891 (program): Number of planar rooted trees with n nodes and tricolored end nodes.
  • A047892 (program): a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047894 (program): Number of digits of A000182(n).
  • A047897 (program): a(1) = 5; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047898 (program): a(1) = 6; for n > 0, a(n+1) = a(n) * (sum of digits of a(n)).
  • A047899 (program): a(1) = 7; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047900 (program): a(1) = 8; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047901 (program): a(1) = 9; a(n+1) = a(n) * sum of decimal digits of a(n).
  • A047902 (program): a(1) = 11; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047903 (program): a(1) = 13; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047904 (program): a(n+1) = a(n) + n (if n is odd), a(n+1) = a(n) * n (if n is even).
  • A047905 (program): a(n+1) = a(n) + n (if n is even), a(n+1) = a(n) * n (if n is odd).
  • A047906 (program): a(n+1) = a(n) - n (if n is odd), a(n+1) = a(n) * n (if n is even).
  • A047907 (program): a(n+1) = a(n) - n (if n is even), a(n+1) = a(n) * n (if n is odd).
  • A047912 (program): a(1) = 3; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
  • A047915 (program): 3*n^2-2*n+6.
  • A047920 (program): Triangular array formed from successive differences of factorial numbers.
  • A047924 (program): a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.
  • A047925 (program): 3rd column of array in A038150.
  • A047926 (program): a(n) = (3^(n+1) + 2*n + 1)/4.
  • A047927 (program): a(n) = n*(n-1)*(n-2)^2.
  • A047928 (program): a(n) = n*(n-1)^2*(n-2).
  • A047929 (program): a(n) = n^2*(n-1)*(n-2).
  • A047930 (program): Smallest positive Fibonacci number divisible by n.
  • A047931 (program): Number of new penny-penny contacts when putting pennies on a table following a spiral pattern.
  • A047932 (program): a(n) = floor(3*n-sqrt(12*n-3)).
  • A047946 (program): a(n) = 5*F(n)^2 + 3*(-1)^n where F(n) are the Fibonacci numbers A000045.
  • A047949 (program): a(n) is the largest m such that n-m and n+m are both primes, or -1 if no such m exists.
  • A047967 (program): Number of partitions of n with some part repeated.
  • A047968 (program): a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.
  • A047969 (program): Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
  • A047970 (program): Antidiagonal sums of nexus numbers (A047969).
  • A047972 (program): Distance of n-th prime to nearest square.
  • A047973 (program): Distance of n-th prime to nearest cube.
  • A047974 (program): a(n) = a(n-1) + 2*(n-1)*a(n-2).
  • A047990 (program): a(n+1) = a(n) + (n^2 + 1)*a(n-1).
  • A047992 (program): Number of distinct permutations generated by shuffling n cards with “clump size” <= 2.
  • A047994 (program): Unitary totient (or unitary phi) function uphi(n).
  • A047999 (program): Sierpiński’s [Sierpinski’s] triangle (or gasket): triangle, read by rows, formed by reading Pascal’s triangle (A007318) mod 2.
  • A048005 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-1)/3.
  • A048016 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-2)/3.
  • A048027 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-3)/3.
  • A048038 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+1)/3.
  • A048050 (program): Chowla’s function: sum of divisors of n except 1 and n.
  • A048058 (program): a(n) = n^2 + n + 11.
  • A048059 (program): Primes of the form k^2 + k + 11.
  • A048060 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n-4)/2.
  • A048061 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/3 of the elements are <= (n-4)/2.
  • A048062 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/3 of the elements are <= (n-4)/2.
  • A048063 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/4 of the elements are <= (n-4)/2.
  • A048064 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/4 of the elements are <= (n-4)/2.
  • A048065 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/5 of the elements are <= (n-4)/2.
  • A048066 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 2/5 of the elements are <= (n-4)/2.
  • A048067 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 3/5 of the elements are <= (n-4)/2.
  • A048069 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/6 of the elements are <= (n-4)/2.
  • A048071 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+2)/3.
  • A048082 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= (n+3)/3.
  • A048093 (program): Number of nonempty subsets of {1,2,…,n} in which exactly 1/2 of the elements are <= sqrt(n).
  • A048097 (program): Numbers k such that k^2 + k + 11 is prime.
  • A048098 (program): Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.
  • A048099 (program): Number of degree-n even permutations of order exactly 2.
  • A048103 (program): Numbers not divisible by p^p for any prime p.
  • A048105 (program): Number of non-unitary divisors of n.
  • A048106 (program): Number of unitary divisors of n (A034444) - number of non-unitary divisors of n (A048105).
  • A048107 (program): Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).
  • A048108 (program): Numbers with at least as many non-unitary divisors (A048105) as unitary divisors (A034444).
  • A048109 (program): Numbers having equally many squarefree and nonsquarefree divisors; number of unitary divisors of n (A034444) = number of non-unitary divisors of n (A048105).
  • A048111 (program): Number of unitary divisors of n (A034444) < number of non-unitary divisors of n (A048105).
  • A048112 (program): a(1) = 1, a(2) = 1, a(3) = 1, a(n) = a(n-3) * (a(n-2) + a(n-1)).
  • A048124 (program): Becomes prime or 4 after exactly 2 iterations of f(x) = sum of prime factors of x.
  • A048125 (program): Becomes prime or 4 after exactly 3 iterations of f(x) = sum of prime factors of x.
  • A048126 (program): Becomes prime or 4 after exactly 4 iterations of f(x) = sum of prime factors of x.
  • A048127 (program): Becomes prime or 4 after exactly 5 iterations of f(x) = sum of prime factors of x.
  • A048128 (program): Becomes prime or 4 after exactly 6 iterations of f(x) = sum of prime factors of x.
  • A048129 (program): Becomes prime or 4 after exactly 7 iterations of f(x) = sum of prime factors of x.
  • A048130 (program): Becomes prime or 4 after exactly 8 iterations of f(x) = sum of prime factors of x.
  • A048134 (program): Number of colors that can be mixed with up to n units of yellow, blue, red.
  • A048135 (program): Tomahawk-constructible n-gons.
  • A048136 (program): Tomahawk-nonconstructible n-gons.
  • A048144 (program): a(n) = Sum_{k=0..n} (k!)^2 * Stirling_2(n,k)^2.
  • A048146 (program): Sum of non-unitary divisors of n.
  • A048147 (program): Array T read by diagonals; T(i,j) = i^2 + j^2.
  • A048149 (program): Array T read by diagonals: T(i,j) = number of pairs (h,k) with h^2+k^2 <= i^2+j^2, h>=0, k >= 0.
  • A048150 (program): a(n)=number of numbers h^2+k^2 that are <=2n^2; equivalently, a(n)=T(n,n), array T as in A048149.
  • A048151 (program): Triangular array T read by rows: T(n,k)=k mod n, for k=1,2,…,n, n=1,2,…
  • A048152 (program): Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1.
  • A048153 (program): a(n) = Sum_{k=1..n} (k^2 mod n).
  • A048154 (program): Triangular array T read by rows: T(n,k)=k^3 mod n, for k=1,2,…,n, n=1,2,…
  • A048155 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A048154.
  • A048156 (program): Triangular array T read by rows: T(n,k)=k^4 mod n, for k=1,2,…,n, n=1,2,…
  • A048157 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A048156.
  • A048158 (program): Triangular array T read by rows: T(n,k) = n mod k, for k=1,2,…,n, n=1,2,…
  • A048161 (program): Primes p such that q = (p^2 + 1)/2 is also a prime.
  • A048162 (program): Expansion of (1 - x + 3*x^3 - 2*x^4 - 3*x^5)/(1 - 2*x + x^3).
  • A048163 (program): a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2.
  • A048166 (program): Numbers k that are divisible by the number of unitary divisors of k (A034444).
  • A048184 (program): Primes with nontrivial omnipower group.
  • A048195 (program): Numbers k for which binomial(k, floor(k/2)) has fewer unitary than non-unitary divisors.
  • A048198 (program): Number of primes between successive n’s, where n mod 10 = 5.
  • A048199 (program): Distance of primes to next odd multiple of 5 (where n mod 10 = 5),
  • A048200 (program): Minimal length pair-exchange / set-rotate sequence to reverse n distinct ordered elements.
  • A048240 (program): Number of new colors that can be mixed with n units of yellow, blue, red.
  • A048241 (program): Number of colors that can be mixed with n >= 0 units of yellow, blue, red.
  • A048248 (program): Possible traces of n-step walks on 1-D lattice, ignoring translations.
  • A048250 (program): Sum of the squarefree divisors of n.
  • A048254 (program): Numbers whose sum of divisors is 6^4 = 1296.
  • A048260 (program): The sum of 2 (not necessarily distinct) abundant numbers.
  • A048266 (program): Smallest integer requiring n fifth powers to sum to it.
  • A048271 (program): a(0) = 1, a(n+1) = -3*a(n) mod 11.
  • A048272 (program): Number of odd divisors of n minus number of even divisors of n.
  • A048276 (program): a(n) = number of squarefree numbers among C(n,k), k=0..n.
  • A048277 (program): Number of (not necessarily distinct) nonsquarefree numbers among C(n,k), k=0..n.
  • A048287 (program): Number of semiorders on n labeled nodes whose incomparability graph is connected.
  • A048291 (program): Number of {0,1} n X n matrices with no zero rows or columns.
  • A048297 (program): Coefficients in power series expansion over GF(2)[ X^(-1) ] of continued fraction [ 0, X, X^2, X^4, X^8, X^16, … ].
  • A048298 (program): a(n) = n if n=2^i for i >= 0, otherwise a(n) = 0.
  • A048307 (program): Numbers whose decimal expansions, read from left to right, have run lengths that strictly increase.
  • A048319 (program): Numbers whose base-8 expansions, read from left to right, have run lengths that strictly decrease.
  • A048320 (program): Numbers whose base-9 expansions, read from left to right, have run lengths that strictly decrease.
  • A048328 (program): Numbers that are repdigits in base 3.
  • A048329 (program): Numbers that are repdigits in base 4.
  • A048330 (program): Numbers that are repdigits in base 5.
  • A048331 (program): Numbers that are repdigits in base 6.
  • A048332 (program): Numbers that are repdigits in base 7.
  • A048333 (program): Numbers that are repdigits in base 8.
  • A048334 (program): Numbers that are repdigits in base 9.
  • A048338 (program): a(n) in base 14 is a repdigit.
  • A048345 (program): a(n)^2 is the smallest square containing exactly n 0’s.
  • A048379 (program): Apply the transformation 0->1->2->3->4->5->6->7->8->9->0 to digits of n.
  • A048395 (program): Sum of consecutive nonsquares.
  • A048396 (program): Sums of consecutive noncubes.
  • A048435 (program): Take the first n numbers written in base 3, concatenate them, then convert from base 3 to base 10.
  • A048436 (program): Take the first n numbers written in base 4, concatenate them, then convert from base 4 to base 10.
  • A048437 (program): Take the first n numbers written in base 5, concatenate them, then convert from base 5 to base 10.
  • A048438 (program): Take the first n numbers written in base 6, concatenate them, then convert from base 6 to base 10.
  • A048439 (program): Take the first n numbers written in base 7, concatenate them, then convert from base 7 to base 10.
  • A048440 (program): Take the first n numbers written in base 8, concatenate them, then convert from base 8 to base 10.
  • A048441 (program): Take the first n numbers written in base 9, concatenate them, then convert from base 9 to base 10.
  • A048442 (program): Take the first n numbers written in base 11, concatenate them, then convert from base 11 to base 10.
  • A048443 (program): Take the first n numbers written in base 12, concatenate them, then convert from base 12 to base 10.
  • A048444 (program): Take the first n numbers written in base 13, concatenate them, then convert from base 13 to base 10.
  • A048445 (program): Take the first n numbers written in base 14, concatenate them, then convert from base 14 to base 10.
  • A048446 (program): Take the first n numbers written in base 15, concatenate them, then convert from base 15 to base 10.
  • A048447 (program): Take the first n numbers written in base 16, concatenate them, then convert from base 16 to base 10.
  • A048448 (program): a(n) = prime(n-1) + prime(n+1) (assuming prime(i) = 0 for i < 1).
  • A048457 (program): Last odd terms from generation 2 onwards.
  • A048460 (program): Total of odd numbers in the generations from 2 onwards.
  • A048467 (program): a(n) = T(6,n), array T given by A047858.
  • A048468 (program): a(n) = T(7,n), array T given by A047858.
  • A048469 (program): a(n) = T(8,n), array T given by A047858.
  • A048470 (program): a(n) = (n+1)*(2^(n+1) - n)/2.
  • A048471 (program): Array T read by diagonals: T(k,n) = 2^(k-1) * (3^n - 1) + 1.
  • A048472 (program): Array T by antidiagonals, T(k,n)=(k+1)*n*2^(n-1)+1, n >= 0, k >= 1.
  • A048473 (program): a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.
  • A048474 (program): a(n) = 3*n*2^(n-1) + 1.
  • A048476 (program): a(n) = T(4,n), array T given by A048472.
  • A048477 (program): a(n) = T(5,n), array T given by A048472.
  • A048478 (program): a(n) = T(6,n), array T given by A048472.
  • A048479 (program): a(n) = T(7,n), array T given by A048472.
  • A048480 (program): a(n) = T(8,n), array T given by A048472.
  • A048481 (program): a(n) = T(0,n)+T(1,n-1)+…+T(n,0), array T given by A048472.
  • A048482 (program): a(n) = T(n,n), array T given by A048472.
  • A048483 (program): Array read by antidiagonals: T(k,n) = (k+1)2^n - k.
  • A048487 (program): a(n) = T(4,n), array T given by A048483.
  • A048488 (program): a(n) = 6*2^n - 5.
  • A048489 (program): a(n) = 7 * 2^n - 6.
  • A048490 (program): a(n) = T(7,n), array T given by A048483.
  • A048491 (program): a(n) = T(8,n), array T given by A048483.
  • A048492 (program): a(n) = ( 8*(2^n) - n^2 - 3*n - 6 )/2.
  • A048493 (program): a(n) = (n+1)*2^n - n.
  • A048494 (program): Array T(k,n) read by antidiagonals: T(n,k) = 2^(n-1) * ((k+1)*n - 2k) + k + 1.
  • A048495 (program): a(n) = (n-1)*2^n + 2.
  • A048496 (program): a(n) = 2^(n-1)*(3*n-4) + 3.
  • A048497 (program): a(n) = 2^(n-1)*(4*n - 6) + 4.
  • A048498 (program): 2^(n-1)*(5n-8)+5.
  • A048499 (program): a(n) = 2^(n-1)*(6*n-10)+6.
  • A048500 (program): a(n) = 2^(n-1)*(7*n-12)+7.
  • A048501 (program): a(n) = 2^(n-1)*(8*n-14)+8.
  • A048502 (program): a(n) = 2^(n-1)*(9*n-16)+9.
  • A048503 (program): G.f.: (1 - 4*x + 6*x^2 - 2*x^3)/((1-x)^3*(1-2*x)^2).
  • A048504 (program): a(n) = T(n,n), array T given by A048494.
  • A048505 (program): Array T read by diagonals, n-th difference of (T(k,n),T(k,n-1),…,T(k,0)) is (k+n)^2, for n=1,2,3,…; k=0,1,2,…
  • A048506 (program): a(n) = T(0,n), array T given by A048505.
  • A048507 (program): a(n) = T(2,n), array T given by A048505.
  • A048508 (program): a(n) = T(3,n), array T given by A048505.
  • A048509 (program): a(n) = T(4,n), array T given by A048505.
  • A048510 (program): a(n) = T(5,n), array T given by A048505.
  • A048511 (program): a(n) = T(6,n), array T given by A048505.
  • A048512 (program): a(n) = T(7,n), array T given by A048505.
  • A048513 (program): a(n) = T(8,n), array T given by A048505.
  • A048514 (program): a(n) = T(0,n)+T(1,n-1)+…+T(n,0), array T given by A048505.
  • A048515 (program): a(n) = T(n,n), array T given by A048505.
  • A048516 (program): Array T read by diagonals: T(m,n)=number of subsets S of {1,2,3,…,m+n-1} such that |S|>1 and |a-b|>=m for all distinct a and b in S, m=1,2,3,…; n=1,2,3,…
  • A048521 (program): Primes expressible as the sum of an integer plus its digit sum.
  • A048570 (program): Triangle T(n,k) = number of divisors of binomial(n,k).
  • A048571 (program): Triangle read by rows: T(n,k) = number of distinct prime factors of C(n,k).
  • A048572 (program): a(n) = sum of digits of a(n-1)*a(n-2).
  • A048573 (program): a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.
  • A048574 (program): Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 … (A000041).
  • A048575 (program): Pisot sequences L(2,5), E(2,5).
  • A048576 (program): Pisot sequence L(2,7).
  • A048577 (program): Pisot sequence L(3,4).
  • A048578 (program): Pisot sequence L(3,5).
  • A048579 (program): Pisot sequence L(3,8).
  • A048580 (program): Pisot sequence L(3,10).
  • A048582 (program): Pisot sequence L(4,9).
  • A048583 (program): Pisot sequence L(5,6).
  • A048584 (program): Pisot sequence L(5,7).
  • A048585 (program): Pisot sequence L(6,7).
  • A048586 (program): Pisot sequence L(6,8).
  • A048587 (program): Pisot sequence L(6,10).
  • A048588 (program): Pisot sequence L(7,8).
  • A048589 (program): Pisot sequence L(7,9).
  • A048590 (program): Pisot sequence L(8,9).
  • A048591 (program): Pisot sequence L(8,10).
  • A048592 (program): Pisot sequence L(9,10).
  • A048595 (program): Alternative start to A002371, which is the main entry for this sequence.
  • A048597 (program): Very round numbers: reduced residue system consists of only primes and 1.
  • A048598 (program): Partial sums of the sequence (A001097) of twin primes.
  • A048599 (program): Partial products of the sequence (A001097) of twin primes.
  • A048614 (program): Number of primes between successive pairs of twin primes.
  • A048617 (program): a(n) = 2*(n!)^2.
  • A048618 (program): Even numbers n such that binomial(n,n/2) is divisible by n/2.
  • A048619 (program): a(n) = LCM(binomial(n,0), …, binomial(n,n)) / binomial(n,floor(n/2)).
  • A048621 (program): a(n) = A001222(A001405(n)).
  • A048623 (program): Binary encoding of semiprimes (A001358).
  • A048625 (program): Pisot sequence P(4,6).
  • A048626 (program): Pisot sequence P(6,9).
  • A048628 (program): n-th 4k+1 prime times (n+1)st 4k+3 prime.
  • A048630 (program): n-th 4k+1 prime times n-th 4k-1 prime.
  • A048633 (program): Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]).
  • A048634 (program): a(n) = a(n-1)*a(n-3) + a(n-2), with a(0)=a(1)=0 and a(2)=1.
  • A048635 (program): Number of rational points of Klein curve over GF(2^n).
  • A048639 (program): Binary encoding of A006881, numbers with two distinct prime divisors.
  • A048640 (program): Binary encoding of the squarefree numbers, A005117.
  • A048641 (program): Partial sums of A003188 (Gray code).
  • A048642 (program): Partial products of A003188 (Gray code).
  • A048643 (program): Differences between partial products of Gray code (A048642) and factorials (A000142).
  • A048644 (program): Differences between partial sums of Gray code (A048641) and triangular numbers (A000217).
  • A048645 (program): Integers with one or two 1-bits in their binary expansion.
  • A048647 (program): Write n in base 4, then replace each digit ‘1’ with ‘3’ and vice versa and convert back to decimal.
  • A048649 (program): Decimal expansion of Sum_{m>=0} 1/(2^2^m - 1).
  • A048654 (program): a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.
  • A048655 (program): Generalized Pellian with second term equal to 5.
  • A048656 (program): a(n) is the number of unitary (and also of squarefree) divisors of n!.
  • A048657 (program): Number of non-unitary divisors of n!.
  • A048669 (program): The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n.
  • A048671 (program): a(n) is the least common multiple of the proper divisors of n.
  • A048672 (program): Binary encoding of squarefree numbers (A005117): A048640(n)/2.
  • A048673 (program): Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].
  • A048675 (program): If n = p_i^e_i * … * p_k^e_k, p_i < … < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + … + e_k * 2^k).
  • A048678 (program): Binary expansion of nonnegative integers expanded to “Zeckendorffian format” with rewrite rules 0->0, 1->01.
  • A048679 (program): Compressed fibbinary numbers (A003714), with rewrite 0->0, 01->1 applied to their binary expansion.
  • A048680 (program): Nonnegative integers A001477 expanded with rewrite 0->0, 01->1, then interpreted as Zeckendorffian expansions (as numbers of Fibonacci number system).
  • A048691 (program): a(n) = d(n^2), where d(k) = A000005(k) is the number of divisors of k.
  • A048693 (program): Generalized Pellian with 2nd term equal to 6.
  • A048694 (program): Generalized Pellian with second term equal to 7.
  • A048695 (program): Generalized Pellian with second term equal to 8.
  • A048696 (program): Generalized Pellian with second term equal to 9.
  • A048697 (program): Generalized Pellian with second term equal to 10.
  • A048700 (program): Binary palindromes of odd length (written in base 10).
  • A048701 (program): List of binary palindromes of even length (written in base 10).
  • A048702 (program): Binary palindromes of even length divided by 3.
  • A048703 (program): Numbers which in base 4 are palindromes and have an even number of digits.
  • A048704 (program): Base 4 palindromes of even length divided by 5. a(n) = A048703(n)/5.
  • A048711 (program): 2nd row of Family 1 “90 X 150 array”: generations 0 .. n of Rule 90 starting from seed pattern 7.
  • A048712 (program): 2nd column of Family 1 “90 X 150 array”: generations 0 .. n of Rule 150 starting from seed pattern 5.
  • A048713 (program): 3rd row of Family 1 “90 x 150 array”: generations 0 .. n of Rule 90 starting from seed pattern 21.
  • A048714 (program): 3rd column of Family 1 “90 x 150 array”: generations 0 .. n of Rule 150 starting from seed pattern 17.
  • A048715 (program): Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3).
  • A048716 (program): Numbers n such that binary expansion matches ((0)*00(1?)1)*(0*).
  • A048717 (program): Binary expansion matches ((0)*00(1*)11)*(0*).
  • A048718 (program): Binary expansion matches ((0)*0001)*(0*); or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-4).
  • A048719 (program): Binary expansion matches ((0)*0011)*(0*).
  • A048721 (program): Binary packing of Fibonacci sequence A000045.
  • A048722 (program): Reversed binary packing of Fibonacci sequence A000045.
  • A048724 (program): Write n and 2n in binary and add them mod 2.
  • A048725 (program): a(n) = Xmult(n,5) or rule90(n,1).
  • A048726 (program): a(n) = Xmult(n,6), or 2*A048724(n).
  • A048727 (program): a(n) = Xmult(n,7) or rule150(n,1).
  • A048728 (program): Differences between A008585 (multiples of 3) and A048724.
  • A048729 (program): Differences between A008587 (multiples of 5) and A048725
  • A048730 (program): Differences between A008589 (multiples of 7) and A048727, a(n) = ((n*7)-Xmult(n,7)).
  • A048733 (program): a(n) = A048730(n)/4.
  • A048735 (program): a(n) = (n AND floor(n/2)), where AND is bitwise and-operator (A004198).
  • A048736 (program): Dana Scott’s sequence: a(n) = (a(n-2) + a(n-1) * a(n-3)) / a(n-4), a(0) = a(1) = a(2) = a(3) = 1.
  • A048739 (program): Expansion of 1/((1 - x)*(1 - 2*x - x^2)).
  • A048740 (program): Product of divisors of n-th composite number.
  • A048741 (program): Product of aliquot divisors of composite n (1 and primes omitted).
  • A048742 (program): a(n) = n! - (n-th Bell number).
  • A048743 (program): Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.
  • A048745 (program): Partial sums of A048654.
  • A048746 (program): Partial sums of A048655.
  • A048751 (program): Composites k whose product of divisors divided by number of divisors is an integer.
  • A048753 (program): Composite numbers k whose product of aliquot divisors divided by number of aliquot divisors is an integer.
  • A048755 (program): Partial sums of A048693.
  • A048757 (program): Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).
  • A048759 (program): Longest perimeter of a Pythagorean triangle with n as length of one of the three sides.
  • A048760 (program): Largest square <= n.
  • A048761 (program): Smallest square greater than or equal to n.
  • A048762 (program): Largest cube <= n.
  • A048763 (program): Smallest cube >= n.
  • A048764 (program): Largest factorial <= n.
  • A048765 (program): Smallest factorial >= n.
  • A048766 (program): Integer part of cube root of n. Or, number of cubes <= n. Or, n appears 3n^2 + 3n + 1 times.
  • A048770 (program): Partial sums of A048694.
  • A048771 (program): Partial sums of A048695.
  • A048772 (program): Partial sums of A048696.
  • A048773 (program): Partial sums of A048697.
  • A048775 (program): Number of (partially defined) monotone maps from intervals of 1..n to 1..n.
  • A048776 (program): First partial sums of A048739; second partial sums of A000129.
  • A048777 (program): First partial sums of A005409; second partial sums of A001333.
  • A048778 (program): First partial sums of A048745; second partial sums of A048654.
  • A048779 (program): Coefficients of power series for (1 - (1-8*x)^(1/4))/2.
  • A048784 (program): a(n) = tau(binomial(2*n,n)), where tau = number of divisors (A000005).
  • A048785 (program): a(0) = 0; a(n) = tau(n^3), where tau = number of divisors (A000005).
  • A048786 (program): Triangle of coefficients of certain exponential convolution polynomials.
  • A048787 (program): Write n in base 3 then rotate left one place.
  • A048788 (program): a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1.
  • A048798 (program): Smallest k > 0 such that n*k is a perfect cube.
  • A048800 (program): E.g.f. satisfies A(x) = 1 + x * A(x / (1 - x)).
  • A048803 (program): a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, …, n, a(1)*a(n-1), a(2)*a(n-2), …, a(n-1)*a(1) ).
  • A048839 (program): Numbers n dividing P(n)!, where P(n) is the largest prime factor of n.
  • A048840 (program): Expansion of (1 - x + 2*x^2 + 2*x^3 - x^4 - x^5)/(1-x)^3.
  • A048841 (program): Least positive integer k for which 11^n divides k!.
  • A048842 (program): Least positive integer k for which 13^n divides k!.
  • A048843 (program): Least positive integer k for which 17^n divides k!.
  • A048844 (program): Least positive integer k for which 19^n divides k!.
  • A048845 (program): Least positive integer k for which 23^n divides k!.
  • A048846 (program): Least positive integer k for which 29^n divides k!.
  • A048848 (program): a(n) = prime(phi(n)).
  • A048849 (program): a(n) = prime(phi(n)) + phi(prime(n)).
  • A048851 (program): Length of hypotenuse squared in right triangle formed by a prime spiral plotted in Cartesian coordinates.
  • A048852 (program): Difference between b^2 (in c^2=a^2+b^2) and product of successive prime pairs.
  • A048854 (program): Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].
  • A048855 (program): Number of integers up to n! relatively prime to n!.
  • A048856 (program): Number of digits of prime(n)# + 1.
  • A048859 (program): A sieve: keep the first 2 numbers, delete the next 3 numbers; keep the next 3 numbers, delete the next 4 numbers; keep the next 4 numbers, delete the next 5 numbers; and so on. In other words, keep the next k numbers and delete the next k+1 numbers, for k = 2, 3, …
  • A048861 (program): a(n) = n^n - 1.
  • A048864 (program): Number of nonprime numbers (composites and 1) in the reduced residue system of n.
  • A048865 (program): a(n) is the number of primes in the reduced residue system mod n.
  • A048866 (program): Difference between number of nonprimes and primes in reduced residue system of n.
  • A048867 (program): Numbers for which reduced residue system contains fewer primes than nonprimes.
  • A048868 (program): Numbers for which reduced residue system contains more primes than nonprimes.
  • A048871 (program): Length of hypotenuse squared in right triangle formed by a palindromic spiral plotted in Cartesian coordinates.
  • A048875 (program): Generalized Pellian with second term of 6.
  • A048876 (program): a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=7.
  • A048877 (program): a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=8.
  • A048878 (program): Generalized Pellian with second term of 9.
  • A048879 (program): Generalized Pellian with second term of 10.
  • A048881 (program): a(n) = A000120(n+1) - 1 = wt(n+1) - 1.
  • A048883 (program): a(n) = 3^wt(n), where wt(n) = A000120(n).
  • A048893 (program): Threshold function for orthogonal arrays of strength 2.
  • A048894 (program): n - 1 - A048893(n).
  • A048896 (program): a(n) = 2^(A000120(n+1) - 1), n >= 0.
  • A048898 (program): One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-1). Here the 2 (mod 5) numbers (except for n=0).
  • A048899 (program): One of the two successive approximations up to 5^n for 5-adic integer sqrt(-1). Here the 3 (mod 5) case (except for n=0).
  • A048900 (program): Heptagonal pentagonal numbers.
  • A048901 (program): Indices of hexagonal numbers which are also heptagonal.
  • A048902 (program): Indices of heptagonal numbers (A000566) which are also hexagonal.
  • A048903 (program): Heptagonal hexagonal numbers.
  • A048904 (program): Indices of heptagonal numbers (A000566) which are also octagonal.
  • A048905 (program): Indices of octagonal numbers which are also heptagonal.
  • A048907 (program): Indices of 9-gonal numbers which are also triangular.
  • A048908 (program): Indices of triangular numbers which are also 9-gonal.
  • A048909 (program): 9-gonal (or nonagonal) triangular numbers.
  • A048910 (program): Indices of 9-gonal numbers that are also square.
  • A048911 (program): Indices of square numbers which are also 9-gonal.
  • A048913 (program): Indices of 9-gonal numbers which are also pentagonal.
  • A048914 (program): Indices of pentagonal numbers which are also 9-gonal.
  • A048915 (program): 9-gonal pentagonal numbers.
  • A048916 (program): Indices of 9-gonal numbers which are also hexagonal.
  • A048917 (program): Indices of hexagonal numbers which are also 9-gonal.
  • A048918 (program): 9-gonal hexagonal numbers.
  • A048919 (program): Indices of 9-gonal numbers which are also heptagonal.
  • A048920 (program): Indices of heptagonal numbers (A000566) which are also 9-gonal.
  • A048921 (program): 9-gonal heptagonal numbers (A000566).
  • A048922 (program): Indices of 9-gonal numbers which are also octagonal.
  • A048923 (program): Indices of octagonal numbers which are also 9-gonal.
  • A048943 (program): Product of divisors of n is a square.
  • A048944 (program): Numbers k such that the product of divisors of k is a cube.
  • A048964 (program): a(n) is smallest number k such that k! >= n-th primorial number (A002110(n)).
  • A048965 (program): Row sums of triangle A048882.
  • A048966 (program): A convolution triangle of numbers obtained from A025748.
  • A048967 (program): Number of even entries in row n of Pascal’s triangle (A007318).
  • A048972 (program): Length of record run mentioned in A048971.
  • A048974 (program): Odd numbers that are the sum of 2 primes.
  • A048983 (program): As n runs through composite numbers, a(n) = number of composite d < n such that gcd(d,n) = 1.
  • A048984 (program): As n runs through composite numbers, a(n) = number of nonprime d < n such that gcd(d,n) = 1.
  • A048988 (program): Primes of the form 4*k^2 + 4*k + 59.
  • A048989 (program): Numbers n such that pi(n) is prime.
  • A048990 (program): Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = binomial(4*n, 2*n)/(2*n+1).
  • A049001 (program): a(n) = prime(n)^2 - 2.
  • A049002 (program): Primes of form p^2 - 2, where p is prime.
  • A049003 (program): Primes of form p^3 - 4, p prime.
  • A049005 (program): Number of letters in English names for days of week.
  • A049008 (program): Greatest possible number of right angles that can occur as interior angles in a planar n-gon.
  • A049016 (program): Expansion of 1/((1-x)^5-x^5).
  • A049017 (program): Expansion of 1/((1-x)^7-x^7).
  • A049018 (program): Expansion of 1/((1+x)^7 - x^7).
  • A049027 (program): G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.
  • A049028 (program): Row sums of triangle A035529.
  • A049031 (program): Maximization of sums of cubes of integer differences (b_[ i ]-i)^3 over permutations {b_[ i ], for i-1,2,…,n} on first n integers.
  • A049032 (program): A049031/2.
  • A049034 (program): Scaled sums of odd reciprocals.
  • A049039 (program): Geometric Connell sequence: 1 odd, 2 even, 4 odd, 8 even, …
  • A049046 (program): Number of k >= 1 with k! == 1 (mod n).
  • A049047 (program): Number of distinct factorial numbers congruent to 1 (mod prime(n)).
  • A049060 (program): a(n) = (-1)^omega(n)*Sum_{d|n} d*(-1)^omega(d), where omega(n) = A001221(n) is number of distinct primes dividing n.
  • A049066 (program): Mean prime gaps associated with A049036.
  • A049068 (program): Complement of quarter-squares (A002620).
  • A049069 (program): Array T read by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 1.
  • A049070 (program): a(n) = (n+1)^2*binomial(2*n+2,n-1)/2.
  • A049071 (program): Expansion of x*(3-2*x)/(1-x^2).
  • A049072 (program): Expansion of 1/(1 - 3*x + 4*x^2).
  • A049074 (program): Ulam’s conjecture (steps to return n to 1 after division by 2 and, if needed, multiplication by 3 with 1 added).
  • A049076 (program): Number of steps in the prime index chain for the n-th prime.
  • A049077 (program): a(n) = n / gcd(n, binomial(n, floor(n/2))).
  • A049078 (program): Primes prime(k) for which A049076(k) = 2.
  • A049079 (program): Primes prime(k) for which A049076(k) = 3.
  • A049084 (program): a(n) = pi(n) if n is prime, otherwise 0.
  • A049086 (program): Number of tilings of 4 X 3n rectangle by 1 X 3 rectangles. Rotations and reflections are considered distinct tilings.
  • A049089 (program): Array read by antidiagonals: T(1,j)=2j+2 i>=1, T(i,1)=2i+2 i>=1, T(i,j)=T(i-1,j-1)+T(i-1,j).
  • A049092 (program): Primes p such that p-1 is not squarefree.
  • A049095 (program): Numbers k such that 2^k + 1 is squarefree.
  • A049097 (program): Primes p such that p+1 is squarefree.
  • A049098 (program): Primes p such that p+1 is divisible by a square.
  • A049099 (program): a(n) = Euler phi function applied thrice to n.
  • A049108 (program): a(n) is the number of iterations of Euler phi function needed to reach 1 starting at n (n is counted).
  • A049111 (program): Number of divisors of A005237(n).
  • A049112 (program): 2-ranks of difference sets constructed from Glynn type I hyperovals.
  • A049114 (program): 2-ranks of difference sets constructed from Glynn type II hyperovals.
  • A049115 (program): a(n) is the number of iterations of the Euler phi function needed to reach a power of 2, when starting from n.
  • A049118 (program): Row sums of triangle A035342 and array A134144.
  • A049122 (program): Revert transform of (1 + 2x)/(1 + 3x + x^2).
  • A049124 (program): Revert transform of (-1 + x + x^2)/((x - 1)*(x + 1)).
  • A049125 (program): Revert transform of (1 + x - x^2) / (1 + x)^2.
  • A049128 (program): Revert transform of (x - 1)^2/(1 - x + x^3).
  • A049130 (program): Revert transform of ((x - 1)(x + 1))/(-1 - x + x^3).
  • A049140 (program): Revert transform of 1 - x - x^3.
  • A049149 (program): Numbers k such that the Euler totient function phi(k) is squarefree.
  • A049171 (program): Revert transform of 2*(1 + x + x^2)-1/(1-x).
  • A049173 (program): Revert transform of 2*(1 + x + x^2 + x^3 + x^4)-1/(1-x).
  • A049181 (program): Revert transform of 2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)-1/(1-x).
  • A049194 (program): Number of digits in n-th term of A001387.
  • A049195 (program): Numbers k such that the Euler totient function phi(k) is divisible by a square.
  • A049196 (program): Squarefree numbers whose Euler totient function is also squarefree.
  • A049197 (program): Squarefree numbers whose Euler totient function is not squarefree.
  • A049200 (program): Euler totient function phi applied to the n-th squarefree number.
  • A049206 (program): Maximum mean distance between cards during perfect faro shuffles, with cut, to return to original order in A024222.
  • A049207 (program): Array T(m,n) of products of pronic numbers m(m+1) * n(n+1) read by antidiagonals (“bipronics”).
  • A049209 (program): a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
  • A049210 (program): a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
  • A049211 (program): a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
  • A049212 (program): a(n) = -Product_{k=0..n} (10*k - 1); deca-factorial numbers.
  • A049214 (program): Scaled coefficients of (arctanh x)^3.
  • A049219 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square.
  • A049220 (program): Number of horizontally convex n-ominoes in which the top row has at least 2 squares and the rightmost square in the top row is above the leftmost square in the second row.
  • A049221 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square, which is not above the rightmost square in the second row.
  • A049222 (program): Number of horizontally convex n-ominoes in which the top row has exactly 1 square, which is not above the rightmost square in the second row and the rightmost square in the second row is above the leftmost square in the third row.
  • A049229 (program): Primes p such that p-2 is not squarefree.
  • A049231 (program): Primes p such that p - 2 is squarefree.
  • A049232 (program): Primes p such that p+2 is divisible by a square.
  • A049233 (program): Primes p such that p + 2 is squarefree.
  • A049234 (program): Number of divisors of prime(n) + 2.
  • A049235 (program): Sum of balls on the lawn for the s=3 tennis ball problem.
  • A049236 (program): a(n) is the number of distinct prime factors of prime(n) + 2.
  • A049237 (program): Quotient n/phi(n) for n in A007694.
  • A049238 (program): a(n) is the number of divisors of prime(n) - 2.
  • A049240 (program): Smallest nonnegative value taken on by x^2 - n*y^2 for an infinite number of integer pairs (x, y).
  • A049281 (program): Numerators of coefficients in power series for -log(1+x)*log(1-x).
  • A049291 (program): Number of subgroups of index n in free group of rank 4.
  • A049293 (program): Number of subgroups of index 3 in fundamental group of a closed surface of characteristic -n.
  • A049294 (program): Number of subgroups of index 3 in free group of rank n+1.
  • A049296 (program): First differences of A008364. Also first differences of reduced residue system (RRS) for 4th primorial number, A002110(4)=210.
  • A049298 (program): Take reduced residue systems of n, generate its first differences, dRRS(n); sequence gives maximal value of dRSSS(n).
  • A049308 (program): Sextuple factorial numbers: Product_{k=0..n-1} (6*k+4).
  • A049310 (program): Triangle of coefficients of Chebyshev’s S(n,x) := U(n,x/2) polynomials (exponents in increasing order).
  • A049319 (program): Number of 3-dimensional integer direction vectors (a,b,c) towards grid points at squared integer distance 2n-1.
  • A049320 (program): Non-primitive Chacon sequence: fixed under 0->0010, 1->1.
  • A049321 (program): Primitive Chacon sequence: fixed under 0->0012, 1->12, 2->012.
  • A049323 (program): Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.
  • A049324 (program): A convolution triangle of numbers generalizing Pascal’s triangle A007318.
  • A049330 (program): Numerator of (1/Pi)*Integral_{x=0..infinity} (sin(x)/x)^n dx.
  • A049331 (program): Denominator of (1/Pi)*Integral_{0..oo} (sin x / x)^n dx.
  • A049332 (program): Number of conjugacy classes in Clifford group CL(n).
  • A049341 (program): a(n+1) = sum of digits of a(n) + a(n-1).
  • A049342 (program): a(n) = A049341(n)/3.
  • A049347 (program): Period 3: repeat [1, -1, 0].
  • A049348 (program): Row sums of triangle A049324.
  • A049349 (program): Row sums of triangle A049325.
  • A049358 (program): Digitally balanced numbers in base 7: equal numbers of 0’s, 1’s, …, 6’s.
  • A049359 (program): Digitally balanced numbers in base 8: equal numbers of 0’s, 1’s, …, 7’s.
  • A049360 (program): Digitally balanced numbers in base 9: equal numbers of 0’s, 1’s, …, 8’s.
  • A049363 (program): a(1) = 1; for n > 1, smallest digitally balanced number in base n.
  • A049376 (program): Row sums of triangle A046089.
  • A049377 (program): Row sums of triangle A049352.
  • A049378 (program): Row sums of triangle A049353.
  • A049380 (program): Expansion of (1-25*x)^(-2/5).
  • A049381 (program): Expansion of (1-25*x)^(-3/5).
  • A049382 (program): Expansion of (1-25*x)^(-4/5).
  • A049386 (program): Binary order of 2^n-th prime.
  • A049388 (program): a(n) = (n+7)!/7!.
  • A049389 (program): a(n) = (n+8)!/8!.
  • A049390 (program): Expansion of (1-25*x)^(4/5).
  • A049391 (program): Expansion of (1-25*x)^(3/5).
  • A049392 (program): Expansion of (1-25*x)^(2/5).
  • A049393 (program): Expansion of (1-25*x)^(1/5).
  • A049394 (program): Expansion of (1-25*x)^(-6/5).
  • A049395 (program): Expansion of (1-25*x)^(-7/5).
  • A049396 (program): Expansion of (1-25*x)^(-8/5).
  • A049397 (program): Expansion of (1-25*x)^(-9/5).
  • A049398 (program): a(n) = (n+9)!/9!.
  • A049401 (program): Number of Young tableaux of height <= 5.
  • A049402 (program): Row sums of triangle A049374.
  • A049403 (program): A triangle of numbers related to triangle A030528; array a(n,m), read by rows (1 <= m <= n).
  • A049407 (program): Numbers m such that m^3 + m + 1 is prime.
  • A049415 (program): Number of squares (of positive integers) with n digits.
  • A049416 (program): Largest number whose square has n digits.
  • A049417 (program): a(n) = isigma(n): sum of infinitary divisors of n.
  • A049422 (program): Numbers k such that k^2 + 3 is prime.
  • A049423 (program): Primes of the form k^2 + 3.
  • A049425 (program): Row sums of triangle A049404.
  • A049426 (program): Row sums of triangle A049410.
  • A049434 (program): Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.
  • A049435 (program): Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.
  • A049437 (program): Primes p such that p+2 and p+8 are also primes but p+6 is not.
  • A049440 (program): Fib(3n)^2 - 2*Fib(3n) + 4*Fib(3n+1) + 5.
  • A049441 (program): Numbers n such that n^3 + 3 is prime.
  • A049445 (program): Numbers n with property that the number of 1’s in binary expansion of n (see A000120) divides n.
  • A049447 (program): Stirling numbers of second kind: 9th column of Stirling2 triangle A008277.
  • A049448 (program): Sum of numerator and denominator of fractions in Farey tree A007305/A007306.
  • A049449 (program): Product of numerator and denominator of fractions in Farey tree A007305/A007306.
  • A049450 (program): Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
  • A049451 (program): Twice second pentagonal numbers.
  • A049452 (program): Pentagonal numbers with even index.
  • A049453 (program): Second pentagonal numbers with even index: a(n) = n*(6*n+1).
  • A049454 (program): a(n) = 1 + Sum_{i=1..n} phi(i)^2.
  • A049455 (program): Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.
  • A049456 (program): Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant of Farey series. This is also Stern’s diatomic array read by rows (version 1).
  • A049457 (program): Least positive integer k such that the number having periodic continued fraction [ 1,m,1,m,1,m,… ] is of form (a+b*sqrt(k))/c, where a,b,c are positive integers.
  • A049465 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 2p + q.
  • A049466 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 3p+q.
  • A049467 (program): Replace each fraction p/q in Farey tree A007305/A007306 with 4p+q.
  • A049468 (program): Replace each fraction p/q in Farey tree A007305/A007306 with p+2q.
  • A049469 (program): Decimal expansion of sin(1).
  • A049470 (program): Decimal expansion of cos(1).
  • A049471 (program): Decimal expansion of tan(1).
  • A049472 (program): a(n) = floor(n/sqrt(2)).
  • A049473 (program): Nearest integer to n/sqrt(2).
  • A049474 (program): a(n) = ceiling(n/sqrt(2)).
  • A049480 (program): a(n) = (2*n-1)*(n^2 -n +6)/6.
  • A049481 (program): Both p and p+30 are primes.
  • A049482 (program): Primes p such that p + 210 is also prime.
  • A049486 (program): Maximum length of non-crossing path on n X n square lattice.
  • A049488 (program): Primes p such that p+16 is prime.
  • A049489 (program): Primes p such that p + 32 is also prime.
  • A049490 (program): a(n) and a(n)+64 both prime.
  • A049491 (program): Numbers k such that k and k+128 are both prime.
  • A049499 (program): A finite sequence of primes: the primes 671353+4^k for k=1, 2, 3, 4, 5, 6, 7, 8, 9.
  • A049501 (program): Major index of n, first definition.
  • A049502 (program): Major index of n, 2nd definition.
  • A049508 (program): Numbers k such that prime(k) == 3 (mod 10).
  • A049509 (program): Numbers k such that prime(k) == 7 (mod 10).
  • A049510 (program): Numbers k such that prime(k) == 9 (mod 10).
  • A049511 (program): Numbers k such that prime(k) == 1 (mod 10).
  • A049513 (program): Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.
  • A049532 (program): Numbers k such that k^2 + 1 is not squarefree.
  • A049533 (program): Numbers k such that k^2+1 is squarefree.
  • A049539 (program): Number of distinct binary sequences of length k+n generated by a general (non-linear) binary feedback shift register of length k, for sufficiently large k.
  • A049541 (program): Decimal expansion of 1/Pi.
  • A049559 (program): a(n) = gcd(n - 1, phi(n)).
  • A049563 (program): a(n) = ((prime(n)-1)! + 1) mod (prime(n) + 2).
  • A049579 (program): Numbers k such that prime(k)+2 divides (prime(k)-1)!.
  • A049581 (program): Table T(n,k) = |n-k| read by antidiagonals (n >= 0, k >= 0).
  • A049586 (program): a(n) is the GCD of the cototients (A051953) of n and n+1.
  • A049591 (program): Odd primes p such that p+2 is composite.
  • A049598 (program): 12 times triangular numbers.
  • A049600 (program): Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < … < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= … <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.
  • A049601 (program): a(n)=Sum{T(2i,n-2i): i=0,1,…,[ n/2 ]}, array T as in A049600.
  • A049602 (program): a(n) = (Fibonacci(2*n)-(-1)^n*Fibonacci(n))/2.
  • A049605 (program): Smallest k>1 such that k divides sigma(k*n).
  • A049606 (program): Largest odd divisor of n!.
  • A049608 (program): a(n)=T(n,n+2), array T as in A049600.
  • A049609 (program): a(n)=T(n,n+3), array T as in A049600.
  • A049610 (program): a(n) = Sum_{k=0..floor(n/2)} k*binomial(n,2*k) = floor(n*2^(n-3)).
  • A049611 (program): a(n) = T(n,2), array T as in A049600.
  • A049612 (program): a(n) = T(n,3), array T as in A049600.
  • A049613 (program): a(n) = 2n - (largest prime < 2n-2).
  • A049614 (program): n! divided by its squarefree kernel.
  • A049615 (program): Array T by antidiagonals; T(i,j) = number of lattice points (x,y) hidden from (i,j), where 0<=x<=i, 0<=y<=j; (x,y) is hidden if there is a lattice point (h,k) collinear with and between (x,y) and (i,j).
  • A049616 (program): a(n) = Sum_{i=1..n} T(i,n-i), where T is A049615.
  • A049617 (program): a(n) = Sum_{i=0..2n} (-1)^i * T(i,2n-i) where T is A049615.
  • A049620 (program): a(n) = T(n,n), array T as in A049615.
  • A049621 (program): a(n) = T(n,n+1), array T as in A049615.
  • A049622 (program): a(n) = T(n,n+2), array T as in A049615.
  • A049625 (program): Congruent to 1, 2, 4, 6, 8 or 9 mod 11, but with 2 instead of 1.
  • A049626 (program): a(n) = T(n,4), array T as in A049615.
  • A049627 (program): Array T read by diagonals; T(i,j)=(i+1)*(j+1)-H(i,j), where H is the array in A049615; thus T(i,j) is the number of lattice points in rectangle having diagonal (0,0)-to-(i,j) that are visible from (i,j).
  • A049628 (program): a(n) = Sum_{i=0..n} T(i,n-i) where T is A049627.
  • A049629 (program): a(n) = (F(6*n+5) - F(6*n+1))/4 = (F(6*n+4) + F(6*n+2))/4, where F = A000045.
  • A049630 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i) where T is A049627.
  • A049631 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i+1,n-2i-1) where T is A049627.
  • A049632 (program): a(n) = T(n,n), array T as in A049627.
  • A049633 (program): a(n) = T(n,n+1), array T as in A049627.
  • A049634 (program): a(n) = T(n,n+2), array T as in A049627.
  • A049635 (program): a(n) = T(n,n+3), array T as in A049627.
  • A049636 (program): Congruent to 0 or 2 mod 3, but not equal to 0 or 3.
  • A049637 (program): Congruent to 2, 3, 6, 8, 10 or 12 mod 13, but not equal to 3.
  • A049638 (program): a(n) = T(n,4), array T as in A049627.
  • A049639 (program): Array T read by diagonals; T(i,j) = number of lines passing through (i,j) and at least two other lattice points (h,k) satisfying 0<=h<=i, 0<=k<=j.
  • A049640 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049639.
  • A049641 (program): a(n) = Sum_{i=0..n} ((-1)^i)*T(i,n-i), array T as in A049639.
  • A049642 (program): Number of divisors of n does not divide sum of divisors of n.
  • A049643 (program): Number of fractions in Farey series of order n.
  • A049644 (program): T(n,n), array T given by A049639.
  • A049646 (program): a(n) = T(n,n+1), array T given by A049639.
  • A049647 (program): a(n) = T(n,n+2), array T given by A049639.
  • A049648 (program): T(n,n+1), array T as in A049687 and T(2n,2n+2), array T given by A049639.
  • A049649 (program): T(n,n+3), array T given by A049639.
  • A049650 (program): Compositorial numbers (A036691) + 1.
  • A049651 (program): a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
  • A049652 (program): a(n) = (F(3*n+2) - 1)/4, where F=A000045 (the Fibonacci sequence).
  • A049653 (program): a(n) = 2*n - prevprime(2*n).
  • A049654 (program): a(n) = (F(8*n+1) - 1)/3 where F=A000045 (the Fibonacci sequence).
  • A049655 (program): a(n) = (F(8n+2)-1)/3, where F=A000045 (the Fibonacci sequence).
  • A049656 (program): a(n) = (F(8n+7)-1)/3, where F=A000045 (the Fibonacci sequence).
  • A049657 (program): a(n) = (F(8*n+3) - 2)/3, where F=A000045 (the Fibonacci sequence).
  • A049658 (program): a(n) = (F(8*n+5) - 2)/3, where F=A000045 (the Fibonacci sequence).
  • A049659 (program): a(n) = (F(8*n+6) - 2)/3, where F=A000045 (the Fibonacci sequence).
  • A049660 (program): a(n) = Fibonacci(6*n)/8.
  • A049661 (program): a(n) = (Fibonacci(6*n+1) - 1)/4.
  • A049662 (program): a(n) = (F(6*n+2)-1)/4, where F=A000045 (the Fibonacci sequence).
  • A049663 (program): a(n) = (F(6*n+5) - 1)/4, where F=A000045 (the Fibonacci sequence).
  • A049664 (program): a(n) = (F(6*n+3) - 2)/32, where F=A000045 (the Fibonacci sequence).
  • A049665 (program): a(n) = (F(6*n+4) - 3)/4, where F=A000045 (the Fibonacci sequence).
  • A049666 (program): a(n) = Fibonacci(5*n)/5.
  • A049667 (program): a(n) = Fibonacci(7*n)/13.
  • A049668 (program): a(n) = Fibonacci(8*n)/21.
  • A049669 (program): a(n) = Fibonacci(9*n)/34.
  • A049670 (program): a(n) = Fibonacci(10*n)/55.
  • A049671 (program): a(n) = (F(n) + F(4*n))/2, where F=A000045 (the Fibonacci sequence).
  • A049672 (program): a(n) = (F(4*n) - F(n))/2, where F=A000045 (the Fibonacci sequence).
  • A049673 (program): a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).
  • A049674 (program): a(n) = (F(3*n) - 2*F(n))/6, where F=A000045 (the Fibonacci sequence).
  • A049675 (program): a(n) = (2*F(3*n) - F(n))/3, where F=A000045 (the Fibonacci sequence).
  • A049676 (program): a(n) = (F(8*n+3) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence).
  • A049677 (program): a(n) = (F(8*n+6) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence).
  • A049678 (program): a(n) = F(8*n+4)/3, where F=A000045 (the Fibonacci sequence).
  • A049679 (program): a(n) = (F(8*n+7)+F(8*n+5))/3, where F=A000045 (the Fibonacci sequence).
  • A049680 (program): a(n) = (L(n) + L(2*n))/2, where L = A000032 (the Lucas sequence).
  • A049681 (program): a(n) = (Lucas(2*n) - Lucas(n))/2.
  • A049682 (program): a(n) = (Lucas(8*n) - 2)/45.
  • A049683 (program): a(n) = (Lucas(6*n) - 2)/16.
  • A049684 (program): a(n) = Fibonacci(2n)^2.
  • A049685 (program): a(n) = L(4*n+2)/3, where L=A000032 (the Lucas sequence).
  • A049686 (program): a(n) = Fibonacci(8n)/3.
  • A049687 (program): Array T read by diagonals: T(i,j)=number of lines passing through (0,0) and at least one other lattice point (h,k) satisfying 0<=h<=i, 0<=k<=j.
  • A049688 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049687.
  • A049689 (program): a(n)=Sum{((-1)^(i+1))*T(i,n-i): i=0,1,…,n}, array T as in A049687.
  • A049690 (program): a(n) = Sum_{k=1..n} phi(2*k), where phi = Euler totient function, cf. A000010.
  • A049691 (program): a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639.
  • A049693 (program): a(n) = T(n,n+2), array T as in A049687.
  • A049694 (program): a(n) = T(n,n+3), array T as in A049687.
  • A049695 (program): Array T read by diagonals; T(i,j) is the number of nonnegative slopes of lines determined by 2 lattice points in [ 0,i ] X [ 0,j ] if i > 0; T(0,j)=1 if j > 0; T(0,0)=0.
  • A049696 (program): a(n)=T(n,n), array T as in A049695.
  • A049697 (program): a(n)=T(n,n+1), array T as in A049695.
  • A049698 (program): a(n) = T(n,n+2), array T as in A049695.
  • A049699 (program): a(n) = T(n,n+3), array T as in A049695.
  • A049702 (program): Array T read by diagonals; T(i,j)=number of directions determined by 2 lattice points in [ 0,i ]x[ 0,j ].
  • A049703 (program): a(0) = 0; for n>0, a(n) = A005598(n)/2.
  • A049705 (program): a(n)=3-k(n), where k=A000002=Kolakoski sequence; also the sequence of runlengths of a is k.
  • A049706 (program): a(n) = T(n,n+2), array T as in A049704.
  • A049710 (program): a(n)=3-k(n), where k=A006928; also, a and k have the same runlength sequence, with n-th term k(n-1) for n >= 2.
  • A049711 (program): a(n) = n - prevprime(n).
  • A049712 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048149.
  • A049714 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i), array T as in A048149.
  • A049715 (program): a(n)=T(n,0), array T as in A049747.
  • A049716 (program): a(n) = 2*n + 1 - prevprime(2*n + 1).
  • A049717 (program): a(n) = T(n,n+1), array T as in A048149.
  • A049718 (program): a(n)=T(n,n+2), array T as in A048149.
  • A049719 (program): a(n)=T(n,n+3), array T as in A048149.
  • A049720 (program): a(n)=T(n,1), array T as in A048149.
  • A049721 (program): a(n)=T(n,2), array T as in A048149.
  • A049722 (program): a(n)=T(n,3), array T as in A048149.
  • A049727 (program): Array T read by diagonals; T(i,j)=number of lattice points in triangle (possibly degenerate) with vertices (0,0),(i,0),(i,j).
  • A049728 (program): a(n)=T(n,n), array T as in A049723.
  • A049730 (program): a(n)=T(n,n+2), array T as in A049723.
  • A049732 (program): a(n)=T(n,1), array T as in A049723.
  • A049733 (program): a(n)=T(n,2), array T as in A049723.
  • A049734 (program): a(n)=T(n,3), array T as in A049723.
  • A049735 (program): Array T(i,j) is the number of lattice points (x,y) in circle with radius (0,0)-to-(i,j), read by antidiagonals.
  • A049736 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049735.
  • A049738 (program): a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i), array T as in A049735.
  • A049739 (program): a(n) = Sum_{i=0..n} T(i,n-i), array T as in A049727.
  • A049740 (program): a(n)=T(n,n), array T as in A049735.
  • A049741 (program): a(n)=T(n,n+1), array T as in A049735.
  • A049742 (program): a(n)=T(n,n+2), array T as in A049735.
  • A049743 (program): a(n)=T(n,n+3), array T as in A049735.
  • A049744 (program): a(n)=T(n,1), array T as in A049735.
  • A049745 (program): a(n)=T(n,2), array T as in A049735.
  • A049746 (program): a(n)=T(n,3), array T as in A049735.
  • A049759 (program): Triangular array T read by rows: T(n,k)=n^2 mod k, for k=1,2,…,n, n=1,2,…
  • A049760 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049759.
  • A049761 (program): Triangular array T, read by rows: T(n,k) = n^3 mod k, for k = 1..n and n >= 1.
  • A049762 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049761.
  • A049763 (program): Triangular array T, read by rows: T(n,k) = n^4 mod k, for k = 1..n and n >= 1.
  • A049764 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049763.
  • A049765 (program): Triangular array T, read by rows: T(n,k) = (k mod n) + (n mod k), for k = 1..n and n >= 1.
  • A049766 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049765.
  • A049767 (program): Triangular array T, read by rows: T(n,k) = (k^2 mod n) + (n^2 mod k), for k = 1..n and n >= 1.
  • A049768 (program): a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.
  • A049769 (program): Triangular array T read by rows: T(n,k) = (k^3 mod n) + (n^3 mod k).
  • A049770 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049769.
  • A049771 (program): Triangular array T read by rows: T(n,k) = (k^4 mod n) + (n^4 mod k).
  • A049772 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049771.
  • A049773 (program): Triangular array T read by rows: if row n is r(1),…,r(m), then row n+1 is 2r(1)-1,…,2r(m)-1,2r(1),…,2r(m).
  • A049775 (program): a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1).
  • A049776 (program): Triangular array T read by rows: n-th row consists of fixed points, k, of n-th row of array t given by A049773; i.e., t(n, t(n,k)) = t(n,k).
  • A049777 (program): Triangular array read by rows: T(m,n) = n + n+1 + … + m = (m+n)(m-n+1)/2.
  • A049778 (program): a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777.
  • A049779 (program): a(n) = Sum_{k=1..floor(n/2)} T(n, 2k), array T as in A049777.
  • A049780 (program): Array T, read by descending diagonals: T(n, k) = k*(2*n + k + 1)/2 for n, k >= 0.
  • A049782 (program): a(n) = (0! + 1! + … + (n-1)!) mod n.
  • A049785 (program): a(n) = Sum_{k=1..n} (n mod floor(n/k)) = T(n,n), array T as in A049783.
  • A049786 (program): a(n) = T(n,n-1), array T as in A049783.
  • A049787 (program): a(n) = T(n,n-2), array T as in A049783.
  • A049788 (program): a(n) = T(n,n-3), array T as in A049783.
  • A049789 (program): a(n) = T(n,n-4), array T as in A049783.
  • A049792 (program): a(n) = Sum_{k=1..n} floor(n/floor(n/k)).
  • A049797 (program): a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.
  • A049798 (program): a(n) = (1/2)*Sum_{k = 1..n} T(n,k), array T as in A049800.
  • A049800 (program): Triangular array T, read by rows: T(n,k) = (n+1) mod floor((k+1)/2), k = 1..n and n >= 1.
  • A049802 (program): a(n) = n mod 2 + n mod 4 + … + n mod 2^k, where 2^k <= n < 2^(k+1).
  • A049803 (program): a(n) = n mod 3 + n mod 9 + … + n mod 3^k, where 3^k <= n < 3^(k+1).
  • A049804 (program): a(n) = n mod 4 + n mod 16 + … + n mod 4^k, where 4^k <= n < 4^(k+1).
  • A049806 (program): Number of Farey fractions of order n that are <=1/2; cf. A049805.
  • A049807 (program): a(n)=number of Farey fractions of order n that are <=1/3; cf. A049805.
  • A049808 (program): a(n)=number of Farey fractions of order n that are <=1/4; cf. A049805.
  • A049809 (program): a(n)=number of Farey fractions of order n that are <=1/5; cf. A049805.
  • A049810 (program): a(n)=number of Farey fractions of order n that are <=1/6; cf. A049805.
  • A049811 (program): a(n)=number of Farey fractions of order n that are <=1/7; cf. A049805.
  • A049812 (program): a(n)=number of Farey fractions of order n that are <=1/8; cf. A049805.
  • A049813 (program): a(n)=number of Farey fractions of order n that are <=1/9; cf. A049805.
  • A049814 (program): a(n)=number of Farey fractions of order n that are <=1/10; cf. A049805.
  • A049815 (program): a(n)=Sum{T(n,k): k=1,2,…,n}, array T as in A049805.
  • A049820 (program): a(n) = n - d(n), where d(n) is the number of divisors of n (A000005).
  • A049822 (program): a(n) = 1 - tau(n) + Sum_{d|n} tau(d-1).
  • A049835 (program): a(n) = Sum_{k=1..n} T(n,k), array T as in A049834.
  • A049836 (program): a(n) = Sum_{m=1..n, k=1..m} T(m,k), array T as in A049834.
  • A049847 (program): a(n) = (2*n + 1 - prevprime(2*n+1))/2.
  • A049852 (program): Concatenate “n” and “nextprime(n)”.
  • A049853 (program): a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2.
  • A049854 (program): a(n)=Sum{a(k): k=0,1,2,…,n-3,n-1}; a(n-2) is not a summand; 2 initial terms required.
  • A049855 (program): a(n) = Sum{a(k): k=0,1,2,…,n-3,n-1}; a(n-2) is not a summand; 2 initial terms required.
  • A049856 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049858 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049859 (program): a(n) = Sum_{k=0,1,2,…,n-4,n-2,n-1} a(k); a(n-3) is not a summand; 3 initial terms required.
  • A049860 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049861 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049863 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049864 (program): a(n) = Sum_{k=0,1,2,…,n-4,n-2,n-1} a(k); a(n-3) is not a summand; 3 initial terms required.
  • A049865 (program): Number of iterations of unitary totient function (A047994) required to reach 1 from n.
  • A049866 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049867 (program): a(n) = Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049868 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049870 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049871 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049873 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049875 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049876 (program): a(n)=Sum{a(k): k=0,1,2,…,n-4,n-2,n-1}; a(n-3) is not a summand; 3 initial terms required.
  • A049884 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = a(2) = 1.
  • A049885 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
  • A049886 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
  • A049888 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
  • A049889 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m), where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
  • A049890 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
  • A049892 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
  • A049893 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
  • A049894 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
  • A049896 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
  • A049897 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
  • A049898 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
  • A049900 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049901 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049902 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049904 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
  • A049905 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique number such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
  • A049906 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
  • A049908 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049909 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the smallest integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049910 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049912 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
  • A049913 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
  • A049914 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2 and a(3) = 4.
  • A049916 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049917 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049918 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049920 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 2.
  • A049921 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
  • A049922 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3 and a(3) = 2.
  • A049924 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 3.
  • A049925 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
  • A049926 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
  • A049928 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
  • A049929 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
  • A049930 (program): a(n) = a(1) + a(2) + … + a(n-1) - a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(4) = 4.
  • A049932 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
  • A049933 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
  • A049934 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
  • A049936 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
  • A049937 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
  • A049938 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = a(2) = 1 and a(3) = 2.
  • A049940 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1) with a(1) = a(2) = 1.
  • A049941 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m), where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1.
  • A049942 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1.
  • A049944 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = a(2) = 1 and a(3) = 4.
  • A049945 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
  • A049946 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
  • A049948 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049949 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049950 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = 1, a(2) = 2, and a(3) = 1.
  • A049952 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
  • A049953 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
  • A049954 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
  • A049956 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049957 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049958 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
  • A049960 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1 and a(2) = 2.
  • A049961 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the smallest number such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
  • A049962 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
  • A049964 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049965 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049966 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
  • A049968 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
  • A049969 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
  • A049970 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
  • A049972 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
  • A049973 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
  • A049974 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
  • A049976 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
  • A049977 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n -1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.
  • A049978 (program): a(n) = a(1) + a(2) + … + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.

License Info